Likelihood Inference for Large Scale Stochastic Blockmodels With Covariates Based on a Divide-and-Conquer Parallelizable Algorithm With Communication
We consider a stochastic blockmodel equipped with node covariate information, that is, helpful in analyzing social network data. The key objective is to obtain maximum likelihood estimates of the model parameters. For this task, we devise a fast, scalable Monte Carlo EM type algorithm based on case-...
Gespeichert in:
| Veröffentlicht in: | Journal of computational and graphical statistics Jg. 28; H. 3; S. 609 - 619 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Taylor & Francis
03.07.2019
American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 1061-8600, 1537-2715 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!