Likelihood Inference for Large Scale Stochastic Blockmodels With Covariates Based on a Divide-and-Conquer Parallelizable Algorithm With Communication

We consider a stochastic blockmodel equipped with node covariate information, that is, helpful in analyzing social network data. The key objective is to obtain maximum likelihood estimates of the model parameters. For this task, we devise a fast, scalable Monte Carlo EM type algorithm based on case-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and graphical statistics Jg. 28; H. 3; S. 609 - 619
Hauptverfasser: Roy, Sandipan, Atchadé, Yves, Michailidis, George
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Taylor & Francis 03.07.2019
American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America
Taylor & Francis Ltd
Schlagworte:
ISSN:1061-8600, 1537-2715
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!