Coherent chaos in a recurrent neural network with structured connectivity

We present a simple model for coherent, spatially correlated chaos in a recurrent neural network. Networks of randomly connected neurons exhibit chaotic fluctuations and have been studied as a model for capturing the temporal variability of cortical activity. The dynamics generated by such networks,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology Jg. 14; H. 12; S. e1006309
Hauptverfasser: Landau, Itamar Daniel, Sompolinsky, Haim
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 01.12.2018
Public Library of Science (PLoS)
Schlagworte:
ISSN:1553-7358, 1553-734X, 1553-7358
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present a simple model for coherent, spatially correlated chaos in a recurrent neural network. Networks of randomly connected neurons exhibit chaotic fluctuations and have been studied as a model for capturing the temporal variability of cortical activity. The dynamics generated by such networks, however, are spatially uncorrelated and do not generate coherent fluctuations, which are commonly observed across spatial scales of the neocortex. In our model we introduce a structured component of connectivity, in addition to random connections, which effectively embeds a feedforward structure via unidirectional coupling between a pair of orthogonal modes. Local fluctuations driven by the random connectivity are summed by an output mode and drive coherent activity along an input mode. The orthogonality between input and output mode preserves chaotic fluctuations by preventing feedback loops. In the regime of weak structured connectivity we apply a perturbative approach to solve the dynamic mean-field equations, showing that in this regime coherent fluctuations are driven passively by the chaos of local residual fluctuations. When we introduce a row balance constraint on the random connectivity, stronger structured connectivity puts the network in a distinct dynamical regime of self-tuned coherent chaos. In this regime the coherent component of the dynamics self-adjusts intermittently to yield periods of slow, highly coherent chaos. The dynamics display longer time-scales and switching-like activity. We show how in this regime the dynamics depend qualitatively on the particular realization of the connectivity matrix: a complex leading eigenvalue can yield coherent oscillatory chaos while a real leading eigenvalue can yield chaos with broken symmetry. The level of coherence grows with increasing strength of structured connectivity until the dynamics are almost entirely constrained to a single spatial mode. We examine the effects of network-size scaling and show that these results are not finite-size effects. Finally, we show that in the regime of weak structured connectivity, coherent chaos emerges also for a generalized structured connectivity with multiple input-output modes.
AbstractList We present a simple model for coherent, spatially correlated chaos in a recurrent neural network. Networks of randomly connected neurons exhibit chaotic fluctuations and have been studied as a model for capturing the temporal variability of cortical activity. The dynamics generated by such networks, however, are spatially uncorrelated and do not generate coherent fluctuations, which are commonly observed across spatial scales of the neocortex. In our model we introduce a structured component of connectivity, in addition to random connections, which effectively embeds a feedforward structure via unidirectional coupling between a pair of orthogonal modes. Local fluctuations driven by the random connectivity are summed by an output mode and drive coherent activity along an input mode. The orthogonality between input and output mode preserves chaotic fluctuations by preventing feedback loops. In the regime of weak structured connectivity we apply a perturbative approach to solve the dynamic mean-field equations, showing that in this regime coherent fluctuations are driven passively by the chaos of local residual fluctuations. When we introduce a row balance constraint on the random connectivity, stronger structured connectivity puts the network in a distinct dynamical regime of self-tuned coherent chaos. In this regime the coherent component of the dynamics self-adjusts intermittently to yield periods of slow, highly coherent chaos. The dynamics display longer time-scales and switching-like activity. We show how in this regime the dynamics depend qualitatively on the particular realization of the connectivity matrix: a complex leading eigenvalue can yield coherent oscillatory chaos while a real leading eigenvalue can yield chaos with broken symmetry. The level of coherence grows with increasing strength of structured connectivity until the dynamics are almost entirely constrained to a single spatial mode. We examine the effects of network-size scaling and show that these results are not finite-size effects. Finally, we show that in the regime of weak structured connectivity, coherent chaos emerges also for a generalized structured connectivity with multiple input-output modes. Neural activity observed in the neocortex is temporally variable, displaying irregular temporal fluctuations at every accessible level of measurement. Furthermore, these temporal fluctuations are often found to be spatially correlated whether at the scale of local measurements such as membrane potentials and spikes, or global measurements such as EEG and fMRI. A thriving field of study has developed models of recurrent networks which intrinsically generate irregular temporal variability, the paradigmatic example being networks of randomly connected rate neurons which exhibit chaotic dynamics. These models have been examined analytically and numerically in great detail, yet until now the intrinsic variability generated by these networks have been spatially uncorrelated, yielding no large-scale coherent fluctuations. Here we present a simple model of a recurrent network of firing-rate neurons that intrinsically generates spatially correlated activity yielding coherent fluctuations across the entire network. The model incorporates random connections and introduces a structured component of connectivity that sums network activity over a spatial “output” mode and projects it back to the network along an orthogonal “input” mode. We show that this form of structured connectivity is a general mechanism for producing coherent chaos.
We present a simple model for coherent, spatially correlated chaos in a recurrent neural network. Networks of randomly connected neurons exhibit chaotic fluctuations and have been studied as a model for capturing the temporal variability of cortical activity. The dynamics generated by such networks, however, are spatially uncorrelated and do not generate coherent fluctuations, which are commonly observed across spatial scales of the neocortex. In our model we introduce a structured component of connectivity, in addition to random connections, which effectively embeds a feedforward structure via unidirectional coupling between a pair of orthogonal modes. Local fluctuations driven by the random connectivity are summed by an output mode and drive coherent activity along an input mode. The orthogonality between input and output mode preserves chaotic fluctuations by preventing feedback loops. In the regime of weak structured connectivity we apply a perturbative approach to solve the dynamic mean-field equations, showing that in this regime coherent fluctuations are driven passively by the chaos of local residual fluctuations. When we introduce a row balance constraint on the random connectivity, stronger structured connectivity puts the network in a distinct dynamical regime of self-tuned coherent chaos. In this regime the coherent component of the dynamics self-adjusts intermittently to yield periods of slow, highly coherent chaos. The dynamics display longer time-scales and switching-like activity. We show how in this regime the dynamics depend qualitatively on the particular realization of the connectivity matrix: a complex leading eigenvalue can yield coherent oscillatory chaos while a real leading eigenvalue can yield chaos with broken symmetry. The level of coherence grows with increasing strength of structured connectivity until the dynamics are almost entirely constrained to a single spatial mode. We examine the effects of network-size scaling and show that these results are not finite-size effects. Finally, we show that in the regime of weak structured connectivity, coherent chaos emerges also for a generalized structured connectivity with multiple input-output modes.We present a simple model for coherent, spatially correlated chaos in a recurrent neural network. Networks of randomly connected neurons exhibit chaotic fluctuations and have been studied as a model for capturing the temporal variability of cortical activity. The dynamics generated by such networks, however, are spatially uncorrelated and do not generate coherent fluctuations, which are commonly observed across spatial scales of the neocortex. In our model we introduce a structured component of connectivity, in addition to random connections, which effectively embeds a feedforward structure via unidirectional coupling between a pair of orthogonal modes. Local fluctuations driven by the random connectivity are summed by an output mode and drive coherent activity along an input mode. The orthogonality between input and output mode preserves chaotic fluctuations by preventing feedback loops. In the regime of weak structured connectivity we apply a perturbative approach to solve the dynamic mean-field equations, showing that in this regime coherent fluctuations are driven passively by the chaos of local residual fluctuations. When we introduce a row balance constraint on the random connectivity, stronger structured connectivity puts the network in a distinct dynamical regime of self-tuned coherent chaos. In this regime the coherent component of the dynamics self-adjusts intermittently to yield periods of slow, highly coherent chaos. The dynamics display longer time-scales and switching-like activity. We show how in this regime the dynamics depend qualitatively on the particular realization of the connectivity matrix: a complex leading eigenvalue can yield coherent oscillatory chaos while a real leading eigenvalue can yield chaos with broken symmetry. The level of coherence grows with increasing strength of structured connectivity until the dynamics are almost entirely constrained to a single spatial mode. We examine the effects of network-size scaling and show that these results are not finite-size effects. Finally, we show that in the regime of weak structured connectivity, coherent chaos emerges also for a generalized structured connectivity with multiple input-output modes.
We present a simple model for coherent, spatially correlated chaos in a recurrent neural network. Networks of randomly connected neurons exhibit chaotic fluctuations and have been studied as a model for capturing the temporal variability of cortical activity. The dynamics generated by such networks, however, are spatially uncorrelated and do not generate coherent fluctuations, which are commonly observed across spatial scales of the neocortex. In our model we introduce a structured component of connectivity, in addition to random connections, which effectively embeds a feedforward structure via unidirectional coupling between a pair of orthogonal modes. Local fluctuations driven by the random connectivity are summed by an output mode and drive coherent activity along an input mode. The orthogonality between input and output mode preserves chaotic fluctuations by preventing feedback loops. In the regime of weak structured connectivity we apply a perturbative approach to solve the dynamic mean-field equations, showing that in this regime coherent fluctuations are driven passively by the chaos of local residual fluctuations. When we introduce a row balance constraint on the random connectivity, stronger structured connectivity puts the network in a distinct dynamical regime of self-tuned coherent chaos. In this regime the coherent component of the dynamics self-adjusts intermittently to yield periods of slow, highly coherent chaos. The dynamics display longer time-scales and switching-like activity. We show how in this regime the dynamics depend qualitatively on the particular realization of the connectivity matrix: a complex leading eigenvalue can yield coherent oscillatory chaos while a real leading eigenvalue can yield chaos with broken symmetry. The level of coherence grows with increasing strength of structured connectivity until the dynamics are almost entirely constrained to a single spatial mode. We examine the effects of network-size scaling and show that these results are not finite-size effects. Finally, we show that in the regime of weak structured connectivity, coherent chaos emerges also for a generalized structured connectivity with multiple input-output modes.
Author Landau, Itamar Daniel
Sompolinsky, Haim
AuthorAffiliation 1 Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
University of Pittsburgh, UNITED STATES
2 Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
AuthorAffiliation_xml – name: University of Pittsburgh, UNITED STATES
– name: 2 Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
– name: 1 Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
Author_xml – sequence: 1
  givenname: Itamar Daniel
  orcidid: 0000-0002-7039-9761
  surname: Landau
  fullname: Landau, Itamar Daniel
– sequence: 2
  givenname: Haim
  surname: Sompolinsky
  fullname: Sompolinsky, Haim
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30543634$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vEzEQtVCrfv8DBCtx4ZLg793lgIQioJEqcaFna9b2Ng4bO9jeVv33OM22aivEaUae955n3swpOvDBW4TeEjwnrCaf1mGMHob5VnduTjCWDLdv0AkRgs1qJpqDZ_kxOk1pjXFJW3mEjhkWnEnGT9ByEVY2Wp8rvYKQKucrqKLVY3x49HaMMJSQ70L8Xd25vKpSjqPOY7Sm0sF7q7O7dfn-HB32MCR7McUzdP3926_F5ezq54_l4uvVTAsq86ztRCcY7xmAIS3HUpdWAEBSYwzmAktZanWDaddDz5gwWti2NYJygztu2Rl6v9fdDiGpyYWkKC1UVnPWFsRyjzAB1mob3QbivQrg1MNDiDcKYnZ6sKqpsaWUa2Cm5VKYTredBtn0nBZLmS5aX6bfxm5jjS6mFENeiL6seLdSN-FWlXXUjcBF4OMkEMOf0aasNi5pOwzgbRhL30TUUlBC6wL98Ar67-nePe_oqZXHnRYA3wN0DClF2z9BCFa703mUVbvTUdPpFNrnVzTtMmQXdnO54f_kvwk6zcU
CitedBy_id crossref_primary_10_1016_j_conb_2021_07_004
crossref_primary_10_3389_fnins_2024_1402646
crossref_primary_10_1371_journal_pcbi_1013371
crossref_primary_10_1038_s41593_021_00980_9
crossref_primary_10_1103_PhysRevX_14_021001
crossref_primary_10_1159_000507988
crossref_primary_10_1371_journal_pcbi_1008958
crossref_primary_10_1162_neco_a_01658
crossref_primary_10_1016_j_concog_2021_103212
crossref_primary_10_1016_j_tics_2024_03_003
crossref_primary_10_1137_22M1470451
crossref_primary_10_1007_s10827_023_00857_9
crossref_primary_10_1016_j_neures_2022_12_024
crossref_primary_10_1016_j_bspc_2022_103852
crossref_primary_10_1371_journal_pcbi_1010593
crossref_primary_10_1063_5_0233158
crossref_primary_10_1016_j_jksuci_2021_12_002
crossref_primary_10_1103_PhysRevLett_134_148402
crossref_primary_10_1103_PhysRevResearch_5_013005
crossref_primary_10_1371_journal_pcbi_1010855
crossref_primary_10_1038_s41583_023_00740_7
crossref_primary_10_3389_fncom_2024_1439632
crossref_primary_10_1103_PhysRevResearch_5_043132
crossref_primary_10_1162_neco_a_01522
crossref_primary_10_1007_s11571_022_09802_5
crossref_primary_10_1371_journal_pone_0214541
crossref_primary_10_7554_eLife_103636_3
crossref_primary_10_1088_2632_072X_abdee3
crossref_primary_10_1103_PhysRevResearch_7_023203
crossref_primary_10_1103_PhysRevX_13_011009
crossref_primary_10_1007_s42087_025_00507_9
crossref_primary_10_1371_journal_pcbi_1011315
crossref_primary_10_7554_eLife_103636
crossref_primary_10_1103_PhysRevResearch_2_013253
crossref_primary_10_1038_s42256_022_00498_0
crossref_primary_10_1103_PhysRevResearch_3_023171
crossref_primary_10_1016_j_neunet_2024_107079
crossref_primary_10_3389_fnsys_2021_752261
crossref_primary_10_1371_journal_pcbi_1010843
crossref_primary_10_1371_journal_pcbi_1010426
Cites_doi 10.1209/0295-5075/14/8/001
10.1515/9780691213101
10.1098/rsos.160201
10.1126/science.1211095
10.1523/JNEUROSCI.13-01-00334.1993
10.1371/journal.pcbi.1002334
10.1073/pnas.0804451105
10.1073/pnas.0913110107
10.1103/PhysRevLett.97.188104
10.1007/s00440-011-0397-9
10.1016/S1388-2457(98)00043-1
10.1103/PhysRevX.5.041030
10.1016/j.neuron.2018.07.003
10.1016/j.neuron.2016.10.027
10.1016/j.neuron.2010.12.037
10.1523/JNEUROSCI.2929-08.2008
10.1162/NECO_a_00409
10.1103/PhysRevLett.61.259
10.1103/PhysRevLett.57.2861
10.1073/pnas.84.7.1896
10.1016/j.neuron.2009.02.005
10.1038/ncomms15415
10.1162/089976698300017214
10.1016/B978-0-444-53839-0.00012-0
10.1523/JNEUROSCI.1831-12.2012
10.1038/nn.2439
10.1016/j.neuroimage.2016.11.052
10.1016/j.neuron.2008.12.012
10.1103/PhysRevLett.118.258101
10.1126/science.1179850
ContentType Journal Article
Copyright 2018 Landau, Sompolinsky. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 Landau, Sompolinsky 2018 Landau, Sompolinsky
Copyright_xml – notice: 2018 Landau, Sompolinsky. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 Landau, Sompolinsky 2018 Landau, Sompolinsky
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1006309
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
DocumentTitleAlternate Coherent chaos in a recurrent neural network with structured connectivity
EISSN 1553-7358
ExternalDocumentID 2250637439
oai_doaj_org_article_870e224ca3d9465dbc9bca68f421003c
PMC6307850
30543634
10_1371_journal_pcbi_1006309
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Jerusalem Israel
Israel
GeographicLocations_xml – name: Israel
– name: Jerusalem Israel
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: U19 NS104653
– fundername: ;
– fundername: ;
  grantid: 1U19NS104653
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
3V.
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
-
AAPBV
ABPTK
ACDSR
ADACO
BBAFP
M~E
UMP
ID FETCH-LOGICAL-c526t-9b5b534f3aad19406c543aaa62ddd045066f3a7802bfaf335dc5e99d524d0b4e3
IEDL.DBID K7-
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454835100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7358
1553-734X
IngestDate Sun Jul 31 00:52:35 EDT 2022
Fri Oct 03 12:38:29 EDT 2025
Tue Nov 04 01:49:12 EST 2025
Thu Oct 02 04:07:00 EDT 2025
Sat Nov 29 15:01:38 EST 2025
Mon Jul 21 05:56:29 EDT 2025
Sat Nov 29 05:21:24 EST 2025
Tue Nov 18 21:32:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c526t-9b5b534f3aad19406c543aaa62ddd045066f3a7802bfaf335dc5e99d524d0b4e3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0002-7039-9761
OpenAccessLink https://www.proquest.com/docview/2250637439?pq-origsite=%requestingapplication%
PMID 30543634
PQID 2250637439
PQPubID 1436340
ParticipantIDs plos_journals_2250637439
doaj_primary_oai_doaj_org_article_870e224ca3d9465dbc9bca68f421003c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6307850
proquest_miscellaneous_2157652127
proquest_journals_2250637439
pubmed_primary_30543634
crossref_primary_10_1371_journal_pcbi_1006309
crossref_citationtrail_10_1371_journal_pcbi_1006309
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2018
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References R Darshan (ref18) 2017; 8
T Tao (ref22) 2013; 155
WR Softky (ref1) 1993; 13
H Sompolinsky (ref15) 1988; 61
A Renart (ref14) 2010; 327
K Rajan (ref21) 2006; 97
P Achermann (ref9) 2016; 3
M Stern (ref40) 2016
C van Vreeswijk (ref13) 1998; 10
MS Goldman (ref33) 2009; 61
AK Churchland (ref2) 2011; 69
TT Liu (ref11) 2017; 150
Ma Smith (ref4) 2008; 28
LN Trefethen (ref35) 2005
PL Nunez (ref8) 1999; 110
K Murphy (ref12) 2017; 154
G Hennequin (ref36) 2012; 86
MR Cohen (ref5) 2009; 12
ML Scholvinck (ref10) 2010; 107
BK Murphy (ref34) 2009; 61
LC Garcia Del Molino (ref20) 2013; 88
Y Luz (ref27) 2012; 8
D Sussillo (ref23) 2013; 25
TP Vogels (ref26) 2011; 334
T Hayakawa (ref29) 2018; 1
M Volgushev (ref3) 2011; 193
ID Landau (ref28) 2016; 92
Y Ahmadian (ref37) 2015; 91
M Okun (ref7) 2015
J Kadmon (ref19) 2015; 5
E Ullner (ref30) 2018
A Rivkind (ref38) 2017; 118
R Rosenbaum (ref17) 2016; 20
R Darshan (ref31) 2018
M Okun (ref6) 2012; 32
B Tirozzi (ref16) 1991; 14
DW Tank (ref25) 1987; 84
F Mastrogiuseppe (ref39) 2018; 99
H Sompolinsky (ref24) 1986; 57
S Ganguli (ref32) 2008; 105
References_xml – volume: 14
  start-page: 727
  issue: 8
  year: 1991
  ident: ref16
  article-title: Chaos in highly diluted neural networks
  publication-title: EPL (Europhysics Letters)
  doi: 10.1209/0295-5075/14/8/001
– year: 2005
  ident: ref35
  article-title: Spectra and pseudospectra: the behavior of nonnormal matrices and operators
  doi: 10.1515/9780691213101
– year: 2018
  ident: ref31
  article-title: Strength of correlations in strongly recurrent neural networks
  publication-title: Physical Review X
– volume: 150
  start-page: 213
  issue: February
  year: 2017
  ident: ref11
  article-title: The global signal in fMRI: Nuisance or Information?
  publication-title: NeuroImage
– volume: 86
  start-page: 1
  issue: 1
  year: 2012
  ident: ref36
  article-title: Non-normal amplification in random balanced neuronal networks
  publication-title: Physical Review E—Statistical, Nonlinear, and Soft Matter Physics
– volume: 3
  start-page: 160201
  issue: 10
  year: 2016
  ident: ref9
  article-title: Global field synchronization reveals rapid eye movement sleep as most synchronized brain state in the human EEG
  publication-title: Royal Society Open Science
  doi: 10.1098/rsos.160201
– volume: 334
  start-page: 1569
  issue: 6062
  year: 2011
  ident: ref26
  article-title: Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks
  publication-title: Science (New York, NY)
  doi: 10.1126/science.1211095
– volume: 13
  start-page: 334
  issue: 1
  year: 1993
  ident: ref1
  article-title: The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs
  publication-title: The Journal of neuroscience: the official journal of the Society for Neuroscience
  doi: 10.1523/JNEUROSCI.13-01-00334.1993
– volume: 8
  start-page: e1002334
  issue: 1
  year: 2012
  ident: ref27
  article-title: Balancing feed-forward excitation and inhibition via Hebbian inhibitory synaptic plasticity
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1002334
– volume: 105
  start-page: 18970
  issue: 48
  year: 2008
  ident: ref32
  article-title: Memory traces in dynamical systems
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0804451105
– volume: 107
  start-page: 10238
  issue: 22
  year: 2010
  ident: ref10
  article-title: Neural basis of global resting-state fMRI activity
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0913110107
– volume: 97
  start-page: 188104
  issue: 18
  year: 2006
  ident: ref21
  article-title: Eigenvalue Spectra of Random Matrices for Neural Networks
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.97.188104
– volume: 155
  start-page: 231
  issue: 1-2
  year: 2013
  ident: ref22
  article-title: Outliers in the spectrum of iid matrices with bounded rank perturbations
  publication-title: Probability Theory and Related Fields
  doi: 10.1007/s00440-011-0397-9
– volume: 1
  start-page: 1
  year: 2018
  ident: ref29
  article-title: Spontaneous and stimulus-induced coherent states of dynamically balanced neuronal networks
  publication-title: arXiv
– volume: 110
  start-page: 469
  year: 1999
  ident: ref8
  article-title: EEG coherency II: Experimental comparison of multiple measures
  publication-title: Electroenceaphlogr Clin Neurophysiol
  doi: 10.1016/S1388-2457(98)00043-1
– volume: 5
  start-page: 1
  issue: 4
  year: 2015
  ident: ref19
  article-title: Transition to chaos in random neuronal networks
  publication-title: Physical Review X
  doi: 10.1103/PhysRevX.5.041030
– volume: 99
  start-page: 609
  issue: 3
  year: 2018
  ident: ref39
  article-title: Linking connectivity, dynamics and computations in recurrent neural networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.07.003
– year: 2016
  ident: ref40
  article-title: Dynamics of rate-model networks with seperate excitatory and inhibitory populations
  publication-title: The annual meeting of the Society for Neuroscience
– volume: 92
  year: 2016
  ident: ref28
  article-title: The Impact of Structural Heterogeneity on Excitation-Inhibition Balance in Cortical Networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.10.027
– volume: 69
  start-page: 818
  issue: 4
  year: 2011
  ident: ref2
  article-title: Variance as a Signature of Neural Computations during Decision Making
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.12.037
– volume: 28
  start-page: 12591
  issue: 48
  year: 2008
  ident: ref4
  article-title: Spatial and temporal scales of neuronal correlation in primary visual cortex
  publication-title: The Journal of neuroscience: the official journal of the Society for Neuroscience
  doi: 10.1523/JNEUROSCI.2929-08.2008
– volume: 25
  start-page: 626
  issue: 3
  year: 2013
  ident: ref23
  article-title: Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks
  publication-title: Neural computation
  doi: 10.1162/NECO_a_00409
– volume: 61
  start-page: 259
  issue: 3
  year: 1988
  ident: ref15
  article-title: Chaos in random neural networks
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.61.259
– volume: 57
  start-page: 2861
  issue: 22
  year: 1986
  ident: ref24
  article-title: Temporal association in asymmetric neural networks
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.57.2861
– volume: 84
  start-page: 1896
  issue: April
  year: 1987
  ident: ref25
  article-title: Neural computation by concentrating information in time
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.84.7.1896
– volume: 61
  start-page: 635
  issue: 4
  year: 2009
  ident: ref34
  article-title: Balanced Amplification: A New Mechanism of Selective Amplification of Neural Activity Patterns
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.02.005
– year: 2015
  ident: ref7
  article-title: Diverse coupling of neurons to populations in sensory cortex
  publication-title: Nature
– volume: 8
  start-page: 15415
  issue: May
  year: 2017
  ident: ref18
  article-title: A canonical neural mechanism for behavioral variability
  publication-title: Nature Communications
  doi: 10.1038/ncomms15415
– volume: 88
  start-page: 1
  issue: 4
  year: 2013
  ident: ref20
  article-title: Synchronization in random balanced networks
  publication-title: Physical Review E—Statistical, Nonlinear, and Soft Matter Physics
– volume: 10
  start-page: 1321
  issue: 6
  year: 1998
  ident: ref13
  article-title: Chaotic balanced state in a model of cortical circuits
  publication-title: Neural computation
  doi: 10.1162/089976698300017214
– volume: 193
  start-page: 181
  year: 2011
  ident: ref3
  article-title: Long-range correlation of the membrane potential in neocortical neurons during slow oscillation
  publication-title: Progress in Brain Research
  doi: 10.1016/B978-0-444-53839-0.00012-0
– volume: 32
  start-page: 17108
  issue: 48
  year: 2012
  ident: ref6
  article-title: Population Rate Dynamics and Multineuron Firing Patterns in Sensory Cortex
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.1831-12.2012
– year: 2018
  ident: ref30
  article-title: Collective irregular dynamics in balanced networks of leaky integrate-and-fire neurons
  publication-title: Chaos
– volume: 12
  start-page: 1594
  issue: 12
  year: 2009
  ident: ref5
  article-title: Attention improves performance primarily by reducing interneuronal correlations
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.2439
– volume: 154
  start-page: 169
  year: 2017
  ident: ref12
  article-title: Towards a consensus regarding global signal regression for resting state functional connectivity MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.11.052
– volume: 61
  start-page: 621
  issue: 4
  year: 2009
  ident: ref33
  article-title: Memory without Feedback in a Neural Network
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.12.012
– volume: 118
  start-page: 1
  issue: 25
  year: 2017
  ident: ref38
  article-title: Local Dynamics in Trained Recurrent Neural Networks
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.118.258101
– volume: 20
  start-page: 1
  issue: October
  year: 2016
  ident: ref17
  article-title: The spatial structure of correlated neuronal variability
  publication-title: Nature Neuroscience
– volume: 91
  start-page: 1
  issue: 1
  year: 2015
  ident: ref37
  article-title: Properties of networks with partially structured and partially random connectivity
  publication-title: Physical Review E—Statistical, Nonlinear, and Soft Matter Physics
– volume: 327
  start-page: 587
  issue: January
  year: 2010
  ident: ref14
  article-title: The Asynchronous State in Cortical Circuits
  publication-title: Science (New York, NY)
  doi: 10.1126/science.1179850
SSID ssj0035896
Score 2.5076623
Snippet We present a simple model for coherent, spatially correlated chaos in a recurrent neural network. Networks of randomly connected neurons exhibit chaotic...
SourceID plos
doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1006309
SubjectTerms Biology and Life Sciences
Broken symmetry
Coherence
Computer and Information Sciences
Computer Simulation - statistics & numerical data
Constraints
Dynamics
Eigenvalues
Feedback loops
Fluctuations
Medicine and Health Sciences
Memory
Models, Neurological
Neocortex
Neural networks
Neural Networks, Computer
Neurons
Neurons - physiology
Neurosciences
Nonlinear Dynamics
Orthogonality
Phase transitions
Physical Sciences
Physics
Recurrent neural networks
Research and Analysis Methods
Scaling
Size effects
Standard deviation
Switching theory
Theory
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB-kKPgifndrlQi-xu5tkk3yqGKxUIoPCve2JJMsPSh75a4V_O87s9k77qTQF99CvnZnMklmkslvAD4lR6ZJ71DqPmapfdIyJO1knXXbUEqZMD4UPrcXF24-9z93Qn2xT1iBBy6MOyF5yrTNYFDJ69akiD5iaF2vyVipFfLqS1rPxpgqa7AybozMxUFxpFV6Pj2aU3Z2Mo3R52uMC_YRaBU7I-5sSiN2P2OdXi3X9-md_7pP7uxHp8_h2aRIii-FgBfwKA8v4UkJLfn3FZzxuwtGXhJ4GZZrsRhEECs-XB8zGcaSWg_FCVzwaawoULK3q5wEsvsLlsASr-H36fdf337IKWyCRNO0N9JHE43SvQohzTxt2Gg0pUPbpJRIgyMlg8qsq5vYh14pk9Bk75NpdKqjzuoNHAzLIR-C6MkY0sbOcg5Ro8dgg0Xqva990yRVV6A2fOtwwhTn0BZX3XhRZsm2KNzomNvdxO0K5LbVdcHUeKD-Vx6SbV1GxB4zSE66SU66h-SkgkMe0M0H1h0tZNQ722MVHG8G-f7ij9timnt8oRKGvLylOjOy1vjxs63gbZGJ7U_SOqpVq3QFdk9a9qjYLxkWlyO-N9FsnamP_gfZ7-ApqXiuOOAcwwFJUn4Pj_HPzWK9-jBOmjsa7h3e
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB-kVfDFb9u1VSL4urq3-do8tuKhUEofFPq2JJMsPSh75bYV_O-d2eydXmkR38LmY5PJJJnJzPwC8CE2pJp0DZaqC6lULqrSR9WUVVKmppTUfgwUPrGnp835uTv7oyjesuBLO_s00fTjFYYF2_SN5Hi93Voawy5c87OT9c4rdePMFB53X82t42dE6WdU08vlcJeEedtR8q-TZ_70f_v8DJ5MMqY4ykzxHB6k_gU8yq9O_qLU6PWJw0v4xsEZDM8k8MIvB7HohRcrvoEfPzLWJbXTZ09xwVe2IuPN3qxSFMg-Mphfn3gFP-Zfvn_-Wk5vK5Soa3NduqCDlqqT3seZo1MdtaK0N3WMkcQ8kkQozzZVHTrfSakj6uRc1LWKVVBJvoadftmnfRAdaUxK21lKPih06K23SK13lavrKKsC5JrkLU7A4_z-xWU7WtMsKSCZLi2Tq53IVUC5qXWVgTf-Uf6YZ3NTlmGzxw80L-20ClvanBLJLOhldMroGNAF9KbpFGm-lcQC9pkX1j8YWtrtqHVW2go4XPPH3dnvN9m0QNnq4vu0vKEyM1LpOELaFrCX2WnTSdpslTRSFWC3GG1rFNs5_eJiBAGnMdtGV2_u7_EBPCbprsm-N4ewQ_yR3sJD_Hm9GFbvxpXzG9Y9Gw0
  priority: 102
  providerName: Public Library of Science
Title Coherent chaos in a recurrent neural network with structured connectivity
URI https://www.ncbi.nlm.nih.gov/pubmed/30543634
https://www.proquest.com/docview/2250637439
https://www.proquest.com/docview/2157652127
https://pubmed.ncbi.nlm.nih.gov/PMC6307850
https://doaj.org/article/870e224ca3d9465dbc9bca68f421003c
http://dx.doi.org/10.1371/journal.pcbi.1006309
Volume 14
WOSCitedRecordID wos000454835100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: P5Z
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M7P
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: K7-
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: PIMPY
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: FPL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfYBhIvfMMKoyoSr2FtkzTtE2JoJybGqUIgHbxUaZKyk6b2uG5I_PfYaXvs0AQPvERRk36kdhzbcX4GeGlzNE2a3DDR1I6JwgqmrchZ7ESWYo1L7Q8Kn6r5PF8sinJ0uPVjWOUkE72gtp0hH_kh8h2upqQ-v159Z5Q1inZXxxQaO7CXpGlCfP5esUkSc5n7_FyUGocpLhbj0TmuksORUq9Wpl5SpEDGKSTxytLkEfwJ8fS866_TPv8MoryyKs3u_u947sGdUR-N3gwMdB9uuPYB3BoyVP7Emo8QNf1DOKGDHATlFJkz3fXRso10tCZvvb9IuJj4nHaIKo_IvRsN2LSXa2cjQ_E0ZshU8Qg-z44_vX3HxjwMzMg0u2BFLWvJRcO1tkmBGoCRAus6S621qBKi1oJtKo_TutEN59Ia6YrCylTYuBaOP4bdtmvdPkQNWldCqsQ5XQtTGK20Mvj0Ji7S1PI4AD6RoDIjSDnlyjiv_M6bQmNl-C8VEa4aCRcA29y1GkA6_tH_iKi76UsQ2_5Ct_5WjTO2QkHmUL8xmttCZNLWpqiNzvJGoJUccxPAPvHG9IK--k3RAA4mml_f_GLTjJOZdmh067pL7JOg-UenqVUATwb22nwkCmbBMy4CUFuMtzWK7ZZ2eeYBw3HMKpfx079_1jO4jdpgPsTqHMAu8oh7DjfNj4tlvw5hRy2UL_MQ9o6O5-XH0DswsJyVp6GfeSGFzpZYlvIr9ipPPpRffgEWgTeo
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb2iggJHgGJqN7Tg5IMSr6qrLikOR9hYc26ErVcmyaUH9U_xGZuxk6aIKTj1ws2KvN04-zyOemQ_guc3RNalzE4u6crEorIi1FXmcOJGl2OJS-0ThiZpO89ms-LQBP4dcGAqrHGSiF9S2NfSNfAdxh9qUzOfXi28xsUbR6epAoRFgse9Of6DL1r0av8f3-yJNdz8cvNuLe1aB2Mg0O46LSlaSi5prbdGDTzIjBbZ1llpr0cBBHYx9Kk_SqtY159Ia6YrCylTYpBKO47yX4DLKcUUhZGq2cvC4zD0fGFHxxIqLWZ-qx9Vop0fGy4Wp5hSZkHEKgTyjCj1jAFVYPWq786zdP4M2z2jB3Zv_2_O7BTd6e5u9CRvkNmy45g5cDQycp9jyEbCmuwtjSlShUlXMHOq2Y_OGabak0wh_kep-4jxNiJpn9Pmahdq7J0tnmaF4IROYOO7B5wtZ0X3YbNrGbQGr0XsUUo2c05UwhdFKK4Oz10mRppYnEfDhlZemL8JOXCBHpT9ZVOiMhedSElDKHigRxKtfLUIRkn-Mf0toWo2lEuL-Qrv8WvYSqURB7dB-M5rbQmTSVqaojM7yWqQ4DTcRbBEWhz_oyt8IimB7wNj53c9W3Sis6ARKN649wTEjdG8pW1xF8CDAeXWTqHgEz7iIQK0BfW0V6z3N_NAXRMc1q1wmD_9-W0_h2t7Bx0k5GU_3H8F1tHzzEJe0DZuIF_cYrpjvx_Nu-cTvagZfLnob_AJ3JYxm
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hCX8qYpBYIEx7DZ2I6TQ1UBZcWq1WoPIK24BMd26EpVsmxaUP8av44ZO1m6qIJTD9ys2OuNk8_ziGfmA3hpMnRNqkxHvCptxHPDI2V4FsWWpwm2mFAuUfhITibZbJZPN-BnnwtDYZW9THSC2jSavpEPEHeoTcl8HlRdWMT0YLS_-BYRgxSdtPZ0Gh4ih_b8B7pv7d74AN_1qyQZvf_47kPUMQxEWiTpaZSXohSMV0wpg958nGrBsa3SxBiDxg7qY-yTWZyUlaoYE0YLm-dGJNzEJbcM570G1yX6mOT4TcXnXgswkTluMKLliSTjsy5tj8nhoEPJ64Uu5xSlkDIKh7ygFh17AFVbPWnayyzfPwM4L2jE0Z3_-Vneha3ODg_f-I1zDzZsfR9uembOc2y5yFjdPoAxJbBQCatQH6umDed1qMIlnVK4i1QPFOepfTR9SJ-1Q1-T92xpTagpjkh7ho6H8OlKVvQINuumttsQVuhVciGH1qqS61wrqaTG2as4TxLD4gBY__oL3RVnJ46Qk8KdOEp00vxzKQg0RQeaAKLVrxa-OMk_xr8lZK3GUmlxd6FZfi06SVWgALdo12nFTM5TYUqdl1qlWcUTnIbpALYJl_0ftMVvNAWw2-Pt8u4Xq24UYnQypWrbnOGYIbq9lEUuA3jsob26SVRInKWMByDXQL-2ivWeen7sCqXjmmUm4p2_39ZzuIXoL47Gk8MncBsN4syHK-3CJsLFPoUb-vvpvF0-cxs8hC9XvQt-AYcglVk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coherent+chaos+in+a+recurrent+neural+network+with+structured+connectivity&rft.jtitle=PLoS+computational+biology&rft.au=Landau%2C+Itamar+Daniel&rft.au=Sompolinsky%2C+Haim&rft.date=2018-12-01&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=14&rft.issue=12&rft_id=info:doi/10.1371%2Fjournal.pcbi.1006309&rft_id=info%3Apmid%2F30543634&rft.externalDocID=PMC6307850
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon