Computational optimization of associative learning experiments
With computational biology striving to provide more accurate theoretical accounts of biological systems, use of increasingly complex computational models seems inevitable. However, this trend engenders a challenge of optimal experimental design: due to the flexibility of complex models, it is diffic...
Gespeichert in:
| Veröffentlicht in: | PLoS computational biology Jg. 16; H. 1; S. e1007593 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Public Library of Science
01.01.2020
Public Library of Science (PLoS) |
| Schlagworte: | |
| ISSN: | 1553-7358, 1553-734X, 1553-7358 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | With computational biology striving to provide more accurate theoretical accounts of biological systems, use of increasingly complex computational models seems inevitable. However, this trend engenders a challenge of optimal experimental design: due to the flexibility of complex models, it is difficult to intuitively design experiments that will efficiently expose differences between candidate models or allow accurate estimation of their parameters. This challenge is well exemplified in associative learning research. Associative learning theory has a rich tradition of computational modeling, resulting in a growing space of increasingly complex models, which in turn renders manual design of informative experiments difficult. Here we propose a novel method for computational optimization of associative learning experiments. We first formalize associative learning experiments using a low number of tunable design variables, to make optimization tractable. Next, we combine simulation-based Bayesian experimental design with Bayesian optimization to arrive at a flexible method of tuning design variables. Finally, we validate the proposed method through extensive simulations covering both the objectives of accurate parameter estimation and model selection. The validation results show that computationally optimized experimental designs have the potential to substantially improve upon manual designs drawn from the literature, even when prior information guiding the optimization is scarce. Computational optimization of experiments may help address recent concerns over reproducibility by increasing the expected utility of studies, and it may even incentivize practices such as study pre-registration, since optimization requires a pre-specified analysis plan. Moreover, design optimization has the potential not only to improve basic research in domains such as associative learning, but also to play an important role in translational research. For example, design of behavioral and physiological diagnostic tests in the nascent field of computational psychiatry could benefit from an optimization-based approach, similar to the one presented here. |
|---|---|
| AbstractList | With computational biology striving to provide more accurate theoretical accounts of biological systems, use of increasingly complex computational models seems inevitable. However, this trend engenders a challenge of optimal experimental design: due to the flexibility of complex models, it is difficult to intuitively design experiments that will efficiently expose differences between candidate models or allow accurate estimation of their parameters. This challenge is well exemplified in associative learning research. Associative learning theory has a rich tradition of computational modeling, resulting in a growing space of increasingly complex models, which in turn renders manual design of informative experiments difficult. Here we propose a novel method for computational optimization of associative learning experiments. We first formalize associative learning experiments using a low number of tunable design variables, to make optimization tractable. Next, we combine simulation-based Bayesian experimental design with Bayesian optimization to arrive at a flexible method of tuning design variables. Finally, we validate the proposed method through extensive simulations covering both the objectives of accurate parameter estimation and model selection. The validation results show that computationally optimized experimental designs have the potential to substantially improve upon manual designs drawn from the literature, even when prior information guiding the optimization is scarce. Computational optimization of experiments may help address recent concerns over reproducibility by increasing the expected utility of studies, and it may even incentivize practices such as study pre-registration, since optimization requires a pre-specified analysis plan. Moreover, design optimization has the potential not only to improve basic research in domains such as associative learning, but also to play an important role in translational research. For example, design of behavioral and physiological diagnostic tests in the nascent field of computational psychiatry could benefit from an optimization-based approach, similar to the one presented here. With computational biology striving to provide more accurate theoretical accounts of biological systems, use of increasingly complex computational models seems inevitable. However, this trend engenders a challenge of optimal experimental design: due to the flexibility of complex models, it is difficult to intuitively design experiments that will efficiently expose differences between candidate models or allow accurate estimation of their parameters. This challenge is well exemplified in associative learning research. Associative learning theory has a rich tradition of computational modeling, resulting in a growing space of increasingly complex models, which in turn renders manual design of informative experiments difficult. Here we propose a novel method for computational optimization of associative learning experiments. We first formalize associative learning experiments using a low number of tunable design variables, to make optimization tractable. Next, we combine simulation-based Bayesian experimental design with Bayesian optimization to arrive at a flexible method of tuning design variables. Finally, we validate the proposed method through extensive simulations covering both the objectives of accurate parameter estimation and model selection. The validation results show that computationally optimized experimental designs have the potential to substantially improve upon manual designs drawn from the literature, even when prior information guiding the optimization is scarce. Computational optimization of experiments may help address recent concerns over reproducibility by increasing the expected utility of studies, and it may even incentivize practices such as study pre-registration, since optimization requires a pre-specified analysis plan. Moreover, design optimization has the potential not only to improve basic research in domains such as associative learning, but also to play an important role in translational research. For example, design of behavioral and physiological diagnostic tests in the nascent field of computational psychiatry could benefit from an optimization-based approach, similar to the one presented here.With computational biology striving to provide more accurate theoretical accounts of biological systems, use of increasingly complex computational models seems inevitable. However, this trend engenders a challenge of optimal experimental design: due to the flexibility of complex models, it is difficult to intuitively design experiments that will efficiently expose differences between candidate models or allow accurate estimation of their parameters. This challenge is well exemplified in associative learning research. Associative learning theory has a rich tradition of computational modeling, resulting in a growing space of increasingly complex models, which in turn renders manual design of informative experiments difficult. Here we propose a novel method for computational optimization of associative learning experiments. We first formalize associative learning experiments using a low number of tunable design variables, to make optimization tractable. Next, we combine simulation-based Bayesian experimental design with Bayesian optimization to arrive at a flexible method of tuning design variables. Finally, we validate the proposed method through extensive simulations covering both the objectives of accurate parameter estimation and model selection. The validation results show that computationally optimized experimental designs have the potential to substantially improve upon manual designs drawn from the literature, even when prior information guiding the optimization is scarce. Computational optimization of experiments may help address recent concerns over reproducibility by increasing the expected utility of studies, and it may even incentivize practices such as study pre-registration, since optimization requires a pre-specified analysis plan. Moreover, design optimization has the potential not only to improve basic research in domains such as associative learning, but also to play an important role in translational research. For example, design of behavioral and physiological diagnostic tests in the nascent field of computational psychiatry could benefit from an optimization-based approach, similar to the one presented here. With computational biology striving to provide more accurate theoretical accounts of biological systems, use of increasingly complex computational models seems inevitable. However, this trend engenders a challenge of optimal experimental design: due to the flexibility of complex models, it is difficult to intuitively design experiments that will efficiently expose differences between candidate models or allow accurate estimation of their parameters. This challenge is well exemplified in associative learning research. Associative learning theory has a rich tradition of computational modeling, resulting in a growing space of increasingly complex models, which in turn renders manual design of informative experiments difficult. Here we propose a novel method for computational optimization of associative learning experiments. We first formalize associative learning experiments using a low number of tunable design variables, to make optimization tractable. Next, we combine simulation-based Bayesian experimental design with Bayesian optimization to arrive at a flexible method of tuning design variables. Finally, we validate the proposed method through extensive simulations covering both the objectives of accurate parameter estimation and model selection. The validation results show that computationally optimized experimental designs have the potential to substantially improve upon manual designs drawn from the literature, even when prior information guiding the optimization is scarce. Computational optimization of experiments may help address recent concerns over reproducibility by increasing the expected utility of studies, and it may even incentivize practices such as study pre-registration, since optimization requires a pre-specified analysis plan. Moreover, design optimization has the potential not only to improve basic research in domains such as associative learning, but also to play an important role in translational research. For example, design of behavioral and physiological diagnostic tests in the nascent field of computational psychiatry could benefit from an optimization-based approach, similar to the one presented here. To capture complex biological systems, computational biology harnesses accordingly complex models. The flexibility of such models allows them to better explain real-world data; however, this flexibility also creates a challenge in designing informative experiments. Because flexible models can, by definition, fit a variety of experimental outcomes, it is difficult to intuitively design experiments that will expose differences between such models, or allow their parameters to be estimated with accuracy. This challenge of experimental design is apparent in research on associative learning, where the tradition of modeling has produced a growing space of increasingly complex theories. Here, we propose to use computational optimization methods to design associative learning experiments. We first formalize associative learning experiments, making their optimization possible, and then we describe a Bayesian, simulation-based method of finding optimized experiments. In several simulated scenarios, we demonstrate that optimized experimental designs can substantially improve upon the utility of often-used canonical designs. Moreover, a similar approach could also be used in translational research; e.g., in the nascent field of computational psychiatry, designs of behavioral and physiological diagnostic tests could be computationally optimized. |
| Author | Bach, Dominik R. Melinscak, Filip |
| AuthorAffiliation | 3 Wellcome Centre for Human Neuroimaging and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom Dartmouth College, UNITED STATES 2 Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland 1 Computational Psychiatry Research, Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, Zurich, Switzerland |
| AuthorAffiliation_xml | – name: Dartmouth College, UNITED STATES – name: 2 Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland – name: 3 Wellcome Centre for Human Neuroimaging and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom – name: 1 Computational Psychiatry Research, Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, Zurich, Switzerland |
| Author_xml | – sequence: 1 givenname: Filip orcidid: 0000-0001-8767-358X surname: Melinscak fullname: Melinscak, Filip – sequence: 2 givenname: Dominik R. orcidid: 0000-0003-3717-2036 surname: Bach fullname: Bach, Dominik R. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31905214$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ksFu1DAQhi3UirYLb4AgEhcuu9ixHcccKqFVoZUq9QJna-zYi1dJHOykKjx9vd0saivUk2fsfz7_o5kzdNSH3iL0juAVoYJ83oYp9tCuBqP9imAsuKSv0CnhnC4F5fXRo_gEnaW0xTiHsnqNTiiRmJeEnaLzdeiGaYTRhwwrwjD6zv99SIvgCkgpGJ_TW1u0FmLv-01h7wYbfWf7Mb1Bxw7aZN_O5wL9_HbxY325vL75frX-er00vKzGJQgrLZVcUy5BU8Idt9Q51khDgAPXdc2wcVkmNNeurASjDltNawG10w1doA977tCGpObWkyop51JWdYmz4mqvaAJs1ZD9QfyjAnj1cBHiRkEcvWmtIlpKDaVzleCMigY0NBQbRksHdudsgc7n3ybd2cbkTiO0T6BPX3r_S23CrapkxSThGfBpBsTwe7JpVJ1PxrYt9DZMO9-UlaxmrM7Sj8-k_-_u_WNH_6wcBpkFX_YCE0NK0Tpl_H6q2aBvFcFqtzUHuNptjZq3JhezZ8UH_otl92XKy8E |
| CitedBy_id | crossref_primary_10_1016_j_neubiorev_2023_105146 crossref_primary_10_1016_j_neubiorev_2020_04_019 crossref_primary_10_1016_j_bpsc_2022_12_003 crossref_primary_10_1109_ACCESS_2024_3458808 crossref_primary_10_1093_scan_nsaa089 crossref_primary_10_1016_j_neuroimage_2022_119579 crossref_primary_10_1016_j_bpsc_2023_02_004 crossref_primary_10_1111_psyp_13650 crossref_primary_10_1371_journal_pone_0268814 |
| Cites_doi | 10.31234/osf.io/yehjb 10.1073/pnas.1708274114 10.1080/14640748508402082 10.1214/ss/1030550861 10.1371/journal.pcbi.1002280 10.1098/rsos.160734 10.1038/s41562-016-0021 10.1146/annurev-clinpsy-050212-185542 10.1371/journal.pcbi.1004567 10.1214/15-BA945 10.1162/neco.2009.02-09-959 10.1016/j.cmpb.2012.02.004 10.1081/SAC-200040691 10.1016/j.neuroimage.2016.01.032 10.1111/insr.12107 10.1162/NECO_a_00654 10.1093/bioinformatics/bts092 10.2307/3314608 10.3758/BRM.41.1.29 10.1037/0033-2909.111.2.361 10.1162/neco.2008.08-07-594 10.1177/0956797616647519 10.1177/1745691612463078 10.1007/s11222-017-9734-x 10.1016/S2215-0366(15)00361-2 10.1038/nn.2904 10.3758/LB.36.3.210 10.1007/s40300-014-0043-2 10.1111/cogs.12467 10.1037/h0058138 10.1037/0033-2909.117.3.363 10.1101/567412 10.1371/journal.pcbi.1002888 10.1037/h0046700 10.1037/a0016104 10.1016/0023-9690(70)90101-3 10.1098/rspa.2013.0828 10.3758/s13420-012-0080-8 10.1371/journal.pcbi.1003650 10.1371/journal.pcbi.1006243 10.1111/j.1600-0706.2013.01073.x 10.1146/annurev.psych.52.1.111 10.1038/nn.3961 10.1371/journal.pbio.2000797 10.1016/j.jmp.2010.08.002 10.1137/1.9781611970654 10.1039/b918098b 10.3390/brainsci4010049 10.1214/ss/1177009939 10.1038/nn1954 |
| ContentType | Journal Article |
| Copyright | 2020 Melinscak, Bach. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Melinscak, Bach 2020 Melinscak, Bach |
| Copyright_xml | – notice: 2020 Melinscak, Bach. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Melinscak, Bach 2020 Melinscak, Bach |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pcbi.1007593 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | Computational optimization of associative learning experiments |
| EISSN | 1553-7358 |
| ExternalDocumentID | 2355996820 oai_doaj_org_article_1b99ba2ff675437dabad30c432faef5e PMC6964915 31905214 10_1371_journal_pcbi_1007593 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Switzerland |
| GeographicLocations_xml | – name: Switzerland |
| GrantInformation_xml | – fundername: Wellcome Trust grantid: 203147/Z/16/Z – fundername: Wellcome Trust |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ ALIPV C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM RIG WOQ 3V. 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M0N P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM - AAPBV ABPTK ADACO BBAFP M~E |
| ID | FETCH-LOGICAL-c526t-a7e9e395b359ab315f5e3ff4d9c1a5a5b8840cfa7e7b5bf26743f0eb387a8fbd3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510916500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1553-7358 1553-734X |
| IngestDate | Fri Nov 26 17:12:41 EST 2021 Tue Oct 14 19:05:07 EDT 2025 Tue Nov 04 01:36:49 EST 2025 Thu Sep 04 19:47:12 EDT 2025 Tue Oct 07 06:45:43 EDT 2025 Thu Apr 03 06:59:50 EDT 2025 Sat Nov 29 03:40:43 EST 2025 Tue Nov 18 22:13:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c526t-a7e9e395b359ab315f5e3ff4d9c1a5a5b8840cfa7e7b5bf26743f0eb387a8fbd3 |
| Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. |
| ORCID | 0000-0003-3717-2036 0000-0001-8767-358X |
| OpenAccessLink | https://www.proquest.com/docview/2355996820?pq-origsite=%requestingapplication% |
| PMID | 31905214 |
| PQID | 2355996820 |
| PQPubID | 1436340 |
| ParticipantIDs | plos_journals_2355996820 doaj_primary_oai_doaj_org_article_1b99ba2ff675437dabad30c432faef5e pubmedcentral_primary_oai_pubmedcentral_nih_gov_6964915 proquest_miscellaneous_2334248448 proquest_journals_2355996820 pubmed_primary_31905214 crossref_citationtrail_10_1371_journal_pcbi_1007593 crossref_primary_10_1371_journal_pcbi_1007593 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PLoS computational biology |
| PublicationTitleAlternate | PLoS Comput Biol |
| PublicationYear | 2020 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | A Thorwart (pcbi.1007593.ref011) 2009; 41 J Li (pcbi.1007593.ref031) 2011; 14 JW White (pcbi.1007593.ref038) 2014; 123 W Kim (pcbi.1007593.ref053) 2014; 26 P Brutti (pcbi.1007593.ref026) 2014; 72 B Efron (pcbi.1007593.ref044) 1981; 9 JK Kruschke (pcbi.1007593.ref039) 2008; 36 P Müller (pcbi.1007593.ref024) 1995; 90 D Szucs (pcbi.1007593.ref055) 2017; 15 JM Pearce (pcbi.1007593.ref006) 2001; 52 pcbi.1007593.ref035 pcbi.1007593.ref036 J Lewi (pcbi.1007593.ref015) 2009; 21 BA Nosek (pcbi.1007593.ref057) 2018; 115 EG Ryan (pcbi.1007593.ref052) 2016; 84 J Vanlier (pcbi.1007593.ref013) 2012; 28 pcbi.1007593.ref022 IP Pavlov (pcbi.1007593.ref033) 1927 KE Stephan (pcbi.1007593.ref059) 2016; 3 R Lorenz (pcbi.1007593.ref018) 2016; 129 pcbi.1007593.ref021 W Kim (pcbi.1007593.ref049) 2017; 41 J Liepe (pcbi.1007593.ref014) 2013; 9 pcbi.1007593.ref060 G Sanchez (pcbi.1007593.ref016) 2014; 4 M Bakker (pcbi.1007593.ref047) 2016; 27 pcbi.1007593.ref029 pcbi.1007593.ref027 B Vervliet (pcbi.1007593.ref004) 2013; 9 AN Rafferty (pcbi.1007593.ref020) 2014; 470 M Browning (pcbi.1007593.ref041) 2015; 18 MR Munafò (pcbi.1007593.ref056) 2017; 1 AG de G Matthews (pcbi.1007593.ref050) 2017; 18 RA Rescorla (pcbi.1007593.ref032) 1970; 1 AM Overstall (pcbi.1007593.ref051) 2018; 28 K Chaloner (pcbi.1007593.ref023) 1995; 10 J Daunizeau (pcbi.1007593.ref017) 2011; 7 RE Lubow (pcbi.1007593.ref034) 1959; 52 JF Apgar (pcbi.1007593.ref002) 2010; 6 SJ Gershman (pcbi.1007593.ref008) 2012; 40 M Enquist (pcbi.1007593.ref003) 2016; 3 S Zhang (pcbi.1007593.ref054) 2010; 54 DV Lindley (pcbi.1007593.ref028) 1972 SJ Gershman (pcbi.1007593.ref009) 2015; 11 DR Shanks (pcbi.1007593.ref030) 1985; 37 A Tzovara (pcbi.1007593.ref010) 2018; 14 E Alonso (pcbi.1007593.ref012) 2012; 108 F Wang (pcbi.1007593.ref025) 2002; 17 EJ Wagenmakers (pcbi.1007593.ref058) 2012; 7 R Lawson (pcbi.1007593.ref046) 2004; 33 D Silk (pcbi.1007593.ref001) 2014; 10 TEJ Behrens (pcbi.1007593.ref040) 2007; 10 RA Rescorla (pcbi.1007593.ref005) 1972 JI Myung (pcbi.1007593.ref019) 2009; 116 LG Humphreys (pcbi.1007593.ref042) 1939; 25 BP Weaver (pcbi.1007593.ref037) 2016; 11 RR Miller (pcbi.1007593.ref045) 1995; 117 KO McGraw (pcbi.1007593.ref043) 1992; 111 DR Cavagnaro (pcbi.1007593.ref048) 2010; 22 pcbi.1007593.ref007 |
| References_xml | – ident: pcbi.1007593.ref021 doi: 10.31234/osf.io/yehjb – volume: 115 start-page: 2600 issue: 11 year: 2018 ident: pcbi.1007593.ref057 article-title: The preregistration revolution publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1708274114 – volume: 37 start-page: 1 issue: 1b year: 1985 ident: pcbi.1007593.ref030 article-title: Forward and Backward Blocking in Human Contingency Judgement publication-title: The Quarterly Journal of Experimental Psychology Section B doi: 10.1080/14640748508402082 – volume: 17 start-page: 193 issue: 2 year: 2002 ident: pcbi.1007593.ref025 article-title: A simulation-based approach to Bayesian sample size determination for performance under a given model and for separating models publication-title: Statistical Science doi: 10.1214/ss/1030550861 – volume: 7 start-page: e1002280 issue: 11 year: 2011 ident: pcbi.1007593.ref017 article-title: Optimizing Experimental Design for Comparing Models of Brain Function publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1002280 – volume: 3 start-page: 160734 issue: 11 year: 2016 ident: pcbi.1007593.ref003 article-title: The power of associative learning and the ontogeny of optimal behaviour publication-title: Royal Society Open Science doi: 10.1098/rsos.160734 – volume: 1 start-page: 0021 issue: 1 year: 2017 ident: pcbi.1007593.ref056 article-title: A manifesto for reproducible science publication-title: Nature Human Behaviour doi: 10.1038/s41562-016-0021 – volume: 9 start-page: 215 issue: 1 year: 2013 ident: pcbi.1007593.ref004 article-title: Fear Extinction and Relapse: State of the Art publication-title: Annual Review of Clinical Psychology doi: 10.1146/annurev-clinpsy-050212-185542 – volume: 11 start-page: e1004567 issue: 11 year: 2015 ident: pcbi.1007593.ref009 article-title: A Unifying Probabilistic View of Associative Learning publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1004567 – volume: 11 start-page: 191 issue: 1 year: 2016 ident: pcbi.1007593.ref037 article-title: Computational Enhancements to Bayesian Design of Experiments Using Gaussian Processes publication-title: Bayesian Analysis doi: 10.1214/15-BA945 – ident: pcbi.1007593.ref027 – volume: 22 start-page: 887 issue: 4 year: 2010 ident: pcbi.1007593.ref048 article-title: Adaptive Design Optimization: A Mutual Information-Based Approach to Model Discrimination in Cognitive Science publication-title: Neural Computation doi: 10.1162/neco.2009.02-09-959 – volume: 108 start-page: 346 issue: 1 year: 2012 ident: pcbi.1007593.ref012 article-title: A Java simulator of Rescorla and Wagner’s prediction error model and configural cue extensions publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2012.02.004 – volume: 33 start-page: 1095 issue: 4 year: 2004 ident: pcbi.1007593.ref046 article-title: Small Sample Confidence Intervals for the Odds Ratio publication-title: Communications in Statistics—Simulation and Computation doi: 10.1081/SAC-200040691 – volume: 129 start-page: 320 year: 2016 ident: pcbi.1007593.ref018 article-title: The Automatic Neuroscientist: A framework for optimizing experimental design with closed-loop real-time fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.01.032 – volume: 84 start-page: 128 issue: 1 year: 2016 ident: pcbi.1007593.ref052 article-title: A Review of Modern Computational Algorithms for Bayesian Optimal Design: A Review of Modern Algorithms for Bayesian Design publication-title: International Statistical Review doi: 10.1111/insr.12107 – volume: 26 start-page: 2465 issue: 11 year: 2014 ident: pcbi.1007593.ref053 article-title: A Hierarchical Adaptive Approach to Optimal Experimental Design publication-title: Neural Computation doi: 10.1162/NECO_a_00654 – volume: 28 start-page: 1136 issue: 8 year: 2012 ident: pcbi.1007593.ref013 article-title: A Bayesian approach to targeted experiment design publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts092 – volume: 9 start-page: 139 issue: 2 year: 1981 ident: pcbi.1007593.ref044 article-title: Nonparametric standard errors and confidence intervals publication-title: Canadian Journal of Statistics doi: 10.2307/3314608 – volume: 41 start-page: 29 issue: 1 year: 2009 ident: pcbi.1007593.ref011 article-title: ALTSim: A MATLAB simulator for current associative learning theories publication-title: Behavior Research Methods doi: 10.3758/BRM.41.1.29 – volume: 111 start-page: 361 issue: 2 year: 1992 ident: pcbi.1007593.ref043 article-title: A common language effect size statistic publication-title: Psychological Bulletin doi: 10.1037/0033-2909.111.2.361 – volume: 21 start-page: 619 issue: 3 year: 2009 ident: pcbi.1007593.ref015 article-title: Sequential Optimal Design of Neurophysiology Experiments publication-title: Neural Computation doi: 10.1162/neco.2008.08-07-594 – volume: 27 start-page: 1069 issue: 8 year: 2016 ident: pcbi.1007593.ref047 article-title: Researchers’ Intuitions About Power in Psychological Research publication-title: Psychological Science doi: 10.1177/0956797616647519 – volume: 7 start-page: 632 issue: 6 year: 2012 ident: pcbi.1007593.ref058 article-title: An Agenda for Purely Confirmatory Research publication-title: Perspectives on Psychological Science doi: 10.1177/1745691612463078 – volume: 28 start-page: 343 issue: 2 year: 2018 ident: pcbi.1007593.ref051 article-title: An approach for finding fully Bayesian optimal designs using normal-based approximations to loss functions publication-title: Statistics and Computing doi: 10.1007/s11222-017-9734-x – ident: pcbi.1007593.ref007 – volume-title: Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex year: 1927 ident: pcbi.1007593.ref033 – volume: 3 start-page: 77 issue: 1 year: 2016 ident: pcbi.1007593.ref059 article-title: Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis publication-title: The Lancet Psychiatry doi: 10.1016/S2215-0366(15)00361-2 – volume: 14 start-page: 1250 issue: 10 year: 2011 ident: pcbi.1007593.ref031 article-title: Differential roles of human striatum and amygdala in associative learning publication-title: Nature Neuroscience doi: 10.1038/nn.2904 – volume: 36 start-page: 210 issue: 3 year: 2008 ident: pcbi.1007593.ref039 article-title: Bayesian approaches to associative learning: From passive to active learning publication-title: Learning & Behavior doi: 10.3758/LB.36.3.210 – volume: 72 start-page: 133 issue: 2 year: 2014 ident: pcbi.1007593.ref026 article-title: Bayesian-frequentist sample size determination: a game of two priors publication-title: METRON doi: 10.1007/s40300-014-0043-2 – volume: 41 start-page: 2234 issue: 8 year: 2017 ident: pcbi.1007593.ref049 article-title: Planning Beyond the Next Trial in Adaptive Experiments: A Dynamic Programming Approach publication-title: Cognitive Science doi: 10.1111/cogs.12467 – ident: pcbi.1007593.ref035 – ident: pcbi.1007593.ref029 – volume: 25 start-page: 141 issue: 2 year: 1939 ident: pcbi.1007593.ref042 article-title: The effect of random alternation of reinforcement on the acquisition and extinction of conditioned eyelid reactions publication-title: Journal of Experimental Psychology doi: 10.1037/h0058138 – start-page: 64 volume-title: Classical Conditioning II Current Research and Theory year: 1972 ident: pcbi.1007593.ref005 – volume: 117 start-page: 363 issue: 3 year: 1995 ident: pcbi.1007593.ref045 article-title: Assessment of the Rescorla-Wagner model publication-title: Psychological Bulletin doi: 10.1037/0033-2909.117.3.363 – ident: pcbi.1007593.ref060 doi: 10.1101/567412 – volume: 9 start-page: e1002888 issue: 1 year: 2013 ident: pcbi.1007593.ref014 article-title: Maximizing the Information Content of Experiments in Systems Biology publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1002888 – volume: 52 start-page: 415 issue: 4 year: 1959 ident: pcbi.1007593.ref034 article-title: Latent inhibition: The effect of nonreinforced pre-exposure to the conditional stimulus publication-title: Journal of Comparative and Physiological Psychology doi: 10.1037/h0046700 – volume: 116 start-page: 499 issue: 3 year: 2009 ident: pcbi.1007593.ref019 article-title: Optimal experimental design for model discrimination publication-title: Psychological Review doi: 10.1037/a0016104 – volume: 1 start-page: 372 issue: 4 year: 1970 ident: pcbi.1007593.ref032 article-title: Reduction in the effectiveness of reinforcement after prior excitatory conditioning publication-title: Learning and Motivation doi: 10.1016/0023-9690(70)90101-3 – volume: 470 start-page: 20130828 issue: 2167 year: 2014 ident: pcbi.1007593.ref020 article-title: Optimally designing games for behavioural research publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspa.2013.0828 – ident: pcbi.1007593.ref036 – volume: 40 start-page: 255 issue: 3 year: 2012 ident: pcbi.1007593.ref008 article-title: Exploring a latent cause theory of classical conditioning publication-title: Learning & Behavior doi: 10.3758/s13420-012-0080-8 – volume: 10 start-page: e1003650 issue: 6 year: 2014 ident: pcbi.1007593.ref001 article-title: Model Selection in Systems Biology Depends on Experimental Design publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1003650 – volume: 18 start-page: 1 issue: 40 year: 2017 ident: pcbi.1007593.ref050 article-title: GPflow: A gaussian process library using TensorFlow publication-title: Journal of Machine Learning Research – volume: 14 start-page: e1006243 issue: 8 year: 2018 ident: pcbi.1007593.ref010 article-title: Human Pavlovian fear conditioning conforms to probabilistic learning publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1006243 – volume: 90 start-page: 1322 issue: 432 year: 1995 ident: pcbi.1007593.ref024 article-title: Optimal Design via Curve Fitting of Monte Carlo Experiments publication-title: Journal of the American Statistical Association – volume: 123 start-page: 385 issue: 4 year: 2014 ident: pcbi.1007593.ref038 article-title: Ecologists should not use statistical significance tests to interpret simulation model results publication-title: Oikos doi: 10.1111/j.1600-0706.2013.01073.x – volume: 52 start-page: 111 issue: 1 year: 2001 ident: pcbi.1007593.ref006 article-title: Theories of Associative Learning in Animals publication-title: Annual Review of Psychology doi: 10.1146/annurev.psych.52.1.111 – volume: 18 start-page: 590 issue: 4 year: 2015 ident: pcbi.1007593.ref041 article-title: Anxious individuals have difficulty learning the causal statistics of aversive environments publication-title: Nature Neuroscience doi: 10.1038/nn.3961 – volume: 15 start-page: e2000797 issue: 3 year: 2017 ident: pcbi.1007593.ref055 article-title: Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature publication-title: PLOS Biology doi: 10.1371/journal.pbio.2000797 – volume: 54 start-page: 499 issue: 6 year: 2010 ident: pcbi.1007593.ref054 article-title: Optimal experimental design for a class of bandit problems publication-title: Journal of Mathematical Psychology doi: 10.1016/j.jmp.2010.08.002 – volume-title: Bayesian Statistics: A Review year: 1972 ident: pcbi.1007593.ref028 doi: 10.1137/1.9781611970654 – ident: pcbi.1007593.ref022 – volume: 6 start-page: 1890 issue: 10 year: 2010 ident: pcbi.1007593.ref002 article-title: Sloppy models, parameter uncertainty, and the role of experimental design publication-title: Molecular BioSystems doi: 10.1039/b918098b – volume: 4 start-page: 49 issue: 1 year: 2014 ident: pcbi.1007593.ref016 article-title: Toward a New Application of Real-Time Electrophysiology: Online Optimization of Cognitive Neurosciences Hypothesis Testing publication-title: Brain Sciences doi: 10.3390/brainsci4010049 – volume: 10 start-page: 273 issue: 3 year: 1995 ident: pcbi.1007593.ref023 article-title: Bayesian Experimental Design: A Review publication-title: Statistical Science doi: 10.1214/ss/1177009939 – volume: 10 start-page: 1214 issue: 9 year: 2007 ident: pcbi.1007593.ref040 article-title: Learning the value of information in an uncertain world publication-title: Nature Neuroscience doi: 10.1038/nn1954 |
| SSID | ssj0035896 |
| Score | 2.356287 |
| Snippet | With computational biology striving to provide more accurate theoretical accounts of biological systems, use of increasingly complex computational models seems... |
| SourceID | plos doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1007593 |
| SubjectTerms | Algorithms Associative learning Bayes Theorem Bayesian analysis Biology Biology and Life Sciences Computational Biology - methods Computer applications Computer Simulation Datasets Design of experiments Design optimization Diagnostic systems Expected utility Experimental design Experiments Humans Learning theory Mathematical models Medical imaging Methods Models, Psychological Neurosciences Optimization Parameter estimation Physical Sciences Psychiatry Psychotherapy Research and Analysis Methods Research Design Simulation Social Sciences Software Utility functions |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hikpcKqDQBloUJK6h8Su2L0iAWnGqOIC0t2js2LBSm1TdbSX-PX5l6aJKvfQaT5R4Zjye8eP7AD54Rb1DSRrrBtXEnaVGYRjunIRR7k0X84hENiHPz9Viob_fofqKZ8IyPHBW3AkxWhuk3ofMljM5oMGBtZYz6tF54WL0baWei6kcg5lQiZkrkuI0kvFFuTTHJDkpNvp4Zc0ynREQmm1NSgm7P2KdXkyr-_LO_49P3pmPzp7DXkkk68-5Ay_giRtfwm6mlvyzD58yXUNZ6qunEBkuy5XLevI1zla5dXUhjvhV_0P7X72Cn2enP75-awpXQmMF7dYNSqcd08IwodEwIoJqmPd80JagQGFUqOSsD2LSCONpvHvg21BJK4nKm4G9hp1xGt0h1KxTnSEaW0s0d1YhtQyDw1GDrRgcrYDNyuptARKPfBYXfdodk6GgyCroo4r7ouIKms1bVxlI4wH5L9EOG9kIg50eBOfoi3P0DzlHBYfRivMHVj1lEWGtC2lPBUezZe9vfr9pDgMu7qLg6KabKMM45SqUtRUcZEfY_GSIZ_EyNK9AbrnIVi-2W8bl7wTq3emOayLePEa338IzGpcF0krREeysr2_cMTy1t-vl6vpdGil_AU_EHWI priority: 102 providerName: Directory of Open Access Journals – databaseName: Public Library of Science (PLoS) Journals Open Access dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTxUxEJ8oasJFFBUW0SwJ19XX7_ZigoQXD4Zw0ITbZtpt9SW4S3gPEv572t3ug0cghut2mu3ORzu_zs4MwH7QNHhUpHK-0VWKLFUao7lzEq08WJn8iL7ZhDo-1qen5uQWKN6L4DNFvmaefjl3dtbH9IVhz-EFZVImsDU9-TnuvExoI3N63GMzV46fvkp_qmp61s0f8jDv_yh55-SZbjx1zW_gdfYxy4NBKd7CM99uwquh6-T1O_g2dHLIt4BlFzeNfzkbs-xCiaPArnyZe0r8KW8bAczfw-_p0a_DH1Vuo1A5QeWiQuWNZ0ZYJgxaRkQQnoXAG-MIChRWR5DnQiRTVthAU1pCmESQrRXqYBv2AdbarvXbUDKppSUGJ44Y7p1G6hhGXaQWJ6LxtAA2crd2ucZ4anVxVveBMxWxxsCCOnGmzpwpoFrOOh9qbPyH_nsS3JI2VcjuH0QR1NngamKNsUhDiIiIM9WgxYZNHGc0oI8cKGA7iX18wbymLBVfk9EjKmB3VIWHh_eWw9EWU4AFW99dJhrGKdcR8RawNWjOcpFxq0t50rwAtaJTK1-xOtLO_vb1vqWR3BCx8_iKP8I6TfcA_dXQLqwtLi79J3jprhaz-cXn3khuANMhFhU priority: 102 providerName: Public Library of Science |
| Title | Computational optimization of associative learning experiments |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31905214 https://www.proquest.com/docview/2355996820 https://www.proquest.com/docview/2334248448 https://pubmed.ncbi.nlm.nih.gov/PMC6964915 https://doaj.org/article/1b99ba2ff675437dabad30c432faef5e http://dx.doi.org/10.1371/journal.pcbi.1007593 |
| Volume | 16 |
| WOSCitedRecordID | wos000510916500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: P5Z dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: M7P dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: K7- dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 7X7 dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: BENPR dateStart: 20050601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: PIMPY dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: FPL dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvEsDZRUkrqYbP2L7AqKoKxCwihBIC5fIduyyUkmW3W0l_j2242xZVMGBiw_xRIk9D3vG4_kAnjmBnVW8QMY2AoWTJSSUV3daeC13ugz7iAg2wadTMZvJKgXcVimtcrCJ0VA3nQkx8iNMQm2s0i9YLxc_UECNCqerCUJjB_ZClQQcU_eqwRITJiI-V4DGQZzQWbo6R3hxlDj1fGH0PGYKMEm2lqZYwT9UPD3rVlftPv9MovxtVZrc_t_x3IFbaT-av-oF6C5cs-09uNEjVP68Dy961IcUMcw7b2C-p5ubeedyNTD3wuYJf-I0vwQNWD2Az5OTT6_foAS5gAzD5RopbqUlkmnCpNKkYI5Z4hxtpCkUU0wL7xAa58m4ZtrhcIXBjb1DLrgSTjdkH3bbrrUHkJNSlLqQamwKSa0RChuivNxircassTgDMsx2bVI98gCLcVbHQzbu_ZJ-CurAozrxKAO0eWvR1-P4B_1xYOSGNlTTjg-65WmdlLMutJRaYee890QJb5RWDRkbSrBT1s9ABgdBDIYPrOpL5mVwOLD36u6nm26vt-EwRrW2Ow80hGIqvHecwcNekjY_6c1iuFNNM-BbMrY1iu2edv4t1gYvZUllwR79_bcew00c4gYxlHQIu-vluX0C183Fer5ajmCHz3hsxQj2jk-m1cdRjFX4dlK99-07jkZR1Xxbsa-eqnr7ofryCxBUMtw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb2igQJDgaLrxI7YPgHhVrbasOBRpb6nt2GWlkiy726L-KX4jtuNsWVTBqQeOiZ3Esb8Zezzj-QCeO4GdVbxAxtYCBc8SEsqLOy28lDtdhnVEJJvgo5EYj-XnNfjZn4UJYZW9ToyKum5N2CPfwiTkxir9hPVm-h0F1qjgXe0pNDpYDO3pD2-yzV_tfvDj-wLj7Y_773dQYhVAhuFygRS30hLJNGFSaVIwxyxxjtbSFIoppoW3eYzz1bhm2uEQpe8G3uYUXAmna-LfewkuU38d5GrIUa_5CRORDyxQ8SBO6Dgd1SO82ErIeDk1ehIjE5gkK1NhZAwIGVaP2vl5q90_gzZ_mwW3b_5v_XcLbqT1dv62E5DbsGabO3C1Y-A8vQuvO1aLtCOat16BfksnU_PW5aoH74nNE7_GYX5GijC_B18upPH3Yb1pG7sBOSlFqQupBqaQ1BqhsCHKyyXWasBqizMg_ehWJuVbD7QfR1V0InJvd3VdUAVMVAkTGaDlU9Mu38g_6r8LwFnWDdnC4412dlgl5VMVWkqtsHPeOqSE10qrmgwMJdgp63sgg40Au_4D8-oMLBls9nA6v_jZstjrpeBsUo1tj0MdQjEV3vrP4EGH3GUjvdoPZ8ZpBnwF0yt_sVrSTL7G3OelLKks2MO_N-spXNvZ_7RX7e2Oho_gOg57JHHbbBPWF7Nj-xiumJPFZD57EgU4h4OLRvwvF4qJXw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3rSBAkGCY9iNH7F9AASUFVXRag8grbgE27HLSm2ybLZF_Wv8OmzH2bKoglMPXGMncZxvZjzj8XwAzyxH1kiWZ9pUPPM7SxmXTtxJ7qTcqsKvIwLZBBuP-XQqJhvwsz8L49Mqe50YFHXVaB8jHyDsa2MVzmANbEyLmOyOXs-_Z55Byu-09nQaHUT2zekP5761L_d23b9-jtDo_ad3H7LIMJBpioplJpkRBguqMBVS4ZxaarC1pBI6l1RSxZ3_o63rxhRVFvmMfTt0_idnkltVYffcS3CZOR_TpxNO6JfeCmDKAzeYp-XJGCbTeGwPs3wQUfJirtUsZClQgdfMYmAP8NVWD5v2vJXvnwmcv1nE0c3_eS5vwY24Dk_fdIJzGzZMfQeudsycp3fhVcd2ESOlaeMU61E8sZo2NpU9qE9MGnk3DtIzsoT2Hny-kMHfh826qc02pLjghcqFHOpcEKO5RBpLJ69IySGtDEoA93-61LEOu6cDOSzD5iJz_lg3BaXHRxnxkUC2umve1SH5R_-3HkSrvr6KeLjQLA7KqJTKXAmhJLLWeY0Es0oqWeGhJhhZadwMJLDtIdi_oC3PgJPATg-t85ufrpqdvvKbULI2zbHvgwkinBCewFaH4tUgnTnwZ8lJAmwN32tfsd5Sz76FmuiFKIjI6YO_D-sJXHNALz_ujfcfwnXkQychmrYDm8vFsXkEV_TJctYuHgdZTuHrRQP-F-DfkoM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+optimization+of+associative+learning+experiments&rft.jtitle=PLoS+computational+biology&rft.au=Melinscak%2C+Filip&rft.au=Bach%2C+Dominik+R.&rft.date=2020-01-01&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1371%2Fjournal.pcbi.1007593&rft_id=info%3Apmid%2F31905214&rft.externalDocID=PMC6964915 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |