Computational optimization of associative learning experiments

With computational biology striving to provide more accurate theoretical accounts of biological systems, use of increasingly complex computational models seems inevitable. However, this trend engenders a challenge of optimal experimental design: due to the flexibility of complex models, it is diffic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology Jg. 16; H. 1; S. e1007593
Hauptverfasser: Melinscak, Filip, Bach, Dominik R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 01.01.2020
Public Library of Science (PLoS)
Schlagworte:
ISSN:1553-7358, 1553-734X, 1553-7358
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With computational biology striving to provide more accurate theoretical accounts of biological systems, use of increasingly complex computational models seems inevitable. However, this trend engenders a challenge of optimal experimental design: due to the flexibility of complex models, it is difficult to intuitively design experiments that will efficiently expose differences between candidate models or allow accurate estimation of their parameters. This challenge is well exemplified in associative learning research. Associative learning theory has a rich tradition of computational modeling, resulting in a growing space of increasingly complex models, which in turn renders manual design of informative experiments difficult. Here we propose a novel method for computational optimization of associative learning experiments. We first formalize associative learning experiments using a low number of tunable design variables, to make optimization tractable. Next, we combine simulation-based Bayesian experimental design with Bayesian optimization to arrive at a flexible method of tuning design variables. Finally, we validate the proposed method through extensive simulations covering both the objectives of accurate parameter estimation and model selection. The validation results show that computationally optimized experimental designs have the potential to substantially improve upon manual designs drawn from the literature, even when prior information guiding the optimization is scarce. Computational optimization of experiments may help address recent concerns over reproducibility by increasing the expected utility of studies, and it may even incentivize practices such as study pre-registration, since optimization requires a pre-specified analysis plan. Moreover, design optimization has the potential not only to improve basic research in domains such as associative learning, but also to play an important role in translational research. For example, design of behavioral and physiological diagnostic tests in the nascent field of computational psychiatry could benefit from an optimization-based approach, similar to the one presented here.
AbstractList With computational biology striving to provide more accurate theoretical accounts of biological systems, use of increasingly complex computational models seems inevitable. However, this trend engenders a challenge of optimal experimental design: due to the flexibility of complex models, it is difficult to intuitively design experiments that will efficiently expose differences between candidate models or allow accurate estimation of their parameters. This challenge is well exemplified in associative learning research. Associative learning theory has a rich tradition of computational modeling, resulting in a growing space of increasingly complex models, which in turn renders manual design of informative experiments difficult. Here we propose a novel method for computational optimization of associative learning experiments. We first formalize associative learning experiments using a low number of tunable design variables, to make optimization tractable. Next, we combine simulation-based Bayesian experimental design with Bayesian optimization to arrive at a flexible method of tuning design variables. Finally, we validate the proposed method through extensive simulations covering both the objectives of accurate parameter estimation and model selection. The validation results show that computationally optimized experimental designs have the potential to substantially improve upon manual designs drawn from the literature, even when prior information guiding the optimization is scarce. Computational optimization of experiments may help address recent concerns over reproducibility by increasing the expected utility of studies, and it may even incentivize practices such as study pre-registration, since optimization requires a pre-specified analysis plan. Moreover, design optimization has the potential not only to improve basic research in domains such as associative learning, but also to play an important role in translational research. For example, design of behavioral and physiological diagnostic tests in the nascent field of computational psychiatry could benefit from an optimization-based approach, similar to the one presented here.
With computational biology striving to provide more accurate theoretical accounts of biological systems, use of increasingly complex computational models seems inevitable. However, this trend engenders a challenge of optimal experimental design: due to the flexibility of complex models, it is difficult to intuitively design experiments that will efficiently expose differences between candidate models or allow accurate estimation of their parameters. This challenge is well exemplified in associative learning research. Associative learning theory has a rich tradition of computational modeling, resulting in a growing space of increasingly complex models, which in turn renders manual design of informative experiments difficult. Here we propose a novel method for computational optimization of associative learning experiments. We first formalize associative learning experiments using a low number of tunable design variables, to make optimization tractable. Next, we combine simulation-based Bayesian experimental design with Bayesian optimization to arrive at a flexible method of tuning design variables. Finally, we validate the proposed method through extensive simulations covering both the objectives of accurate parameter estimation and model selection. The validation results show that computationally optimized experimental designs have the potential to substantially improve upon manual designs drawn from the literature, even when prior information guiding the optimization is scarce. Computational optimization of experiments may help address recent concerns over reproducibility by increasing the expected utility of studies, and it may even incentivize practices such as study pre-registration, since optimization requires a pre-specified analysis plan. Moreover, design optimization has the potential not only to improve basic research in domains such as associative learning, but also to play an important role in translational research. For example, design of behavioral and physiological diagnostic tests in the nascent field of computational psychiatry could benefit from an optimization-based approach, similar to the one presented here.With computational biology striving to provide more accurate theoretical accounts of biological systems, use of increasingly complex computational models seems inevitable. However, this trend engenders a challenge of optimal experimental design: due to the flexibility of complex models, it is difficult to intuitively design experiments that will efficiently expose differences between candidate models or allow accurate estimation of their parameters. This challenge is well exemplified in associative learning research. Associative learning theory has a rich tradition of computational modeling, resulting in a growing space of increasingly complex models, which in turn renders manual design of informative experiments difficult. Here we propose a novel method for computational optimization of associative learning experiments. We first formalize associative learning experiments using a low number of tunable design variables, to make optimization tractable. Next, we combine simulation-based Bayesian experimental design with Bayesian optimization to arrive at a flexible method of tuning design variables. Finally, we validate the proposed method through extensive simulations covering both the objectives of accurate parameter estimation and model selection. The validation results show that computationally optimized experimental designs have the potential to substantially improve upon manual designs drawn from the literature, even when prior information guiding the optimization is scarce. Computational optimization of experiments may help address recent concerns over reproducibility by increasing the expected utility of studies, and it may even incentivize practices such as study pre-registration, since optimization requires a pre-specified analysis plan. Moreover, design optimization has the potential not only to improve basic research in domains such as associative learning, but also to play an important role in translational research. For example, design of behavioral and physiological diagnostic tests in the nascent field of computational psychiatry could benefit from an optimization-based approach, similar to the one presented here.
With computational biology striving to provide more accurate theoretical accounts of biological systems, use of increasingly complex computational models seems inevitable. However, this trend engenders a challenge of optimal experimental design: due to the flexibility of complex models, it is difficult to intuitively design experiments that will efficiently expose differences between candidate models or allow accurate estimation of their parameters. This challenge is well exemplified in associative learning research. Associative learning theory has a rich tradition of computational modeling, resulting in a growing space of increasingly complex models, which in turn renders manual design of informative experiments difficult. Here we propose a novel method for computational optimization of associative learning experiments. We first formalize associative learning experiments using a low number of tunable design variables, to make optimization tractable. Next, we combine simulation-based Bayesian experimental design with Bayesian optimization to arrive at a flexible method of tuning design variables. Finally, we validate the proposed method through extensive simulations covering both the objectives of accurate parameter estimation and model selection. The validation results show that computationally optimized experimental designs have the potential to substantially improve upon manual designs drawn from the literature, even when prior information guiding the optimization is scarce. Computational optimization of experiments may help address recent concerns over reproducibility by increasing the expected utility of studies, and it may even incentivize practices such as study pre-registration, since optimization requires a pre-specified analysis plan. Moreover, design optimization has the potential not only to improve basic research in domains such as associative learning, but also to play an important role in translational research. For example, design of behavioral and physiological diagnostic tests in the nascent field of computational psychiatry could benefit from an optimization-based approach, similar to the one presented here. To capture complex biological systems, computational biology harnesses accordingly complex models. The flexibility of such models allows them to better explain real-world data; however, this flexibility also creates a challenge in designing informative experiments. Because flexible models can, by definition, fit a variety of experimental outcomes, it is difficult to intuitively design experiments that will expose differences between such models, or allow their parameters to be estimated with accuracy. This challenge of experimental design is apparent in research on associative learning, where the tradition of modeling has produced a growing space of increasingly complex theories. Here, we propose to use computational optimization methods to design associative learning experiments. We first formalize associative learning experiments, making their optimization possible, and then we describe a Bayesian, simulation-based method of finding optimized experiments. In several simulated scenarios, we demonstrate that optimized experimental designs can substantially improve upon the utility of often-used canonical designs. Moreover, a similar approach could also be used in translational research; e.g., in the nascent field of computational psychiatry, designs of behavioral and physiological diagnostic tests could be computationally optimized.
Author Bach, Dominik R.
Melinscak, Filip
AuthorAffiliation 3 Wellcome Centre for Human Neuroimaging and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
Dartmouth College, UNITED STATES
2 Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
1 Computational Psychiatry Research, Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, Zurich, Switzerland
AuthorAffiliation_xml – name: Dartmouth College, UNITED STATES
– name: 2 Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
– name: 3 Wellcome Centre for Human Neuroimaging and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
– name: 1 Computational Psychiatry Research, Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, Zurich, Switzerland
Author_xml – sequence: 1
  givenname: Filip
  orcidid: 0000-0001-8767-358X
  surname: Melinscak
  fullname: Melinscak, Filip
– sequence: 2
  givenname: Dominik R.
  orcidid: 0000-0003-3717-2036
  surname: Bach
  fullname: Bach, Dominik R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31905214$$D View this record in MEDLINE/PubMed
BookMark eNp9ksFu1DAQhi3UirYLb4AgEhcuu9ixHcccKqFVoZUq9QJna-zYi1dJHOykKjx9vd0saivUk2fsfz7_o5kzdNSH3iL0juAVoYJ83oYp9tCuBqP9imAsuKSv0CnhnC4F5fXRo_gEnaW0xTiHsnqNTiiRmJeEnaLzdeiGaYTRhwwrwjD6zv99SIvgCkgpGJ_TW1u0FmLv-01h7wYbfWf7Mb1Bxw7aZN_O5wL9_HbxY325vL75frX-er00vKzGJQgrLZVcUy5BU8Idt9Q51khDgAPXdc2wcVkmNNeurASjDltNawG10w1doA977tCGpObWkyop51JWdYmz4mqvaAJs1ZD9QfyjAnj1cBHiRkEcvWmtIlpKDaVzleCMigY0NBQbRksHdudsgc7n3ybd2cbkTiO0T6BPX3r_S23CrapkxSThGfBpBsTwe7JpVJ1PxrYt9DZMO9-UlaxmrM7Sj8-k_-_u_WNH_6wcBpkFX_YCE0NK0Tpl_H6q2aBvFcFqtzUHuNptjZq3JhezZ8UH_otl92XKy8E
CitedBy_id crossref_primary_10_1016_j_neubiorev_2023_105146
crossref_primary_10_1016_j_neubiorev_2020_04_019
crossref_primary_10_1016_j_bpsc_2022_12_003
crossref_primary_10_1109_ACCESS_2024_3458808
crossref_primary_10_1093_scan_nsaa089
crossref_primary_10_1016_j_neuroimage_2022_119579
crossref_primary_10_1016_j_bpsc_2023_02_004
crossref_primary_10_1111_psyp_13650
crossref_primary_10_1371_journal_pone_0268814
Cites_doi 10.31234/osf.io/yehjb
10.1073/pnas.1708274114
10.1080/14640748508402082
10.1214/ss/1030550861
10.1371/journal.pcbi.1002280
10.1098/rsos.160734
10.1038/s41562-016-0021
10.1146/annurev-clinpsy-050212-185542
10.1371/journal.pcbi.1004567
10.1214/15-BA945
10.1162/neco.2009.02-09-959
10.1016/j.cmpb.2012.02.004
10.1081/SAC-200040691
10.1016/j.neuroimage.2016.01.032
10.1111/insr.12107
10.1162/NECO_a_00654
10.1093/bioinformatics/bts092
10.2307/3314608
10.3758/BRM.41.1.29
10.1037/0033-2909.111.2.361
10.1162/neco.2008.08-07-594
10.1177/0956797616647519
10.1177/1745691612463078
10.1007/s11222-017-9734-x
10.1016/S2215-0366(15)00361-2
10.1038/nn.2904
10.3758/LB.36.3.210
10.1007/s40300-014-0043-2
10.1111/cogs.12467
10.1037/h0058138
10.1037/0033-2909.117.3.363
10.1101/567412
10.1371/journal.pcbi.1002888
10.1037/h0046700
10.1037/a0016104
10.1016/0023-9690(70)90101-3
10.1098/rspa.2013.0828
10.3758/s13420-012-0080-8
10.1371/journal.pcbi.1003650
10.1371/journal.pcbi.1006243
10.1111/j.1600-0706.2013.01073.x
10.1146/annurev.psych.52.1.111
10.1038/nn.3961
10.1371/journal.pbio.2000797
10.1016/j.jmp.2010.08.002
10.1137/1.9781611970654
10.1039/b918098b
10.3390/brainsci4010049
10.1214/ss/1177009939
10.1038/nn1954
ContentType Journal Article
Copyright 2020 Melinscak, Bach. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Melinscak, Bach 2020 Melinscak, Bach
Copyright_xml – notice: 2020 Melinscak, Bach. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Melinscak, Bach 2020 Melinscak, Bach
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1007593
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Computational optimization of associative learning experiments
EISSN 1553-7358
ExternalDocumentID 2355996820
oai_doaj_org_article_1b99ba2ff675437dabad30c432faef5e
PMC6964915
31905214
10_1371_journal_pcbi_1007593
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Switzerland
GeographicLocations_xml – name: Switzerland
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 203147/Z/16/Z
– fundername: Wellcome Trust
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
3V.
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
-
AAPBV
ABPTK
ADACO
BBAFP
M~E
ID FETCH-LOGICAL-c526t-a7e9e395b359ab315f5e3ff4d9c1a5a5b8840cfa7e7b5bf26743f0eb387a8fbd3
IEDL.DBID M7P
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510916500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7358
1553-734X
IngestDate Fri Nov 26 17:12:41 EST 2021
Tue Oct 14 19:05:07 EDT 2025
Tue Nov 04 01:36:49 EST 2025
Thu Sep 04 19:47:12 EDT 2025
Tue Oct 07 06:45:43 EDT 2025
Thu Apr 03 06:59:50 EDT 2025
Sat Nov 29 03:40:43 EST 2025
Tue Nov 18 22:13:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c526t-a7e9e395b359ab315f5e3ff4d9c1a5a5b8840cfa7e7b5bf26743f0eb387a8fbd3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0003-3717-2036
0000-0001-8767-358X
OpenAccessLink https://www.proquest.com/docview/2355996820?pq-origsite=%requestingapplication%
PMID 31905214
PQID 2355996820
PQPubID 1436340
ParticipantIDs plos_journals_2355996820
doaj_primary_oai_doaj_org_article_1b99ba2ff675437dabad30c432faef5e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6964915
proquest_miscellaneous_2334248448
proquest_journals_2355996820
pubmed_primary_31905214
crossref_citationtrail_10_1371_journal_pcbi_1007593
crossref_primary_10_1371_journal_pcbi_1007593
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References A Thorwart (pcbi.1007593.ref011) 2009; 41
J Li (pcbi.1007593.ref031) 2011; 14
JW White (pcbi.1007593.ref038) 2014; 123
W Kim (pcbi.1007593.ref053) 2014; 26
P Brutti (pcbi.1007593.ref026) 2014; 72
B Efron (pcbi.1007593.ref044) 1981; 9
JK Kruschke (pcbi.1007593.ref039) 2008; 36
P Müller (pcbi.1007593.ref024) 1995; 90
D Szucs (pcbi.1007593.ref055) 2017; 15
JM Pearce (pcbi.1007593.ref006) 2001; 52
pcbi.1007593.ref035
pcbi.1007593.ref036
J Lewi (pcbi.1007593.ref015) 2009; 21
BA Nosek (pcbi.1007593.ref057) 2018; 115
EG Ryan (pcbi.1007593.ref052) 2016; 84
J Vanlier (pcbi.1007593.ref013) 2012; 28
pcbi.1007593.ref022
IP Pavlov (pcbi.1007593.ref033) 1927
KE Stephan (pcbi.1007593.ref059) 2016; 3
R Lorenz (pcbi.1007593.ref018) 2016; 129
pcbi.1007593.ref021
W Kim (pcbi.1007593.ref049) 2017; 41
J Liepe (pcbi.1007593.ref014) 2013; 9
pcbi.1007593.ref060
G Sanchez (pcbi.1007593.ref016) 2014; 4
M Bakker (pcbi.1007593.ref047) 2016; 27
pcbi.1007593.ref029
pcbi.1007593.ref027
B Vervliet (pcbi.1007593.ref004) 2013; 9
AN Rafferty (pcbi.1007593.ref020) 2014; 470
M Browning (pcbi.1007593.ref041) 2015; 18
MR Munafò (pcbi.1007593.ref056) 2017; 1
AG de G Matthews (pcbi.1007593.ref050) 2017; 18
RA Rescorla (pcbi.1007593.ref032) 1970; 1
AM Overstall (pcbi.1007593.ref051) 2018; 28
K Chaloner (pcbi.1007593.ref023) 1995; 10
J Daunizeau (pcbi.1007593.ref017) 2011; 7
RE Lubow (pcbi.1007593.ref034) 1959; 52
JF Apgar (pcbi.1007593.ref002) 2010; 6
SJ Gershman (pcbi.1007593.ref008) 2012; 40
M Enquist (pcbi.1007593.ref003) 2016; 3
S Zhang (pcbi.1007593.ref054) 2010; 54
DV Lindley (pcbi.1007593.ref028) 1972
SJ Gershman (pcbi.1007593.ref009) 2015; 11
DR Shanks (pcbi.1007593.ref030) 1985; 37
A Tzovara (pcbi.1007593.ref010) 2018; 14
E Alonso (pcbi.1007593.ref012) 2012; 108
F Wang (pcbi.1007593.ref025) 2002; 17
EJ Wagenmakers (pcbi.1007593.ref058) 2012; 7
R Lawson (pcbi.1007593.ref046) 2004; 33
D Silk (pcbi.1007593.ref001) 2014; 10
TEJ Behrens (pcbi.1007593.ref040) 2007; 10
RA Rescorla (pcbi.1007593.ref005) 1972
JI Myung (pcbi.1007593.ref019) 2009; 116
LG Humphreys (pcbi.1007593.ref042) 1939; 25
BP Weaver (pcbi.1007593.ref037) 2016; 11
RR Miller (pcbi.1007593.ref045) 1995; 117
KO McGraw (pcbi.1007593.ref043) 1992; 111
DR Cavagnaro (pcbi.1007593.ref048) 2010; 22
pcbi.1007593.ref007
References_xml – ident: pcbi.1007593.ref021
  doi: 10.31234/osf.io/yehjb
– volume: 115
  start-page: 2600
  issue: 11
  year: 2018
  ident: pcbi.1007593.ref057
  article-title: The preregistration revolution
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1708274114
– volume: 37
  start-page: 1
  issue: 1b
  year: 1985
  ident: pcbi.1007593.ref030
  article-title: Forward and Backward Blocking in Human Contingency Judgement
  publication-title: The Quarterly Journal of Experimental Psychology Section B
  doi: 10.1080/14640748508402082
– volume: 17
  start-page: 193
  issue: 2
  year: 2002
  ident: pcbi.1007593.ref025
  article-title: A simulation-based approach to Bayesian sample size determination for performance under a given model and for separating models
  publication-title: Statistical Science
  doi: 10.1214/ss/1030550861
– volume: 7
  start-page: e1002280
  issue: 11
  year: 2011
  ident: pcbi.1007593.ref017
  article-title: Optimizing Experimental Design for Comparing Models of Brain Function
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1002280
– volume: 3
  start-page: 160734
  issue: 11
  year: 2016
  ident: pcbi.1007593.ref003
  article-title: The power of associative learning and the ontogeny of optimal behaviour
  publication-title: Royal Society Open Science
  doi: 10.1098/rsos.160734
– volume: 1
  start-page: 0021
  issue: 1
  year: 2017
  ident: pcbi.1007593.ref056
  article-title: A manifesto for reproducible science
  publication-title: Nature Human Behaviour
  doi: 10.1038/s41562-016-0021
– volume: 9
  start-page: 215
  issue: 1
  year: 2013
  ident: pcbi.1007593.ref004
  article-title: Fear Extinction and Relapse: State of the Art
  publication-title: Annual Review of Clinical Psychology
  doi: 10.1146/annurev-clinpsy-050212-185542
– volume: 11
  start-page: e1004567
  issue: 11
  year: 2015
  ident: pcbi.1007593.ref009
  article-title: A Unifying Probabilistic View of Associative Learning
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1004567
– volume: 11
  start-page: 191
  issue: 1
  year: 2016
  ident: pcbi.1007593.ref037
  article-title: Computational Enhancements to Bayesian Design of Experiments Using Gaussian Processes
  publication-title: Bayesian Analysis
  doi: 10.1214/15-BA945
– ident: pcbi.1007593.ref027
– volume: 22
  start-page: 887
  issue: 4
  year: 2010
  ident: pcbi.1007593.ref048
  article-title: Adaptive Design Optimization: A Mutual Information-Based Approach to Model Discrimination in Cognitive Science
  publication-title: Neural Computation
  doi: 10.1162/neco.2009.02-09-959
– volume: 108
  start-page: 346
  issue: 1
  year: 2012
  ident: pcbi.1007593.ref012
  article-title: A Java simulator of Rescorla and Wagner’s prediction error model and configural cue extensions
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2012.02.004
– volume: 33
  start-page: 1095
  issue: 4
  year: 2004
  ident: pcbi.1007593.ref046
  article-title: Small Sample Confidence Intervals for the Odds Ratio
  publication-title: Communications in Statistics—Simulation and Computation
  doi: 10.1081/SAC-200040691
– volume: 129
  start-page: 320
  year: 2016
  ident: pcbi.1007593.ref018
  article-title: The Automatic Neuroscientist: A framework for optimizing experimental design with closed-loop real-time fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.01.032
– volume: 84
  start-page: 128
  issue: 1
  year: 2016
  ident: pcbi.1007593.ref052
  article-title: A Review of Modern Computational Algorithms for Bayesian Optimal Design: A Review of Modern Algorithms for Bayesian Design
  publication-title: International Statistical Review
  doi: 10.1111/insr.12107
– volume: 26
  start-page: 2465
  issue: 11
  year: 2014
  ident: pcbi.1007593.ref053
  article-title: A Hierarchical Adaptive Approach to Optimal Experimental Design
  publication-title: Neural Computation
  doi: 10.1162/NECO_a_00654
– volume: 28
  start-page: 1136
  issue: 8
  year: 2012
  ident: pcbi.1007593.ref013
  article-title: A Bayesian approach to targeted experiment design
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts092
– volume: 9
  start-page: 139
  issue: 2
  year: 1981
  ident: pcbi.1007593.ref044
  article-title: Nonparametric standard errors and confidence intervals
  publication-title: Canadian Journal of Statistics
  doi: 10.2307/3314608
– volume: 41
  start-page: 29
  issue: 1
  year: 2009
  ident: pcbi.1007593.ref011
  article-title: ALTSim: A MATLAB simulator for current associative learning theories
  publication-title: Behavior Research Methods
  doi: 10.3758/BRM.41.1.29
– volume: 111
  start-page: 361
  issue: 2
  year: 1992
  ident: pcbi.1007593.ref043
  article-title: A common language effect size statistic
  publication-title: Psychological Bulletin
  doi: 10.1037/0033-2909.111.2.361
– volume: 21
  start-page: 619
  issue: 3
  year: 2009
  ident: pcbi.1007593.ref015
  article-title: Sequential Optimal Design of Neurophysiology Experiments
  publication-title: Neural Computation
  doi: 10.1162/neco.2008.08-07-594
– volume: 27
  start-page: 1069
  issue: 8
  year: 2016
  ident: pcbi.1007593.ref047
  article-title: Researchers’ Intuitions About Power in Psychological Research
  publication-title: Psychological Science
  doi: 10.1177/0956797616647519
– volume: 7
  start-page: 632
  issue: 6
  year: 2012
  ident: pcbi.1007593.ref058
  article-title: An Agenda for Purely Confirmatory Research
  publication-title: Perspectives on Psychological Science
  doi: 10.1177/1745691612463078
– volume: 28
  start-page: 343
  issue: 2
  year: 2018
  ident: pcbi.1007593.ref051
  article-title: An approach for finding fully Bayesian optimal designs using normal-based approximations to loss functions
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-017-9734-x
– ident: pcbi.1007593.ref007
– volume-title: Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex
  year: 1927
  ident: pcbi.1007593.ref033
– volume: 3
  start-page: 77
  issue: 1
  year: 2016
  ident: pcbi.1007593.ref059
  article-title: Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis
  publication-title: The Lancet Psychiatry
  doi: 10.1016/S2215-0366(15)00361-2
– volume: 14
  start-page: 1250
  issue: 10
  year: 2011
  ident: pcbi.1007593.ref031
  article-title: Differential roles of human striatum and amygdala in associative learning
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.2904
– volume: 36
  start-page: 210
  issue: 3
  year: 2008
  ident: pcbi.1007593.ref039
  article-title: Bayesian approaches to associative learning: From passive to active learning
  publication-title: Learning & Behavior
  doi: 10.3758/LB.36.3.210
– volume: 72
  start-page: 133
  issue: 2
  year: 2014
  ident: pcbi.1007593.ref026
  article-title: Bayesian-frequentist sample size determination: a game of two priors
  publication-title: METRON
  doi: 10.1007/s40300-014-0043-2
– volume: 41
  start-page: 2234
  issue: 8
  year: 2017
  ident: pcbi.1007593.ref049
  article-title: Planning Beyond the Next Trial in Adaptive Experiments: A Dynamic Programming Approach
  publication-title: Cognitive Science
  doi: 10.1111/cogs.12467
– ident: pcbi.1007593.ref035
– ident: pcbi.1007593.ref029
– volume: 25
  start-page: 141
  issue: 2
  year: 1939
  ident: pcbi.1007593.ref042
  article-title: The effect of random alternation of reinforcement on the acquisition and extinction of conditioned eyelid reactions
  publication-title: Journal of Experimental Psychology
  doi: 10.1037/h0058138
– start-page: 64
  volume-title: Classical Conditioning II Current Research and Theory
  year: 1972
  ident: pcbi.1007593.ref005
– volume: 117
  start-page: 363
  issue: 3
  year: 1995
  ident: pcbi.1007593.ref045
  article-title: Assessment of the Rescorla-Wagner model
  publication-title: Psychological Bulletin
  doi: 10.1037/0033-2909.117.3.363
– ident: pcbi.1007593.ref060
  doi: 10.1101/567412
– volume: 9
  start-page: e1002888
  issue: 1
  year: 2013
  ident: pcbi.1007593.ref014
  article-title: Maximizing the Information Content of Experiments in Systems Biology
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1002888
– volume: 52
  start-page: 415
  issue: 4
  year: 1959
  ident: pcbi.1007593.ref034
  article-title: Latent inhibition: The effect of nonreinforced pre-exposure to the conditional stimulus
  publication-title: Journal of Comparative and Physiological Psychology
  doi: 10.1037/h0046700
– volume: 116
  start-page: 499
  issue: 3
  year: 2009
  ident: pcbi.1007593.ref019
  article-title: Optimal experimental design for model discrimination
  publication-title: Psychological Review
  doi: 10.1037/a0016104
– volume: 1
  start-page: 372
  issue: 4
  year: 1970
  ident: pcbi.1007593.ref032
  article-title: Reduction in the effectiveness of reinforcement after prior excitatory conditioning
  publication-title: Learning and Motivation
  doi: 10.1016/0023-9690(70)90101-3
– volume: 470
  start-page: 20130828
  issue: 2167
  year: 2014
  ident: pcbi.1007593.ref020
  article-title: Optimally designing games for behavioural research
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.2013.0828
– ident: pcbi.1007593.ref036
– volume: 40
  start-page: 255
  issue: 3
  year: 2012
  ident: pcbi.1007593.ref008
  article-title: Exploring a latent cause theory of classical conditioning
  publication-title: Learning & Behavior
  doi: 10.3758/s13420-012-0080-8
– volume: 10
  start-page: e1003650
  issue: 6
  year: 2014
  ident: pcbi.1007593.ref001
  article-title: Model Selection in Systems Biology Depends on Experimental Design
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1003650
– volume: 18
  start-page: 1
  issue: 40
  year: 2017
  ident: pcbi.1007593.ref050
  article-title: GPflow: A gaussian process library using TensorFlow
  publication-title: Journal of Machine Learning Research
– volume: 14
  start-page: e1006243
  issue: 8
  year: 2018
  ident: pcbi.1007593.ref010
  article-title: Human Pavlovian fear conditioning conforms to probabilistic learning
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1006243
– volume: 90
  start-page: 1322
  issue: 432
  year: 1995
  ident: pcbi.1007593.ref024
  article-title: Optimal Design via Curve Fitting of Monte Carlo Experiments
  publication-title: Journal of the American Statistical Association
– volume: 123
  start-page: 385
  issue: 4
  year: 2014
  ident: pcbi.1007593.ref038
  article-title: Ecologists should not use statistical significance tests to interpret simulation model results
  publication-title: Oikos
  doi: 10.1111/j.1600-0706.2013.01073.x
– volume: 52
  start-page: 111
  issue: 1
  year: 2001
  ident: pcbi.1007593.ref006
  article-title: Theories of Associative Learning in Animals
  publication-title: Annual Review of Psychology
  doi: 10.1146/annurev.psych.52.1.111
– volume: 18
  start-page: 590
  issue: 4
  year: 2015
  ident: pcbi.1007593.ref041
  article-title: Anxious individuals have difficulty learning the causal statistics of aversive environments
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.3961
– volume: 15
  start-page: e2000797
  issue: 3
  year: 2017
  ident: pcbi.1007593.ref055
  article-title: Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature
  publication-title: PLOS Biology
  doi: 10.1371/journal.pbio.2000797
– volume: 54
  start-page: 499
  issue: 6
  year: 2010
  ident: pcbi.1007593.ref054
  article-title: Optimal experimental design for a class of bandit problems
  publication-title: Journal of Mathematical Psychology
  doi: 10.1016/j.jmp.2010.08.002
– volume-title: Bayesian Statistics: A Review
  year: 1972
  ident: pcbi.1007593.ref028
  doi: 10.1137/1.9781611970654
– ident: pcbi.1007593.ref022
– volume: 6
  start-page: 1890
  issue: 10
  year: 2010
  ident: pcbi.1007593.ref002
  article-title: Sloppy models, parameter uncertainty, and the role of experimental design
  publication-title: Molecular BioSystems
  doi: 10.1039/b918098b
– volume: 4
  start-page: 49
  issue: 1
  year: 2014
  ident: pcbi.1007593.ref016
  article-title: Toward a New Application of Real-Time Electrophysiology: Online Optimization of Cognitive Neurosciences Hypothesis Testing
  publication-title: Brain Sciences
  doi: 10.3390/brainsci4010049
– volume: 10
  start-page: 273
  issue: 3
  year: 1995
  ident: pcbi.1007593.ref023
  article-title: Bayesian Experimental Design: A Review
  publication-title: Statistical Science
  doi: 10.1214/ss/1177009939
– volume: 10
  start-page: 1214
  issue: 9
  year: 2007
  ident: pcbi.1007593.ref040
  article-title: Learning the value of information in an uncertain world
  publication-title: Nature Neuroscience
  doi: 10.1038/nn1954
SSID ssj0035896
Score 2.356287
Snippet With computational biology striving to provide more accurate theoretical accounts of biological systems, use of increasingly complex computational models seems...
SourceID plos
doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1007593
SubjectTerms Algorithms
Associative learning
Bayes Theorem
Bayesian analysis
Biology
Biology and Life Sciences
Computational Biology - methods
Computer applications
Computer Simulation
Datasets
Design of experiments
Design optimization
Diagnostic systems
Expected utility
Experimental design
Experiments
Humans
Learning theory
Mathematical models
Medical imaging
Methods
Models, Psychological
Neurosciences
Optimization
Parameter estimation
Physical Sciences
Psychiatry
Psychotherapy
Research and Analysis Methods
Research Design
Simulation
Social Sciences
Software
Utility functions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hikpcKqDQBloUJK6h8Su2L0iAWnGqOIC0t2js2LBSm1TdbSX-PX5l6aJKvfQaT5R4Zjye8eP7AD54Rb1DSRrrBtXEnaVGYRjunIRR7k0X84hENiHPz9Viob_fofqKZ8IyPHBW3AkxWhuk3ofMljM5oMGBtZYz6tF54WL0baWei6kcg5lQiZkrkuI0kvFFuTTHJDkpNvp4Zc0ynREQmm1NSgm7P2KdXkyr-_LO_49P3pmPzp7DXkkk68-5Ay_giRtfwm6mlvyzD58yXUNZ6qunEBkuy5XLevI1zla5dXUhjvhV_0P7X72Cn2enP75-awpXQmMF7dYNSqcd08IwodEwIoJqmPd80JagQGFUqOSsD2LSCONpvHvg21BJK4nKm4G9hp1xGt0h1KxTnSEaW0s0d1YhtQyDw1GDrRgcrYDNyuptARKPfBYXfdodk6GgyCroo4r7ouIKms1bVxlI4wH5L9EOG9kIg50eBOfoi3P0DzlHBYfRivMHVj1lEWGtC2lPBUezZe9vfr9pDgMu7qLg6KabKMM45SqUtRUcZEfY_GSIZ_EyNK9AbrnIVi-2W8bl7wTq3emOayLePEa338IzGpcF0krREeysr2_cMTy1t-vl6vpdGil_AU_EHWI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTxUxEJ8oasJFFBUW0SwJ19XX7_ZigoQXD4Zw0ITbZtpt9SW4S3gPEv572t3ug0cghut2mu3ORzu_zs4MwH7QNHhUpHK-0VWKLFUao7lzEq08WJn8iL7ZhDo-1qen5uQWKN6L4DNFvmaefjl3dtbH9IVhz-EFZVImsDU9-TnuvExoI3N63GMzV46fvkp_qmp61s0f8jDv_yh55-SZbjx1zW_gdfYxy4NBKd7CM99uwquh6-T1O_g2dHLIt4BlFzeNfzkbs-xCiaPArnyZe0r8KW8bAczfw-_p0a_DH1Vuo1A5QeWiQuWNZ0ZYJgxaRkQQnoXAG-MIChRWR5DnQiRTVthAU1pCmESQrRXqYBv2AdbarvXbUDKppSUGJ44Y7p1G6hhGXaQWJ6LxtAA2crd2ucZ4anVxVveBMxWxxsCCOnGmzpwpoFrOOh9qbPyH_nsS3JI2VcjuH0QR1NngamKNsUhDiIiIM9WgxYZNHGc0oI8cKGA7iX18wbymLBVfk9EjKmB3VIWHh_eWw9EWU4AFW99dJhrGKdcR8RawNWjOcpFxq0t50rwAtaJTK1-xOtLO_vb1vqWR3BCx8_iKP8I6TfcA_dXQLqwtLi79J3jprhaz-cXn3khuANMhFhU
  priority: 102
  providerName: Public Library of Science
Title Computational optimization of associative learning experiments
URI https://www.ncbi.nlm.nih.gov/pubmed/31905214
https://www.proquest.com/docview/2355996820
https://www.proquest.com/docview/2334248448
https://pubmed.ncbi.nlm.nih.gov/PMC6964915
https://doaj.org/article/1b99ba2ff675437dabad30c432faef5e
http://dx.doi.org/10.1371/journal.pcbi.1007593
Volume 16
WOSCitedRecordID wos000510916500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: P5Z
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M7P
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: K7-
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: PIMPY
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: FPL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvEsDZRUkrqYbP2L7AqKoKxCwihBIC5fIduyyUkmW3W0l_j2242xZVMGBiw_xRIk9D3vG4_kAnjmBnVW8QMY2AoWTJSSUV3daeC13ugz7iAg2wadTMZvJKgXcVimtcrCJ0VA3nQkx8iNMQm2s0i9YLxc_UECNCqerCUJjB_ZClQQcU_eqwRITJiI-V4DGQZzQWbo6R3hxlDj1fGH0PGYKMEm2lqZYwT9UPD3rVlftPv9MovxtVZrc_t_x3IFbaT-av-oF6C5cs-09uNEjVP68Dy961IcUMcw7b2C-p5ubeedyNTD3wuYJf-I0vwQNWD2Az5OTT6_foAS5gAzD5RopbqUlkmnCpNKkYI5Z4hxtpCkUU0wL7xAa58m4ZtrhcIXBjb1DLrgSTjdkH3bbrrUHkJNSlLqQamwKSa0RChuivNxircassTgDMsx2bVI98gCLcVbHQzbu_ZJ-CurAozrxKAO0eWvR1-P4B_1xYOSGNlTTjg-65WmdlLMutJRaYee890QJb5RWDRkbSrBT1s9ABgdBDIYPrOpL5mVwOLD36u6nm26vt-EwRrW2Ow80hGIqvHecwcNekjY_6c1iuFNNM-BbMrY1iu2edv4t1gYvZUllwR79_bcew00c4gYxlHQIu-vluX0C183Fer5ajmCHz3hsxQj2jk-m1cdRjFX4dlK99-07jkZR1Xxbsa-eqnr7ofryCxBUMtw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb2igQJDgaLrxI7YPgHhVrbasOBRpb6nt2GWlkiy726L-KX4jtuNsWVTBqQeOiZ3Esb8Zezzj-QCeO4GdVbxAxtYCBc8SEsqLOy28lDtdhnVEJJvgo5EYj-XnNfjZn4UJYZW9ToyKum5N2CPfwiTkxir9hPVm-h0F1qjgXe0pNDpYDO3pD2-yzV_tfvDj-wLj7Y_773dQYhVAhuFygRS30hLJNGFSaVIwxyxxjtbSFIoppoW3eYzz1bhm2uEQpe8G3uYUXAmna-LfewkuU38d5GrIUa_5CRORDyxQ8SBO6Dgd1SO82ErIeDk1ehIjE5gkK1NhZAwIGVaP2vl5q90_gzZ_mwW3b_5v_XcLbqT1dv62E5DbsGabO3C1Y-A8vQuvO1aLtCOat16BfksnU_PW5aoH74nNE7_GYX5GijC_B18upPH3Yb1pG7sBOSlFqQupBqaQ1BqhsCHKyyXWasBqizMg_ehWJuVbD7QfR1V0InJvd3VdUAVMVAkTGaDlU9Mu38g_6r8LwFnWDdnC4412dlgl5VMVWkqtsHPeOqSE10qrmgwMJdgp63sgg40Au_4D8-oMLBls9nA6v_jZstjrpeBsUo1tj0MdQjEV3vrP4EGH3GUjvdoPZ8ZpBnwF0yt_sVrSTL7G3OelLKks2MO_N-spXNvZ_7RX7e2Oho_gOg57JHHbbBPWF7Nj-xiumJPFZD57EgU4h4OLRvwvF4qJXw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3rSBAkGCY9iNH7F9AASUFVXRag8grbgE27HLSm2ybLZF_Wv8OmzH2bKoglMPXGMncZxvZjzj8XwAzyxH1kiWZ9pUPPM7SxmXTtxJ7qTcqsKvIwLZBBuP-XQqJhvwsz8L49Mqe50YFHXVaB8jHyDsa2MVzmANbEyLmOyOXs-_Z55Byu-09nQaHUT2zekP5761L_d23b9-jtDo_ad3H7LIMJBpioplJpkRBguqMBVS4ZxaarC1pBI6l1RSxZ3_o63rxhRVFvmMfTt0_idnkltVYffcS3CZOR_TpxNO6JfeCmDKAzeYp-XJGCbTeGwPs3wQUfJirtUsZClQgdfMYmAP8NVWD5v2vJXvnwmcv1nE0c3_eS5vwY24Dk_fdIJzGzZMfQeudsycp3fhVcd2ESOlaeMU61E8sZo2NpU9qE9MGnk3DtIzsoT2Hny-kMHfh826qc02pLjghcqFHOpcEKO5RBpLJ69IySGtDEoA93-61LEOu6cDOSzD5iJz_lg3BaXHRxnxkUC2umve1SH5R_-3HkSrvr6KeLjQLA7KqJTKXAmhJLLWeY0Es0oqWeGhJhhZadwMJLDtIdi_oC3PgJPATg-t85ufrpqdvvKbULI2zbHvgwkinBCewFaH4tUgnTnwZ8lJAmwN32tfsd5Sz76FmuiFKIjI6YO_D-sJXHNALz_ujfcfwnXkQychmrYDm8vFsXkEV_TJctYuHgdZTuHrRQP-F-DfkoM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+optimization+of+associative+learning+experiments&rft.jtitle=PLoS+computational+biology&rft.au=Melinscak%2C+Filip&rft.au=Bach%2C+Dominik+R.&rft.date=2020-01-01&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1371%2Fjournal.pcbi.1007593&rft_id=info%3Apmid%2F31905214&rft.externalDocID=PMC6964915
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon