Likelihood Inference for Large Scale Stochastic Blockmodels With Covariates Based on a Divide-and-Conquer Parallelizable Algorithm With Communication

We consider a stochastic blockmodel equipped with node covariate information, that is, helpful in analyzing social network data. The key objective is to obtain maximum likelihood estimates of the model parameters. For this task, we devise a fast, scalable Monte Carlo EM type algorithm based on case-...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational and graphical statistics Ročník 28; číslo 3; s. 609 - 619
Hlavní autori: Roy, Sandipan, Atchadé, Yves, Michailidis, George
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Taylor & Francis 03.07.2019
American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America
Taylor & Francis Ltd
Predmet:
ISSN:1061-8600, 1537-2715
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We consider a stochastic blockmodel equipped with node covariate information, that is, helpful in analyzing social network data. The key objective is to obtain maximum likelihood estimates of the model parameters. For this task, we devise a fast, scalable Monte Carlo EM type algorithm based on case-control approximation of the log-likelihood coupled with a subsampling approach. A key feature of the proposed algorithm is its parallelizability, by processing portions of the data on several cores, while leveraging communication of key statistics across the cores during each iteration of the algorithm. The performance of the algorithm is evaluated on synthetic datasets and compared with competing methods for blockmodel parameter estimation. We also illustrate the model on data from a Facebook derived social network enhanced with node covariate information. Supplemental materials for this article are available online.
AbstractList We consider a stochastic blockmodel equipped with node covariate information, that is, helpful in analyzing social network data. The key objective is to obtain maximum likelihood estimates of the model parameters. For this task, we devise a fast, scalable Monte Carlo EM type algorithm based on case-control approximation of the log-likelihood coupled with a subsampling approach. A key feature of the proposed algorithm is its parallelizability, by processing portions of the data on several cores, while leveraging communication of key statistics across the cores during each iteration of the algorithm. The performance of the algorithm is evaluated on synthetic datasets and compared with competing methods for blockmodel parameter estimation. We also illustrate the model on data from a Facebook derived social network enhanced with node covariate information. Supplemental materials for this article are available online.
We consider a stochastic blockmodel equipped with node covariate information, that is helpful in analyzing social network data. The key objective is to obtain maximum likelihood estimates of the model parameters. For this task, we devise a fast, scalable Monte Carlo EM type algorithm based on case-control approximation of the log-likelihood coupled with a subsampling approach. A key feature of the proposed algorithm is its parallelizability, by processing portions of the data on several cores, while leveraging communication of key statistics across the cores during each iteration of the algorithm. The performance of the algorithm is evaluated on synthetic data sets and compared with competing methods for blockmodel parameter estimation. We also illustrate the model on data from a Facebook derived social network enhanced with node covariate information.
We consider a stochastic blockmodel equipped with node covariate information, that is helpful in analyzing social network data. The key objective is to obtain maximum likelihood estimates of the model parameters. For this task, we devise a fast, scalable Monte Carlo EM type algorithm based on case-control approximation of the log-likelihood coupled with a subsampling approach. A key feature of the proposed algorithm is its parallelizability, by processing portions of the data on several cores, while leveraging communication of key statistics across the cores during each iteration of the algorithm. The performance of the algorithm is evaluated on synthetic data sets and compared with competing methods for blockmodel parameter estimation. We also illustrate the model on data from a Facebook derived social network enhanced with node covariate information.We consider a stochastic blockmodel equipped with node covariate information, that is helpful in analyzing social network data. The key objective is to obtain maximum likelihood estimates of the model parameters. For this task, we devise a fast, scalable Monte Carlo EM type algorithm based on case-control approximation of the log-likelihood coupled with a subsampling approach. A key feature of the proposed algorithm is its parallelizability, by processing portions of the data on several cores, while leveraging communication of key statistics across the cores during each iteration of the algorithm. The performance of the algorithm is evaluated on synthetic data sets and compared with competing methods for blockmodel parameter estimation. We also illustrate the model on data from a Facebook derived social network enhanced with node covariate information.
