Improving the Measurement of Semantic Similarity between Gene Ontology Terms and Gene Products: Insights from an Edge- and IC-Based Hybrid Method
Explicit comparisons based on the semantic similarity of Gene Ontology terms provide a quantitative way to measure the functional similarity between gene products and are widely applied in large-scale genomic research via integration with other models. Previously, we presented an edge-based method,...
Uloženo v:
| Vydáno v: | PloS one Ročník 8; číslo 5; s. e66745 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Public Library of Science
31.05.2013
Public Library of Science (PLoS) |
| Témata: | |
| ISSN: | 1932-6203, 1932-6203 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Explicit comparisons based on the semantic similarity of Gene Ontology terms provide a quantitative way to measure the functional similarity between gene products and are widely applied in large-scale genomic research via integration with other models. Previously, we presented an edge-based method, Relative Specificity Similarity (RSS), which takes the global position of relevant terms into account. However, edge-based semantic similarity metrics are sensitive to the intrinsic structure of GO and simply consider terms at the same level in the ontology to be equally specific nodes, revealing the weaknesses that could be complemented using information content (IC).
Here, we used the IC-based nodes to improve RSS and proposed a new method, Hybrid Relative Specificity Similarity (HRSS). HRSS outperformed other methods in distinguishing true protein-protein interactions from false. HRSS values were divided into four different levels of confidence for protein interactions. In addition, HRSS was statistically the best at obtaining the highest average functional similarity among human-mouse orthologs. Both HRSS and the groupwise measure, simGIC, are superior in correlation with sequence and Pfam similarities. Because different measures are best suited for different circumstances, we compared two pairwise strategies, the maximum and the best-match average, in the evaluation. The former was more effective at inferring physical protein-protein interactions, and the latter at estimating the functional conservation of orthologs and analyzing the CESSM datasets. In conclusion, HRSS can be applied to different biological problems by quantifying the functional similarity between gene products. The algorithm HRSS was implemented in the C programming language, which is freely available from http://cmb.bnu.edu.cn/hrss. |
|---|---|
| AbstractList | Background
Explicit comparisons based on the semantic similarity of Gene Ontology terms provide a quantitative way to measure the functional similarity between gene products and are widely applied in large-scale genomic research via integration with other models. Previously, we presented an edge-based method, Relative Specificity Similarity (RSS), which takes the global position of relevant terms into account. However, edge-based semantic similarity metrics are sensitive to the intrinsic structure of GO and simply consider terms at the same level in the ontology to be equally specific nodes, revealing the weaknesses that could be complemented using information content (IC).
Results and Conclusions
Here, we used the IC-based nodes to improve RSS and proposed a new method, Hybrid Relative Specificity Similarity (HRSS). HRSS outperformed other methods in distinguishing true protein-protein interactions from false. HRSS values were divided into four different levels of confidence for protein interactions. In addition, HRSS was statistically the best at obtaining the highest average functional similarity among human-mouse orthologs. Both HRSS and the groupwise measure, simGIC, are superior in correlation with sequence and Pfam similarities. Because different measures are best suited for different circumstances, we compared two pairwise strategies, the maximum and the best-match average, in the evaluation. The former was more effective at inferring physical protein-protein interactions, and the latter at estimating the functional conservation of orthologs and analyzing the CESSM datasets. In conclusion, HRSS can be applied to different biological problems by quantifying the functional similarity between gene products. The algorithm HRSS was implemented in the C programming language, which is freely available from http://cmb.bnu.edu.cn/hrss. BACKGROUND: Explicit comparisons based on the semantic similarity of Gene Ontology terms provide a quantitative way to measure the functional similarity between gene products and are widely applied in large-scale genomic research via integration with other models. Previously, we presented an edge-based method, Relative Specificity Similarity (RSS), which takes the global position of relevant terms into account. However, edge-based semantic similarity metrics are sensitive to the intrinsic structure of GO and simply consider terms at the same level in the ontology to be equally specific nodes, revealing the weaknesses that could be complemented using information content (IC). RESULTS AND CONCLUSIONS: Here, we used the IC-based nodes to improve RSS and proposed a new method, Hybrid Relative Specificity Similarity (HRSS). HRSS outperformed other methods in distinguishing true protein-protein interactions from false. HRSS values were divided into four different levels of confidence for protein interactions. In addition, HRSS was statistically the best at obtaining the highest average functional similarity among human-mouse orthologs. Both HRSS and the groupwise measure, simGIC, are superior in correlation with sequence and Pfam similarities. Because different measures are best suited for different circumstances, we compared two pairwise strategies, the maximum and the best-match average, in the evaluation. The former was more effective at inferring physical protein-protein interactions, and the latter at estimating the functional conservation of orthologs and analyzing the CESSM datasets. In conclusion, HRSS can be applied to different biological problems by quantifying the functional similarity between gene products. The algorithm HRSS was implemented in the C programming language, which is freely available from http://cmb.bnu.edu.cn/hrss. Explicit comparisons based on the semantic similarity of Gene Ontology terms provide a quantitative way to measure the functional similarity between gene products and are widely applied in large-scale genomic research via integration with other models. Previously, we presented an edge-based method, Relative Specificity Similarity (RSS), which takes the global position of relevant terms into account. However, edge-based semantic similarity metrics are sensitive to the intrinsic structure of GO and simply consider terms at the same level in the ontology to be equally specific nodes, revealing the weaknesses that could be complemented using information content (IC). Here, we used the IC-based nodes to improve RSS and proposed a new method, Hybrid Relative Specificity Similarity (HRSS). HRSS outperformed other methods in distinguishing true protein-protein interactions from false. HRSS values were divided into four different levels of confidence for protein interactions. In addition, HRSS was statistically the best at obtaining the highest average functional similarity among human-mouse orthologs. Both HRSS and the groupwise measure, simGIC, are superior in correlation with sequence and Pfam similarities. Because different measures are best suited for different circumstances, we compared two pairwise strategies, the maximum and the best-match average, in the evaluation. The former was more effective at inferring physical protein-protein interactions, and the latter at estimating the functional conservation of orthologs and analyzing the CESSM datasets. In conclusion, HRSS can be applied to different biological problems by quantifying the functional similarity between gene products. The algorithm HRSS was implemented in the C programming language, which is freely available from http://cmb.bnu.edu.cn/hrss. Explicit comparisons based on the semantic similarity of Gene Ontology terms provide a quantitative way to measure the functional similarity between gene products and are widely applied in large-scale genomic research via integration with other models. Previously, we presented an edge-based method, Relative Specificity Similarity (RSS), which takes the global position of relevant terms into account. However, edge-based semantic similarity metrics are sensitive to the intrinsic structure of GO and simply consider terms at the same level in the ontology to be equally specific nodes, revealing the weaknesses that could be complemented using information content (IC).BACKGROUNDExplicit comparisons based on the semantic similarity of Gene Ontology terms provide a quantitative way to measure the functional similarity between gene products and are widely applied in large-scale genomic research via integration with other models. Previously, we presented an edge-based method, Relative Specificity Similarity (RSS), which takes the global position of relevant terms into account. However, edge-based semantic similarity metrics are sensitive to the intrinsic structure of GO and simply consider terms at the same level in the ontology to be equally specific nodes, revealing the weaknesses that could be complemented using information content (IC).Here, we used the IC-based nodes to improve RSS and proposed a new method, Hybrid Relative Specificity Similarity (HRSS). HRSS outperformed other methods in distinguishing true protein-protein interactions from false. HRSS values were divided into four different levels of confidence for protein interactions. In addition, HRSS was statistically the best at obtaining the highest average functional similarity among human-mouse orthologs. Both HRSS and the groupwise measure, simGIC, are superior in correlation with sequence and Pfam similarities. Because different measures are best suited for different circumstances, we compared two pairwise strategies, the maximum and the best-match average, in the evaluation. The former was more effective at inferring physical protein-protein interactions, and the latter at estimating the functional conservation of orthologs and analyzing the CESSM datasets. In conclusion, HRSS can be applied to different biological problems by quantifying the functional similarity between gene products. The algorithm HRSS was implemented in the C programming language, which is freely available from http://cmb.bnu.edu.cn/hrss.RESULTS AND CONCLUSIONSHere, we used the IC-based nodes to improve RSS and proposed a new method, Hybrid Relative Specificity Similarity (HRSS). HRSS outperformed other methods in distinguishing true protein-protein interactions from false. HRSS values were divided into four different levels of confidence for protein interactions. In addition, HRSS was statistically the best at obtaining the highest average functional similarity among human-mouse orthologs. Both HRSS and the groupwise measure, simGIC, are superior in correlation with sequence and Pfam similarities. Because different measures are best suited for different circumstances, we compared two pairwise strategies, the maximum and the best-match average, in the evaluation. The former was more effective at inferring physical protein-protein interactions, and the latter at estimating the functional conservation of orthologs and analyzing the CESSM datasets. In conclusion, HRSS can be applied to different biological problems by quantifying the functional similarity between gene products. The algorithm HRSS was implemented in the C programming language, which is freely available from http://cmb.bnu.edu.cn/hrss. |
| Author | Lin, Kui Pang, Erli Wu, Xiaomei Pei, Zhen-Ming |
| AuthorAffiliation | 1 College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China 3 Department of Biology, Duke University, Durham, North Carolina, United States of America 2 Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, People's Republic of China Semmelweis University, Hungary |
| AuthorAffiliation_xml | – name: 2 Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, People's Republic of China – name: 3 Department of Biology, Duke University, Durham, North Carolina, United States of America – name: 1 College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China – name: Semmelweis University, Hungary |
| Author_xml | – sequence: 1 givenname: Xiaomei surname: Wu fullname: Wu, Xiaomei – sequence: 2 givenname: Erli surname: Pang fullname: Pang, Erli – sequence: 3 givenname: Kui surname: Lin fullname: Lin, Kui – sequence: 4 givenname: Zhen-Ming surname: Pei fullname: Pei, Zhen-Ming |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23741529$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kttu1DAQhiNURA_wBggsccNNFh9iJ-kFEqxKu1JRkVquLTueZL1K7MV2ivYxeGOy3W3VVogrWzPf_HPQf5wdOO8gy94SPCOsJJ9WfgxO9bP1FJ5hLERZ8BfZEakZzQXF7ODR_zA7jnGFMWeVEK-yQ8rKgnBaH2V_FsM6-FvrOpSWgL6DimOAAVxCvkXXMCiXbIOu7WB7FWzaIA3pN4BD5-AAXbnke99t0A2EISLlzC7-I3gzNimeooWLtlumiNrghwlAZ6aD_I5czPOvKoJBFxsdrJmap6U3r7OXreojvNm_J9nPb2c384v88up8Mf9ymTecipQ3FITWSmNRY4WrVrOKc4PLwtBWtWUBRNQVcGNU2zSV0o0mXAuMWQucllXJTrL3O91176PcXzNKwnjJ6qIWbCIWO8J4tZLrYAcVNtIrK-8CPnRShek6PciCG1JVvKCaFoUmQtOmaimrNGhCOCeT1ud9t1EPYJrpwEH1T0SfZpxdys7fSiZETXExCXzcCwT_a4SY5GBjA32vHPhxO7fgdVVRvO314Rn67-3ePZ7oYZR7b0xAsQOa4GMM0D4gBMutBe9l5daCcm_Bqez0WVljk0rWb_ey_f-L_wKO4-Z7 |
| CitedBy_id | crossref_primary_10_1038_s41586_020_2832_5 crossref_primary_10_2174_1574893614666191017092842 crossref_primary_10_1134_S1990747820030058 crossref_primary_10_1186_1471_2105_15_S2_S5 crossref_primary_10_1016_j_ins_2014_06_039 crossref_primary_10_1002_prot_25645 crossref_primary_10_1038_s41588_024_01910_8 crossref_primary_10_1186_s12864_016_2828_6 crossref_primary_10_1016_j_jbi_2015_07_005 crossref_primary_10_1155_2017_2615286 crossref_primary_10_1038_srep10583 crossref_primary_10_1109_TCBB_2013_149 crossref_primary_10_1109_TNB_2016_2555802 crossref_primary_10_1155_2019_6750296 crossref_primary_10_1371_journal_pone_0133579 crossref_primary_10_1109_TCBB_2020_3003941 crossref_primary_10_1186_s12859_017_1819_1 crossref_primary_10_1186_1752_0509_8_S5_S8 crossref_primary_10_1016_j_gene_2014_12_062 crossref_primary_10_1016_j_jtbi_2016_04_020 crossref_primary_10_1186_1471_2164_15_1091 crossref_primary_10_1186_s12918_018_0539_0 crossref_primary_10_3389_fgene_2021_726596 crossref_primary_10_1093_nargab_lqae014 crossref_primary_10_1007_s42979_020_00350_5 crossref_primary_10_1109_TBDATA_2024_3375149 crossref_primary_10_1186_s12859_015_0474_7 crossref_primary_10_1109_TCBB_2020_2993301 crossref_primary_10_1109_TCBB_2021_3083150 crossref_primary_10_1186_s12859_016_1367_0 crossref_primary_10_1016_j_is_2017_02_002 crossref_primary_10_1186_s12859_018_2152_z crossref_primary_10_3389_fgene_2018_00716 crossref_primary_10_1007_s12035_025_04999_y crossref_primary_10_1002_minf_201500033 crossref_primary_10_1038_s41598_017_00465_5 crossref_primary_10_1371_journal_pone_0113859 crossref_primary_10_1038_ncb3300 crossref_primary_10_1038_s41598_018_33219_y crossref_primary_10_1109_TCBB_2020_3020537 crossref_primary_10_1371_journal_pone_0075993 |
| Cites_doi | 10.1093/nar/28.1.289 10.1038/nbt1103 10.1371/journal.pcbi.1002533 10.1101/gr.073585.107 10.1186/1471-2105-9-S5-S4 10.1093/bioinformatics/btt160 10.1038/nature04072 10.1038/nature02026 10.1186/gb-2004-5-12-r101 10.1038/75556 10.1145/1099554.1099658 10.1016/j.datak.2006.05.003 10.1186/1471-2105-7-S5-S16 10.1002/bimj.200410135 10.1126/science.1068037 10.1038/ng0904-921 10.1093/nar/gki573 10.1093/bioinformatics/bti565 10.1146/annurev.genet.39.073003.114725 10.1093/bib/bbr066 10.1016/j.gene.2005.03.033 10.1126/science.1087361 10.1093/bioinformatics/btm087 10.1186/1471-2105-9-327 10.1186/1471-2105-7-302 10.1186/1471-2105-11-562 10.1186/1471-2105-9-472 10.1371/journal.pcbi.1002073 10.1093/bioinformatics/bts129 10.1093/bioinformatics/btr514 10.1093/nar/gkl219 10.1016/j.cell.2005.08.029 10.1371/journal.pcbi.1000443 10.1093/bioinformatics/btl042 10.1109/TCBB.2005.50 |
| ContentType | Journal Article |
| Copyright | 2013 Wu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2013 Wu et al 2013 Wu et al |
| Copyright_xml | – notice: 2013 Wu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2013 Wu et al 2013 Wu et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pone.0066745 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central (subscription) Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database ProQuest Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (ProQuest) Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Biology |
| DocumentTitleAlternate | Hybrid Relative Specificity Similarity |
| EISSN | 1932-6203 |
| ExternalDocumentID | 1357394963 oai_doaj_org_article_45d188542b244b16b2c8f238beb11551 PMC3669204 2984982991 23741529 10_1371_journal_pone_0066745 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Beijing China China |
| GeographicLocations_xml | – name: China – name: Beijing China |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PYCSY RIG RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM ALIPV CGR CUY CVF ECM EIF NPM PV9 RZL 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO ESTFP FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM - 02 AAPBV ABPTK ADACO BBAFP BBORY KM |
| ID | FETCH-LOGICAL-c526t-c2e6bbab0690a08fb3855d074d2faf74e1698e5ddafcc8abcb15b6003fe527873 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000319799900242&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-6203 |
| IngestDate | Fri Nov 26 17:12:42 EST 2021 Fri Oct 03 12:51:57 EDT 2025 Tue Nov 04 02:01:03 EST 2025 Sun Nov 09 09:23:28 EST 2025 Tue Oct 07 07:05:21 EDT 2025 Mon Jul 21 05:49:01 EDT 2025 Sat Nov 29 03:21:20 EST 2025 Tue Nov 18 22:35:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c526t-c2e6bbab0690a08fb3855d074d2faf74e1698e5ddafcc8abcb15b6003fe527873 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. Conceived and designed the experiments: XW. Performed the experiments: XW. Analyzed the data: XW EP KL ZMP. Contributed reagents/materials/analysis tools: XW EP. Wrote the paper: XW. |
| OpenAccessLink | https://doaj.org/article/45d188542b244b16b2c8f238beb11551 |
| PMID | 23741529 |
| PQID | 1357394963 |
| PQPubID | 1436336 |
| ParticipantIDs | plos_journals_1357394963 doaj_primary_oai_doaj_org_article_45d188542b244b16b2c8f238beb11551 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3669204 proquest_miscellaneous_1365988201 proquest_journals_1357394963 pubmed_primary_23741529 crossref_primary_10_1371_journal_pone_0066745 crossref_citationtrail_10_1371_journal_pone_0066745 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-05-31 |
| PublicationDateYYYYMMDD | 2013-05-31 |
| PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-31 day: 31 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2013 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | H Wu (ref12) 2005; 33 ref34 JL Sevilla (ref29) 2005; 2 PH Guzzi (ref33) 2012; 13 ref14 M Ashburner (ref1) 2000; 25 H Yu (ref13) 2005; 352 R Fluss (ref40) 2005; 47 ref17 D Martin (ref10) 2004; 5 U Stelzl (ref5) 2005; 122 ref19 ref18 Y Park (ref39) 2011; 27 EV Koonin (ref42) 2005; 39 N Škunca (ref44) 2012; 8 FM Couto (ref22) 2007; 61 X Wu (ref38) 2006; 7 J Yu (ref2) 2002; 296 I Xenarios (ref35) 2000; 28 CP Austin (ref43) 2004; 36 C Pesquita (ref31) 2008; 9 Suppl 5 (ref3) 2005; 437 X Wu (ref4) 2006; 34 X Guo (ref32) 2006; 22 M Mistry (ref30) 2008; 9 ref45 A Schlicker (ref20) 2006; 7 ref26 ref25 NL Nehrt (ref7) 2011; 7 ref21 C Pesquita (ref11) 2009; 5 T Xu (ref28) 2008; 9 AJ Vilella (ref36) 2009; 19 WK Huh (ref37) 2003; 425 R Jansen (ref8) 2003; 302 (ref15); 2007 IEEE Congress on H Yang (ref24) 2012; 28 ref27 P Khatri (ref6) 2005; 21 S Jain (ref23) 2010; 11 DR Rhodes (ref9) 2005; 23 (ref41); ISBN 052181099X JZ Wang (ref16) 2007; 23 16136131 - Nature. 2005 Sep 1;437(7055):69-87 10592249 - Nucleic Acids Res. 2000 Jan 1;28(1):289-91 14562095 - Nature. 2003 Oct 16;425(6959):686-91 22138322 - Brief Bioinform. 2012 Sep;13(5):569-85 16082366 - Nat Biotechnol. 2005 Aug;23(8):951-9 19029536 - Genome Res. 2009 Feb;19(2):327-35 15575967 - Genome Biol. 2004;5(12):R101 23572412 - Bioinformatics. 2013 Jun 1;29(11):1424-32 19649320 - PLoS Comput Biol. 2009 Jul;5(7):e1000443 16285863 - Annu Rev Genet. 2005;39:309-38 21908540 - Bioinformatics. 2011 Nov 1;27(21):3024-8 17044170 - IEEE/ACM Trans Comput Biol Bioinform. 2005 Oct-Dec;2(4):330-8 14564010 - Science. 2003 Oct 17;302(5644):449-53 16169070 - Cell. 2005 Sep 23;122(6):957-68 18680592 - BMC Bioinformatics. 2008;9:327 16492685 - Bioinformatics. 2006 Apr 15;22(8):967-73 21695233 - PLoS Comput Biol. 2011 Jun;7(6):e1002073 22693439 - PLoS Comput Biol. 2012 May;8(5):e1002533 15927423 - Gene. 2005 Jun 6;352:75-81 15901854 - Nucleic Acids Res. 2005;33(9):2822-37 17254300 - BMC Bioinformatics. 2006;7 Suppl 5:S16 18460186 - BMC Bioinformatics. 2008;9 Suppl 5:S4 22522134 - Bioinformatics. 2012 May 15;28(10):1383-9 15340423 - Nat Genet. 2004 Sep;36(9):921-4 18986551 - BMC Bioinformatics. 2008;9:472 10802651 - Nat Genet. 2000 May;25(1):25-9 15994189 - Bioinformatics. 2005 Sep 15;21(18):3587-95 16161804 - Biom J. 2005 Aug;47(4):458-72 11935017 - Science. 2002 Apr 5;296(5565):79-92 15759617 - Pac Symp Biocomput. 2005;:91-102 21078182 - BMC Bioinformatics. 2010;11:562 16641319 - Nucleic Acids Res. 2006;34(7):2137-50 17344234 - Bioinformatics. 2007 May 15;23(10):1274-81 16776819 - BMC Bioinformatics. 2006;7:302 |
| References_xml | – volume: 28 start-page: 289 year: 2000 ident: ref35 article-title: DIP: the database of interacting proteins publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.289 – volume: 23 start-page: 951 year: 2005 ident: ref9 article-title: Probabilistic model of the human protein-protein interaction network publication-title: Nat Biotechnol doi: 10.1038/nbt1103 – volume: 2007 IEEE Congress on ident: ref15 – volume: ISBN 052181099X ident: ref41 – volume: 8 start-page: e1002533 year: 2012 ident: ref44 article-title: Quality of Computationally Inferred Gene Ontology Annotations publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002533 – ident: ref45 – volume: 19 start-page: 327 year: 2009 ident: ref36 article-title: EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates publication-title: Genome Res doi: 10.1101/gr.073585.107 – volume: 9 Suppl 5 start-page: S4 year: 2008 ident: ref31 article-title: Metrics for GO based protein semantic similarity: a systematic evaluation publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-S5-S4 – ident: ref25 – ident: ref27 doi: 10.1093/bioinformatics/btt160 – volume: 437 start-page: 69 year: 2005 ident: ref3 article-title: Initial sequence of the chimpanzee genome and comparison with the human genome publication-title: Nature doi: 10.1038/nature04072 – volume: 425 start-page: 686 year: 2003 ident: ref37 article-title: Global analysis of protein localization in budding yeast publication-title: Nature doi: 10.1038/nature02026 – volume: 5 start-page: R101 year: 2004 ident: ref10 article-title: GOToolBox: functional analysis of gene datasets based on Gene Ontology publication-title: Genome Biol doi: 10.1186/gb-2004-5-12-r101 – volume: 25 start-page: 25 year: 2000 ident: ref1 article-title: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium publication-title: Nat Genet doi: 10.1038/75556 – ident: ref19 – ident: ref21 doi: 10.1145/1099554.1099658 – volume: 61 start-page: 137 year: 2007 ident: ref22 article-title: Measuring semantic similarity between Gene Ontology terms publication-title: Data & Knowledge Engineering doi: 10.1016/j.datak.2006.05.003 – volume: 7 start-page: S16 year: 2006 ident: ref38 article-title: SPIDer: Saccharomyces protein-protein interaction database publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-S5-S16 – volume: 47 start-page: 458 year: 2005 ident: ref40 article-title: Estimation of the Youden Index and its associated cutoff point publication-title: Biom J doi: 10.1002/bimj.200410135 – volume: 296 start-page: 79 year: 2002 ident: ref2 article-title: A draft sequence of the rice genome (Oryza sativa L. ssp. indica) publication-title: Science doi: 10.1126/science.1068037 – ident: ref17 – ident: ref34 – volume: 36 start-page: 921 year: 2004 ident: ref43 article-title: The knockout mouse project publication-title: Nat Genet doi: 10.1038/ng0904-921 – volume: 33 start-page: 2822 year: 2005 ident: ref12 article-title: Prediction of functional modules based on comparative genome analysis and Gene Ontology application publication-title: Nucleic Acids Res doi: 10.1093/nar/gki573 – volume: 21 start-page: 3587 year: 2005 ident: ref6 article-title: Ontological analysis of gene expression data: current tools, limitations, and open problems publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti565 – volume: 39 start-page: 309 year: 2005 ident: ref42 article-title: Orthologs, paralogs, and evolutionary genomics publication-title: Annu Rev Genet doi: 10.1146/annurev.genet.39.073003.114725 – volume: 13 start-page: 569 year: 2012 ident: ref33 article-title: Semantic similarity analysis of protein data: assessment with biological features and issues publication-title: Brief Bioinform doi: 10.1093/bib/bbr066 – volume: 352 start-page: 75 year: 2005 ident: ref13 article-title: Broadly predicting specific gene functions with expression similarity and taxonomy similarity publication-title: Gene doi: 10.1016/j.gene.2005.03.033 – volume: 302 start-page: 449 year: 2003 ident: ref8 article-title: A Bayesian networks approach for predicting protein-protein interactions from genomic data publication-title: Science doi: 10.1126/science.1087361 – volume: 23 start-page: 1274 year: 2007 ident: ref16 article-title: A new method to measure the semantic similarity of GO terms publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm087 – volume: 9 start-page: 327 year: 2008 ident: ref30 article-title: Gene Ontology term overlap as a measure of gene functional similarity publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-327 – volume: 7 start-page: 302 year: 2006 ident: ref20 article-title: A new measure for functional similarity of gene products based on Gene Ontology publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-302 – volume: 11 start-page: 562 year: 2010 ident: ref23 article-title: An improved method for scoring protein-protein interactions using semantic similarity within the Gene Ontology publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-562 – ident: ref26 – volume: 9 start-page: 472 year: 2008 ident: ref28 article-title: Evaluation of GO-based functional similarity measures using S. cerevisiae protein interaction and expression profile data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-472 – volume: 7 start-page: e1002073 year: 2011 ident: ref7 article-title: Testing the ortholog conjecture with comparative functional genomic data from mammals publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002073 – volume: 28 start-page: 1383 year: 2012 ident: ref24 article-title: Improving GO semantic similarity measures by exploring the ontology beneath the terms and modelling uncertainty publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts129 – volume: 27 start-page: 3024 year: 2011 ident: ref39 article-title: Revisiting the negative example sampling problem for predicting protein-protein interactions publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr514 – volume: 34 start-page: 2137 year: 2006 ident: ref4 article-title: Prediction of yeast protein-protein interaction network: insights from the Gene Ontology and annotations publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl219 – volume: 122 start-page: 957 year: 2005 ident: ref5 article-title: A human protein-protein interaction network: a resource for annotating the proteome publication-title: Cell doi: 10.1016/j.cell.2005.08.029 – volume: 5 start-page: e1000443 year: 2009 ident: ref11 article-title: Semantic similarity in biomedical ontologies publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000443 – ident: ref18 – volume: 22 start-page: 967 year: 2006 ident: ref32 article-title: Assessing semantic similarity measures for the characterization of human regulatory pathways publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl042 – volume: 2 start-page: 330 year: 2005 ident: ref29 article-title: Correlation between gene expression and GO semantic similarity publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2005.50 – ident: ref14 – reference: 16776819 - BMC Bioinformatics. 2006;7:302 – reference: 17044170 - IEEE/ACM Trans Comput Biol Bioinform. 2005 Oct-Dec;2(4):330-8 – reference: 21695233 - PLoS Comput Biol. 2011 Jun;7(6):e1002073 – reference: 18986551 - BMC Bioinformatics. 2008;9:472 – reference: 19029536 - Genome Res. 2009 Feb;19(2):327-35 – reference: 22522134 - Bioinformatics. 2012 May 15;28(10):1383-9 – reference: 15901854 - Nucleic Acids Res. 2005;33(9):2822-37 – reference: 16082366 - Nat Biotechnol. 2005 Aug;23(8):951-9 – reference: 16136131 - Nature. 2005 Sep 1;437(7055):69-87 – reference: 17254300 - BMC Bioinformatics. 2006;7 Suppl 5:S16 – reference: 19649320 - PLoS Comput Biol. 2009 Jul;5(7):e1000443 – reference: 16641319 - Nucleic Acids Res. 2006;34(7):2137-50 – reference: 18460186 - BMC Bioinformatics. 2008;9 Suppl 5:S4 – reference: 17344234 - Bioinformatics. 2007 May 15;23(10):1274-81 – reference: 14562095 - Nature. 2003 Oct 16;425(6959):686-91 – reference: 18680592 - BMC Bioinformatics. 2008;9:327 – reference: 15575967 - Genome Biol. 2004;5(12):R101 – reference: 16285863 - Annu Rev Genet. 2005;39:309-38 – reference: 22138322 - Brief Bioinform. 2012 Sep;13(5):569-85 – reference: 10592249 - Nucleic Acids Res. 2000 Jan 1;28(1):289-91 – reference: 16169070 - Cell. 2005 Sep 23;122(6):957-68 – reference: 22693439 - PLoS Comput Biol. 2012 May;8(5):e1002533 – reference: 10802651 - Nat Genet. 2000 May;25(1):25-9 – reference: 16492685 - Bioinformatics. 2006 Apr 15;22(8):967-73 – reference: 23572412 - Bioinformatics. 2013 Jun 1;29(11):1424-32 – reference: 14564010 - Science. 2003 Oct 17;302(5644):449-53 – reference: 16161804 - Biom J. 2005 Aug;47(4):458-72 – reference: 11935017 - Science. 2002 Apr 5;296(5565):79-92 – reference: 15927423 - Gene. 2005 Jun 6;352:75-81 – reference: 21908540 - Bioinformatics. 2011 Nov 1;27(21):3024-8 – reference: 15994189 - Bioinformatics. 2005 Sep 15;21(18):3587-95 – reference: 15340423 - Nat Genet. 2004 Sep;36(9):921-4 – reference: 21078182 - BMC Bioinformatics. 2010;11:562 – reference: 15759617 - Pac Symp Biocomput. 2005;:91-102 |
| SSID | ssj0053866 |
| Score | 2.3609776 |
| Snippet | Explicit comparisons based on the semantic similarity of Gene Ontology terms provide a quantitative way to measure the functional similarity between gene... Background Explicit comparisons based on the semantic similarity of Gene Ontology terms provide a quantitative way to measure the functional similarity between... BACKGROUND: Explicit comparisons based on the semantic similarity of Gene Ontology terms provide a quantitative way to measure the functional similarity... Background Explicit comparisons based on the semantic similarity of Gene Ontology terms provide a quantitative way to measure the functional similarity between... |
| SourceID | plos doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e66745 |
| SubjectTerms | Algorithms Animal models Animals Annotations Biodiversity Bioinformatics Biology C (programming language) Computational Biology - methods Computer Simulation Confidence intervals Conservation Correlation analysis Databases, Genetic Gene expression Gene Ontology Genomes Genomics - methods Humans Internet Laboratories Life sciences Maximum strategies Methods Mice Molecular Sequence Annotation - methods Ontology Programming languages Protein interaction Protein Interaction Maps Proteins ROC Curve Semantics Similarity Similarity measures |
| SummonAdditionalLinks | – databaseName: ProQuest Central (subscription) dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy4ELUF4NFGQkDnBIu7HjxOGC2GqrVoJlRQvqLfIrJVKbLJstUn8G_5iZxEm7qIID13jy9Dy-jMffEPLaGi3BntOQZU6FEAJEqLDegasslpYbJduE_reP6WwmT06yuU-4Nb6ssveJraO2tcEc-W7ERcqzGPTl_eJHiF2jcHXVt9C4TTaQqYyNyMZkOpt_6X0xWHOS-A1zPI12_fzsLOrK7bT1nbiN6VpAann7kef0rG5uwpx_lk5ei0X79__3LR6Qex6F0g-d2mySW656SDa9nTf0jSejfvuI_BqyDhSgIv10lVKkdUGP3DnMTGnoUXlewj8yQHrqK78oXoN-rtr-uJf0GCJAQ1Vlu-Pzjmi2eUcPqwbzAw3FjS4gQKf21IWt5OFeOIEga-nBJe4rg5tjt-vH5Ov-9HjvIPRtHEIjWLIKDXOJ1kojJ7Iay0JzKYQF6GJZoYo0dlGSSSesVYUxUmmjI6EBh_HCCQb-hD8howombItQzY3NjI1TLouYj7WGCFxwnpgxV0LqIiC8n8vceI5zbLVxlrcLdyn863QfOEcNyL0GBCQczlp0HB__kJ-gmgyyyNDdHqiXp7k3-DwWNpJSxEwDgNJRopmRBeAjDcERYWpAtlDJ-hs0-ZVqBGS7V56bh18Nw-ALcIFHVa6-QJlEZBIxXUCedno6PCTjiB1ZFpB0TYPX3mJ9pCq_t3zjPEkyNo6f_f2xnpO7rG0VgpUV22S0Wl64F-SO-bkqm-VLb5i_AYX3R1M priority: 102 providerName: ProQuest – databaseName: Public Library of Science dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagcOAClFdTCjISBzikbOzYcbjRqqtWKmWlFtRb5CdEarNVs63Un8E_ZsbxbtmqFeIaT9beyYznsz3-hpD3zhoF_lzlrPY6hxAgco35DlzXpXLcahU39H_sVwcH6vi4nlwvFG-c4POq-JR0unk27fxmzMksxX3yAInP0YrHk_35zAu-K2W6HnfXm0vhJ7L0I6vpybS_DWHeTJT8K_KMn_zvmJ-Sxwlj0i-DUaySe757RlaTF_f0Q6Ka_vic_F7sKVAAgvTr9YYhnQZ66E9B762lh-1pCytgAOw05XVR_A36rYvVb6_oEczvPdWdG55PBhrZ_jPd63pc_fcUr7GAAN1xP30eJfe28y0IoY7uXuGtMegca1m_IN_HO0fbu3kq0pBbweQst8xLY7RBxmM9UsFwJYQDYOJY0KEqfSFr5YVzOlirtLGmEAZQFg9eMJgt-Euy0oGa1gg13LraurLiKpR8ZAzE18C5tCOuhTIhI3z-7RqbGMyxkMZJE4_lKljJDApuUO9N0ntG8sVbZwODxz_kt9AsFrLIvx0fwAdukjs3pXCFUqJkBuCRKaRhVgVAPwZCH4LQjKyhUc076KE7UfG6hOkuIxtzQ7u9-d2iGTwdj29056cXKCNFrRCxZeTVYJeLQTKOyJDVGamWLHbpXyy3dO2vyCbOpazZqFy_e8SvySMWi4BgzsQGWZmdX_g35KG9nLX9-dvogn8A2gc0TQ priority: 102 providerName: Public Library of Science |
| Title | Improving the Measurement of Semantic Similarity between Gene Ontology Terms and Gene Products: Insights from an Edge- and IC-Based Hybrid Method |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23741529 https://www.proquest.com/docview/1357394963 https://www.proquest.com/docview/1365988201 https://pubmed.ncbi.nlm.nih.gov/PMC3669204 https://doaj.org/article/45d188542b244b16b2c8f238beb11551 http://dx.doi.org/10.1371/journal.pone.0066745 |
| Volume | 8 |
| WOSCitedRecordID | wos000319799900242&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: P5Z dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M0K dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7P dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7S dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PATMY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KB. dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7RV dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PIMPY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: FPL dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcOCCKK8GyspIHOCQbWLHscONXXVF1XYVFagKl8iPRI3Uza6aLRI_g3_MjJNddlGlXrjMIZ4oiWc8M56MvyHknbNGwXqWIctKHYILEKHGegeus0Q5brXyCf3zEzmdqouLLN9o9YU1YR08cDdxB4lwsVIiYQYckYlTw6yqwM8YMDLo7tH6RjJbbaY6GwyrOE37g3Jcxge9XIaLeVMOfV0nHl_acEQerx_xTa_m7W2x5r8lkxs-aPKEPO6DR_qpe-ldcq9snpLdfnm29H2PIf3hGfm9ThZQiPDo7G8mkM4r2pYzmNDa0rae1bC1hUic9gVbFBSqpAhqgOl2ioa7pbpx3fVFhw_bfqR10-K2vqV4PgUYKOblQs95NA7RNzp6-QuPg9GuSfVz8m1y-HX8Oey7L4RWsHQZWlamxmiDUMY6UpXhSggHEYdjla5kUsZppkrhnK6sVdpYEwsD4ROvSsHADPAXZKeB-d4j1HDrMusSyVWV8MgYcJwV56mNuBbKVAHhK1EUtocmxw4ZV4X_3yZhi9JNcIECLHoBBiRc37XooDnu4B-hlNe8CKztL4C6Fb26FXepW0D2UEdWD2jhcULyLAE7FpD9ld7cPvx2PQxLGP_L6Kac3yBPKjKFoVhAXnZqtn5JxjHkY1lA5JYCbn3F9khTX3qYcJ6mGYuSV__js1-TR8z3AcGyiX2ys7y-Kd-Qh_bnsm6vB-S-PDtHeiE9VUDVOB6QB6PDaX428GsT6CQ_AXo8GgI9jY6RytzTL0Bz8QPuyI9O8-9_AJ7XRPo |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFAkuQHnVUGCRAMHBbbzrtddIHNrSKlGTUKkBlZPZl0uk1A5xCsrP4I_wG9mx12mDKjj1wNW7fq2_mfk8Ow-EXmgluZXn2CeJEb41AcwXEO9ARRJyTZXglUP_Uy8eDPjxcXK4gn41uTAQVtnoxEpR60KBj3wroCymSWjx4iIoD8z8h_0_K99139uP-ZKQ_b3hbsd3LQR8xUg08xUxkZRCQj1e0eaZpJwxbc2mJpnI4tAEUcIN01pkSnEhlQyYtByAZoYRi2Vqr_tq8s2HLlWwm-tadlxDqxwyQFto9XB72P_c6H6rPaLIJejRONhyeNicFLnZrOJJIW3qggGs-gRAXdVxUV7Gcf8M1bxg-_Zv_2-rdgfdciwbb9disYZWTH4XrTk9VuLXrtj2m3vo58Krgi0Vxv1zlykuMnxkTi3yRgofjU5HYwGN_rCLbMNwDfwhr_r_zvHQWrgSi1zXxw_rQrrlW9zNS_B_lBgSeewEvKdPjF_N7O76O5ZEaNyZQ96cvTl0876PPl7Jaj1ArdwCZB1hSZVOlA5jyrOQtqW0DCOjNFJtKhiXmYdog51UuRru0EpknFYbk7H9l6sXOAXEpQ5xHvIXZ03qGib_mL8DsFzMhQrk1YFiepI6hZaGTAecs5BISxBlEEmieGb5n7TGH2i4h9YB1M0NyvQcih7aaMB6-fDzxbDVdbCBJXJTnMGciCUcOKuHHtZysXhIQoEbk8RD8ZLELL3F8kg--lrVU6dRlJB2-Ojvj_UM3egM-7201x0cPEY3SdUWBaJINlBrNj0zT9B19X02KqdPnVLA6MtVC9lvNNam3w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEF6VghAvQLlqKLBIIMGDk3jXxxoJIdI2apQSIrVFfTN7uURK7RCnoPwM_g6_jhkfaYMqeOoDr971tf5m5vPsHIS8NFoJkOfIZbGVLpiAwJUY78Bl7AvDtRSlQ__zfjQciuPjeLRGfjW5MBhW2ejEUlGbXKOPvO3xIOKxD3hpp3VYxGin9376zcUOUrjT2rTTqCAysIsf8PtWvOvvwLd-xVhv93B7z607DLg6YOHc1cyGSkmF5XplR6SKiyAwYFUNS2Ua-dYLY2EDY2SqtZBKKy9QQBF4agMGUOdw3WvkOlhhH7snDLqtxgqAHgnDOlWPR167RkZrmme2VUaWYgLVBVNYdgzACquTvLiM7f4ZtHnBCvbu_M_rd5fcrrk3_VAJywZZs9k9slFrt4K-rktwv7lPfi59LRQIMv147kileUoP7Cngcazpwfh0PJHY_o_W8W4Ur0E_ZWVX4AU9BLtXUJmZ6vioKq9bvKX9rECvSEExvQcm0F1zYt1yZn_b7QK1MHRvgdl0cHPs8f2AHF3J0jwk6xmAZZNQxbWJtfEjLlKfd5QC3pFyHuoOl4FQqUN4g6NE15XdscHIJCm3KyP4w6sWOEH0JTX6HOIuz5pWlU3-Mb-LEF3Oxbrk5YF8dpLUai7xA-MJEfhMAW1UXqiYFimwQgWUAMm5QzYR4M0NiuQclg7ZaoB7-fCL5TBoQNzWkpnNz3BOGMQCmaxDHlUysnxIxpExs9gh0Yr0rLzF6kg2_lpWWedhGLOO__jvj_Wc3AQxSvb7w8ETcouVvVIwtGSLrM9nZ_YpuaG_z8fF7FmpHSj5ctXi9BvqPK3x |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+Measurement+of+Semantic+Similarity+between+Gene+Ontology+Terms+and+Gene+Products%3A+Insights+from+an+Edge-+and+IC-Based+Hybrid+Method&rft.jtitle=PloS+one&rft.au=Wu%2C+Xiaomei&rft.au=Pang%2C+Erli&rft.au=Lin%2C+Kui&rft.au=Pei%2C+Zhen-Ming&rft.date=2013-05-31&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=8&rft.issue=5&rft.spage=e66745&rft_id=info:doi/10.1371%2Fjournal.pone.0066745&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0066745 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |