Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A multivariable Mendelian randomisation analysis

Circulating lipoprotein lipids cause coronary heart disease (CHD). However, the precise way in which one or more lipoprotein lipid-related entities account for this relationship remains unclear. Using genetic instruments for lipoprotein lipid traits implemented through multivariable Mendelian random...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:PLoS medicine Ročník 17; číslo 3; s. e1003062
Hlavní autori: Richardson, Tom G., Sanderson, Eleanor, Palmer, Tom M., Ala-Korpela, Mika, Ference, Brian A., Davey Smith, George, Holmes, Michael V.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Public Library of Science 01.03.2020
Public Library of Science (PLoS)
Predmet:
ISSN:1549-1676, 1549-1277, 1549-1676
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Circulating lipoprotein lipids cause coronary heart disease (CHD). However, the precise way in which one or more lipoprotein lipid-related entities account for this relationship remains unclear. Using genetic instruments for lipoprotein lipid traits implemented through multivariable Mendelian randomisation (MR), we sought to compare their causal roles in the aetiology of CHD. We conducted a genome-wide association study (GWAS) of circulating non-fasted lipoprotein lipid traits in the UK Biobank (UKBB) for low-density lipoprotein (LDL) cholesterol, triglycerides, and apolipoprotein B to identify lipid-associated single nucleotide polymorphisms (SNPs). Using data from CARDIoGRAMplusC4D for CHD (consisting of 60,801 cases and 123,504 controls), we performed univariable and multivariable MR analyses. Similar GWAS and MR analyses were conducted for high-density lipoprotein (HDL) cholesterol and apolipoprotein A-I. The GWAS of lipids and apolipoproteins in the UKBB included between 393,193 and 441,016 individuals in whom the mean age was 56.9 y (range 39-73 y) and of whom 54.2% were women. The mean (standard deviation) lipid concentrations were LDL cholesterol 3.57 (0.87) mmol/L and HDL cholesterol 1.45 (0.38) mmol/L, and the median triglycerides was 1.50 (IQR = 1.11) mmol/L. The mean (standard deviation) values for apolipoproteins B and A-I were 1.03 (0.24) g/L and 1.54 (0.27) g/L, respectively. The GWAS identified multiple independent SNPs associated at P < 5 × 10-8 for LDL cholesterol (220), apolipoprotein B (n = 255), triglycerides (440), HDL cholesterol (534), and apolipoprotein A-I (440). Between 56%-93% of SNPs identified for each lipid trait had not been previously reported in large-scale GWASs. Almost half (46%) of these SNPs were associated at P < 5 × 10-8 with more than one lipid-related trait. Assessed individually using MR, LDL cholesterol (odds ratio [OR] 1.66 per 1-standard-deviation-higher trait; 95% CI: 1.49-1.86; P < 0.001), triglycerides (OR 1.34; 95% CI: 1.25-1.44; P < 0.001) and apolipoprotein B (OR 1.73; 95% CI: 1.56-1.91; P < 0.001) had effect estimates consistent with a higher risk of CHD. In multivariable MR, only apolipoprotein B (OR 1.92; 95% CI: 1.31-2.81; P < 0.001) retained a robust effect, with the estimate for LDL cholesterol (OR 0.85; 95% CI: 0.57-1.27; P = 0.44) reversing and that of triglycerides (OR 1.12; 95% CI: 1.02-1.23; P = 0.01) becoming weaker. Individual MR analyses showed a 1-standard-deviation-higher HDL cholesterol (OR 0.80; 95% CI: 0.75-0.86; P < 0.001) and apolipoprotein A-I (OR 0.83; 95% CI: 0.77-0.89; P < 0.001) to lower the risk of CHD, but these effect estimates attenuated substantially to the null on accounting for apolipoprotein B. A limitation is that, owing to the nature of lipoprotein metabolism, measures related to the composition of lipoprotein particles are highly correlated, creating a challenge in making exclusive interpretations on causation of individual components. These findings suggest that apolipoprotein B is the predominant trait that accounts for the aetiological relationship of lipoprotein lipids with risk of CHD.
AbstractList Circulating lipoprotein lipids cause coronary heart disease (CHD). However, the precise way in which one or more lipoprotein lipid-related entities account for this relationship remains unclear. Using genetic instruments for lipoprotein lipid traits implemented through multivariable Mendelian randomisation (MR), we sought to compare their causal roles in the aetiology of CHD.BACKGROUNDCirculating lipoprotein lipids cause coronary heart disease (CHD). However, the precise way in which one or more lipoprotein lipid-related entities account for this relationship remains unclear. Using genetic instruments for lipoprotein lipid traits implemented through multivariable Mendelian randomisation (MR), we sought to compare their causal roles in the aetiology of CHD.We conducted a genome-wide association study (GWAS) of circulating non-fasted lipoprotein lipid traits in the UK Biobank (UKBB) for low-density lipoprotein (LDL) cholesterol, triglycerides, and apolipoprotein B to identify lipid-associated single nucleotide polymorphisms (SNPs). Using data from CARDIoGRAMplusC4D for CHD (consisting of 60,801 cases and 123,504 controls), we performed univariable and multivariable MR analyses. Similar GWAS and MR analyses were conducted for high-density lipoprotein (HDL) cholesterol and apolipoprotein A-I. The GWAS of lipids and apolipoproteins in the UKBB included between 393,193 and 441,016 individuals in whom the mean age was 56.9 y (range 39-73 y) and of whom 54.2% were women. The mean (standard deviation) lipid concentrations were LDL cholesterol 3.57 (0.87) mmol/L and HDL cholesterol 1.45 (0.38) mmol/L, and the median triglycerides was 1.50 (IQR = 1.11) mmol/L. The mean (standard deviation) values for apolipoproteins B and A-I were 1.03 (0.24) g/L and 1.54 (0.27) g/L, respectively. The GWAS identified multiple independent SNPs associated at P < 5 × 10-8 for LDL cholesterol (220), apolipoprotein B (n = 255), triglycerides (440), HDL cholesterol (534), and apolipoprotein A-I (440). Between 56%-93% of SNPs identified for each lipid trait had not been previously reported in large-scale GWASs. Almost half (46%) of these SNPs were associated at P < 5 × 10-8 with more than one lipid-related trait. Assessed individually using MR, LDL cholesterol (odds ratio [OR] 1.66 per 1-standard-deviation-higher trait; 95% CI: 1.49-1.86; P < 0.001), triglycerides (OR 1.34; 95% CI: 1.25-1.44; P < 0.001) and apolipoprotein B (OR 1.73; 95% CI: 1.56-1.91; P < 0.001) had effect estimates consistent with a higher risk of CHD. In multivariable MR, only apolipoprotein B (OR 1.92; 95% CI: 1.31-2.81; P < 0.001) retained a robust effect, with the estimate for LDL cholesterol (OR 0.85; 95% CI: 0.57-1.27; P = 0.44) reversing and that of triglycerides (OR 1.12; 95% CI: 1.02-1.23; P = 0.01) becoming weaker. Individual MR analyses showed a 1-standard-deviation-higher HDL cholesterol (OR 0.80; 95% CI: 0.75-0.86; P < 0.001) and apolipoprotein A-I (OR 0.83; 95% CI: 0.77-0.89; P < 0.001) to lower the risk of CHD, but these effect estimates attenuated substantially to the null on accounting for apolipoprotein B. A limitation is that, owing to the nature of lipoprotein metabolism, measures related to the composition of lipoprotein particles are highly correlated, creating a challenge in making exclusive interpretations on causation of individual components.METHODS AND FINDINGSWe conducted a genome-wide association study (GWAS) of circulating non-fasted lipoprotein lipid traits in the UK Biobank (UKBB) for low-density lipoprotein (LDL) cholesterol, triglycerides, and apolipoprotein B to identify lipid-associated single nucleotide polymorphisms (SNPs). Using data from CARDIoGRAMplusC4D for CHD (consisting of 60,801 cases and 123,504 controls), we performed univariable and multivariable MR analyses. Similar GWAS and MR analyses were conducted for high-density lipoprotein (HDL) cholesterol and apolipoprotein A-I. The GWAS of lipids and apolipoproteins in the UKBB included between 393,193 and 441,016 individuals in whom the mean age was 56.9 y (range 39-73 y) and of whom 54.2% were women. The mean (standard deviation) lipid concentrations were LDL cholesterol 3.57 (0.87) mmol/L and HDL cholesterol 1.45 (0.38) mmol/L, and the median triglycerides was 1.50 (IQR = 1.11) mmol/L. The mean (standard deviation) values for apolipoproteins B and A-I were 1.03 (0.24) g/L and 1.54 (0.27) g/L, respectively. The GWAS identified multiple independent SNPs associated at P < 5 × 10-8 for LDL cholesterol (220), apolipoprotein B (n = 255), triglycerides (440), HDL cholesterol (534), and apolipoprotein A-I (440). Between 56%-93% of SNPs identified for each lipid trait had not been previously reported in large-scale GWASs. Almost half (46%) of these SNPs were associated at P < 5 × 10-8 with more than one lipid-related trait. Assessed individually using MR, LDL cholesterol (odds ratio [OR] 1.66 per 1-standard-deviation-higher trait; 95% CI: 1.49-1.86; P < 0.001), triglycerides (OR 1.34; 95% CI: 1.25-1.44; P < 0.001) and apolipoprotein B (OR 1.73; 95% CI: 1.56-1.91; P < 0.001) had effect estimates consistent with a higher risk of CHD. In multivariable MR, only apolipoprotein B (OR 1.92; 95% CI: 1.31-2.81; P < 0.001) retained a robust effect, with the estimate for LDL cholesterol (OR 0.85; 95% CI: 0.57-1.27; P = 0.44) reversing and that of triglycerides (OR 1.12; 95% CI: 1.02-1.23; P = 0.01) becoming weaker. Individual MR analyses showed a 1-standard-deviation-higher HDL cholesterol (OR 0.80; 95% CI: 0.75-0.86; P < 0.001) and apolipoprotein A-I (OR 0.83; 95% CI: 0.77-0.89; P < 0.001) to lower the risk of CHD, but these effect estimates attenuated substantially to the null on accounting for apolipoprotein B. A limitation is that, owing to the nature of lipoprotein metabolism, measures related to the composition of lipoprotein particles are highly correlated, creating a challenge in making exclusive interpretations on causation of individual components.These findings suggest that apolipoprotein B is the predominant trait that accounts for the aetiological relationship of lipoprotein lipids with risk of CHD.CONCLUSIONSThese findings suggest that apolipoprotein B is the predominant trait that accounts for the aetiological relationship of lipoprotein lipids with risk of CHD.
Background Circulating lipoprotein lipids cause coronary heart disease (CHD). However, the precise way in which one or more lipoprotein lipid-related entities account for this relationship remains unclear. Using genetic instruments for lipoprotein lipid traits implemented through multivariable Mendelian randomisation (MR), we sought to compare their causal roles in the aetiology of CHD. Methods and findings We conducted a genome-wide association study (GWAS) of circulating non-fasted lipoprotein lipid traits in the UK Biobank (UKBB) for low-density lipoprotein (LDL) cholesterol, triglycerides, and apolipoprotein B to identify lipid-associated single nucleotide polymorphisms (SNPs). Using data from CARDIoGRAMplusC4D for CHD (consisting of 60,801 cases and 123,504 controls), we performed univariable and multivariable MR analyses. Similar GWAS and MR analyses were conducted for high-density lipoprotein (HDL) cholesterol and apolipoprotein A-I. The GWAS of lipids and apolipoproteins in the UKBB included between 393,193 and 441,016 individuals in whom the mean age was 56.9 y (range 39–73 y) and of whom 54.2% were women. The mean (standard deviation) lipid concentrations were LDL cholesterol 3.57 (0.87) mmol/L and HDL cholesterol 1.45 (0.38) mmol/L, and the median triglycerides was 1.50 (IQR = 1.11) mmol/L. The mean (standard deviation) values for apolipoproteins B and A-I were 1.03 (0.24) g/L and 1.54 (0.27) g/L, respectively. The GWAS identified multiple independent SNPs associated at P < 5 × 10−8 for LDL cholesterol (220), apolipoprotein B (n = 255), triglycerides (440), HDL cholesterol (534), and apolipoprotein A-I (440). Between 56%–93% of SNPs identified for each lipid trait had not been previously reported in large-scale GWASs. Almost half (46%) of these SNPs were associated at P < 5 × 10−8 with more than one lipid-related trait. Assessed individually using MR, LDL cholesterol (odds ratio [OR] 1.66 per 1-standard-deviation–higher trait; 95% CI: 1.49–1.86; P < 0.001), triglycerides (OR 1.34; 95% CI: 1.25–1.44; P < 0.001) and apolipoprotein B (OR 1.73; 95% CI: 1.56–1.91; P < 0.001) had effect estimates consistent with a higher risk of CHD. In multivariable MR, only apolipoprotein B (OR 1.92; 95% CI: 1.31–2.81; P < 0.001) retained a robust effect, with the estimate for LDL cholesterol (OR 0.85; 95% CI: 0.57–1.27; P = 0.44) reversing and that of triglycerides (OR 1.12; 95% CI: 1.02–1.23; P = 0.01) becoming weaker. Individual MR analyses showed a 1-standard-deviation–higher HDL cholesterol (OR 0.80; 95% CI: 0.75–0.86; P < 0.001) and apolipoprotein A-I (OR 0.83; 95% CI: 0.77–0.89; P < 0.001) to lower the risk of CHD, but these effect estimates attenuated substantially to the null on accounting for apolipoprotein B. A limitation is that, owing to the nature of lipoprotein metabolism, measures related to the composition of lipoprotein particles are highly correlated, creating a challenge in making exclusive interpretations on causation of individual components. Conclusions These findings suggest that apolipoprotein B is the predominant trait that accounts for the aetiological relationship of lipoprotein lipids with risk of CHD.
Background Circulating lipoprotein lipids cause coronary heart disease (CHD). However, the precise way in which one or more lipoprotein lipid-related entities account for this relationship remains unclear. Using genetic instruments for lipoprotein lipid traits implemented through multivariable Mendelian randomisation (MR), we sought to compare their causal roles in the aetiology of CHD. Methods and findings We conducted a genome-wide association study (GWAS) of circulating non-fasted lipoprotein lipid traits in the UK Biobank (UKBB) for low-density lipoprotein (LDL) cholesterol, triglycerides, and apolipoprotein B to identify lipid-associated single nucleotide polymorphisms (SNPs). Using data from CARDIoGRAMplusC4D for CHD (consisting of 60,801 cases and 123,504 controls), we performed univariable and multivariable MR analyses. Similar GWAS and MR analyses were conducted for high-density lipoprotein (HDL) cholesterol and apolipoprotein A-I. The GWAS of lipids and apolipoproteins in the UKBB included between 393,193 and 441,016 individuals in whom the mean age was 56.9 y (range 39–73 y) and of whom 54.2% were women. The mean (standard deviation) lipid concentrations were LDL cholesterol 3.57 (0.87) mmol/L and HDL cholesterol 1.45 (0.38) mmol/L, and the median triglycerides was 1.50 (IQR = 1.11) mmol/L. The mean (standard deviation) values for apolipoproteins B and A-I were 1.03 (0.24) g/L and 1.54 (0.27) g/L, respectively. The GWAS identified multiple independent SNPs associated at P < 5 × 10−8 for LDL cholesterol (220), apolipoprotein B (n = 255), triglycerides (440), HDL cholesterol (534), and apolipoprotein A-I (440). Between 56%–93% of SNPs identified for each lipid trait had not been previously reported in large-scale GWASs. Almost half (46%) of these SNPs were associated at P < 5 × 10−8 with more than one lipid-related trait. Assessed individually using MR, LDL cholesterol (odds ratio [OR] 1.66 per 1-standard-deviation–higher trait; 95% CI: 1.49–1.86; P < 0.001), triglycerides (OR 1.34; 95% CI: 1.25–1.44; P < 0.001) and apolipoprotein B (OR 1.73; 95% CI: 1.56–1.91; P < 0.001) had effect estimates consistent with a higher risk of CHD. In multivariable MR, only apolipoprotein B (OR 1.92; 95% CI: 1.31–2.81; P < 0.001) retained a robust effect, with the estimate for LDL cholesterol (OR 0.85; 95% CI: 0.57–1.27; P = 0.44) reversing and that of triglycerides (OR 1.12; 95% CI: 1.02–1.23; P = 0.01) becoming weaker. Individual MR analyses showed a 1-standard-deviation–higher HDL cholesterol (OR 0.80; 95% CI: 0.75–0.86; P < 0.001) and apolipoprotein A-I (OR 0.83; 95% CI: 0.77–0.89; P < 0.001) to lower the risk of CHD, but these effect estimates attenuated substantially to the null on accounting for apolipoprotein B. A limitation is that, owing to the nature of lipoprotein metabolism, measures related to the composition of lipoprotein particles are highly correlated, creating a challenge in making exclusive interpretations on causation of individual components. Conclusions These findings suggest that apolipoprotein B is the predominant trait that accounts for the aetiological relationship of lipoprotein lipids with risk of CHD.
Circulating lipoprotein lipids cause coronary heart disease (CHD). However, the precise way in which one or more lipoprotein lipid-related entities account for this relationship remains unclear. Using genetic instruments for lipoprotein lipid traits implemented through multivariable Mendelian randomisation (MR), we sought to compare their causal roles in the aetiology of CHD. We conducted a genome-wide association study (GWAS) of circulating non-fasted lipoprotein lipid traits in the UK Biobank (UKBB) for low-density lipoprotein (LDL) cholesterol, triglycerides, and apolipoprotein B to identify lipid-associated single nucleotide polymorphisms (SNPs). Using data from CARDIoGRAMplusC4D for CHD (consisting of 60,801 cases and 123,504 controls), we performed univariable and multivariable MR analyses. Similar GWAS and MR analyses were conducted for high-density lipoprotein (HDL) cholesterol and apolipoprotein A-I. The GWAS of lipids and apolipoproteins in the UKBB included between 393,193 and 441,016 individuals in whom the mean age was 56.9 y (range 39-73 y) and of whom 54.2% were women. The mean (standard deviation) lipid concentrations were LDL cholesterol 3.57 (0.87) mmol/L and HDL cholesterol 1.45 (0.38) mmol/L, and the median triglycerides was 1.50 (IQR = 1.11) mmol/L. The mean (standard deviation) values for apolipoproteins B and A-I were 1.03 (0.24) g/L and 1.54 (0.27) g/L, respectively. The GWAS identified multiple independent SNPs associated at P < 5 × 10-8 for LDL cholesterol (220), apolipoprotein B (n = 255), triglycerides (440), HDL cholesterol (534), and apolipoprotein A-I (440). Between 56%-93% of SNPs identified for each lipid trait had not been previously reported in large-scale GWASs. Almost half (46%) of these SNPs were associated at P < 5 × 10-8 with more than one lipid-related trait. Assessed individually using MR, LDL cholesterol (odds ratio [OR] 1.66 per 1-standard-deviation-higher trait; 95% CI: 1.49-1.86; P < 0.001), triglycerides (OR 1.34; 95% CI: 1.25-1.44; P < 0.001) and apolipoprotein B (OR 1.73; 95% CI: 1.56-1.91; P < 0.001) had effect estimates consistent with a higher risk of CHD. In multivariable MR, only apolipoprotein B (OR 1.92; 95% CI: 1.31-2.81; P < 0.001) retained a robust effect, with the estimate for LDL cholesterol (OR 0.85; 95% CI: 0.57-1.27; P = 0.44) reversing and that of triglycerides (OR 1.12; 95% CI: 1.02-1.23; P = 0.01) becoming weaker. Individual MR analyses showed a 1-standard-deviation-higher HDL cholesterol (OR 0.80; 95% CI: 0.75-0.86; P < 0.001) and apolipoprotein A-I (OR 0.83; 95% CI: 0.77-0.89; P < 0.001) to lower the risk of CHD, but these effect estimates attenuated substantially to the null on accounting for apolipoprotein B. A limitation is that, owing to the nature of lipoprotein metabolism, measures related to the composition of lipoprotein particles are highly correlated, creating a challenge in making exclusive interpretations on causation of individual components. These findings suggest that apolipoprotein B is the predominant trait that accounts for the aetiological relationship of lipoprotein lipids with risk of CHD.
BackgroundCirculating lipoprotein lipids cause coronary heart disease (CHD). However, the precise way in which one or more lipoprotein lipid-related entities account for this relationship remains unclear. Using genetic instruments for lipoprotein lipid traits implemented through multivariable Mendelian randomisation (MR), we sought to compare their causal roles in the aetiology of CHD.Methods and findingsWe conducted a genome-wide association study (GWAS) of circulating non-fasted lipoprotein lipid traits in the UK Biobank (UKBB) for low-density lipoprotein (LDL) cholesterol, triglycerides, and apolipoprotein B to identify lipid-associated single nucleotide polymorphisms (SNPs). Using data from CARDIoGRAMplusC4D for CHD (consisting of 60,801 cases and 123,504 controls), we performed univariable and multivariable MR analyses. Similar GWAS and MR analyses were conducted for high-density lipoprotein (HDL) cholesterol and apolipoprotein A-I. The GWAS of lipids and apolipoproteins in the UKBB included between 393,193 and 441,016 individuals in whom the mean age was 56.9 y (range 39-73 y) and of whom 54.2% were women. The mean (standard deviation) lipid concentrations were LDL cholesterol 3.57 (0.87) mmol/L and HDL cholesterol 1.45 (0.38) mmol/L, and the median triglycerides was 1.50 (IQR = 1.11) mmol/L. The mean (standard deviation) values for apolipoproteins B and A-I were 1.03 (0.24) g/L and 1.54 (0.27) g/L, respectively. The GWAS identified multiple independent SNPs associated at P < 5 × 10-8 for LDL cholesterol (220), apolipoprotein B (n = 255), triglycerides (440), HDL cholesterol (534), and apolipoprotein A-I (440). Between 56%-93% of SNPs identified for each lipid trait had not been previously reported in large-scale GWASs. Almost half (46%) of these SNPs were associated at P < 5 × 10-8 with more than one lipid-related trait. Assessed individually using MR, LDL cholesterol (odds ratio [OR] 1.66 per 1-standard-deviation-higher trait; 95% CI: 1.49-1.86; P < 0.001), triglycerides (OR 1.34; 95% CI: 1.25-1.44; P < 0.001) and apolipoprotein B (OR 1.73; 95% CI: 1.56-1.91; P < 0.001) had effect estimates consistent with a higher risk of CHD. In multivariable MR, only apolipoprotein B (OR 1.92; 95% CI: 1.31-2.81; P < 0.001) retained a robust effect, with the estimate for LDL cholesterol (OR 0.85; 95% CI: 0.57-1.27; P = 0.44) reversing and that of triglycerides (OR 1.12; 95% CI: 1.02-1.23; P = 0.01) becoming weaker. Individual MR analyses showed a 1-standard-deviation-higher HDL cholesterol (OR 0.80; 95% CI: 0.75-0.86; P < 0.001) and apolipoprotein A-I (OR 0.83; 95% CI: 0.77-0.89; P < 0.001) to lower the risk of CHD, but these effect estimates attenuated substantially to the null on accounting for apolipoprotein B. A limitation is that, owing to the nature of lipoprotein metabolism, measures related to the composition of lipoprotein particles are highly correlated, creating a challenge in making exclusive interpretations on causation of individual components.ConclusionsThese findings suggest that apolipoprotein B is the predominant trait that accounts for the aetiological relationship of lipoprotein lipids with risk of CHD.
Author Holmes, Michael V.
Richardson, Tom G.
Ala-Korpela, Mika
Sanderson, Eleanor
Davey Smith, George
Palmer, Tom M.
Ference, Brian A.
AuthorAffiliation 5 NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
6 Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, The Alfred Hospital, Monash University, Melbourne, Australia
9 Medical Research Council Population Health Research Unit, University of Oxford, Oxford, United Kingdom
University of Pennsylvania, UNITED STATES
2 Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, United Kingdom
7 Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, United Kingdom
3 Systems Epidemiology, Baker Heart and Diabetes Institute, Melbourne, Australia
4 Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
1 Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
8 MRC/BHF Cardiovascular Epidemiology Un
AuthorAffiliation_xml – name: 9 Medical Research Council Population Health Research Unit, University of Oxford, Oxford, United Kingdom
– name: University of Pennsylvania, UNITED STATES
– name: 1 Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
– name: 7 Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, United Kingdom
– name: 8 MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
– name: 5 NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
– name: 2 Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, United Kingdom
– name: 10 Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
– name: 3 Systems Epidemiology, Baker Heart and Diabetes Institute, Melbourne, Australia
– name: 6 Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, The Alfred Hospital, Monash University, Melbourne, Australia
– name: 4 Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
Author_xml – sequence: 1
  givenname: Tom G.
  orcidid: 0000-0002-7918-2040
  surname: Richardson
  fullname: Richardson, Tom G.
– sequence: 2
  givenname: Eleanor
  orcidid: 0000-0001-5188-5775
  surname: Sanderson
  fullname: Sanderson, Eleanor
– sequence: 3
  givenname: Tom M.
  orcidid: 0000-0003-4655-4511
  surname: Palmer
  fullname: Palmer, Tom M.
– sequence: 4
  givenname: Mika
  orcidid: 0000-0001-5905-1206
  surname: Ala-Korpela
  fullname: Ala-Korpela, Mika
– sequence: 5
  givenname: Brian A.
  surname: Ference
  fullname: Ference, Brian A.
– sequence: 6
  givenname: George
  orcidid: 0000-0002-1407-8314
  surname: Davey Smith
  fullname: Davey Smith, George
– sequence: 7
  givenname: Michael V.
  orcidid: 0000-0001-6617-0879
  surname: Holmes
  fullname: Holmes, Michael V.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32203549$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVAR_YB_gMASFy67OHbsJD1UqqoClYq4wNma2JOui9cOdrJV_xM_Eu9Hq22FOHnsefPmvfEcFwc-eCyKtyWdl7wuP92GKXpw82GJZl5SyqlkL4qjUlTtrJS1PNiLD4vjlG4pZS1t6avikDNGeU4eFX8uV-AmGK2_IeMCSUSXL8GnhR1Ih-MdoifaRj25LcjZIQwxjGj9OrYmEfCGwBD2Monc2XFBok2_SOiJDjF4iPdkgRBHYmxCSHhKzslycqNdQbTQOSTf0Bt0FjyJmTMsbdpoyQ3A3SebXhcve3AJ3-zOk-Ln58sfF19n19-_XF2cX8-0YHKcga6FrjRK0ZqOt6Vkveh11zaGc9rKBnXVmLrsse8ZBWM6xkvTtqI32PRSVPykeL_lHVxIajfopFglad3ypm4y4mqLMAFu1RDtMttTAazaPIR4o7JTqx0qKoxg0EMFmlddJ6BjAphgXPfamBoy19mu29Tlv9ToxwjuCenTjLcLdRNWqqZNWzGWCT7uCGL4PWEaVZ6cRufAY5iybt4wKaQsaYZ-eAb9t7t3-4oepTysTQZUW4COIaWI_SOkpGq9nQ-0ar2dareduez0WZm24-aLsy_r_l_8F_F09Y4
CitedBy_id crossref_primary_10_1016_j_ihj_2023_12_001
crossref_primary_10_1007_s00394_021_02578_0
crossref_primary_10_1016_j_jfma_2022_05_010
crossref_primary_10_1002_ame2_12373
crossref_primary_10_1038_s41598_024_56467_7
crossref_primary_10_1111_ene_15810
crossref_primary_10_1186_s13098_025_01701_z
crossref_primary_10_1097_MOL_0000000000000906
crossref_primary_10_1038_s41467_021_23084_1
crossref_primary_10_1097_MOL_0000000000000905
crossref_primary_10_1097_MD_0000000000044244
crossref_primary_10_3389_fendo_2024_1434145
crossref_primary_10_1038_s41467_022_30098_w
crossref_primary_10_1097_MD_0000000000044482
crossref_primary_10_1186_s12891_024_07674_w
crossref_primary_10_1016_j_clnu_2025_03_020
crossref_primary_10_1016_j_ajhg_2021_11_005
crossref_primary_10_1016_j_biopsych_2025_02_887
crossref_primary_10_1007_s11886_022_01829_8
crossref_primary_10_1038_s42003_022_03702_4
crossref_primary_10_3390_ijms23010310
crossref_primary_10_1186_s13073_021_00994_9
crossref_primary_10_3390_nu16213588
crossref_primary_10_1002_j_2040_4603_2022_tb00197_x
crossref_primary_10_1093_eurheartj_ehaf207
crossref_primary_10_3389_fimmu_2023_1174998
crossref_primary_10_1016_j_numecd_2025_104198
crossref_primary_10_1186_s12933_024_02321_z
crossref_primary_10_1097_MD_0000000000044495
crossref_primary_10_3389_fnut_2021_712600
crossref_primary_10_1093_mutage_geae012
crossref_primary_10_1186_s12933_022_01714_2
crossref_primary_10_1186_s12944_024_02026_y
crossref_primary_10_1007_s11033_023_09128_3
crossref_primary_10_3389_fneur_2023_1185986
crossref_primary_10_1016_j_ajcnut_2024_01_002
crossref_primary_10_3390_cells12172143
crossref_primary_10_1007_s11239_023_02871_1
crossref_primary_10_1039_D4FO04514A
crossref_primary_10_1007_s00432_020_03508_z
crossref_primary_10_1007_s00223_023_01160_6
crossref_primary_10_1016_j_diabres_2023_110561
crossref_primary_10_1186_s10020_022_00542_0
crossref_primary_10_1177_00220345241264749
crossref_primary_10_1007_s13755_024_00323_5
crossref_primary_10_1016_j_jacl_2021_04_001
crossref_primary_10_1186_s12885_024_12434_z
crossref_primary_10_1111_jth_15657
crossref_primary_10_1155_2024_5324127
crossref_primary_10_1161_STROKEAHA_124_046544
crossref_primary_10_1016_j_ajpc_2020_100003
crossref_primary_10_1186_s13098_023_01218_3
crossref_primary_10_1186_s13059_023_02993_y
crossref_primary_10_1016_j_rce_2022_11_001
crossref_primary_10_1097_MD_0000000000044351
crossref_primary_10_1186_s13075_023_03122_7
crossref_primary_10_1371_journal_pbio_3001547
crossref_primary_10_1016_j_ophtha_2023_08_023
crossref_primary_10_1038_s41598_022_15230_6
crossref_primary_10_3390_ijms241914857
crossref_primary_10_1186_s13098_023_01174_y
crossref_primary_10_3390_nu14204434
crossref_primary_10_3390_biomedicines12122828
crossref_primary_10_1016_j_spinee_2023_10_021
crossref_primary_10_1038_s41598_024_71734_3
crossref_primary_10_1016_j_semarthrit_2022_152058
crossref_primary_10_1007_s00192_024_05807_2
crossref_primary_10_1038_s41588_021_01011_w
crossref_primary_10_3390_nu13051489
crossref_primary_10_3390_ijms24031814
crossref_primary_10_15829_1728_8800_2023_3871
crossref_primary_10_1017_S000711452100369X
crossref_primary_10_1007_s00403_024_03600_1
crossref_primary_10_1016_j_nefroe_2023_08_002
crossref_primary_10_1371_journal_pgen_1009814
crossref_primary_10_1016_j_phrs_2023_106873
crossref_primary_10_3390_metabo13020273
crossref_primary_10_1109_ACCESS_2024_3435948
crossref_primary_10_1186_s12944_023_01963_4
crossref_primary_10_3389_fgene_2022_962449
crossref_primary_10_1093_cvr_cvaf078
crossref_primary_10_3390_genes14061265
crossref_primary_10_1371_journal_pone_0278375
crossref_primary_10_1186_s12944_022_01733_8
crossref_primary_10_1007_s00394_023_03281_y
crossref_primary_10_1186_s12885_024_12366_8
crossref_primary_10_3389_fnut_2023_1225376
crossref_primary_10_1093_molbev_msad054
crossref_primary_10_26508_lsa_202301962
crossref_primary_10_1186_s13073_022_01135_6
crossref_primary_10_1111_1346_8138_16910
crossref_primary_10_1093_hmg_ddab177
crossref_primary_10_1038_s41588_021_00969_x
crossref_primary_10_3389_fendo_2023_1189473
crossref_primary_10_1007_s00018_025_05784_9
crossref_primary_10_1186_s12966_022_01244_w
crossref_primary_10_3390_genes15010132
crossref_primary_10_3390_genes16050564
crossref_primary_10_7554_eLife_58361
crossref_primary_10_1038_s41598_024_61440_5
crossref_primary_10_3389_fimmu_2023_1160312
crossref_primary_10_1016_j_dld_2024_01_211
crossref_primary_10_1186_s13643_023_02442_8
crossref_primary_10_3389_fgene_2023_1140400
crossref_primary_10_1016_j_jlr_2024_100662
crossref_primary_10_1038_s41398_020_01047_2
crossref_primary_10_1002_cpt_2260
crossref_primary_10_1016_j_clnu_2021_03_040
crossref_primary_10_1016_j_xgen_2025_100810
crossref_primary_10_1038_s41401_025_01561_3
crossref_primary_10_1016_j_jhep_2024_06_030
crossref_primary_10_3389_fpsyt_2023_1275834
crossref_primary_10_1007_s11357_024_01348_0
crossref_primary_10_1016_j_cca_2022_07_014
crossref_primary_10_1186_s12944_024_02133_w
crossref_primary_10_3389_fmicb_2023_1259579
crossref_primary_10_1002_brb3_3543
crossref_primary_10_1016_j_ajhg_2021_12_013
crossref_primary_10_3389_fcvm_2022_964743
crossref_primary_10_1186_s13098_024_01520_8
crossref_primary_10_1016_j_compbiolchem_2025_108422
crossref_primary_10_1136_heartjnl_2022_321347
crossref_primary_10_1016_j_canep_2025_102849
crossref_primary_10_3390_metabo13010027
crossref_primary_10_1016_j_clinthera_2024_07_008
crossref_primary_10_1007_s00392_024_02420_7
crossref_primary_10_1038_s41598_024_51523_8
crossref_primary_10_1016_j_atherosclerosis_2025_119136
crossref_primary_10_1093_ije_dyaa216
crossref_primary_10_3390_biomedicines13010013
crossref_primary_10_7554_eLife_75244
crossref_primary_10_1016_j_atherosclerosis_2025_119139
crossref_primary_10_26599_1671_5411_2025_03_008
crossref_primary_10_3389_fendo_2024_1363018
crossref_primary_10_1186_s40246_025_00789_8
crossref_primary_10_1016_j_cell_2023_08_012
crossref_primary_10_1016_j_molmet_2020_101092
crossref_primary_10_1016_j_heliyon_2024_e28154
crossref_primary_10_3389_fgene_2021_787545
crossref_primary_10_1186_s12920_022_01180_5
crossref_primary_10_1002_cam4_70698
crossref_primary_10_1016_j_heliyon_2024_e32781
crossref_primary_10_1161_JAHA_122_025644
crossref_primary_10_1186_s12916_023_02903_w
crossref_primary_10_1097_CRD_0000000000001006
crossref_primary_10_2337_db24_0923
crossref_primary_10_1177_23969873241265019
crossref_primary_10_1515_med_2024_0994
crossref_primary_10_1007_s12672_025_02760_4
crossref_primary_10_1136_egastro_2023_100034
crossref_primary_10_1016_j_atherosclerosis_2024_119083
crossref_primary_10_1007_s00415_023_11604_6
crossref_primary_10_1161_CIR_0000000000001123
crossref_primary_10_1210_jendso_bvaf108
crossref_primary_10_1097_MD_0000000000044097
crossref_primary_10_1097_MED_0000000000000596
crossref_primary_10_3389_fmed_2023_1289026
crossref_primary_10_1152_physiolgenomics_00019_2024
crossref_primary_10_1002_ana_25916
crossref_primary_10_3389_fneur_2020_00675
crossref_primary_10_1016_j_atherosclerosis_2020_09_020
crossref_primary_10_1038_s41416_024_02900_7
crossref_primary_10_1161_CIRCRESAHA_123_323284
crossref_primary_10_1038_s41598_022_24100_0
crossref_primary_10_1161_CIRCULATIONAHA_123_064296
crossref_primary_10_7554_eLife_58567
crossref_primary_10_3389_fmicb_2022_1018322
crossref_primary_10_1016_j_ebiom_2021_103228
crossref_primary_10_1155_2024_2991243
crossref_primary_10_3390_genes16050523
crossref_primary_10_1007_s12035_024_04007_9
crossref_primary_10_1016_j_biopha_2024_116305
crossref_primary_10_1186_s12967_022_03822_9
crossref_primary_10_3389_fnut_2022_862942
crossref_primary_10_1038_s41598_025_86859_2
crossref_primary_10_1186_s13098_024_01448_z
crossref_primary_10_1038_s42003_022_03248_5
crossref_primary_10_1080_14767058_2024_2397722
crossref_primary_10_1093_hmg_ddae098
crossref_primary_10_1016_j_ajcnut_2024_03_009
crossref_primary_10_1038_s41380_025_03242_3
crossref_primary_10_1155_humu_5536318
crossref_primary_10_1186_s12876_024_03383_9
crossref_primary_10_1007_s00431_023_05033_w
crossref_primary_10_3389_fnut_2024_1288886
crossref_primary_10_3389_fendo_2024_1362499
crossref_primary_10_3390_nu13082550
crossref_primary_10_1093_ije_dyaa243
crossref_primary_10_1007_s00125_024_06324_z
crossref_primary_10_1038_s41398_024_02932_w
crossref_primary_10_1002_sim_70143
crossref_primary_10_1111_ijpo_70017
crossref_primary_10_1515_jtim_2024_0017
crossref_primary_10_4103_apc_apc_30_23
crossref_primary_10_1093_bjd_ljae089
crossref_primary_10_1111_dom_15910
crossref_primary_10_3390_metabo12121175
crossref_primary_10_1161_JAHA_122_025858
crossref_primary_10_1016_j_jad_2025_120057
crossref_primary_10_1007_s12672_025_03261_0
crossref_primary_10_1093_eurjpc_zwac219
crossref_primary_10_1016_j_metabol_2023_155616
crossref_primary_10_1016_j_jacl_2021_09_046
crossref_primary_10_1007_s00431_023_05350_0
crossref_primary_10_1038_s41569_020_00493_1
crossref_primary_10_3390_nu13072215
crossref_primary_10_1080_02770903_2024_2394143
crossref_primary_10_1016_j_ajhg_2023_06_005
crossref_primary_10_1038_s41467_024_46102_4
crossref_primary_10_3389_fendo_2024_1414585
crossref_primary_10_1210_endocr_bqae146
crossref_primary_10_1186_s12920_021_01127_2
crossref_primary_10_1161_CIR_0000000000001209
crossref_primary_10_1212_WNL_0000000000201657
crossref_primary_10_3389_fgene_2021_669215
crossref_primary_10_1016_j_endien_2023_05_012
crossref_primary_10_1038_s41390_022_02243_0
crossref_primary_10_1038_s41598_024_67800_5
crossref_primary_10_1042_BSR20241165
crossref_primary_10_1080_0886022X_2024_2420841
crossref_primary_10_1038_s41598_024_69737_1
crossref_primary_10_1093_hmg_ddaf018
crossref_primary_10_1186_s12933_025_02790_w
crossref_primary_10_3389_fnut_2022_956900
crossref_primary_10_1186_s12894_023_01332_4
crossref_primary_10_1002_med4_70009
crossref_primary_10_3390_nu14071327
crossref_primary_10_3389_fendo_2024_1404747
crossref_primary_10_3389_fgene_2021_738265
crossref_primary_10_3390_ijms22094547
crossref_primary_10_1093_clinchem_hvaa290
crossref_primary_10_1161_CIRCGEN_122_003710
crossref_primary_10_1371_journal_pgen_1011159
crossref_primary_10_1002_gepi_22392
crossref_primary_10_3390_metabo13090972
crossref_primary_10_1038_s41598_023_39936_3
crossref_primary_10_3389_fendo_2023_1278273
crossref_primary_10_1136_bmjmed_2022_000277
crossref_primary_10_3389_fgene_2021_771044
crossref_primary_10_1016_j_intimp_2025_114736
crossref_primary_10_1001_jamanetworkopen_2023_52572
crossref_primary_10_5114_aoms_193708
crossref_primary_10_1093_ije_dyab014
crossref_primary_10_1161_CIR_0000000000001303
crossref_primary_10_1038_s43856_022_00208_2
crossref_primary_10_1016_j_metabol_2022_155329
crossref_primary_10_1093_ije_dyab016
crossref_primary_10_1080_14737140_2025_2548488
crossref_primary_10_1111_jnc_16056
crossref_primary_10_1111_acel_13868
crossref_primary_10_1016_j_endinu_2023_02_002
crossref_primary_10_3390_genes13081366
crossref_primary_10_3389_fcvm_2023_1234271
crossref_primary_10_3390_genes13071201
crossref_primary_10_3390_nu16213674
crossref_primary_10_2147_NSS_S423331
crossref_primary_10_1002_hsr2_70875
crossref_primary_10_1016_j_xgen_2025_100784
crossref_primary_10_1016_j_jtha_2023_08_004
crossref_primary_10_1017_S0007114524001594
crossref_primary_10_1111_bjh_19229
crossref_primary_10_2217_epi_2020_0329
crossref_primary_10_1016_j_heliyon_2024_e41539
crossref_primary_10_1007_s11468_025_02785_z
crossref_primary_10_1016_j_metabol_2024_155817
crossref_primary_10_1016_j_numecd_2025_103898
crossref_primary_10_1016_j_numecd_2021_12_004
crossref_primary_10_3390_metabo11100691
crossref_primary_10_1080_0886022X_2025_2476051
crossref_primary_10_1093_eurjpc_zwac261
crossref_primary_10_1002_dmrr_70005
crossref_primary_10_1038_s41598_021_88256_x
crossref_primary_10_1038_s41598_025_12369_w
crossref_primary_10_1177_1934578X241291396
crossref_primary_10_3390_nu14061218
crossref_primary_10_1002_alz_13140
crossref_primary_10_1016_j_ajpc_2022_100342
crossref_primary_10_1016_j_ebiom_2023_104964
crossref_primary_10_1016_j_neuroimage_2022_119632
crossref_primary_10_1111_joim_13479
crossref_primary_10_1093_aje_kwae445
crossref_primary_10_3390_jcm11020313
crossref_primary_10_1093_eurjpc_zwac253
crossref_primary_10_1093_eurjpc_zwac252
crossref_primary_10_1093_ije_dyab152
crossref_primary_10_7554_eLife_80560
crossref_primary_10_3389_fnut_2023_1158810
crossref_primary_10_3390_nu15133002
crossref_primary_10_2337_dc21_1284
crossref_primary_10_1186_s12929_023_00905_7
crossref_primary_10_3390_ijms25137376
crossref_primary_10_1096_fj_202500032RRR
crossref_primary_10_1093_eurheartj_ehad736
crossref_primary_10_1097_HJH_0000000000003664
crossref_primary_10_1186_s12944_024_02085_1
crossref_primary_10_1161_ATVBAHA_120_315639
crossref_primary_10_1111_exd_15157
crossref_primary_10_1016_j_ihj_2023_08_003
crossref_primary_10_1186_s12920_023_01761_y
crossref_primary_10_1155_2022_5165203
crossref_primary_10_12688_wellcomeopenres_16928_2
crossref_primary_10_12688_wellcomeopenres_16928_1
crossref_primary_10_1186_s12920_024_01844_4
crossref_primary_10_1016_j_eprac_2022_08_002
crossref_primary_10_3389_fendo_2023_1166740
crossref_primary_10_3389_fendo_2024_1446719
crossref_primary_10_1186_s12967_024_05097_8
crossref_primary_10_3389_fnut_2023_1078963
crossref_primary_10_1016_S2215_0366_21_00286_8
crossref_primary_10_1039_D3FO05024F
crossref_primary_10_1371_journal_pone_0301811
crossref_primary_10_1016_j_ebiom_2023_104503
crossref_primary_10_1038_s41598_021_85503_z
crossref_primary_10_1093_eurheartj_ehad845
crossref_primary_10_1186_s13148_021_01113_6
crossref_primary_10_1016_j_bjorl_2023_101306
crossref_primary_10_3389_fgene_2023_1077438
crossref_primary_10_1093_ije_dyab051
crossref_primary_10_1016_j_jacl_2023_05_093
crossref_primary_10_1161_JAHA_123_029552
crossref_primary_10_1212_WNL_0000000000207777
crossref_primary_10_3389_fendo_2024_1359015
crossref_primary_10_1093_brain_awab351
crossref_primary_10_1177_09622802241313294
crossref_primary_10_3389_fendo_2024_1338698
crossref_primary_10_1038_s41588_022_01286_7
crossref_primary_10_1016_j_jlr_2022_100313
crossref_primary_10_1016_j_tjnut_2023_12_035
crossref_primary_10_3390_nu15214497
crossref_primary_10_1016_j_atherosclerosis_2021_04_013
crossref_primary_10_3390_genes11111326
crossref_primary_10_1093_cvr_cvab164
crossref_primary_10_1186_s13059_022_02837_1
crossref_primary_10_3389_fcell_2020_621144
crossref_primary_10_1186_s13098_023_01189_5
crossref_primary_10_1016_j_atherosclerosis_2023_117394
crossref_primary_10_1210_clinem_dgac562
crossref_primary_10_1093_toxsci_kfac103
crossref_primary_10_1016_j_atherosclerosis_2023_02_001
crossref_primary_10_1186_s12967_022_03407_6
crossref_primary_10_1007_s11010_024_04931_3
crossref_primary_10_1016_j_rceng_2023_06_001
crossref_primary_10_1016_j_atherosclerosis_2024_117558
crossref_primary_10_1080_21678421_2023_2255622
crossref_primary_10_3389_fendo_2023_1221228
crossref_primary_10_1186_s12991_024_00495_0
crossref_primary_10_1186_s12876_025_04162_w
crossref_primary_10_1016_j_ebiom_2023_104884
crossref_primary_10_3389_fphar_2023_1091976
crossref_primary_10_1007_s00018_020_03715_4
crossref_primary_10_1016_j_atherosclerosis_2021_04_021
crossref_primary_10_1038_s41398_021_01759_z
crossref_primary_10_1080_03630242_2025_2539819
crossref_primary_10_1186_s13073_023_01255_7
crossref_primary_10_1111_gbb_12834
crossref_primary_10_3390_nu15204445
crossref_primary_10_1161_CIR_0000000000001052
crossref_primary_10_1186_s12933_023_02045_6
crossref_primary_10_1371_journal_pgen_1010596
crossref_primary_10_1007_s00011_024_01850_3
crossref_primary_10_1111_ene_15471
crossref_primary_10_1016_j_molmet_2024_102033
crossref_primary_10_1038_s41588_022_01121_z
crossref_primary_10_1038_s41746_025_01850_5
crossref_primary_10_7554_eLife_73951
crossref_primary_10_1093_eurjpc_zwac290
crossref_primary_10_3390_nu14010181
crossref_primary_10_1161_ATVBAHA_120_315355
crossref_primary_10_1681_ASN_0000000000000238
crossref_primary_10_3390_ph17030289
crossref_primary_10_3233_JAD_230863
crossref_primary_10_1093_cvr_cvab060
crossref_primary_10_3233_JAD_230623
crossref_primary_10_3390_ijms25042182
crossref_primary_10_1002_cpt_2934
crossref_primary_10_1093_eurheartj_ehac605
crossref_primary_10_1093_pnasnexus_pgae033
crossref_primary_10_3390_genes13091553
crossref_primary_10_1038_s42003_022_03291_2
crossref_primary_10_1038_s42003_025_07860_z
crossref_primary_10_1161_ATVBAHA_124_321165
crossref_primary_10_1186_s12872_024_03803_4
crossref_primary_10_1681_ASN_2020121760
crossref_primary_10_1038_s41588_022_01199_5
crossref_primary_10_1016_j_artere_2025_500816
crossref_primary_10_1016_j_arteri_2025_500816
crossref_primary_10_1016_j_artere_2023_05_001
crossref_primary_10_1038_s41525_021_00189_6
crossref_primary_10_3390_jcdd12070256
crossref_primary_10_1093_postmj_qgae011
crossref_primary_10_1161_JAHA_123_032409
crossref_primary_10_1186_s12014_024_09465_w
crossref_primary_10_3389_fimmu_2024_1328297
crossref_primary_10_1161_STROKEAHA_120_032617
crossref_primary_10_1186_s12944_024_02096_y
crossref_primary_10_1038_s41598_022_16488_6
crossref_primary_10_1038_s41398_021_01736_6
crossref_primary_10_1038_s41598_022_07465_0
crossref_primary_10_1093_eurjpc_zwae009
crossref_primary_10_1371_journal_pone_0304280
crossref_primary_10_1007_s12012_024_09930_w
crossref_primary_10_1371_journal_pmed_1003636
crossref_primary_10_1016_j_ejogrb_2023_10_020
crossref_primary_10_1016_j_ajpc_2022_100371
crossref_primary_10_1111_1753_0407_70056
crossref_primary_10_1016_j_ebiom_2025_105671
crossref_primary_10_1093_hmg_ddad212
crossref_primary_10_1001_jamanetworkopen_2023_13734
crossref_primary_10_1016_j_jacl_2022_05_068
crossref_primary_10_1007_s11033_023_08894_4
crossref_primary_10_3390_healthcare12222275
crossref_primary_10_1093_ije_dyad048
crossref_primary_10_1161_CIRCGEN_123_004232
crossref_primary_10_1016_j_jlr_2022_100193
crossref_primary_10_1097_MOL_0000000000000866
crossref_primary_10_7554_eLife_65554
crossref_primary_10_1186_s12872_024_03804_3
crossref_primary_10_3389_fendo_2024_1325417
crossref_primary_10_3389_fcvm_2022_841032
crossref_primary_10_1016_j_athplu_2025_04_003
crossref_primary_10_1038_s41598_024_51701_8
crossref_primary_10_3390_biomedicines12040818
crossref_primary_10_1111_1753_0407_13260
crossref_primary_10_3390_v16071161
crossref_primary_10_1016_j_jlr_2024_100528
crossref_primary_10_1007_s40618_023_02028_0
crossref_primary_10_1093_eurheartj_ehaf606
crossref_primary_10_1186_s12916_023_03184_z
crossref_primary_10_1093_hmg_ddac016
crossref_primary_10_1097_MOL_0000000000000973
crossref_primary_10_3389_fnut_2025_1644496
crossref_primary_10_3390_ijms26104817
crossref_primary_10_1038_s41569_020_00477_1
crossref_primary_10_1007_s10557_021_07158_2
crossref_primary_10_1007_s11883_023_01153_8
crossref_primary_10_1097_MOL_0000000000000737
crossref_primary_10_3390_life15091459
crossref_primary_10_1016_j_jlr_2023_100471
crossref_primary_10_1038_s41467_024_54078_4
crossref_primary_10_1161_ATVBAHA_120_315391
crossref_primary_10_1002_ijc_34026
crossref_primary_10_1038_s41598_025_88375_9
crossref_primary_10_1161_HYPERTENSIONAHA_122_19510
crossref_primary_10_1016_j_jacl_2024_07_004
crossref_primary_10_1186_s12916_025_04329_y
crossref_primary_10_1371_journal_pmed_1003410
crossref_primary_10_3389_fendo_2024_1335489
crossref_primary_10_1080_02770903_2025_2493177
crossref_primary_10_1097_MOL_0000000000000721
crossref_primary_10_1111_eci_13893
crossref_primary_10_2337_db21_0655
crossref_primary_10_1155_ije_6664846
crossref_primary_10_1186_s12931_023_02661_6
crossref_primary_10_1093_eurjpc_zwaf037
crossref_primary_10_1007_s12011_023_03726_9
crossref_primary_10_1016_j_numecd_2025_104128
crossref_primary_10_1136_thorax_2023_220789
crossref_primary_10_1016_j_numecd_2022_01_002
crossref_primary_10_1002_ijc_34032
crossref_primary_10_1016_j_clnu_2025_01_034
crossref_primary_10_1016_j_phrs_2023_106936
crossref_primary_10_1210_clinem_dgae843
crossref_primary_10_1111_liv_16150
crossref_primary_10_1186_s12916_023_03003_5
crossref_primary_10_1073_pnas_2121133119
crossref_primary_10_1007_s40261_022_01208_9
crossref_primary_10_1371_journal_pone_0298610
crossref_primary_10_3390_ijms23169417
crossref_primary_10_1161_ATVBAHA_121_316650
crossref_primary_10_1038_s41467_023_38125_0
crossref_primary_10_1016_j_jlr_2024_100625
crossref_primary_10_1007_s00403_024_03100_2
crossref_primary_10_1016_j_atherosclerosis_2024_117482
crossref_primary_10_3389_fcvm_2024_1446610
crossref_primary_10_3389_fgene_2024_1383646
crossref_primary_10_1016_j_atherosclerosis_2024_117489
crossref_primary_10_1093_hmg_ddab263
crossref_primary_10_1016_j_asjsur_2024_12_070
crossref_primary_10_1016_j_jpsychires_2024_04_027
crossref_primary_10_3389_fnut_2022_910690
crossref_primary_10_1093_eurheartj_ehae655
crossref_primary_10_1038_s41598_023_41130_4
crossref_primary_10_3389_fendo_2024_1345267
crossref_primary_10_1016_j_bbalip_2021_159063
crossref_primary_10_1161_JAHA_124_034364
crossref_primary_10_1038_s41598_024_61628_9
crossref_primary_10_1097_HCO_0000000000000839
crossref_primary_10_3390_ijms22041593
crossref_primary_10_1002_sim_9699
crossref_primary_10_1161_JAHA_123_034180
crossref_primary_10_2147_COPD_S476833
crossref_primary_10_3389_fevo_2022_1059477
crossref_primary_10_1038_s41598_022_26572_6
crossref_primary_10_3389_fphys_2021_768411
crossref_primary_10_1177_0271678X231169838
crossref_primary_10_2147_IJWH_S496268
crossref_primary_10_1210_clinem_dgab633
crossref_primary_10_1016_j_jacl_2025_01_003
crossref_primary_10_1161_JAHA_124_035365
crossref_primary_10_1093_ije_dyaf020
crossref_primary_10_1016_j_hrthm_2023_10_024
crossref_primary_10_1016_j_ajpc_2021_100149
crossref_primary_10_1038_s42003_024_05887_2
crossref_primary_10_1016_j_tjfa_2025_100013
crossref_primary_10_1108_DAT_09_2020_0059
crossref_primary_10_1007_s10557_021_07156_4
crossref_primary_10_1093_nutrit_nuad102
crossref_primary_10_1161_CIRCGEN_124_004933
crossref_primary_10_1186_s12944_023_01872_6
crossref_primary_10_1038_s41598_024_79260_y
crossref_primary_10_1007_s12011_024_04237_x
crossref_primary_10_1186_s12944_022_01667_1
crossref_primary_10_1016_j_jacc_2024_12_033
crossref_primary_10_1002_ana_26426
crossref_primary_10_1016_j_hipert_2022_12_002
crossref_primary_10_1002_fsn3_70965
crossref_primary_10_1038_s43856_022_00234_0
crossref_primary_10_1038_s41366_024_01458_x
crossref_primary_10_2147_CLEP_S439642
crossref_primary_10_1016_j_biopha_2021_111802
crossref_primary_10_1016_j_atherosclerosis_2025_120507
crossref_primary_10_1016_j_jacl_2024_08_013
crossref_primary_10_1007_s12020_025_04427_0
crossref_primary_10_1002_sim_9368
crossref_primary_10_1371_journal_pgen_1009754
crossref_primary_10_1186_s12872_024_04132_2
crossref_primary_10_1016_j_jacc_2024_03_423
crossref_primary_10_1186_s12963_025_00396_8
crossref_primary_10_3389_fendo_2022_938891
crossref_primary_10_1038_s41467_022_29932_y
crossref_primary_10_7554_eLife_75624
crossref_primary_10_1161_CIRCULATIONAHA_123_065866
crossref_primary_10_1161_JAHA_122_029103
crossref_primary_10_1097_MOL_0000000000000754
crossref_primary_10_1002_brb3_70396
crossref_primary_10_1016_j_jhep_2022_04_010
crossref_primary_10_2147_IJWH_S468733
crossref_primary_10_1002_ajpa_24620
crossref_primary_10_1007_s12265_024_10578_8
crossref_primary_10_1016_j_ymgme_2020_07_009
crossref_primary_10_1002_sim_9133
crossref_primary_10_1186_s13040_025_00484_3
crossref_primary_10_1249_MSS_0000000000003601
Cites_doi 10.1136/bmj.322.7280.226
10.18637/jss.v036.i03
10.1093/ije/dyy262
10.1016/0895-4356(91)90155-3
10.1093/hmg/ddu328
10.1093/ije/dyg070
10.1001/jama.2017.11467
10.1038/s41467-017-02317-2
10.1016/S0140-6736(19)32519-X
10.1016/j.cell.2015.01.036
10.1016/S0140-6736(12)60367-5
10.1001/jama.2018.20045
10.1161/CIRCOUTCOMES.110.959247
10.1038/s41569-019-0157-6
10.1038/ng.3396
10.1093/ije/dym276
10.1002/gepi.21965
10.7554/eLife.34408
10.1056/NEJMoa1002926
10.1093/ije/dyx102
10.1161/01.ATV.15.5.551
10.1016/S0140-6736(10)61350-5
10.1056/NEJMoa1701329
10.1001/jamacardio.2019.3780
10.1038/ng.2797
10.1097/MOL.0000000000000330
10.1056/NEJMoa1510926
10.1016/j.jacc.2012.09.017
10.12688/wellcomeopenres.15555.1
10.1161/CIRCULATIONAHA.108.777334
10.1038/s41588-018-0144-6
10.1038/ncomms11122
10.1093/ije/dyz068
10.1161/CIRCULATIONAHA.119.041149
10.1056/NEJMoa1706444
10.1001/jama.2016.13985
10.1038/s41572-019-0106-z
10.1093/eurheartj/ehz455
10.1002/sim.7492
10.1016/S0140-6736(16)31357-5
10.1186/s13742-015-0047-8
10.1161/CIRCRESAHA.119.315019
10.1161/CIRCULATIONAHA.114.013116
10.1136/bmj.k601
10.1093/hmg/ddy163
10.1001/jamacardio.2016.1884
10.1016/j.jacc.2015.02.020
10.1056/NEJMoa1604304
10.1016/j.jacc.2012.08.1026
10.1002/sim.7221
10.1093/ije/dyv080
10.1161/CIRCULATIONAHA.119.042134
10.1056/NEJMe1901565
10.1016/S0140-6736(14)61368-4
10.1038/nprot.2010.116
10.1001/jamacardio.2018.2168
10.1038/ng.3190
10.1038/nrg2481
10.1038/ng.2795
10.1093/eurheartj/eht571
10.1038/nature11632
10.1038/s41586-018-0579-z
10.1038/nrcardio.2017.78
10.1371/journal.pmed.1001779
10.1038/d41586-019-00857-9
10.1001/jama.2009.1619
ContentType Journal Article
Copyright 2020 Richardson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Richardson et al 2020 Richardson et al
Copyright_xml – notice: 2020 Richardson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Richardson et al 2020 Richardson et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
CZK
DOI 10.1371/journal.pmed.1003062
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
PLoS Medicine
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Lipoprotein lipids, apolipoproteins, and risk of CHD: Findings from multivariable Mendelian randomization
EISSN 1549-1676
ExternalDocumentID 2460793878
oai_doaj_org_article_05d52afa4ac34bb5ab25a2523cfcdd7a
PMC7089422
32203549
10_1371_journal_pmed_1003062
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Melbourne Victoria Australia
United Kingdom--UK
Australia
Finland
GeographicLocations_xml – name: Finland
– name: United Kingdom--UK
– name: Melbourne Victoria Australia
– name: Australia
GrantInformation_xml – fundername: British Heart Foundation
  grantid: CH/1996001/9454
– fundername: Medical Research Council
  grantid: MR/S003886/1
– fundername: Department of Health
– fundername: Medical Research Council
  grantid: MC_UU_00011/1
– fundername: Medical Research Council
  grantid: MC_PC_17228
– fundername: Medical Research Council
  grantid: MC_UU-00011/2
– fundername: British Heart Foundation
  grantid: FS/18/23/33512
– fundername: Medical Research Council
  grantid: MC_QA137853
– fundername: Medical Research Council
  grantid: MC_UU_00011/2
– fundername: ;
– fundername: ;
  grantid: MC_UU_00011/1 and MC_UU-00011/2
– fundername: ;
  grantid: MRC PHRU Oxford
– fundername: ;
  grantid: Obesity theme
– fundername: ;
  grantid: APP1158958
– fundername: ;
  grantid: MR/S003886/1
– fundername: ;
  grantid: FS/18/23/33512
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAWTL
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFFHD
AFKRA
AFPKN
AFRAH
AFXKF
AHMBA
AKRSQ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAIFH
BAWUL
BBTPI
BCNDV
BENPR
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
IHW
INH
INR
IOF
IOV
IPO
ISN
ISR
ITC
KQ8
M1P
M48
MK0
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
YZZ
~8M
ADRAZ
ADXHL
ALIPV
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
3V.
7TK
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
-
AAPBV
ABPTK
ADACO
BBAFP
BCGST
CZK
ICW
M~E
ID FETCH-LOGICAL-c526t-ac75c4ce659db39162f5fcb98d330968ec48d71feff20addb231d995fde8f6543
IEDL.DBID DOA
ISICitedReferencesCount 585
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000558139500021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-1676
1549-1277
IngestDate Sun May 01 00:11:09 EDT 2022
Fri Oct 03 12:53:26 EDT 2025
Tue Nov 04 02:00:32 EST 2025
Fri Sep 05 07:08:29 EDT 2025
Sat Nov 29 14:27:52 EST 2025
Mon Jul 21 06:05:16 EDT 2025
Sat Nov 29 05:16:41 EST 2025
Tue Nov 18 21:38:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c526t-ac75c4ce659db39162f5fcb98d330968ec48d71feff20addb231d995fde8f6543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
I have read the journal's policy and the authors of this manuscript have the following competing interests: BAF reports receiving grants from Amgen, Merck & Co., Novartis, and Esperion Therapeutics; consulting or advisory board fees from Amgen, Regeneron, Sanofi, Merck & Co., Pfizer, CiVi BioPhama, and KrKA Pharmaceuticals; and grants from Merck & Co., Amgen, Novartis, Novo Nordisk, Regeneron, Sanofi, Pfizer, Eli Lilly, Mylan, Ionis, dalCOR, Silence Therapeutics, Integral Therapeutics, CiVi Pharma, KrKa Phamaceuticals, American College of Cardiology, European Atherosclerosis Society, and European Society of Cardiology. MVH has collaborated with Boehringer Ingelheim in research, and in accordance with the policy of the The Clinical Trial Service Unit and Epidemiological Studies Unit (University of Oxford), did not accept any personal payment. GDS is an Academic Editor on PLOS Medicine's editorial board. All other authors report no potential conflicts of interest.
These authors are joint senior authors on this work.
ORCID 0000-0001-5188-5775
0000-0003-4655-4511
0000-0002-7918-2040
0000-0001-5905-1206
0000-0001-6617-0879
0000-0002-1407-8314
OpenAccessLink https://doaj.org/article/05d52afa4ac34bb5ab25a2523cfcdd7a
PMID 32203549
PQID 2460793878
PQPubID 1436338
ParticipantIDs plos_journals_2460793878
doaj_primary_oai_doaj_org_article_05d52afa4ac34bb5ab25a2523cfcdd7a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7089422
proquest_miscellaneous_2382656610
proquest_journals_2460793878
pubmed_primary_32203549
crossref_primary_10_1371_journal_pmed_1003062
crossref_citationtrail_10_1371_journal_pmed_1003062
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS medicine
PublicationTitleAlternate PLoS Med
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References J White (pmed.1003062.ref013) 2016; 1
R Mitchell (pmed.1003062.ref036) 2019
HPS3/TIMI55-REVEAL Collaborative Group (pmed.1003062.ref066) 2017; 377
AD Sniderman (pmed.1003062.ref012) 2019; 124
AD Sniderman (pmed.1003062.ref019) 2011; 4
C Welsh (pmed.1003062.ref022) 2019; 140
Global Lipids Genetics Consortium (pmed.1003062.ref040) 2013; 45
E Sanderson (pmed.1003062.ref028) 2019; 48
W. Viechtbauer (pmed.1003062.ref048) 2010; 36
E Sanderson (pmed.1003062.ref045) 2020
G Hemani (pmed.1003062.ref046) 2018; 7
S Mora (pmed.1003062.ref023) 2019; 140
J Boren (pmed.1003062.ref060) 2016; 27
C Sudlow (pmed.1003062.ref030) 2015; 12
G Davey Smith (pmed.1003062.ref043) 2014; 23
DJ Rader (pmed.1003062.ref068) 2018; 3
MV Holmes (pmed.1003062.ref067) 2019; 380
P Libby (pmed.1003062.ref072) 2019; 5
BA Ference (pmed.1003062.ref006) 2016; 375
Z Zhu (pmed.1003062.ref070) 2018; 9
J Bowden (pmed.1003062.ref069) 2017; 36
AN Phillips (pmed.1003062.ref017) 1991; 44
Cholesterol Treatment Trialists' Collaborators (pmed.1003062.ref002) 2010; 376
J Kettunen (pmed.1003062.ref041) 2016; 7
Emerging Risk Factors Collaboration (pmed.1003062.ref059) 2009; 302
G Davey Smith (pmed.1003062.ref018) 2020
FJ Brunner (pmed.1003062.ref021) 2019; 394
M. Ala-Korpela (pmed.1003062.ref061) 2019; 48
P Wurtz (pmed.1003062.ref074) 2015; 131
BA Ference (pmed.1003062.ref026) 2019; 321
MJ Graham (pmed.1003062.ref064) 2017; 377
Cholesterol Treatment Trialists' Collaborators (pmed.1003062.ref003) 2012; 380
J Bowden (pmed.1003062.ref055) 2015; 44
S Mora (pmed.1003062.ref058) 2008; 118
C Bycroft (pmed.1003062.ref037) 2018; 562
Cholesterol Treatment Trialist's Collaborators (pmed.1003062.ref001) 2015; 385
S Burgess (pmed.1003062.ref051) 2019; 4
AD Sniderman (pmed.1003062.ref011) 2019; 4
A Varbo (pmed.1003062.ref016) 2013; 61
CC Chang (pmed.1003062.ref038) 2015; 4
JA Sterne (pmed.1003062.ref050) 2001; 322
MG Silverman (pmed.1003062.ref004) 2016; 316
CA Anderson (pmed.1003062.ref033) 2010; 5
M Nikpay (pmed.1003062.ref029) 2015; 47
JMB Rees (pmed.1003062.ref056) 2017; 36
RA Hegele (pmed.1003062.ref073) 2009; 10
R Collins (pmed.1003062.ref005) 2016; 388
KJ Williams (pmed.1003062.ref062) 1995; 15
1000 Genomes Project Consortium (pmed.1003062.ref039) 2012; 491
BA Ference (pmed.1003062.ref007) 2015; 65
MV Holmes (pmed.1003062.ref009) 2015; 36
SM Grundy (pmed.1003062.ref024) 2018; 139
FP Hartwig (pmed.1003062.ref054) 2017; 46
PR Loh (pmed.1003062.ref035) 2018; 50
MV Holmes (pmed.1003062.ref010) 2019; 16
Emerging Risk Factors Collaboration (pmed.1003062.ref020) 2012; 307
H. Wickham (pmed.1003062.ref047) 2016
BA Ference (pmed.1003062.ref015) 2017; 318
J Bowden (pmed.1003062.ref044) 2016; 45
PR Loh (pmed.1003062.ref034) 2015; 47
D Fry (pmed.1003062.ref032) 2019
J Bowden (pmed.1003062.ref053) 2016; 40
P Elliott (pmed.1003062.ref031) 2008; 37
F Mach (pmed.1003062.ref025) 2020; 41
MV Holmes (pmed.1003062.ref052) 2017; 14
JL Goldstein (pmed.1003062.ref071) 2015; 161
FE Dewey (pmed.1003062.ref063) 2016; 374
G Hemani (pmed.1003062.ref057) 2018; 27
BA Ference (pmed.1003062.ref008) 2012; 60
K Musunuru (pmed.1003062.ref065) 2010; 363
G Davey Smith (pmed.1003062.ref027) 2003; 32
V Amrhein (pmed.1003062.ref049) 2019; 567
R Do (pmed.1003062.ref014) 2013; 45
NM Davies (pmed.1003062.ref042) 2018; 362
References_xml – volume: 322
  start-page: 226
  issue: 7280
  year: 2001
  ident: pmed.1003062.ref050
  article-title: Sifting the evidence-what's wrong with significance tests?
  publication-title: BMJ
  doi: 10.1136/bmj.322.7280.226
– year: 2019
  ident: pmed.1003062.ref032
  article-title: Companion Document to Accompany Serum Biomarker Data
  publication-title: UK Biobank Biomarker Project
– volume: 36
  start-page: 48
  issue: 3
  year: 2010
  ident: pmed.1003062.ref048
  article-title: Conducting Meta-Analyses in R with the metafor Package
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v036.i03
– volume: 48
  start-page: 713
  issue: 3
  year: 2019
  ident: pmed.1003062.ref028
  article-title: An examination of multivariable Mendelian randomization in the single sample and two-sample summary data settings
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyy262
– volume: 44
  start-page: 1223
  issue: 11
  year: 1991
  ident: pmed.1003062.ref017
  article-title: How independent are "independent" effects? Relative risk estimation when correlated exposures are measured imprecisely
  publication-title: J Clin Epidemiol
  doi: 10.1016/0895-4356(91)90155-3
– volume: 23
  start-page: R89
  issue: R1
  year: 2014
  ident: pmed.1003062.ref043
  article-title: Mendelian randomization: genetic anchors for causal inference in epidemiological studies
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddu328
– volume: 32
  start-page: 1
  issue: 1
  year: 2003
  ident: pmed.1003062.ref027
  article-title: 'Mendelian randomization': Can genetic epidemiology contribute to understanding environmental determinants of disease?
  publication-title: Int J Epidemiology
  doi: 10.1093/ije/dyg070
– volume: 318
  start-page: 947
  issue: 10
  year: 2017
  ident: pmed.1003062.ref015
  article-title: Association of Genetic Variants Related to CETP Inhibitors and Statins With Lipoprotein Levels and Cardiovascular Risk
  publication-title: Jama
  doi: 10.1001/jama.2017.11467
– volume: 9
  start-page: 224
  issue: 1
  year: 2018
  ident: pmed.1003062.ref070
  article-title: Causal associations between risk factors and common diseases inferred from GWAS summary data
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02317-2
– year: 2020
  ident: pmed.1003062.ref045
  article-title: Testing and Correcting for Weak Instruments in Two-sample Summary Data Multivariable Mendelian Randomisation
  publication-title: bioRxiv
– volume: 394
  start-page: 2173
  issue: 10215
  year: 2019
  ident: pmed.1003062.ref021
  article-title: Application of non-HDL cholesterol for population-based cardiovascular risk stratification: results from the Multinational Cardiovascular Risk Consortium
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)32519-X
– volume: 161
  start-page: 161
  issue: 1
  year: 2015
  ident: pmed.1003062.ref071
  article-title: A century of cholesterol and coronaries: from plaques to genes to statins
  publication-title: Cell
  doi: 10.1016/j.cell.2015.01.036
– volume: 380
  start-page: 581
  issue: 9841
  year: 2012
  ident: pmed.1003062.ref003
  article-title: The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)60367-5
– volume: 321
  start-page: 364
  issue: 4
  year: 2019
  ident: pmed.1003062.ref026
  article-title: Association of Triglyceride-Lowering LPL Variants and LDL-C-Lowering LDLR Variants With Risk of Coronary Heart Disease
  publication-title: Jama
  doi: 10.1001/jama.2018.20045
– volume: 4
  start-page: 337
  issue: 3
  year: 2011
  ident: pmed.1003062.ref019
  article-title: A meta-analysis of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B as markers of cardiovascular risk
  publication-title: Circ Cardiovasc Qual Outcomes
  doi: 10.1161/CIRCOUTCOMES.110.959247
– volume: 16
  start-page: 197
  issue: 4
  year: 2019
  ident: pmed.1003062.ref010
  article-title: What is 'LDL cholesterol'?
  publication-title: Nat Rev Cardiol
  doi: 10.1038/s41569-019-0157-6
– year: 2019
  ident: pmed.1003062.ref036
  article-title: MRC IEU UK Biobank GWAS pipeline version 2
  publication-title: University of Bristol
– volume: 47
  start-page: 1121
  issue: 10
  year: 2015
  ident: pmed.1003062.ref029
  article-title: A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease
  publication-title: Nat Genet
  doi: 10.1038/ng.3396
– volume: 37
  start-page: 234
  issue: 2
  year: 2008
  ident: pmed.1003062.ref031
  article-title: The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dym276
– volume: 40
  start-page: 304
  issue: 4
  year: 2016
  ident: pmed.1003062.ref053
  article-title: Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator
  publication-title: Genetic Epidemiology
  doi: 10.1002/gepi.21965
– volume: 7
  start-page: e34408
  year: 2018
  ident: pmed.1003062.ref046
  article-title: The MR-Base platform supports systematic causal inference across the human phenome
  publication-title: Elife
  doi: 10.7554/eLife.34408
– volume: 363
  start-page: 2220
  issue: 23
  year: 2010
  ident: pmed.1003062.ref065
  article-title: Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1002926
– volume: 46
  start-page: 1985
  issue: 6
  year: 2017
  ident: pmed.1003062.ref054
  article-title: Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyx102
– volume: 45
  start-page: 1961
  issue: 6
  year: 2016
  ident: pmed.1003062.ref044
  article-title: Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic
  publication-title: Int J Epidemiol
– volume: 15
  start-page: 551
  issue: 5
  year: 1995
  ident: pmed.1003062.ref062
  article-title: The response-to-retention hypothesis of early atherogenesis
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.15.5.551
– volume: 376
  start-page: 1670
  issue: 9753
  year: 2010
  ident: pmed.1003062.ref002
  article-title: Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)61350-5
– volume: 377
  start-page: 222
  issue: 3
  year: 2017
  ident: pmed.1003062.ref064
  article-title: Cardiovascular and Metabolic Effects of ANGPTL3 Antisense Oligonucleotides
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1701329
– volume: 4
  start-page: 1287
  issue: 12
  year: 2019
  ident: pmed.1003062.ref011
  article-title: Apolipoprotein B Particles and Cardiovascular Disease: A Narrative Review
  publication-title: JAMA Cardiol
  doi: 10.1001/jamacardio.2019.3780
– volume: 45
  start-page: 1274
  issue: 11
  year: 2013
  ident: pmed.1003062.ref040
  article-title: Discovery and refinement of loci associated with lipid levels
  publication-title: Nat Genet
  doi: 10.1038/ng.2797
– volume: 27
  start-page: 473
  issue: 5
  year: 2016
  ident: pmed.1003062.ref060
  article-title: The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity
  publication-title: Curr Opin Lipidol
  doi: 10.1097/MOL.0000000000000330
– volume: 374
  start-page: 1123
  issue: 12
  year: 2016
  ident: pmed.1003062.ref063
  article-title: Inactivating Variants in ANGPTL4 and Risk of Coronary Artery Disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1510926
– volume: 60
  start-page: 2631
  issue: 25
  year: 2012
  ident: pmed.1003062.ref008
  article-title: Effect of Long-Term Exposure to Lower Low-Density Lipoprotein Cholesterol Beginning Early in Life on the Risk of Coronary Heart Disease A Mendelian Randomization Analysis
  publication-title: Journal of the American College of Cardiology
  doi: 10.1016/j.jacc.2012.09.017
– volume: 4
  start-page: 186
  year: 2019
  ident: pmed.1003062.ref051
  article-title: Guidelines for performing Mendelian randomization investigations [version 1; peer review: awaiting peer review]
  publication-title: Wellcome Open Res
  doi: 10.12688/wellcomeopenres.15555.1
– volume: 118
  start-page: 993
  issue: 10
  year: 2008
  ident: pmed.1003062.ref058
  article-title: Fasting compared with nonfasting lipids and apolipoproteins for predicting incident cardiovascular events
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.108.777334
– volume: 50
  start-page: 906
  issue: 7
  year: 2018
  ident: pmed.1003062.ref035
  article-title: Mixed-model association for biobank-scale datasets
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0144-6
– volume: 7
  start-page: 11122
  year: 2016
  ident: pmed.1003062.ref041
  article-title: Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA
  publication-title: Nat Commun
  doi: 10.1038/ncomms11122
– volume: 48
  start-page: 1389
  issue: 5
  year: 2019
  ident: pmed.1003062.ref061
  article-title: The culprit is the carrier, not the loads: cholesterol, triglycerides and apolipoprotein B in atherosclerosis and coronary heart disease
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyz068
– volume: 140
  start-page: 542
  issue: 7
  year: 2019
  ident: pmed.1003062.ref022
  article-title: Comparison of Conventional Lipoprotein Tests and Apolipoproteins in the Prediction of Cardiovascular Disease
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.119.041149
– volume: 377
  start-page: 1217
  issue: 13
  year: 2017
  ident: pmed.1003062.ref066
  article-title: Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1706444
– year: 2020
  ident: pmed.1003062.ref018
  article-title: Correlation without a cause: an epidemiological odyssey
  publication-title: Int J Epidemiol. Forthcoming
– volume: 316
  start-page: 1289
  issue: 12
  year: 2016
  ident: pmed.1003062.ref004
  article-title: Association Between Lowering LDL-C and Cardiovascular Risk Reduction Among Different Therapeutic Interventions: A Systematic Review and Meta-analysis
  publication-title: Jama
  doi: 10.1001/jama.2016.13985
– volume: 5
  start-page: 56
  issue: 1
  year: 2019
  ident: pmed.1003062.ref072
  article-title: Atherosclerosis
  publication-title: Nat Rev Dis Primers
  doi: 10.1038/s41572-019-0106-z
– volume: 139
  start-page: e1082
  issue: 25
  year: 2018
  ident: pmed.1003062.ref024
  article-title: AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines
  publication-title: Circulation
– volume: 41
  start-page: 111
  issue: 1
  year: 2020
  ident: pmed.1003062.ref025
  article-title: 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehz455
– volume: 36
  start-page: 4705
  issue: 29
  year: 2017
  ident: pmed.1003062.ref056
  article-title: Extending the MR-Egger method for multivariable Mendelian randomization to correct for both measured and unmeasured pleiotropy
  publication-title: Stat Med
  doi: 10.1002/sim.7492
– volume: 388
  start-page: 2532
  issue: 10059
  year: 2016
  ident: pmed.1003062.ref005
  article-title: Interpretation of the evidence for the efficacy and safety of statin therapy
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(16)31357-5
– volume: 4
  start-page: 7
  year: 2015
  ident: pmed.1003062.ref038
  article-title: Second-generation PLINK: rising to the challenge of larger and richer datasets
  publication-title: Gigascience
  doi: 10.1186/s13742-015-0047-8
– volume: 124
  start-page: 1425
  issue: 10
  year: 2019
  ident: pmed.1003062.ref012
  article-title: ApoB
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.119.315019
– volume: 131
  start-page: 774
  issue: 9
  year: 2015
  ident: pmed.1003062.ref074
  article-title: Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.114.013116
– volume: 362
  start-page: k601
  year: 2018
  ident: pmed.1003062.ref042
  article-title: Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians
  publication-title: BMJ
  doi: 10.1136/bmj.k601
– volume: 27
  start-page: R195
  issue: R2
  year: 2018
  ident: pmed.1003062.ref057
  article-title: Evaluating the potential role of pleiotropy in Mendelian randomization studies
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddy163
– volume: 1
  start-page: 692
  issue: 6
  year: 2016
  ident: pmed.1003062.ref013
  article-title: Association of Lipid Fractions With Risks for Coronary Artery Disease and Diabetes
  publication-title: JAMA Cardiol
  doi: 10.1001/jamacardio.2016.1884
– volume: 307
  start-page: 2499
  issue: 23
  year: 2012
  ident: pmed.1003062.ref020
  article-title: Lipid-related markers and cardiovascular disease prediction
  publication-title: Jama
– volume: 65
  start-page: 1552
  issue: 15
  year: 2015
  ident: pmed.1003062.ref007
  article-title: Effect of Naturally Random Allocation to Lower Low-Density Lipoprotein Cholesterol on the Risk of Coronary Heart Disease Mediated by Polymorphisms in NPC1L1, HMGCR, or Both
  publication-title: Journal of the American College of Cardiology
  doi: 10.1016/j.jacc.2015.02.020
– volume: 375
  start-page: 2144
  issue: 22
  year: 2016
  ident: pmed.1003062.ref006
  article-title: Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMoa1604304
– volume: 61
  start-page: 427
  issue: 4
  year: 2013
  ident: pmed.1003062.ref016
  article-title: Remnant cholesterol as a causal risk factor for ischemic heart disease
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2012.08.1026
– volume: 36
  start-page: 1783
  issue: 11
  year: 2017
  ident: pmed.1003062.ref069
  article-title: A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization
  publication-title: Stat Med
  doi: 10.1002/sim.7221
– volume: 44
  start-page: 512
  issue: 2
  year: 2015
  ident: pmed.1003062.ref055
  article-title: Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyv080
– volume-title: ggplot2 –Elegant Graphics for Data Analysis
  year: 2016
  ident: pmed.1003062.ref047
– volume: 140
  start-page: 553
  issue: 7
  year: 2019
  ident: pmed.1003062.ref023
  article-title: Cholesterol Insights and Controversies From the UK Biobank Study
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.119.042134
– volume: 380
  start-page: 1076
  year: 2019
  ident: pmed.1003062.ref067
  article-title: Human genetics and drug development
  publication-title: N Engl J Med
  doi: 10.1056/NEJMe1901565
– volume: 385
  start-page: 1397
  issue: 9976
  year: 2015
  ident: pmed.1003062.ref001
  article-title: Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)61368-4
– volume: 5
  start-page: 1564
  issue: 9
  year: 2010
  ident: pmed.1003062.ref033
  article-title: Data quality control in genetic case-control association studies
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2010.116
– volume: 3
  start-page: 799
  issue: 9
  year: 2018
  ident: pmed.1003062.ref068
  article-title: Apolipoprotein A-I Infusion Therapies for Coronary Disease: Two Outs in the Ninth Inning and Swinging for the Fences
  publication-title: JAMA Cardiol
  doi: 10.1001/jamacardio.2018.2168
– volume: 47
  start-page: 284
  issue: 3
  year: 2015
  ident: pmed.1003062.ref034
  article-title: Efficient Bayesian mixed-model analysis increases association power in large cohorts
  publication-title: Nat Genet
  doi: 10.1038/ng.3190
– volume: 10
  start-page: 109
  issue: 2
  year: 2009
  ident: pmed.1003062.ref073
  article-title: Plasma lipoproteins: genetic influences and clinical implications
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2481
– volume: 45
  start-page: 1345
  issue: 11
  year: 2013
  ident: pmed.1003062.ref014
  article-title: Common variants associated with plasma triglycerides and risk for coronary artery disease
  publication-title: Nat Genet
  doi: 10.1038/ng.2795
– volume: 36
  start-page: 539
  issue: 9
  year: 2015
  ident: pmed.1003062.ref009
  article-title: Mendelian randomization of blood lipids for coronary heart disease
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/eht571
– volume: 491
  start-page: 56
  issue: 7422
  year: 2012
  ident: pmed.1003062.ref039
  article-title: An integrated map of genetic variation from 1,092 human genomes
  publication-title: Nature
  doi: 10.1038/nature11632
– volume: 562
  start-page: 203
  issue: 7726
  year: 2018
  ident: pmed.1003062.ref037
  article-title: The UK Biobank resource with deep phenotyping and genomic data
  publication-title: Nature
  doi: 10.1038/s41586-018-0579-z
– volume: 14
  start-page: 577
  issue: 10
  year: 2017
  ident: pmed.1003062.ref052
  article-title: Mendelian randomization in cardiometabolic disease: challenges in evaluating causality
  publication-title: Nat Rev Cardiol
  doi: 10.1038/nrcardio.2017.78
– volume: 12
  start-page: e1001779
  issue: 3
  year: 2015
  ident: pmed.1003062.ref030
  article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001779
– volume: 567
  start-page: 305
  issue: 7748
  year: 2019
  ident: pmed.1003062.ref049
  article-title: Scientists rise up against statistical significance
  publication-title: Nature
  doi: 10.1038/d41586-019-00857-9
– volume: 302
  start-page: 1993
  issue: 18
  year: 2009
  ident: pmed.1003062.ref059
  article-title: Major lipids, apolipoproteins, and risk of vascular disease
  publication-title: Jama
  doi: 10.1001/jama.2009.1619
SSID ssj0029090
Score 2.7172267
Snippet Circulating lipoprotein lipids cause coronary heart disease (CHD). However, the precise way in which one or more lipoprotein lipid-related entities account for...
Background Circulating lipoprotein lipids cause coronary heart disease (CHD). However, the precise way in which one or more lipoprotein lipid-related entities...
BackgroundCirculating lipoprotein lipids cause coronary heart disease (CHD). However, the precise way in which one or more lipoprotein lipid-related entities...
Background Circulating lipoprotein lipids cause coronary heart disease (CHD). However, the precise way in which one or more lipoprotein lipid-related entities...
SourceID plos
doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1003062
SubjectTerms Adult
Aged
Apolipoprotein A
Apolipoprotein A-I
Apolipoprotein A-I - blood
Apolipoprotein A-I - genetics
Apolipoprotein B
Apolipoprotein B-100 - blood
Apolipoprotein B-100 - genetics
Apolipoproteins
Biology and Life Sciences
Biomarkers - blood
Cardiovascular disease
Cholesterol
Cholesterol, HDL - blood
Cholesterol, HDL - genetics
Cholesterol, LDL - blood
Cholesterol, LDL - genetics
Coronary artery disease
Coronary Disease - blood
Coronary Disease - diagnosis
Coronary Disease - genetics
Epidemiology
Female
Genetic Predisposition to Disease
Genome-wide association studies
Genome-Wide Association Study
Genomes
Heart diseases
High density lipoprotein
Humans
Lipid metabolism
Lipids
Low density lipoprotein
Male
Medicine and Health Sciences
Mendelian Randomization Analysis
Middle Aged
Multivariate Analysis
Phenotype
Polymorphism, Single Nucleotide
Preventive medicine
Risk Assessment
Risk Factors
Single-nucleotide polymorphism
Standard deviation
Triglycerides
Triglycerides - blood
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9MwGLagQ4gL32OBgYzENTSx4zjmggbaBIdOPYA0TpE_t0glKUk3if_Ej8Sv4waKJrhwq2pXSeon7_f7vAi9ElaWxFCessyWaUGVSZVUZSoEI5m10ishFYZN8NPT6uxMLGN79BDLKrcyMQjqke0Z6ra9EJ6bTkPEfE6KEpjdKl69XX9LYYYU5FrjQI2baA-It7IZ2lt-XCy_TA6YyELMBVjJ0pxwHlvpKM_n8eRer70OgsoBb0mTHVUVGP2BAXXVDddZo38WVf6mpU7u_d_nu4_uRmsVH43weoBu2PYhur2I-fhH6MdxJAtvz7G3JHG_La27aNY4loBh3fQ6DAnzm1bNugvUEE0LnxszYNkaLGFWxLQyYIgOY6h6x53DGkgWZP8dw_DtDY4ppTf4CIdqyCvv7UP_F15ANB-iNtjrX9N9jYVK_gIj78pj9Pnk-NP7D2mc_5BqRspNKjVnutC2ZMIoaBAmjjmtRGUo9Z5XZXVRGZ476xzJvJxW3lY1HmTO2MpBz-w-mrVdaw8QzqnzdlSliROqcFkmueQeAZZVVlieiwTR7VHXOpKjw4yOVR0yftw7SeM_XgNA6giQBKXTr9YjOcg_9r8DFE17gdo7fNH153WUFHXGDCPSyUJqWijFpCJMEkaodtoYLhN0ABjcXmCof2ElQYdbbF2__HJa9mcAmSHZ2u7S76Hey_SGfZ4l6MkI4-kmvcTPqH9jEsR3AL7zFLsrbXMRiMp5VomCkKd_v61n6A6BIEYo7DtEs01_aZ-jW_pq0wz9i_gO_wTYBGAl
  priority: 102
  providerName: ProQuest
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQQYgLb2igICNxDTh2HMfcCuqKA616AKm3yE8aaUlWm20l_hM_kpnEG9iqFeIWxbbieMaep78h5K0OpuJeqFyyUOWlsD63xla51pKzEAwIITsWm1AnJ_XZmT79YyheieALVbxPa_puBdIBY_qg48KRe5uLqsJSDYvTL7OBpZlm6XrcTSN3xM-I0o-opst-uE7DvJoo-ZfkWTz43zk_JPeTjkkPJ6Z4RG6F7jG5e5yi6E_Ir6ME8d19p6D_0fU2Ie68XdGUuEVdu3ZjaS_otGxX_Qjo0Hb43PqBms5TgxUe5paBok-XYq467SN1CI1g1j8plsze0BQI-kAP6ZjDeAk2Ot7aosfog0dfCwWp6fsfKb0IPjChpTwl3xZHXz99zlPVhtxJXm1y45R0pQuV1N7itV4eZXRW114IsJfq4MraqyKGGDmD09WChumBNaIPdcSbrs_IXtd3YZ_QQkTQfmrHo7ZlZMwoowqugqyDDqrQGRFbYjYuQZpjZY1lM8bpFJg204o3SIgmESIj-TxqNUF6_KP_R-STuS8Cco8vgOJN2t8Nk15yE01pnCitlcZyaThY-S4675XJyD5y2fYDQ8PLCrEJa1Vn5GDLedc3v5mbgQYYzzFd6C-gjwDbENTxgmXk-cSo8yThnGYCbP-MqB0W3vmL3ZauPR_hxRWrdcn5i5tn_JLc4-h2GFPxDsjeZn0RXpE77nLTDuvX4578DXESP1o
  priority: 102
  providerName: Public Library of Science
Title Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A multivariable Mendelian randomisation analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/32203549
https://www.proquest.com/docview/2460793878
https://www.proquest.com/docview/2382656610
https://pubmed.ncbi.nlm.nih.gov/PMC7089422
https://doaj.org/article/05d52afa4ac34bb5ab25a2523cfcdd7a
http://dx.doi.org/10.1371/journal.pmed.1003062
Volume 17
WOSCitedRecordID wos000558139500021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1549-1676
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029090
  issn: 1549-1676
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1549-1676
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029090
  issn: 1549-1676
  databaseCode: 7X7
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1549-1676
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029090
  issn: 1549-1676
  databaseCode: BENPR
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1549-1676
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029090
  issn: 1549-1676
  databaseCode: PIMPY
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1549-1676
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029090
  issn: 1549-1676
  databaseCode: FPL
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA66ivgi3re6DhF8rZumTdP4tiszKDjDIArjU0lzcQtjO8zMLvif_JGek2aGHVnYF19KaVLa5Jz2XPLlO4S8U06X3OYyFcyVaZE3Nm10U6ZKCc6c02CEmlBsQs5m1WKh5tdKfSEmbKAHHibulAkruPa60CYvmkbohgvNIXwy3lgrg2vEpNoFUzHUUixkV5B_LM24lHHTXC6z0yij9yuwNogRAJ-ZHxilwN2PXKfLfnOT3_kvfPKaPZo8Jo-iI0nPhgE8IXdc95Q8mMal8mfkzzjyeHc_KTh5dL1DvV20KxrRWdS0axPqd0GnZbvqA2tD2-F5azdUd5ZqLOOwb9lQTNxSBKTT3lOD_Ad6_ZtiXewtjas9H-gZDUDFKwjEcWsWnWKiHRMqFEyj7X9FDBE8YKBEeU6-T8bfPn5KY2mG1AheblNtpDCFcaVQtsG9u9wLbxpV2TyHoKhypqiszLzznjP4hTbgRlqQv7eu8rid9QU56vrOHROa5R5cnMpwr5rCM6alliAyJyqnnMxUQvKdbGoTecuxfMayDotxEuKXYcZrlGgdJZqQdH_XauDtuKX_OYp93xdZt8MF0MU66mJ9my4m5BiVZveATc2LEgkIK1kl5GSnSDc3v903gwxw0UZ3rr-EPjkEgOBzZywhLwe9278k_IxZDiqeEHmgkQejOGzp2ovAIS5ZpQrOX_2PYb8mDzlmIQIy74QcbdeX7g25b6627WY9InflQoZjNSL3zsez-ddR-FjhOJl_gWvzz9P5j78NSEzd
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFgEX3tBAASPBMTRxHk6QECrQqqt2V3soUjkFx4820pIsybao_wnxG5lJnMCiCk49cIvW3sRxvnnZ428IeZFqETMVcDfydOyGQa7cXOSxm6YR87QWYITyttgEn06To6N0tkZ-9GdhMK2y14mtolaVxDXyLRbGyOWW8OTt4quLVaNwd7UvodHBYl-ff4OQrXkz_gDf9yVjuzuH7_dcW1XAlRGLl66QPJKh1HGUqhyPnTITGZmniYLQPo0TLcNEcd9oY5gH0p-DB6Rg6EbpxOBJTLjvFbIeAti9EVmfjSezT0OIl3rtqg7ynrk-49we1gu4v2Wx8WoBVg5zE8BXZyvGsK0ZgByr86q5yN_9M23zNzu4e-t_m8Hb5Kb1uOl2JyJ3yJou75JrE5tTcI9837GE5-UxBW-Y1n164EmxoDaNjcqilm2hM-g0LxZVS29RlHhdqIaKUlGB9S6GlobiCjfFzH1aGSqRKELU5xQLiC-p3RZ7Tbdpm9F5JkAP5HNNJ7gjgStPFHwIVX2xyVbwgI475j75eClz9YCMyqrUG4T6gQFfMJHMpHloPE9wwQFjOkp0qrmfOiTowZRJS_COdUbmWbtrySHQ62Y8QwhmFoIOcYd_LTqCk3_0f4c4HfoiPXn7Q1UfZ1bbZV6kIiaMCIUMwjyPRM4iwSIWSCOV4sIhG4jy_gFN9gubDtns0Xtx8_OhGb4B7m6JUlen0CeASBmCE99zyMNOUIZBgtXyApBJh_AVEVp5i9WWsjhpyda5l6QhY4_-Pqxn5Pre4eQgOxhP9x-TGwwXZdpExU0yWtan-gm5Ks-WRVM_tRqDks-XLWI_AYnos_k
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKiyouvKGBAkaCY9jEeThBQqilu6IqXa0QSL2ljh9tpCVZkm1R_xO_gF_HTOIEFlVw6oFbFDsvZ2Y84_n8DSEvUi1ipgLuRp6O3TDIlZuLPHbTNGKe1gImobwtNsGn0-ToKJ2tkR_9XhiEVfY2sTXUqpK4Rj5iYYxcbglPRsbCImZ7k7eLry5WkMJMa19OoxORA33xDcK35s3-Hvzrl4xNxp_evXdthQFXRixeukLySIZSx1GqctyCykxkZJ4mCsL8NE60DBPFfaONYR5Yghy8IQWfYZRODO7KhPteIxscLoXAb2N3PJ19HMK91GtXeJADzfUZ53bjXsD9kZWTVwuY8RCnAH47W5kY2_oByLc6r5rLfN8_IZy_zYmTW__zaN4mN60nTnc61blD1nR5l2weWqzBPfJ9bInQyxMKXjKte9jgabGgFt5GZVHLtgAadJoXi6qlvShKPC5UQ0WpqMA6GENLQ3HlmyKin1aGSiSQEPUFxcLiS2rTZa_pDm2RnucC7EM-1_QQMxW4IkXBt1DVFwvCggd0nDL3yecrGasHZL2sSr1FqB8Y8BETyUyah8bzBBcc5E1HiU4191OHBL1gZdISv2P9kXnWZjM5BIDdiGcojpkVR4e4w1WLjvjkH_13UWaHvkhb3p6o6pPMWsHMi1TEhBGhkEGY55HIWSRYxAJppFJcOGQLJb5_QJP9klOHbPeSfHnz86EZ_gFmvUSpqzPoE0AEDUGL7znkYac0w0vCbOYFoJ8O4SvqtPIVqy1lcdqSsHMvSUPGHv39tZ6RTdCr7MP-9OAxucFwrabFL26T9WV9pp-Q6_J8WTT1U2s8KDm-ag37CQjFvJM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+relationship+between+circulating+lipoprotein+lipids+and+apolipoproteins+with+risk+of+coronary+heart+disease%3A+A+multivariable+Mendelian+randomisation+analysis&rft.jtitle=PLoS+medicine&rft.au=Richardson%2C+Tom+G.&rft.au=Sanderson%2C+Eleanor&rft.au=Palmer%2C+Tom+M.&rft.au=Ala-Korpela%2C+Mika&rft.date=2020-03-01&rft.issn=1549-1676&rft.eissn=1549-1676&rft.volume=17&rft.issue=3&rft.spage=e1003062&rft_id=info:doi/10.1371%2Fjournal.pmed.1003062&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pmed_1003062
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-1676&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-1676&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-1676&client=summon