Author Atchadé, Yves
Roy, Sandipan
Michailidis, George
Author_xml – sequence: 1
  givenname: Sandipan
  surname: Roy
  fullname: Roy, Sandipan
  email: sandipan@umich.edu
  organization: Department of Statistical Science, University College London
– sequence: 2
  givenname: Yves
  surname: Atchadé
  fullname: Atchadé, Yves
  organization: Department of Statistics, University of Michigan
– sequence: 3
  givenname: George
  surname: Michailidis
  fullname: Michailidis, George
  organization: Department of Statistics & Informatics Institute, University of Florida
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31595140$$D View this record in MEDLINE/PubMed
BookMark eNqFktuKFDEQhhtZcQ_6CEpABG96TNKddAZB3B1PCwMKKl6GSjo9k9l0siaZlfU9fF8zzsyy7oXeJIF89Vf9VXVcHfjgTVU9JnhCsMAvCOZEcIwnFBMxIYy1reD3qiPCmq6mHWEH5V2YegMdVscprTDGhE-7B9VhQ9iUkRYfVb_m9sI4uwyhR-d-MNF4bdAQIppDXBj0WYMrZw56CSlbjc5c0Bdj6I1L6JvNSzQLVxAtZJPQGSTTo-ARoDf2yvamBt_Xs-C_r01EnyCCcyXZT1BF89QtQiwC415mHNfeasg2-IfV_QFcMo9290n19d3bL7MP9fzj-_PZ6bzWjPJcC6EpVYYSPW216inAAEopTqD0AoumU30LBrdCY4W14Er1pqHTYTCYA6amOalebXUv12o0vTY-lxrlZbQjxGsZwMq_f7xdykW4krwThFNeBJ7vBGIoJlOWo03aOAfehHWStMHNZkBkgz69g67COvpiT1I6JYQ2rGkL9eR2RTel7CdWALYFdAwpRTPcIATLzWbI_WbITWK524wS9_JOnLb5T7OLMev-G_1sG71KOcTbKYvDTraMEtGyrnCvt5z1ZYdG-BGi62WGaxfiEMFrm4qVf6b6DfHo3_U
CitedBy_id crossref_primary_10_1007_s13171_020_00231_2
crossref_primary_10_1007_s10530_023_03122_3
crossref_primary_10_1007_s11336_023_09926_5
crossref_primary_10_1007_s41109_022_00528_1
crossref_primary_10_1002_cjs_70012
crossref_primary_10_1080_07350015_2022_2139709
crossref_primary_10_1109_TNSE_2022_3177708
Cites_doi 10.1016/0378-8733(83)90021-7
10.1137/08073038X
10.1016/j.physrep.2009.11.002
10.1214/11-AOS887
10.1080/10618600.2017.1349663
10.1080/10618600.2012.679240
10.1111/j.1467-985X.2007.00471.x
10.1137/1.9781611972757.25
10.1198/016214501753208735
10.1080/01621459.1996.10476660
10.1073/pnas.122653799
10.1093/biomet/asr053
10.1198/016214504000001015
10.1080/00222500590889703
10.1109/TAC.2011.2161027
10.1016/j.physa.2011.12.021
10.1214/13-AOS1138
10.1214/10-AOAS361
10.1007/s003579900004
10.1007/s10957-010-9737-7
10.1214/ss/1028905934
10.1214/14-AOS1220
10.1109/TAC.2008.2009515
10.1080/01621459.1990.10474930
10.1103/PhysRevE.84.066106
10.1198/016214502388618906
10.1016/j.csda.2012.08.004
ContentType Journal Article
Copyright 2019 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2019
2019 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America
2019 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Copyright_xml – notice: 2019 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2019
– notice: 2019 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America
– notice: 2019 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
DBID AAYXX
CITATION
NPM
JQ2
7X8
5PM
DOI 10.1080/10618600.2018.1554486
DatabaseName CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList ProQuest Computer Science Collection

PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 619
ExternalDocumentID PMC6781626
31595140
10_1080_10618600_2018_1554486
45218457
1554486
Genre Article
Journal Article
GrantInformation_xml – fundername: NSF
  grantid: DMS-1228164; DMS 1513040; DMS-1228164; DMS-1545277; IIS-1632730
– fundername: NIH
  grantid: 5R01GM114029-02
– fundername: NIGMS NIH HHS
  grantid: R01 GM114029
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
2AX
30N
4.4
5GY
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABQDR
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
ADODI
ADXHL
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFRVT
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HQ6
HZ~
H~P
IPNFZ
IPSME
J.P
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
UT5
UU3
WZA
XWC
ZGOLN
~S~
AAYXX
CITATION
07G
29K
AAIKQ
AAKBW
AAKYL
ABXSQ
ACAGQ
ACDIW
ACGEE
ADULT
ADYSH
AELPN
AEUMN
AGCQS
AGLEN
AGROQ
AHMOU
AIHAF
ALCKM
AMATQ
AMEWO
AMXXU
BCCOT
BHOJU
BPLKW
C06
CRFIH
D-I
DMQIW
DWIFK
FEDTE
GIFXF
HGD
HVGLF
IAO
IEA
IGG
IGS
IOF
IVXBP
JSODD
NPM
NUSFT
QCRFL
RNS
TAQ
TFMCV
TOXWX
UB9
Z5M
JQ2
7X8
5PM
ID FETCH-LOGICAL-c526t-88c22be21c94cbd2aafabbb61a4860837bd4ae048c0b0c86bbde329ffe06a02e3
IEDL.DBID TFW
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000486201600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1061-8600
IngestDate Tue Nov 04 01:51:32 EST 2025
Fri Sep 05 08:13:43 EDT 2025
Mon Nov 10 02:50:19 EST 2025
Wed Feb 19 02:31:30 EST 2025
Sat Nov 29 03:24:17 EST 2025
Tue Nov 18 21:41:10 EST 2025
Tue Nov 11 03:03:30 EST 2025
Mon Oct 20 23:48:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords social network
case-control approximation
Monte-Carlo EM
parallel computation with communication
subsampling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c526t-88c22be21c94cbd2aafabbb61a4860837bd4ae048c0b0c86bbde329ffe06a02e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://figshare.com/articles/dataset/Likelihood_Inference_for_Large_Scale_Stochastic_Blockmodels_with_Covariates_based_on_a_Divide-and-Conquer_Parallelizable_Algorithm_with_Communication/7480892
PMID 31595140
PQID 2291123534
PQPubID 29738
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6781626
informaworld_taylorfrancis_310_1080_10618600_2018_1554486
crossref_citationtrail_10_1080_10618600_2018_1554486
crossref_primary_10_1080_10618600_2018_1554486
proquest_miscellaneous_2303201816
pubmed_primary_31595140
jstor_primary_10_2307_45218457
proquest_journals_2291123534
PublicationCentury 2000
PublicationDate 2019-07-03
PublicationDateYYYYMMDD 2019-07-03
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Journal of computational and graphical statistics
PublicationTitleAlternate J Comput Graph Stat
PublicationYear 2019
Publisher Taylor & Francis
American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America
– name: Taylor & Francis Ltd
References Hoff P. D (CIT0016) 2015; 1506
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
Zhang Y. (CIT0039) 2013; 14
Dekel O. (CIT0008) 2012; 13
Ma Z. (CIT0021) 2017; 1705
CIT0014
CIT0013
CIT0035
Breslow N. E. (CIT0005) 1982; 24
CIT0038
CIT0015
CIT0037
CIT0018
CIT0017
CIT0019
CIT0020
CIT0023
CIT0022
Von Luxburg U. (CIT0036) 2010; 2
Recht B. (CIT0029) 2011
Robert C. (CIT0030) 2013
Mcdonald R. (CIT0024) 2009
Airoldi E. M. (CIT0002) 2008; 9
CIT0003
CIT0025
CIT0027
CIT0004
CIT0026
CIT0007
Zinkevich M. (CIT0040) 2010
CIT0006
CIT0028
Agarwal A. (CIT0001) 2011
CIT0009
References_xml – ident: CIT0018
  doi: 10.1016/0378-8733(83)90021-7
– ident: CIT0019
  doi: 10.1137/08073038X
– ident: CIT0011
  doi: 10.1016/j.physrep.2009.11.002
– start-page: 693
  year: 2011
  ident: CIT0029
  publication-title: in Advances in Neural Information Processing Systems
– volume: 9
  start-page: 1981
  year: 2008
  ident: CIT0002
  publication-title: Journal of Machine Learning Research
– volume: 1705
  start-page: 02372
  year: 2017
  ident: CIT0021
  publication-title: arXiv preprint arXiv
– start-page: 873
  year: 2011
  ident: CIT0001
  publication-title: in Advances in Neural Information Processing Systems
– ident: CIT0031
  doi: 10.1214/11-AOS887
– ident: CIT0020
  doi: 10.1080/10618600.2017.1349663
– ident: CIT0027
  doi: 10.1080/10618600.2012.679240
– ident: CIT0023
– ident: CIT0014
  doi: 10.1111/j.1467-985X.2007.00471.x
– start-page: 1231
  year: 2009
  ident: CIT0024
  publication-title: in Advances in Neural Information Processing Systems
– ident: CIT0038
  doi: 10.1137/1.9781611972757.25
– ident: CIT0026
  doi: 10.1198/016214501753208735
– ident: CIT0004
  doi: 10.1080/01621459.1996.10476660
– ident: CIT0013
  doi: 10.1073/pnas.122653799
– volume-title: Monte Carlo Statistical Methods
  year: 2013
  ident: CIT0030
– ident: CIT0006
  doi: 10.1093/biomet/asr053
– volume: 24
  start-page: 255
  year: 1982
  ident: CIT0005
  publication-title: Journal of Occupational and Environmental Medicine
– ident: CIT0015
  doi: 10.1198/016214504000001015
– ident: CIT0034
  doi: 10.1080/00222500590889703
– ident: CIT0009
  doi: 10.1109/TAC.2011.2161027
– ident: CIT0035
  doi: 10.1016/j.physa.2011.12.021
– ident: CIT0003
  doi: 10.1214/13-AOS1138
– ident: CIT0022
  doi: 10.1214/10-AOAS361
– start-page: 2595
  year: 2010
  ident: CIT0040
  publication-title: in Advances in Neural Information Processing Systems
– volume: 13
  start-page: 165
  year: 2012
  ident: CIT0008
  publication-title: The Journal of Machine Learning Research
– ident: CIT0033
  doi: 10.1007/s003579900004
– ident: CIT0028
  doi: 10.1007/s10957-010-9737-7
– volume: 2
  start-page: 235
  year: 2010
  ident: CIT0036
  publication-title: Foundations and Trends[textregistered] in Machine Learning
– ident: CIT0012
  doi: 10.1214/ss/1028905934
– ident: CIT0010
  doi: 10.1214/14-AOS1220
– volume: 14
  start-page: 3321
  year: 2013
  ident: CIT0039
  publication-title: Journal of Machine Learning Research
– volume: 1506
  start-page: 08237
  year: 2015
  ident: CIT0016
  publication-title: arXiv preprint arXiv
– ident: CIT0025
  doi: 10.1109/TAC.2008.2009515
– ident: CIT0037
  doi: 10.1080/01621459.1990.10474930
– ident: CIT0007
  doi: 10.1103/PhysRevE.84.066106
– ident: CIT0017
  doi: 10.1198/016214502388618906
– ident: CIT0032
  doi: 10.1016/j.csda.2012.08.004
SSID ssj0001697
Score 2.330778
Snippet We consider a stochastic blockmodel equipped with node covariate information, that is, helpful in analyzing social network data. The key objective is to obtain...
We consider a stochastic blockmodel equipped with node covariate information, that is helpful in analyzing social network data. The key objective is to obtain...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 609
SubjectTerms Algorithms
Case-control approximation
Computer simulation
Iterative methods
Mathematical models
Maximum likelihood estimates
Monte Carlo EM
Multivariate, Multilevel, and Mixture Modelling
Parallel computation with communication
Parallel processing
Parameter estimation
Social network
Social networks
Subsampling
Title Likelihood Inference for Large Scale Stochastic Blockmodels With Covariates Based on a Divide-and-Conquer Parallelizable Algorithm With Communication
URI https://www.tandfonline.com/doi/abs/10.1080/10618600.2018.1554486
https://www.jstor.org/stable/45218457
https://www.ncbi.nlm.nih.gov/pubmed/31595140
https://www.proquest.com/docview/2291123534
https://www.proquest.com/docview/2303201816
https://pubmed.ncbi.nlm.nih.gov/PMC6781626
Volume 28
WOSCitedRecordID wos000486201600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1537-2715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001697
  issn: 1061-8600
  databaseCode: TFW
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4lAOPMorUFZG4pqSOE5iH9uFFUilqkRR92bZjs2uuiQoSftP-L_M5KVdBOoBLpGiZMZyPJlH8vkbQt564Y0x3IeRBhfI88KHUucy5K6wRZ4Zb2XfbCI_OxPLpTwf0ITNAKvEGtr3RBGdr8aXW5tmRMS9wypGQKBGYJY4woDIBZJuQ2aPoL6LxeXki-OhvQpIhCgy7uH5m5ad6LTDXTriFf-Uif4OqNyKUIuH_2Fuj8iDIT2lx709PSZ3XHlA7n-euF2bA7KP-WlP7_yE_DxdX7nNGrmR6adx7yCF-dBThJjTL2ACcGwru9IoQk8geF517XcaerluV3Re3UC5jhkvPYGIWtCqpJq-x11iLoRphPOqhOdQ03NdY9-XDoYGOo8336oaFHwf1WxtdHlKvi4-XMw_hkOnh9CmLGtDISxjxrHYSm5NwbT2GkwoizX2yIIa2hRcO3A2NjKRFZkxhUuY9N5FmY6YS56RvbIq3QtCeey0K3jqhOFcRt5w57V3sdXY2SaVAeHjCis70KBjN46Nige21HEJFC6BGpYgIEeT2I-eB-Q2AbltPqrtPsD4vluKSm6RnXW2tj0SAvYVT7EiT_OAHI5GqAaf0yjGIHCxJE14QN5Ml8Fb4C8gXbrqukEtCY4UwxjPe5udBkkgs4X0OQpIvmPN0w3IRL57pVyvOkZyyHhiqIxf_sOcX5F9OJUdEjo5JHttfe1ek3v2Biy6npG7-VLMunf7F5f1S-w
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagIFEOPMorUIqRuKYkjvPwsV1YtWK7QmJRe7Nsx2ZXXRKUTftP-L_M5KUsAvUAl714ZyyvJ_PIznwfIe9c5rTW3PmBAhfI09z5QqXC5zY3eZpoZ0RLNpHO59nFhRjPwmBbJdbQrgWKaHw1Ptz4MrpviXuPZUwGkRo7s7JDjIg8S26TO8hOhwXYYno-eOOwI1gBER9l-imev6nZik9b6KV9x-KfctHfWypHMWr68H-c7hF50GWo9Kg1qcfkli32yP2zAd51s0d2MUVtEZ6fkJ-z1aVdrxAemZ7244MUDkRn2GVOv4AVwGddmqVCEXoM8fOyYeDZ0PNVvaST8hoqdkx66TEE1ZyWBVX0Aw6KWR_O4U_KAn6Iin5WFVK_NJ1ooPNo_a2sQMH3Xs1o1uUp-Tr9uJic-B3Zg29iltR-lhnGtGWhEdzonCnlFFhREiqkyYIyWudcWfA3JtCByRKtcxsx4ZwNEhUwGz0jO0VZ2BeE8tAqm_PYZppzETjNrVPOhkYhuU0sPML7K5amQ0JHQo61DDvA1P4KJF6B7K7AI4eD2I8WCuQmATG2H1k372BcS5gioxtkDxpjG--EPfuSx1iUx6lH9nsrlJ3b2UjGIHaxKI64R94Oy-Aw8F8gVdjyaoNaItwphD2et0Y7bBJBcgsZdOCRdMuchy8gGPn2SrFaNqDkkPSEUBy__IczvyH3ThZnMzk7nX96RXZhSTSN0dE-2amrK_ua3DXXYN3VQfOI_wKCPE8n
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgIDQeuAzYAmMYiddsieNc_Lh1VEyUqhJD25tlOzatVpIpzfZP-L-ck5taBNoDvPTFPbZcfzmX9PN3CPngMqe15s4PFLhAnubOFyoVPre5ydNEOyPaZhPpdJpdXopZxyZcdbRKrKFdKxTR-Gp8uK9z1zPijrCKySBQIzErO8SAyLPkPnkAqXOMwD4fXwzOOOz6q4CJjzb9JZ6_TbMRnjbES3vC4p9S0d8ZlWshavz0P2zuGXnS5af0uAXUc3LPFjvk8ZdB3HW1Q7YxQW31nV-Qn5PFlV0uUByZnvWXBynsh06QY06_Agbgsy7NXKEJPYHoedX031nRi0U9p6PyFup1THnpCYTUnJYFVfQUr4lZH7bhj8oCfoeKzlSFjV8aHhrMebz8XlYwwY9-mrWbLi_Jt_HH89Env2v14JuYJbWfZYYxbVloBDc6Z0o5BRhKQoVNsqCI1jlXFryNCXRgskTr3EZMOGeDRAXMRq_IVlEWdo9QHlplcx7bTHMuAqe5dcrZ0ChsbRMLj_D-hKXpdNCxHcdShp1can8EEo9AdkfgkcPB7LoVArnLQKzDR9bNGxjXtkuR0R22Bw3W1ldCxr7kMZbkceqR_R6EsnM6K8kYRC4WxRH3yPthGNwF_gekClverHCWCFcKYY3dFrPDIhGktpA_Bx5JN9A8fAGlyDdHisW8kSSHlCeE0vj1P-z5HXk0Ox3Lydn08xuyDSOiYUVH-2Srrm7sW_LQ3AK4q4PmAf8FU2lN2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Likelihood+Inference+for+Large+Scale+Stochastic+Blockmodels+With+Covariates+Based+on+a+Divide-and-Conquer+Parallelizable+Algorithm+With+Communication&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Roy%2C+Sandipan&rft.au=Atchad%C3%A9%2C+Yves&rft.au=Michailidis%2C+George&rft.date=2019-07-03&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=28&rft.issue=3&rft.spage=609&rft.epage=619&rft_id=info:doi/10.1080%2F10618600.2018.1554486&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10618600_2018_1554486
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon