Hierarchical Semiparametric Model for Incorporating Intergene Information for Analysis of Genomic Data

For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two‐component mixture model has been widely used in practice to detect differentially expressed genes. However, it naïvely imposes strong exchangeability assumptions across genes and does not make act...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics Jg. 68; H. 4; S. 1168 - 1177
Hauptverfasser: Qu, Long, Nettleton, Dan, Dekkers, Jack C. M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Malden, USA Blackwell Publishing Inc 01.12.2012
Wiley-Blackwell
Blackwell Publishing Ltd
Schlagworte:
ISSN:0006-341X, 1541-0420, 1541-0420
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two‐component mixture model has been widely used in practice to detect differentially expressed genes. However, it naïvely imposes strong exchangeability assumptions across genes and does not make active use of a priori information about intergene relationships that is currently available, e.g., gene annotations through the Gene Ontology (GO) project. We propose a general strategy that first generates a set of covariates that summarizes the intergene information and then extends the two‐component mixture model into a hierarchical semiparametric model utilizing the generated covariates through latent nonparametric regression. Simulations and analysis of real microarray data show that our method can outperform the naïve two‐component mixture model.
Bibliographie:http://dx.doi.org/10.1111/j.1541-0420.2012.01778.x
istex:921DCFB922DE5C4C2ED717C33D42D5606628391C
ark:/67375/WNG-6WG4D0DW-N
ArticleID:BIOM1778
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0006-341X
1541-0420
1541-0420
DOI:10.1111/j.1541-0420.2012.01778.x