Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses

Horizontal integration of summary statistics from different GWAS traits can be used to evaluate evidence for their shared genetic causality. One popular method to do this is a Bayesian method, coloc, which is attractive in requiring only GWAS summary statistics and no linkage disequilibrium estimate...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:PLoS genetics Ročník 16; číslo 4; s. e1008720
Hlavný autor: Wallace, Chris
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Public Library of Science 01.04.2020
Public Library of Science (PLoS)
Predmet:
ISSN:1553-7404, 1553-7390, 1553-7404
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Horizontal integration of summary statistics from different GWAS traits can be used to evaluate evidence for their shared genetic causality. One popular method to do this is a Bayesian method, coloc, which is attractive in requiring only GWAS summary statistics and no linkage disequilibrium estimates and is now being used routinely to perform thousands of comparisons between traits. Here we show that while most users do not adjust default software values, misspecification of prior parameters can substantially alter posterior inference. We suggest data driven methods to derive sensible prior values, and demonstrate how sensitivity analysis can be used to assess robustness of posterior inference. The flexibility of coloc comes at the expense of an unrealistic assumption of a single causal variant per trait. This assumption can be relaxed by stepwise conditioning, but this requires external software and an LD matrix aligned to study alleles. We have now implemented conditioning within coloc, and propose a new alternative method, masking, that does not require LD and approximates conditioning when causal variants are independent. Importantly, masking can be used in combination with conditioning where allelically aligned LD estimates are available for only a single trait. We have implemented these developments in a new version of coloc which we hope will enable more informed choice of priors and overcome the restriction of the single causal variant assumptions in coloc analysis.
AbstractList Horizontal integration of summary statistics from different GWAS traits can be used to evaluate evidence for their shared genetic causality. One popular method to do this is a Bayesian method, coloc, which is attractive in requiring only GWAS summary statistics and no linkage disequilibrium estimates and is now being used routinely to perform thousands of comparisons between traits. Here we show that while most users do not adjust default software values, misspecification of prior parameters can substantially alter posterior inference. We suggest data driven methods to derive sensible prior values, and demonstrate how sensitivity analysis can be used to assess robustness of posterior inference. The flexibility of coloc comes at the expense of an unrealistic assumption of a single causal variant per trait. This assumption can be relaxed by stepwise conditioning, but this requires external software and an LD matrix aligned to study alleles. We have now implemented conditioning within coloc, and propose a new alternative method, masking, that does not require LD and approximates conditioning when causal variants are independent. Importantly, masking can be used in combination with conditioning where allelically aligned LD estimates are available for only a single trait. We have implemented these developments in a new version of coloc which we hope will enable more informed choice of priors and overcome the restriction of the single causal variant assumptions in coloc analysis.Horizontal integration of summary statistics from different GWAS traits can be used to evaluate evidence for their shared genetic causality. One popular method to do this is a Bayesian method, coloc, which is attractive in requiring only GWAS summary statistics and no linkage disequilibrium estimates and is now being used routinely to perform thousands of comparisons between traits. Here we show that while most users do not adjust default software values, misspecification of prior parameters can substantially alter posterior inference. We suggest data driven methods to derive sensible prior values, and demonstrate how sensitivity analysis can be used to assess robustness of posterior inference. The flexibility of coloc comes at the expense of an unrealistic assumption of a single causal variant per trait. This assumption can be relaxed by stepwise conditioning, but this requires external software and an LD matrix aligned to study alleles. We have now implemented conditioning within coloc, and propose a new alternative method, masking, that does not require LD and approximates conditioning when causal variants are independent. Importantly, masking can be used in combination with conditioning where allelically aligned LD estimates are available for only a single trait. We have implemented these developments in a new version of coloc which we hope will enable more informed choice of priors and overcome the restriction of the single causal variant assumptions in coloc analysis.
Horizontal integration of summary statistics from different GWAS traits can be used to evaluate evidence for their shared genetic causality. One popular method to do this is a Bayesian method, coloc, which is attractive in requiring only GWAS summary statistics and no linkage disequilibrium estimates and is now being used routinely to perform thousands of comparisons between traits. Here we show that while most users do not adjust default software values, misspecification of prior parameters can substantially alter posterior inference. We suggest data driven methods to derive sensible prior values, and demonstrate how sensitivity analysis can be used to assess robustness of posterior inference. The flexibility of coloc comes at the expense of an unrealistic assumption of a single causal variant per trait. This assumption can be relaxed by stepwise conditioning, but this requires external software and an LD matrix aligned to study alleles. We have now implemented conditioning within coloc, and propose a new alternative method, masking, that does not require LD and approximates conditioning when causal variants are independent. Importantly, masking can be used in combination with conditioning where allelically aligned LD estimates are available for only a single trait. We have implemented these developments in a new version of coloc which we hope will enable more informed choice of priors and overcome the restriction of the single causal variant assumptions in coloc analysis.
Horizontal integration of summary statistics from different GWAS traits can be used to evaluate evidence for their shared genetic causality. One popular method to do this is a Bayesian method, coloc, which is attractive in requiring only GWAS summary statistics and no linkage disequilibrium estimates and is now being used routinely to perform thousands of comparisons between traits. Here we show that while most users do not adjust default software values, misspecification of prior parameters can substantially alter posterior inference. We suggest data driven methods to derive sensible prior values, and demonstrate how sensitivity analysis can be used to assess robustness of posterior inference. The flexibility of coloc comes at the expense of an unrealistic assumption of a single causal variant per trait. This assumption can be relaxed by stepwise conditioning, but this requires external software and an LD matrix aligned to study alleles. We have now implemented conditioning within coloc, and propose a new alternative method, masking, that does not require LD and approximates conditioning when causal variants are independent. Importantly, masking can be used in combination with conditioning where allelically aligned LD estimates are available for only a single trait. We have implemented these developments in a new version of coloc which we hope will enable more informed choice of priors and overcome the restriction of the single causal variant assumptions in coloc analysis. Determining whether two traits share a genetic cause can be helpful to identify mechanisms underlying genetically-influenced risk of disease or other traits. One method for doing this is “coloc”, which updates prior knowledge about the chance of two traits sharing a causal variant with observed genetic association data in a Bayesian statistical framework. To do this using only summary genetic association data that is commonly shared, the method makes certain assumptions, in particular about the number of genetic causal variants that may underlie each measured trait in a genomic region. We walk through several data-driven approaches to summarise the prior knowledge required for this technique, and propose sensitivity analysis as a means of checking that inference is robust to uncertainty about that prior knowledge. We also show how the assumptions about number of causal variants in a region may be relaxed, and that this improves inferential accuracy.
Author Wallace, Chris
AuthorAffiliation Cambridge Institute for Therapeutic Immunology & Infectious Disease, and MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
Emory University, UNITED STATES
AuthorAffiliation_xml – name: Cambridge Institute for Therapeutic Immunology & Infectious Disease, and MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
– name: Emory University, UNITED STATES
Author_xml – sequence: 1
  givenname: Chris
  orcidid: 0000-0001-9755-1703
  surname: Wallace
  fullname: Wallace, Chris
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32310995$$D View this record in MEDLINE/PubMed
BookMark eNp9Ul1rFDEUDVKxH_oPRAd88WXXfE4SHwQpVQsFX_RRwp1MZpslm6zJTLH_3uzutLRFfMrl5tyTc3LPKTqKKTqEXhO8JEySD-s05QhhuV25uCQYK0nxM3RChGALyTE_elAfo9NS1hgzobR8gY4ZZQRrLU7Qr4vgrR99XDXb7FMuDcS-yS7An11vvHZNqUVwjYWpQGhuIHuIYwOlTJvt6FNsfGxsCslC8AX2HajCbosrL9HzAUJxr-bzDP38cvHj_Nvi6vvXy_PPVwsraDsuJGvBCdVr1irKNFcOSOss7tTALemElZR3nGrF6SBaToSSgnQKK0dVqx1mZ-jtgXcbUjHzzxRDOWZScq53iMsDok-wNtXqBvKtSeDNvpHyykAevQ3OCN0yAv2geac4Yxh6NjAJGhwMmDJWuT7Nr03dxvXWxTFDeET6-Cb6a7NKN0YSTQXRleD9TJDT78mV0Wx8sS4EiC5NVTfTDPO6N1qh755A_-3uzUNF91Lu9lwB_ACwOZWS3XAPIdjs4nRHa3ZxMnOc6tjHJ2M1K_sVV18-_H_4L4hY0-0
CitedBy_id crossref_primary_10_1016_j_pnpbp_2025_111369
crossref_primary_10_1038_s44161_024_00545_6
crossref_primary_10_1097_j_pain_0000000000002728
crossref_primary_10_1371_journal_pgen_1009455
crossref_primary_10_1016_j_ajhg_2024_05_018
crossref_primary_10_1016_j_jad_2025_120306
crossref_primary_10_1038_s41467_024_49109_z
crossref_primary_10_3389_fendo_2024_1325939
crossref_primary_10_1038_s41540_024_00350_8
crossref_primary_10_1038_s41588_023_01343_9
crossref_primary_10_1016_j_neuroimage_2023_120346
crossref_primary_10_1016_j_atherosclerosis_2022_11_006
crossref_primary_10_3390_nu14061218
crossref_primary_10_1111_ceo_14440
crossref_primary_10_1007_s00223_021_00817_4
crossref_primary_10_1186_s13098_025_01928_w
crossref_primary_10_1038_s41467_023_36678_8
crossref_primary_10_1038_s42003_024_07417_6
crossref_primary_10_1016_j_nbas_2025_100147
crossref_primary_10_1038_s41591_021_01310_z
crossref_primary_10_1161_JAHA_124_037802
crossref_primary_10_1038_s41531_025_00933_0
crossref_primary_10_7554_eLife_92895
crossref_primary_10_1186_s12967_025_06099_w
crossref_primary_10_1186_s13073_024_01322_7
crossref_primary_10_1016_j_xgen_2025_100844
crossref_primary_10_1186_s13098_025_01878_3
crossref_primary_10_1038_s41588_021_00921_z
crossref_primary_10_1016_j_ebiom_2022_103901
crossref_primary_10_1053_j_gastro_2023_01_028
crossref_primary_10_1161_ATVBAHA_124_320674
crossref_primary_10_1371_journal_pgen_1009440
crossref_primary_10_1161_ATVBAHA_123_320274
crossref_primary_10_1371_journal_pgen_1011631
crossref_primary_10_1016_j_pan_2025_08_014
crossref_primary_10_1002_oby_23604
crossref_primary_10_3390_biomedicines13040885
crossref_primary_10_1007_s00125_021_05428_0
crossref_primary_10_1111_jcpp_13866
crossref_primary_10_1038_s41588_021_00955_3
crossref_primary_10_1016_j_bpsgos_2023_08_007
crossref_primary_10_1161_JAHA_123_030661
crossref_primary_10_1038_s41588_021_00785_3
crossref_primary_10_1016_j_ajhg_2021_11_017
crossref_primary_10_3389_fgene_2023_1243879
crossref_primary_10_1002_1873_3468_14884
crossref_primary_10_1038_s41416_025_03170_7
crossref_primary_10_1186_s12859_021_04170_z
crossref_primary_10_1038_s41588_023_01377_z
crossref_primary_10_1038_s43586_021_00092_5
crossref_primary_10_1016_j_biopsych_2025_01_007
crossref_primary_10_1038_s41588_022_01286_7
crossref_primary_10_1007_s12672_025_01978_6
crossref_primary_10_1016_j_cyto_2024_156700
crossref_primary_10_1038_s41588_021_00924_w
crossref_primary_10_3389_fpsyt_2024_1456182
crossref_primary_10_1186_s12864_025_11620_y
crossref_primary_10_7554_eLife_92895_3
crossref_primary_10_1016_j_jad_2024_03_107
crossref_primary_10_1146_annurev_biodatasci_122120_010010
crossref_primary_10_1007_s00401_022_02454_z
crossref_primary_10_3390_biomedicines13030622
crossref_primary_10_3390_ijms241914982
crossref_primary_10_1016_j_ebiom_2025_105580
crossref_primary_10_1186_s13059_021_02454_4
crossref_primary_10_1371_journal_pgen_1011697
crossref_primary_10_1161_CIRCRESAHA_122_321692
crossref_primary_10_1038_s41598_025_92210_6
crossref_primary_10_3389_fnins_2025_1466278
crossref_primary_10_1016_j_ebiom_2024_105341
crossref_primary_10_1186_s12888_025_06899_w
crossref_primary_10_1093_hmg_ddab088
crossref_primary_10_7554_eLife_88768
crossref_primary_10_1016_j_pnpbp_2024_111172
crossref_primary_10_1186_s12967_025_06317_5
crossref_primary_10_1161_ATVBAHA_124_321988
crossref_primary_10_1126_science_abk0637
crossref_primary_10_1038_s42003_025_08738_w
crossref_primary_10_1016_j_ajhg_2022_08_004
crossref_primary_10_1016_j_ebiom_2024_105232
crossref_primary_10_1093_hmg_ddac061
crossref_primary_10_1002_jbmr_4491
crossref_primary_10_1371_journal_pgen_1011561
crossref_primary_10_1038_s41562_025_02145_1
crossref_primary_10_1038_s41588_024_01720_y
crossref_primary_10_1186_s13062_025_00631_0
crossref_primary_10_1016_j_metabol_2024_155994
crossref_primary_10_1136_thorax_2022_219158
crossref_primary_10_1038_s41588_024_01934_0
crossref_primary_10_1038_s41588_024_01668_z
crossref_primary_10_1038_s41380_024_02447_2
crossref_primary_10_1161_JAHA_123_034132
crossref_primary_10_1038_s41467_023_44380_y
crossref_primary_10_1016_j_xgen_2025_100810
crossref_primary_10_1038_s41588_022_01066_3
crossref_primary_10_1016_j_identj_2025_100934
crossref_primary_10_3390_ijms26083578
crossref_primary_10_1038_s41588_025_02189_z
crossref_primary_10_1186_s10194_025_02075_3
crossref_primary_10_7554_eLife_79834
crossref_primary_10_1302_2046_3758_143_BJR_2024_0251_R1
crossref_primary_10_1016_j_ijbiomac_2025_144380
crossref_primary_10_1681_ASN_0000000768
crossref_primary_10_1161_CIRCRESAHA_122_321586
crossref_primary_10_1038_s41598_022_24611_w
crossref_primary_10_1038_s42003_025_08615_6
crossref_primary_10_1038_s41380_025_02977_3
crossref_primary_10_14814_phy2_70513
crossref_primary_10_3389_fpsyt_2024_1464396
crossref_primary_10_1016_j_compbiolchem_2025_108422
crossref_primary_10_1007_s11427_023_2522_8
crossref_primary_10_1002_humu_24417
crossref_primary_10_2337_db24_1162
crossref_primary_10_1016_j_ajhg_2023_11_013
crossref_primary_10_2174_0113816128349101250102113613
crossref_primary_10_1038_s42003_023_04611_w
crossref_primary_10_3389_fnagi_2024_1377719
crossref_primary_10_12968_hmed_2025_0067
crossref_primary_10_1038_s41467_024_46064_7
crossref_primary_10_1038_s41467_024_47805_4
crossref_primary_10_3390_genes15010071
crossref_primary_10_1016_j_ajhg_2021_05_015
crossref_primary_10_1038_s43588_025_00852_3
crossref_primary_10_1186_s13059_020_02113_0
crossref_primary_10_1038_s41588_022_01115_x
crossref_primary_10_1186_s12916_023_02903_w
crossref_primary_10_2337_db24_0262
crossref_primary_10_1016_j_isci_2024_111693
crossref_primary_10_1038_s41392_023_01465_w
crossref_primary_10_1210_clinem_dgac758
crossref_primary_10_1038_s41467_021_25731_z
crossref_primary_10_1016_j_ajhg_2020_11_012
crossref_primary_10_1016_j_jvssci_2025_100290
crossref_primary_10_1161_JAHA_124_038857
crossref_primary_10_1021_acs_est_5c01573
crossref_primary_10_1016_j_ajo_2025_03_007
crossref_primary_10_1038_s41467_023_41876_5
crossref_primary_10_1038_s41467_022_34732_5
crossref_primary_10_1038_s41467_020_18716_x
crossref_primary_10_1016_j_omtn_2025_102633
crossref_primary_10_1093_hmg_ddaf059
crossref_primary_10_1038_s41598_021_90365_6
crossref_primary_10_1038_s41598_021_93346_x
crossref_primary_10_1093_postmj_qgae105
crossref_primary_10_1158_1055_9965_EPI_25_0165
crossref_primary_10_3389_fmed_2024_1445853
crossref_primary_10_1186_s13073_021_00866_2
crossref_primary_10_3390_cells10092395
crossref_primary_10_1038_s41588_023_01300_6
crossref_primary_10_1186_s12916_020_01883_5
crossref_primary_10_1126_sciimmunol_abm2508
crossref_primary_10_1371_journal_pgen_1011599
crossref_primary_10_1186_s12967_022_03799_5
crossref_primary_10_1016_j_ebiom_2024_105168
crossref_primary_10_1038_s41467_022_31626_4
crossref_primary_10_1093_jbmr_zjae082
crossref_primary_10_1038_s41388_025_03338_8
crossref_primary_10_1038_s41588_024_01982_6
crossref_primary_10_1183_23120541_00291_2023
crossref_primary_10_1038_s41467_025_60487_w
crossref_primary_10_1038_s41398_024_02932_w
crossref_primary_10_1038_s41467_021_26888_3
crossref_primary_10_7554_eLife_88768_3
crossref_primary_10_1038_s41588_025_02156_8
crossref_primary_10_3390_cells11091468
crossref_primary_10_1038_s41467_024_49990_8
crossref_primary_10_1002_alz_14501
crossref_primary_10_1186_s12967_023_04737_9
crossref_primary_10_1080_21678421_2024_2407408
crossref_primary_10_1111_1756_185X_70334
crossref_primary_10_1038_s41431_021_00835_8
crossref_primary_10_1126_science_abf8683
crossref_primary_10_1007_s11883_022_01078_8
crossref_primary_10_1093_bioadv_vbae206
crossref_primary_10_1016_j_ajhg_2022_04_001
crossref_primary_10_1016_j_jinf_2024_106262
crossref_primary_10_1182_bloodadvances_2022008793
crossref_primary_10_1038_s41467_021_24051_6
crossref_primary_10_3389_fimmu_2024_1277720
crossref_primary_10_1093_ehjopen_oeae043
crossref_primary_10_1016_j_ajhg_2024_04_010
crossref_primary_10_2147_IJWH_S522635
crossref_primary_10_1093_ije_dyae175
crossref_primary_10_1016_j_biopsych_2022_03_001
crossref_primary_10_1136_gutjnl_2023_330784
crossref_primary_10_1038_s41598_024_62069_0
crossref_primary_10_7554_eLife_83118
crossref_primary_10_1002_cncr_35391
crossref_primary_10_1038_s41467_023_37729_w
crossref_primary_10_1016_j_jad_2024_08_202
crossref_primary_10_1371_journal_pgen_1009525
crossref_primary_10_1002_ehf2_14026
crossref_primary_10_1038_s41467_022_30875_7
crossref_primary_10_1038_s41398_024_03196_0
crossref_primary_10_3389_fphar_2024_1403943
crossref_primary_10_1146_annurev_biodatasci_122120_024910
crossref_primary_10_3389_fimmu_2023_1240517
crossref_primary_10_1186_s12888_024_06392_w
crossref_primary_10_1186_s12967_024_04994_2
crossref_primary_10_3389_fgene_2022_905716
crossref_primary_10_1186_s13073_025_01472_2
crossref_primary_10_1186_s13098_024_01573_9
crossref_primary_10_1038_s41386_023_01542_2
crossref_primary_10_1097_GOX_0000000000007028
crossref_primary_10_1111_cns_70132
crossref_primary_10_1172_JCI173160
crossref_primary_10_1093_brain_awac414
crossref_primary_10_1093_hmg_ddae172
crossref_primary_10_1016_j_ebiom_2024_105537
crossref_primary_10_1038_s41598_024_57966_3
crossref_primary_10_1038_s44325_025_00073_7
crossref_primary_10_1038_s41467_021_27850_z
crossref_primary_10_1038_s41598_025_86222_5
crossref_primary_10_1093_cvr_cvae161
crossref_primary_10_1038_s41467_020_20885_8
crossref_primary_10_3390_ijms25115981
crossref_primary_10_1111_jcmm_18127
crossref_primary_10_3390_biom14050563
Cites_doi 10.1371/journal.pgen.1007458
10.1038/s41598-018-27145-2
10.1038/s41467-018-03260-6
10.1038/ng.3538
10.1371/journal.pgen.1000167
10.1038/nature24277
10.1016/j.ajhg.2018.04.011
10.1038/s41467-018-05379-y
10.1038/s41467-018-04951-w
10.1111/jcpp.12295
10.1016/j.ajhg.2017.08.012
10.1002/gepi.20359
10.1186/s13073-018-0558-x
10.1093/hmg/ddy091
10.1016/j.ajhg.2018.03.021
10.7554/eLife.34408
10.1016/j.ajhg.2015.05.016
10.1093/bioinformatics/bty147
10.1038/s41467-018-05369-0
10.1371/journal.pgen.1007607
10.1016/j.cell.2017.05.038
10.1038/s41586-018-0175-2
10.1038/ng.3330
10.1016/j.ajhg.2017.06.005
10.1073/pnas.1318948111
10.1016/j.jclinepi.2009.06.003
10.1038/ng.3211
10.1038/ng.3506
10.1038/ng.2435
10.1016/j.ajhg.2016.10.003
10.1038/s41588-018-0046-7
10.1093/ije/dyg070
10.1038/ng.3570
10.1371/journal.pmed.0050052
10.1038/s41467-018-03209-9
10.1093/gbe/evx121
10.1038/s41598-018-25065-9
10.1164/rccm.201707-1434OC
10.1038/s41588-018-0092-1
10.1038/s41588-018-0322-6
10.7554/eLife.33480
10.1186/s13073-018-0527-4
10.1093/ibd/izx084
10.1093/hmg/ddy001
10.1016/j.schres.2018.04.006
10.1093/hmg/ddv077
10.1093/nar/gky1120
10.1093/bioinformatics/btv546
10.1371/journal.pgen.1004383
10.1002/jbmr.3412
10.1016/j.chom.2018.07.007
10.1038/s41467-018-05512-x
10.3945/ajcn.115.118216
10.1038/s41467-018-03621-1
ContentType Journal Article
Copyright 2020 Chris Wallace. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Chris Wallace 2020 Chris Wallace
Copyright_xml – notice: 2020 Chris Wallace. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Chris Wallace 2020 Chris Wallace
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7SS
7TK
7TM
7TO
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1008720
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Priors and multiple causal variants in coloc
EISSN 1553-7404
ExternalDocumentID 2403774490
oai_doaj_org_article_59631adf94b84330ad3f37a9aeaf0233
PMC7192519
32310995
10_1371_journal_pgen_1008720
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_UU_00002/4
– fundername: Wellcome Trust
– fundername: NHGRI NIH HHS
  grantid: U41 HG007823
– fundername: Wellcome Trust
  grantid: WT107881
– fundername: Medical Research Council
  grantid: MC UU 00002/4
– fundername: ;
  grantid: WT107881
– fundername: ;
  grantid: MC UU 00002/4
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFFHD
AFKRA
AFPKN
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
3V.
7QP
7QR
7SS
7TK
7TM
7TO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
-
AAPBV
ABPTK
ADACO
BBAFP
M~E
ID FETCH-LOGICAL-c526t-736ae58d936823948ea16ec0b8f4c1b5c724b429842f564158751b808e2869e03
IEDL.DBID FPL
ISICitedReferencesCount 247
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000531363700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7404
1553-7390
IngestDate Fri Nov 26 17:17:36 EST 2021
Fri Oct 03 12:21:53 EDT 2025
Tue Nov 04 01:42:08 EST 2025
Sun Nov 09 11:10:42 EST 2025
Sat Nov 29 14:26:16 EST 2025
Mon Jul 21 06:06:24 EDT 2025
Sat Nov 29 04:25:05 EST 2025
Tue Nov 18 22:28:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c526t-736ae58d936823948ea16ec0b8f4c1b5c724b429842f564158751b808e2869e03
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0001-9755-1703
OpenAccessLink http://dx.doi.org/10.1371/journal.pgen.1008720
PMID 32310995
PQID 2403774490
PQPubID 1436339
ParticipantIDs plos_journals_2403774490
doaj_primary_oai_doaj_org_article_59631adf94b84330ad3f37a9aeaf0233
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7192519
proquest_miscellaneous_2393044042
proquest_journals_2403774490
pubmed_primary_32310995
crossref_primary_10_1371_journal_pgen_1008720
crossref_citationtrail_10_1371_journal_pgen_1008720
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References A Gusev (pgen.1008720.ref024) 2018; 50
C Giambartolomei (pgen.1008720.ref010) 2014; 10
H Guo (pgen.1008720.ref052) 2015; 24
PM Visscher (pgen.1008720.ref047) 2017; 101
Schizophrenia Working Group of the Psychiatric Genomics Consortium (pgen.1008720.ref002) 2018; 102
EA Boyle (pgen.1008720.ref007) 2017; 169
MD Fortune (pgen.1008720.ref011) 2015
GD Smith (pgen.1008720.ref008) 2003; 32
Z Zhu (pgen.1008720.ref009) 2016; 48
M Lamontagne (pgen.1008720.ref029) 2018; 27
C Benner (pgen.1008720.ref058) 2017; 101
G Hemani (pgen.1008720.ref006) 2018; 7
T Berisa (pgen.1008720.ref057) 2016; 32
DA Knowlest (pgen.1008720.ref028) 2018; 7
A Gusev (pgen.1008720.ref016) 2016; 48
L Wang (pgen.1008720.ref037) 2018; 24
Genetic Investigation of ANthropometric Traits (GIANT) Consortium (pgen.1008720.ref019) 2012; 44
Wellcome Trust Case Control Consortium (pgen.1008720.ref015) 2012; 44
T James (pgen.1008720.ref027) 2018; 27
AC Richard (pgen.1008720.ref034) 2018; 14
M Kellis (pgen.1008720.ref049) 2014; 111
T Hirata (pgen.1008720.ref026) 2018; 8
S Theriault (pgen.1008720.ref036) 2018; 9
AN Barbeira (pgen.1008720.ref020) 2018; 9
A Xue (pgen.1008720.ref039) 2018; 9
JD Morrow (pgen.1008720.ref032) 2018; 197
AB Wyss (pgen.1008720.ref038) 2018; 9
J Bryois (pgen.1008720.ref022) 2018; 9
BH Mullin (pgen.1008720.ref033) 2018; 33
A Buniello (pgen.1008720.ref046) 2019; 47
SR Johnson (pgen.1008720.ref051) 2010; 63
D Graur (pgen.1008720.ref048) 2017; 9
N Homer (pgen.1008720.ref018) 2008; 4
S Venkateswaran (pgen.1008720.ref040) 2018; 24
R Gray (pgen.1008720.ref003) 1991; 7
C Giambartolomei (pgen.1008720.ref012) 2018; 34
PC Haycock (pgen.1008720.ref005) 2016; 103
J Wakefield (pgen.1008720.ref014) 2009; 33
C Yao (pgen.1008720.ref042) 2018; 9
F Aguet (pgen.1008720.ref045) 2017; 550
A Mo (pgen.1008720.ref031) 2018; 10
C Endo (pgen.1008720.ref023) 2018; 8
V Iotchkova (pgen.1008720.ref055) 2019; 51
JK Pickrell (pgen.1008720.ref050) 2016; 48
OG Bhalala (pgen.1008720.ref021) 2018; 14
K Alasoo (pgen.1008720.ref043) 2018; 50
F Hormozdiari (pgen.1008720.ref017) 2016; 99
L Bossini-Castillo (pgen.1008720.ref053) 2019
E Hannon (pgen.1008720.ref025) 2018; 10
G Trynka (pgen.1008720.ref054) 2015; 97
J Li (pgen.1008720.ref030) 2018; 199
Schizophrenia Working Group of the Psychiatric Genomics Consortium (pgen.1008720.ref001) 2015; 47
NR Wray (pgen.1008720.ref056) 2014; 55
BL Pierce (pgen.1008720.ref044) 2018; 9
A Dobbyn (pgen.1008720.ref041) 2018; 102
L Chen (pgen.1008720.ref004) 2008; 5
BB Sun (pgen.1008720.ref035) 2018; 558
CN Foley (pgen.1008720.ref013) 2019
References_xml – volume: 14
  start-page: e1007458
  issue: 9
  year: 2018
  ident: pgen.1008720.ref034
  article-title: Reduced monocyte and macrophage TNFSF15/TL1A expression is associated with susceptibility to inflammatory bowel disease
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1007458
– volume: 8
  start-page: 8974
  year: 2018
  ident: pgen.1008720.ref023
  article-title: Genome-wide association study in Japanese females identifies fifteen novel skin-related trait associations
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-27145-2
– volume: 9
  start-page: 988
  year: 2018
  ident: pgen.1008720.ref036
  article-title: A transcriptome-wide association study identifies PALMD as a susceptibility gene for calcific aortic valve stenosis
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03260-6
– volume: 48
  start-page: 481
  issue: 5
  year: 2016
  ident: pgen.1008720.ref009
  article-title: Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets
  publication-title: Nat Genet
  doi: 10.1038/ng.3538
– volume: 4
  start-page: e1000167
  issue: 8
  year: 2008
  ident: pgen.1008720.ref018
  article-title: Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000167
– volume: 550
  start-page: 204
  issue: 7675
  year: 2017
  ident: pgen.1008720.ref045
  article-title: Genetic effects on gene expression across human tissues
  publication-title: Nature
  doi: 10.1038/nature24277
– volume: 44
  start-page: 369S1
  issue: 4
  year: 2012
  ident: pgen.1008720.ref019
  article-title: Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits
  publication-title: Nat Genet
– volume: 102
  start-page: 1169
  issue: 6
  year: 2018
  ident: pgen.1008720.ref041
  article-title: Landscape of Conditional eQTL in Dorsolateral Prefrontal Cortex and Co-localization with Schizophrenia GWAS
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2018.04.011
– volume: 9
  start-page: 3121
  year: 2018
  ident: pgen.1008720.ref022
  article-title: Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05379-y
– volume: 9
  start-page: 2941
  year: 2018
  ident: pgen.1008720.ref039
  article-title: Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04951-w
– volume: 55
  start-page: 1068
  issue: 10
  year: 2014
  ident: pgen.1008720.ref056
  article-title: Research review: Polygenic methods and their application to psychiatric traits
  publication-title: J Child Psychol Psychiatry
  doi: 10.1111/jcpp.12295
– volume: 101
  start-page: 539
  issue: 4
  year: 2017
  ident: pgen.1008720.ref058
  article-title: Prospects of Fine-Mapping Trait-Associated Genomic Regions by Using Summary Statistics from Genome-wide Association Studies
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2017.08.012
– volume: 33
  start-page: 79
  issue: 1
  year: 2009
  ident: pgen.1008720.ref014
  article-title: Bayes factors for genome-wide association studies: comparison with P -values
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.20359
– volume: 10
  start-page: 48
  year: 2018
  ident: pgen.1008720.ref031
  article-title: Disease-specific regulation of gene expression in a comparative analysis of juvenile idiopathic arthritis and inflammatory bowel disease
  publication-title: Genome Med
  doi: 10.1186/s13073-018-0558-x
– year: 2019
  ident: pgen.1008720.ref013
  publication-title: A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits
– volume: 27
  start-page: 1819
  issue: 10
  year: 2018
  ident: pgen.1008720.ref029
  article-title: Leveraging lung tissue transcriptome to uncover candidate causal genes in COPD genetic associations
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddy091
– volume: 102
  start-page: 1185
  issue: 6
  year: 2018
  ident: pgen.1008720.ref002
  article-title: Estimation of Genetic Correlation via Linkage Disequilibrium Score Regression and Genomic Restricted Maximum Likelihood
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2018.03.021
– volume: 7
  start-page: e34408
  year: 2018
  ident: pgen.1008720.ref006
  article-title: The MR-Base platform supports systematic causal inference across the human phenome
  publication-title: Elife
  doi: 10.7554/eLife.34408
– volume: 97
  start-page: 139
  issue: 1
  year: 2015
  ident: pgen.1008720.ref054
  article-title: Disentangling the Effects of Colocalizing Genomic Annotations to Functionally Prioritize Non-coding Variants within Complex-Trait Loci
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2015.05.016
– volume: 34
  start-page: 2538
  issue: 15
  year: 2018
  ident: pgen.1008720.ref012
  article-title: A Bayesian framework for multiple trait colocalization from summary association statistics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty147
– volume: 9
  start-page: 2976
  year: 2018
  ident: pgen.1008720.ref038
  article-title: Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05369-0
– volume: 14
  start-page: e1007607
  issue: 8
  year: 2018
  ident: pgen.1008720.ref021
  article-title: Identification of expression quantitative trait loci associated with schizophrenia and affective disorders in normal brain tissue
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1007607
– volume: 169
  start-page: 1177
  issue: 7
  year: 2017
  ident: pgen.1008720.ref007
  article-title: An Expanded View of Complex Traits: From Polygenic to Omnigenic
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.038
– volume: 558
  start-page: 73
  issue: 7708
  year: 2018
  ident: pgen.1008720.ref035
  article-title: Genomic atlas of the human plasma proteome
  publication-title: Nature
  doi: 10.1038/s41586-018-0175-2
– start-page: 839
  year: 2015
  ident: pgen.1008720.ref011
  article-title: Statistical colocalization of genetic risk variants for related autoimmune diseases in the context of common controls
  publication-title: Nat Genet
  doi: 10.1038/ng.3330
– volume: 101
  start-page: 5
  issue: 1
  year: 2017
  ident: pgen.1008720.ref047
  article-title: 10 Years of GWAS Discovery: Biology, Function, and Translation
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2017.06.005
– volume: 111
  start-page: 6131
  issue: 17
  year: 2014
  ident: pgen.1008720.ref049
  article-title: Defining functional DNA elements in the human genome
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1318948111
– year: 2019
  ident: pgen.1008720.ref053
  publication-title: Immune disease variants modulate gene expression in regulatory CD4+ T cells and inform drug targets
– volume: 63
  start-page: 355
  issue: 4
  year: 2010
  ident: pgen.1008720.ref051
  article-title: Methods to elicit beliefs for Bayesian priors: a systematic review
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2009.06.003
– volume: 47
  start-page: 291
  issue: 3
  year: 2015
  ident: pgen.1008720.ref001
  article-title: LD Score regression distinguishes confounding from polygenicity in genome-wide association studies
  publication-title: Nat Genet
  doi: 10.1038/ng.3211
– volume: 48
  start-page: 245
  issue: 3
  year: 2016
  ident: pgen.1008720.ref016
  article-title: Integrative approaches for large-scale transcriptome-wide association studies
  publication-title: Nat Genet
  doi: 10.1038/ng.3506
– volume: 44
  start-page: 1294
  issue: 12
  year: 2012
  ident: pgen.1008720.ref015
  article-title: Bayesian refinement of association signals for 14 loci in 3 common diseases
  publication-title: Nat Genet
  doi: 10.1038/ng.2435
– volume: 99
  start-page: 1245
  issue: 6
  year: 2016
  ident: pgen.1008720.ref017
  article-title: Colocalization of GWAS and eQTL Signals Detects Target Genes
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2016.10.003
– volume: 50
  start-page: 424
  issue: 3
  year: 2018
  ident: pgen.1008720.ref043
  article-title: Shared genetic effects on chromatin and gene expression indicate a role for enhancer priming in immune response
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0046-7
– volume: 32
  start-page: 1
  issue: 1
  year: 2003
  ident: pgen.1008720.ref008
  article-title: ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease?
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyg070
– volume: 48
  start-page: 709
  issue: 7
  year: 2016
  ident: pgen.1008720.ref050
  article-title: Detection and interpretation of shared genetic influences on 42 human traits
  publication-title: Nat Genet
  doi: 10.1038/ng.3570
– volume: 5
  start-page: e52
  issue: 3
  year: 2008
  ident: pgen.1008720.ref004
  article-title: Alcohol intake and blood pressure: a systematic review implementing a Mendelian randomization approach
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.0050052
– volume: 9
  start-page: 804
  year: 2018
  ident: pgen.1008720.ref044
  article-title: Co-occurring expression and methylation QTLs allow detection of common causal variants and shared biological mechanisms
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03209-9
– volume: 9
  start-page: 1880
  issue: 7
  year: 2017
  ident: pgen.1008720.ref048
  article-title: An Upper Limit on the Functional Fraction of the Human Genome
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evx121
– volume: 8
  start-page: 8502
  year: 2018
  ident: pgen.1008720.ref026
  article-title: Japanese GWAS identifies variants for bust-size, dysmenorrhea, and menstrual fever that are eQTLs for relevant protein-coding or long non-coding RNAs
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-25065-9
– volume: 197
  start-page: 1275
  issue: 10
  year: 2018
  ident: pgen.1008720.ref032
  article-title: Human Lung DNA Methylation Quantitative Trait Loci Colocalize with Chronic Obstructive Pulmonary Disease Genome-Wide Association Loci
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201707-1434OC
– volume: 50
  start-page: 538
  issue: 4
  year: 2018
  ident: pgen.1008720.ref024
  article-title: Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0092-1
– volume: 51
  start-page: 343
  issue: 2
  year: 2019
  ident: pgen.1008720.ref055
  article-title: GARFIELD classifies disease-relevant genomic features through integration of functional annotations with association signals
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0322-6
– volume: 7
  start-page: e33480
  year: 2018
  ident: pgen.1008720.ref028
  article-title: Determining the genetic basis of anthracycline-cardiotoxicity by molecular response QTL mapping in induced cardiomyocytes
  publication-title: Elife
  doi: 10.7554/eLife.33480
– volume: 10
  year: 2018
  ident: pgen.1008720.ref025
  article-title: Elevated polygenic burden for autism is associated with differential DNA methylation at birth
  publication-title: Genome Med
  doi: 10.1186/s13073-018-0527-4
– volume: 24
  start-page: 829
  issue: 4
  year: 2018
  ident: pgen.1008720.ref040
  article-title: Enhanced Contribution of HLA in Pediatric Onset Ulcerative Colitis
  publication-title: Inflamm Bowel Dis
  doi: 10.1093/ibd/izx084
– volume: 7
  start-page: 9
  issue: Suppl 3
  year: 1991
  ident: pgen.1008720.ref003
  article-title: How to avoid bias when comparing bone marrow transplantation with chemotherapy
  publication-title: Bone Marrow Transplant
– volume: 27
  start-page: 912
  issue: 5
  year: 2018
  ident: pgen.1008720.ref027
  article-title: Impact of genetic risk loci for multiple sclerosis on expression of proximal genes in patients
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddy001
– volume: 199
  start-page: 203
  year: 2018
  ident: pgen.1008720.ref030
  article-title: Identifying the genetic risk factors for treatment response to lurasidone by genome-wide association study: A meta-analysis of samples from three independent clinical trials
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2018.04.006
– volume: 24
  start-page: 3305
  issue: 12
  year: 2015
  ident: pgen.1008720.ref052
  article-title: Integration of disease association and eQTL data using a Bayesian colocalisation approach highlights six candidate causal genes in immune-mediated diseases
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddv077
– volume: 47
  start-page: D1005
  issue: D1
  year: 2019
  ident: pgen.1008720.ref046
  article-title: The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1120
– volume: 32
  start-page: 283
  issue: 2
  year: 2016
  ident: pgen.1008720.ref057
  article-title: Approximately independent linkage disequilibrium blocks in human populations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv546
– volume: 10
  start-page: e1004383
  issue: 5
  year: 2014
  ident: pgen.1008720.ref010
  article-title: Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004383
– volume: 33
  start-page: 1044
  issue: 6
  year: 2018
  ident: pgen.1008720.ref033
  article-title: Expression Quantitative Trait Locus Study of Bone Mineral Density GWAS Variants in Human Osteoclasts
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.3412
– volume: 24
  start-page: 308
  issue: 2
  year: 2018
  ident: pgen.1008720.ref037
  article-title: An Atlas of Genetic Variation Linking Pathogen-Induced Cellular Traits to Human Disease
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2018.07.007
– volume: 9
  start-page: 3268
  year: 2018
  ident: pgen.1008720.ref042
  article-title: Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05512-x
– volume: 103
  start-page: 965
  year: 2016
  ident: pgen.1008720.ref005
  article-title: Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies
  publication-title: Am J Clin Nutr
  doi: 10.3945/ajcn.115.118216
– volume: 9
  start-page: 1825
  year: 2018
  ident: pgen.1008720.ref020
  article-title: Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03621-1
SSID ssj0035897
Score 2.6806302
Snippet Horizontal integration of summary statistics from different GWAS traits can be used to evaluate evidence for their shared genetic causality. One popular method...
SourceID plos
doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1008720
SubjectTerms Bayesian analysis
Biology and Life Sciences
Causality
Computer programs
Genome-Wide Association Study - methods
Genome-Wide Association Study - standards
Genomes
Humans
Hypotheses
Linkage Disequilibrium
Medicine and Health Sciences
Polymorphism, Single Nucleotide
Quantitative Trait Loci
Research and Analysis Methods
Sensitivity analysis
Software
Statistical analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ni9swEBVlaaGX0u9Nuy0q9Oqu9T06tmWXnpYeWthLMbIiU0NwQpws23_fGckJSVnYS6-WIlvzxpkZe_weYx9rL5PViWhDdVdpI6AKEKGyobNWRiliCFlswl1dwfW1_34g9UU9YYUeuBju3KCHiDDvvG5BY_Ed5qpTjjilQ4fxJvN8YtazK6bKf7AyUGRVjFGVw7J--mhOOXE-YfRphQBRjwA40vo-CEqZu5-4ThfL8a6889_2yYN4dPmUPZkSSf65bOAZe5CG5-xRkZb884L9ulj0saeeZr5a98v1yMMw5_Tlyi0dw7SP01OCReIxbEdc6AaLZrQyx2QaESa4eD9w4rSOxJGYAcQ1iMIkjS_Zz8uLH1-_VZOUQhWNtBu0gQ3JwNwrCySGDikIm2LdQqejaE10UrcYmkDLzlgM6ljGiBZqSBKsT7V6xU6G5ZBOGY-dEK0OYGLwOirT6jaiEUOdLGA9bWZM7WzZxIlnnOQuFk1-eeaw3igWagiBZkJgxqr9r1aFZ-Oe-V8Ipv1cYsnOB9B3msl3mvt8Z8ZOCeTdCcaGyAkxH9Ye1z_bAX_38If9MN6P9JIlDGm5xTnKK5Lx1nLGXhc_2V-komTaezSRO_Kgo10cjwz978z57TATx2T7zf_Y9lv2WNJTg9x_dMZONuttescexptNP67f5xvpL8b3Ixk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwFLSggNQL36UpBRmJa2gSf59QQa04VT2A1AuKHMeBSKtkSXar9t_3PcdZuqiCA9fYm008z_bYfpkh5H1mCi-5R9lQ3qRc5Dq12ulU2kbKwhW5szaYTaizM31xYc7jhtsY0yrnMTEM1HXvcI_8CHXjgKpwk31c_krRNQpPV6OFxn3yAFUSWEjdO59HYib0ZK4iBEsVLO7jp3NM5UcRqQ9LgAkzBbRCx-9bU1NQ8EfF00U_3sU-_0yivDUrnT753_d5Sh5HPkqPpwB6Ru757jl5NDlUXr8g308WrWsxNZouh7YfRmq7muIHMFd4Ddgjxc2GhafOrke40SWsvQEsCpwcAgVRp21HURrbodRiiAO4Byqh-PEl-XZ68vXzlzQ6MqROFHIFjSitF7o2TGr0VNfe5tK7rNINd3klnCp4BTOc5kUjJHADWA3llc60L7Q0PmN7ZKfrO79PqGvyvOJWC2cNd0xUvHKAgs281LAsFwlhMxili3Ll6JqxKMMZnIJly9RCJUJYRggTkm5-tZzkOv5R_xPivKmLYtvhQj_8KGPfLQUMUrmtG8MrzRnLbM0aplDW3DZAeVhC9jFK5j8Yy9_YJuRwRv_u4nebYujWeFZjO9-voQ4zDN3AeZGQV1OgbR6SISc3BppIbYXg1ltsl3TtzyAdroDQA2c_-PtjvSa7BW4rhASlQ7KzGtb-DXnoLlftOLwNfewGvWMxIg
  priority: 102
  providerName: ProQuest
Title Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses
URI https://www.ncbi.nlm.nih.gov/pubmed/32310995
https://www.proquest.com/docview/2403774490
https://www.proquest.com/docview/2393044042
https://pubmed.ncbi.nlm.nih.gov/PMC7192519
https://doaj.org/article/59631adf94b84330ad3f37a9aeaf0233
http://dx.doi.org/10.1371/journal.pgen.1008720
Volume 16
WOSCitedRecordID wos000531363700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: M7P
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: 7X7
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: BENPR
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: PIMPY
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: FPL
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgFyQuvGELS2QkroHEbx9Z1AokqCIEUjmgyHEdEalKq6Zd7f57Zpy00NWuEJccYsexZ8bxN_bkG0LeZJYFJQLShoo6FTI3qTPepMrVSjHPcu9cTDahp1Mzm9nij6N45QSf6_zdINO3KxAonukbzcBFP2ZcKQzhmhSfd19eLo3Vw-9xNz15sPxEln5kNV0su-sQ5tVAyb9WnsmD_-3zQ3J_wJj0fW8Uj8it0D4md_usk5dPyM_xovENhjvT1bpZrjvq2jnFn1ou8B4gQoobCItAvdt20NA5-NOgAAo4G5SPmqRNS5Hu2iN9YtQttIHsJqF7Sr5Pxt8-fEyHLAupl0xtUs2VC9LMLVcG86Sb4HIVfFaZWvi8kl4zUcGqZQSrpYL1HjycvDKZCcwoGzL-jBy1yzacEOrrPK-EM9I7KzyXlag8jN1lQRlwteWI8J3wSz9QkGMmjEUZz9U0uCK9hEoUXDkIbkTS_VOrnoLjH_XPUK_7ukigHW-AhsphPpYSPjy5m9dWVEZwnrk5r7lGqnJXA4zhI3KCVrF7QVcibyFAZWGh_dOdpVxf_HpfDFMVz19cG5ZbqMMtxwzfgo3I896w9p3kiLOtBRHpA5M7GMVhSdv8inTgGkA64PAXN_f4JbnHcJsgBhydkqPNehtekTv-fNN064Tc1jMdryYhx2fjafE1iVsTSZxdCYbDFlBSfPpS_PgNiKckgg
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLXKFAQb3tCBAkaCZWjiV-wFQjxaddR2NIsilQVKHY_TRholw2Sm0J_iG7k3j6GDKlh1wTZ2nNg-vr7Xj3MIeRUa5pXwSBsqskDISAdWOx0omynFHIuctbXYRDwc6qMjM1ojP7u7MHissrOJtaEelw7XyLeQNw5cFWHCd9NvAapG4e5qJ6HRwGLPn3-HkK16O_gE_fuasZ3tw4-7QasqEDjJ1DyIubJe6rHhSqMuuPY2Ut6Fqc6Ei1LpYiZSsNJasEwqmN_Ao49SHWrPtDI-5FDuNbIuAOy6R9ZHg4PRl872c6kbORcpOXzIhO1lPR5HWy023kwBGHg2QceoMX5hMqw1A5BjdVJWl_m7fx7bvDAP7tz531rwLrndetz0fTNE7pE1X9wnNxoNzvMH5Ov2JHc5Hv6m01lezipqizHFKz4_8Bn4xxSXUyaeOruooKAzC2O2mFOIOmAoIK5pXlAk_3ZIJlkjHcpArhdfPSSfr6Ruj0ivKAu_QajLoigVVktnjXBcpiJ10Os29ErHWss-4V3nJ64lZEddkElS7zLGEJg1LZQgZJIWMn0SLN-aNoQk_8j_AXG1zIt04vWDcnaStNYpkWCGIzvOjEi14Dy0Y57xGInbbQZOHe-TDURl94Eq-Y2lPtns0HZ58stlMhgu3I2yhS8XkIcbjnrngvXJ4wbYy5_kGHUYA00Ur0B-pRarKUV-WpOjxxCyQFTy5O-_9YLc3D082E_2B8O9p-QWw0WU-jjWJunNZwv_jFx3Z_O8mj1vRzglx1c9JH4BTdOLrQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6V8hAX3tBAgUWCoxt733tACGgjqqIoB5B6QWa9WYOlyA5xUuhf49cx40doUAWnHrh6nbW9-WZ2Znf2-wh5HlsWlAhIGyrySMjERM54EymXK8U8S7xzjdiEHo_N8bGdbJGf_VkYLKvsfWLjqKeVxzXyIfLGQagibDzMu7KIyf7o1fxbhApSuNPay2m0EDkKp98hfatfHu7Df_2CsdHBh7fvok5hIPKSqWWkuXJBmqnlyqBGuAkuUcHHmcmFTzLpNRMZeGwjWC4VzHUQ3SeZiU1gRtkQc-j3ErmskbS8KRuc9LMAl6YVdpGSw2Ns3B3b4zoZdijZmwNEsErBaFQbPzMtNuoByLY6q-rzIt8_CzjPzIijm__zWN4iN7o4nL5uDec22QrlHXK1VeY8vUs-HcwKX2BJOJ0vimpRU1dOKR78-YHXIGqmuMgyC9S7VQ0dnTiw5HJJIRcBA0G006KkSAnukWKywT_0gQwwob5HPl7It90n22VVhh1CfZ4kmXBGemeF5zITmQcEuDgoo42RA8J7IKS-o2lHtZBZ2uw9akjX2hFKET5pB58Bida_mrc0Jf-4_w1ibH0vkow3F6rFl7TzWakE55y4aW5FZgTnsZvynGukc3c5hHp8QHYQof0D6vQ3rgZkt0fe-c3P1s3gznCPypWhWsE93HJUQRdsQB60IF-_JMdcxFoYIr0B_42v2Gwpi68NZbqGRAZylYd_f62n5BrYQfr-cHz0iFxnuLLS1Gjtku3lYhUekyv-ZFnUiyeNqVPy-aLt4Rci8pLs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eliciting+priors+and+relaxing+the+single+causal+variant+assumption+in+colocalisation+analyses&rft.jtitle=PLoS+genetics&rft.au=Wallace%2C+Chris&rft.date=2020-04-01&rft.issn=1553-7404&rft.eissn=1553-7404&rft.volume=16&rft.issue=4&rft.spage=e1008720&rft_id=info:doi/10.1371%2Fjournal.pgen.1008720&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pgen_1008720
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon