Hierarchical Semiparametric Model for Incorporating Intergene Information for Analysis of Genomic Data

For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two‐component mixture model has been widely used in practice to detect differentially expressed genes. However, it naïvely imposes strong exchangeability assumptions across genes and does not make act...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics Jg. 68; H. 4; S. 1168 - 1177
Hauptverfasser: Qu, Long, Nettleton, Dan, Dekkers, Jack C. M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Malden, USA Blackwell Publishing Inc 01.12.2012
Wiley-Blackwell
Blackwell Publishing Ltd
Schlagworte:
ISSN:0006-341X, 1541-0420, 1541-0420
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two‐component mixture model has been widely used in practice to detect differentially expressed genes. However, it naïvely imposes strong exchangeability assumptions across genes and does not make active use of a priori information about intergene relationships that is currently available, e.g., gene annotations through the Gene Ontology (GO) project. We propose a general strategy that first generates a set of covariates that summarizes the intergene information and then extends the two‐component mixture model into a hierarchical semiparametric model utilizing the generated covariates through latent nonparametric regression. Simulations and analysis of real microarray data show that our method can outperform the naïve two‐component mixture model.
AbstractList For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two‐component mixture model has been widely used in practice to detect differentially expressed genes. However, it naïvely imposes strong exchangeability assumptions across genes and does not make active use of a priori information about intergene relationships that is currently available, e.g., gene annotations through the Gene Ontology (GO) project. We propose a general strategy that first generates a set of covariates that summarizes the intergene information and then extends the two‐component mixture model into a hierarchical semiparametric model utilizing the generated covariates through latent nonparametric regression. Simulations and analysis of real microarray data show that our method can outperform the naïve two‐component mixture model.
For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the twocomponent mixture model has been widely used in practice to detect differentially expressed genes. However, it naively imposes strong exchangeability assumptions across genes and does not make active use of a priori information about intergene relationships that is currently available, e.g., gene annotations through the Gene Ontology (GO) project. We propose a general strategy that first generates a set of covariates that summarizes the intergene information and then extends the two-component mixture model into a hierarchical semiparametric model utilizing the generated covariates through latent nonparametric regression. Simulations and analysis of real microarray data show that our method can outperform the naïve two-component mixture model.
For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two-component mixture model has been widely used in practice to detect differentially expressed genes. However, it naïvely imposes strong exchangeability assumptions across genes and does not make active use of a priori information about intergene relationships that is currently available, e.g., gene annotations through the Gene Ontology (GO) project. We propose a general strategy that first generates a set of covariates that summarizes the intergene information and then extends the two-component mixture model into a hierarchical semiparametric model utilizing the generated covariates through latent nonparametric regression. Simulations and analysis of real microarray data show that our method can outperform the naïve two-component mixture model.For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two-component mixture model has been widely used in practice to detect differentially expressed genes. However, it naïvely imposes strong exchangeability assumptions across genes and does not make active use of a priori information about intergene relationships that is currently available, e.g., gene annotations through the Gene Ontology (GO) project. We propose a general strategy that first generates a set of covariates that summarizes the intergene information and then extends the two-component mixture model into a hierarchical semiparametric model utilizing the generated covariates through latent nonparametric regression. Simulations and analysis of real microarray data show that our method can outperform the naïve two-component mixture model.
For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two-component mixture model has been widely used in practice to detect differentially expressed genes. However, it naïvely imposes strong exchangeability assumptions across genes and does not make active use of a priori information about intergene relationships that is currently available, e.g., gene annotations through the Gene Ontology (GO) project. We propose a general strategy that first generates a set of covariates that summarizes the intergene information and then extends the two-component mixture model into a hierarchical semiparametric model utilizing the generated covariates through latent nonparametric regression. Simulations and analysis of real microarray data show that our method can outperform the naïve two-component mixture model. [PUBLICATION ABSTRACT]
Summary For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two-component mixture model has been widely used in practice to detect differentially expressed genes. However, it naively imposes strong exchangeability assumptions across genes and does not make active use of a priori information about intergene relationships that is currently available, e.g., gene annotations through the Gene Ontology (GO) project. We propose a general strategy that first generates a set of covariates that summarizes the intergene information and then extends the two-component mixture model into a hierarchical semiparametric model utilizing the generated covariates through latent nonparametric regression. Simulations and analysis of real microarray data show that our method can outperform the naive two-component mixture model.
Summary For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two‐component mixture model has been widely used in practice to detect differentially expressed genes. However, it naïvely imposes strong exchangeability assumptions across genes and does not make active use of a priori information about intergene relationships that is currently available, e.g., gene annotations through the Gene Ontology (GO) project. We propose a general strategy that first generates a set of covariates that summarizes the intergene information and then extends the two‐component mixture model into a hierarchical semiparametric model utilizing the generated covariates through latent nonparametric regression. Simulations and analysis of real microarray data show that our method can outperform the naïve two‐component mixture model.
Summary For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two‐component mixture model has been widely used in practice to detect differentially expressed genes. However, it naïvely imposes strong exchangeability assumptions across genes and does not make active use of a priori information about intergene relationships that is currently available, e.g., gene annotations through the Gene Ontology (GO) project. We propose a general strategy that first generates a set of covariates that summarizes the intergene information and then extends the two‐component mixture model into a hierarchical semiparametric model utilizing the generated covariates through latent nonparametric regression. Simulations and analysis of real microarray data show that our method can outperform the naïve two‐component mixture model.
Author Qu, Long
Dekkers, Jack C. M.
Nettleton, Dan
Author_xml – sequence: 1
  givenname: Long
  surname: Qu
  fullname: Qu, Long
– sequence: 2
  givenname: Dan
  surname: Nettleton
  fullname: Nettleton, Dan
– sequence: 3
  givenname: Jack C. M.
  surname: Dekkers
  fullname: Dekkers, Jack C. M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22994883$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URLeFnwBE4sIlwd9xLkilC9uV-nEo1XKz3GSyOCTxYmfF7r_HacoeuLS-2ON55vVo_J6go971gFBCcEbi-tRkRHCSYk5xRjGhGSZ5rrLdCzQ7JI7QDGMsU8bJj2N0EkITw0Jg-godU1oUXCk2Q_WFBW98-dOWpk1uobMb400Hg7dlcuUqaJPa-WTZl85vnDeD7dcxGsCvoYd4itku3rr-gTvrTbsPNiSuThbQuy6qzM1gXqOXtWkDvHncT9Hdt6_fzy_Sy5vF8vzsMi0FlSqloqQ5rVTN7pnghZEVq4wQojI1w1wBUbyQVALIuuJUsaooapJLMFBKUzLFTtHHSXfj3e8thEF3NpTQtqYHtw06wpTQnEvxNCpzJWhs4xkoJ7mSgpDiaZTmjFCiGInoh__Qxm19HOBIcUolJ4xH6t0jtb3voNIbbzvj9_rfF0ZATUDpXQge6gNCsB7dohs9mkKPptCjW_SDW_Quln6eSv_YFvbPrtNfljdX4zEKvJ0EmjA4fxDgRGGJ2Ti4dMrbMMDukDf-l5Y5y4VeXS-0XC34HM9X-jry7ye-Nk6btbdB393GpwXGhKvYB_sLDUvkaA
CODEN BIOMA5
Cites_doi 10.1007/s00335-009-9234-1
10.1152/physiolgenomics.90372.2008
10.1093/bioinformatics/btn066
10.1198/106186002853
10.1017/CBO9780511812651
10.1111/1467-9876.00066-i1
10.1093/bioinformatics/btn081
10.1038/75556
10.1177/001316446002000104
10.1089/cmb.2008.0081
10.1198/016214504000000089
10.1093/biomet/asp035
10.1111/j.1541-0420.2006.00704.x
10.1093/bioinformatics/btl140
10.1109/T-C.1969.222678
10.1109/NNSP.1991.239541
10.2307/1939814
10.1101/sqb.2003.68.237
10.1093/bioinformatics/btl065
10.1093/biostatistics/kxp043
10.1093/nar/gki022
10.1073/pnas.0702965104
10.1111/j.2517-6161.1986.tb01412.x
10.1093/nar/gkn653
10.1186/1471-2105-8-166
10.1093/bioinformatics/btm612
10.1093/biomet/asn010
10.1198/jasa.2010.tm10195
10.1186/1471-2105-7-302
10.1198/016214507000000545
10.1080/10543400903572712
10.1111/j.1541-0420.2009.01296.x
10.1093/nar/28.1.27
10.1073/pnas.95.25.14863
10.1093/bioinformatics/btm129
10.1109/IJCNN.2005.1555846
10.1007/BF02162161
10.1093/bioinformatics/btl165
10.1111/j.1467-9876.2009.00686.x
10.1038/193855a0
10.1186/1471-2105-9-327
10.1093/bioinformatics/btl011
10.2202/1544-6115.1027
10.1017/CBO9780511761362
10.1186/gb-2003-4-5-p3
10.1093/bioinformatics/btp177
10.1111/j.2044-8317.1966.tb00367.x
10.1186/1471-2105-9-50
10.1093/bioinformatics/btl148
ContentType Journal Article
Copyright 2012 The International Biometric Society
2012, The International Biometric Society
2012, The International Biometric Society.
Copyright_xml – notice: 2012 The International Biometric Society
– notice: 2012, The International Biometric Society
– notice: 2012, The International Biometric Society.
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
8FD
FR3
P64
RC3
7S9
L.6
7SC
7U5
L7M
L~C
L~D
DOI 10.1111/j.1541-0420.2012.01778.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

MEDLINE
MEDLINE - Academic
ProQuest Computer Science Collection
Technology Research Database
Genetics Abstracts

CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 1177
ExternalDocumentID 2848053201
22994883
10_1111_j_1541_0420_2012_01778_x
BIOM1778
41806035
ark_67375_WNG_6WG4D0DW_N
US201500148420
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
3V.
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABCVL
ABDBF
ABEML
ABFAN
ABHUG
ABJCF
ABJNI
ABLJU
ABPPZ
ABPTK
ABPVW
ABTAH
ABUWG
ABWRO
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFTP
AFGKR
AFKRA
AFPWT
AFVGU
AFVYC
AFXKK
AFZJQ
AGJLS
AGTJU
AHMBA
AIAGR
AIBGX
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALEEW
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANPLD
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EFSUC
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FBQ
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
K6V
K7-
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
X6Y
XBAML
XFK
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAMMB
AANHP
AAUAY
AAWIL
AAYCA
AAZSN
ABAWQ
ABDFA
ABEJV
ABGNP
ABMNT
ABXSQ
ABXVV
ACHJO
ACRPL
ACUHS
ACYXJ
ADNBA
ADNMO
ADVOB
AEFGJ
AEOTA
AFFHD
AFWVQ
AGLNM
AGQPQ
AGXDD
AHGBF
AIDQK
AIDYY
AIHAF
AJAOE
AJBYB
AJNCP
ALRMG
BSCLL
H13
IPSME
KOP
NU-
OIG
OJZSN
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ROX
AGORE
ALIPV
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
8FD
FR3
P64
RC3
7S9
L.6
7SC
7U5
L7M
L~C
L~D
ID FETCH-LOGICAL-c5268-25c272d8f3b3549a6d3da555daf3048e1849626ee6fd4283d99f176eaec6ac383
IEDL.DBID DRFUL
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000314236200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-341X
1541-0420
IngestDate Sat Sep 27 21:42:06 EDT 2025
Fri Oct 03 00:12:59 EDT 2025
Sun Nov 09 13:24:23 EST 2025
Sun Nov 09 11:28:04 EST 2025
Wed Aug 13 10:53:05 EDT 2025
Mon Jul 21 06:03:47 EDT 2025
Sat Nov 29 02:09:59 EST 2025
Wed Jan 22 16:58:15 EST 2025
Thu Jul 03 21:22:34 EDT 2025
Tue Nov 11 03:32:36 EST 2025
Wed Dec 27 19:21:01 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2012, The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5268-25c272d8f3b3549a6d3da555daf3048e1849626ee6fd4283d99f176eaec6ac383
Notes http://dx.doi.org/10.1111/j.1541-0420.2012.01778.x
istex:921DCFB922DE5C4C2ED717C33D42D5606628391C
ark:/67375/WNG-6WG4D0DW-N
ArticleID:BIOM1778
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 22994883
PQID 1242264134
PQPubID 35366
PageCount 10
ParticipantIDs proquest_miscellaneous_1762127465
proquest_miscellaneous_1678523545
proquest_miscellaneous_1417865119
proquest_miscellaneous_1273121831
proquest_journals_1242264134
pubmed_primary_22994883
crossref_primary_10_1111_j_1541_0420_2012_01778_x
wiley_primary_10_1111_j_1541_0420_2012_01778_x_BIOM1778
jstor_primary_41806035
istex_primary_ark_67375_WNG_6WG4D0DW_N
fao_agris_US201500148420
PublicationCentury 2000
PublicationDate December 2012
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: December 2012
PublicationDecade 2010
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2012
Publisher Blackwell Publishing Inc
Wiley-Blackwell
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Inc
– name: Wiley-Blackwell
– name: Blackwell Publishing Ltd
References Sammon, J. W., Jr. (1969). A nonlinear mapping for data structure analysis. Computers, IEEE Transactions on Computers 18, 401-409.
Borg, I. and Groenen, P. J. F. (2005). Modern Multidimensional Scaling: Theory and Applications , 2nd edition. Springer Series in Statistics. New York: Springer-Verlag New York, Inc.
del Pozo, A., Pazos, F., and Valencia, A. (2008). Defining functional distances over gene ontology. BMC Bioinformatics 9, 50.
Pan, W. (2006b). Incorporating gene functions as priors in model-based clustering of microarray gene expression data. Bioinformatics 22, 795-801.
Ng, S. K., McLachlan, G. J., Wang, K., Ben-Tovim, L., and Ng, S.-W. (2006). A mixture model with random-effects components for clustering correlated gene-expression profiles. Bioinformatics 22, 1745-1752.
Wei, P. and Pan, W. (2008). Incorporating gene networks into statistical tests for genomic data via a spatially correlated mixture model. Bioinformatics 24, 404-411.
Besag, J. (1986). On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society. Series B (Methodological) 48, 259-302.
Li, C., Wei, Z., and Li, H. (2010a). Network-based empirical Bayes methods for linear models with applications to genomic data. Journal of Biopharmaceutical Statistics 20, 209-222.
Shojaie, A. and Michailidis, G. (2009). Analysis of gene sets based on the underlying regulatory network. Journal of Computational Biology 16, 407-426.
Liang, K. and Nettleton, D. (2010). A hidden Markov model approach to testing multiple hypotheses on a tree-transformed gene ontology graph. Journal of the American Statistical Association 105, 1444-1454.
Sun, W. and Cai, T. T. (2007). Oracle and adaptive compound decision rules for false discovery rate control. Journal of the American Statistical Association 102, 901-912.
McLachlan, G., Bean, R., and Jones, L. B.-T. (2006). A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays. Bioinformatics 22, 1608-1615.
Efron, B. (2004). Large-scale simultaneous hypothesis testing: The choice of a null hypothesis. Journal of the American Statistical Association 99, 96-104.
Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach . New York : Springer.
Alexa, A., Rahnenfuhrer, J., and Lengauer, T. (2006). Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600-1607.
Kanehisa, M. and Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28, 27-30.
Schlicker, A., Domingues, F., Rahnenführer, J., and Lengauer, T. (2006). A new measure for functional similarity of gene products based on gene ontology. BMC Bioinformatics 7, 302.
Mistry, M. and Pavlidis, P. (2008). Gene ontology term overlap as a measure of gene functional similarity. BMC Bioinformatics 9, 327.
Ruppert, D., Nettleton, D., and Hwang, J. T. G. (2007). Exploring the information in p-values for the analysis and planning of multiple-test experiments. Biometrics 63, 483-495.
Claeskens, G., Krivobokova, T., and Opsomer, J. D. (2009). Asymptotic properties of penalized spline estimators. Biometrika 96, 529-544.
Reinsch, C. (1967). Smoothing by spline functions. Numerische Mathematik 10, 177-183.
Lkhagvadorj, S., Qu, L., Cai, W., Couture, O. P., Barb, C. R., Hausman, G. J., Nettleton, D., Anderson, L. L., Dekkers, J. C., and Tuggle, C. K. (2009). Microarray gene expression profiles of fasting induced changes in liver and adipose tissues of pigs expressing the melanocortin-4 receptor D298N variant. Physiological Genomics 38, 98-111.
Ruppert, D. (2002). Selecting the number of knots for penalized splines. Journal of Computational and Graphical Statistics 11, 735-757.
Fröhlich, H., Speer, N., Poustka, A., and Beißbarth, T. (2007). GOSim-An R-package for computation of information theoretic GO similarities between terms and gene products. BMC Bioinformatics 8, 166.
Joshi-Tope, G., Vastrik, I., Gopinath, G. R., Matthews, L., Schmidt, E., Gillespie, M., D'Eustachio, P., Jassal, B., Lewis, S., Wu, G., Birney, E., and Stein, L. (2003). The genome knowledgebase: A resource for biologists and bioinformaticists. Cold Spring Harbor Symposia on Quantitative Biology 68, 237-43.
Huang, D. and Pan, W. (2006). Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data. Bioinformatics 22, 1259-1268.
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20, 37-46.
Pan, W. (2006a). Incorporating gene functional annotations in detecting differential gene expression. Journal of the Royal Statistical Society Series C (Applied Statistics) 55, 301-316.
Dennis, G., Sherman, B., Hosack, D., Yang, J., Gao, W., Lane, H., and Lempicki, R. (2003). DAVID: Database for annotation, visualization, and integrated discovery. Genome Biology 4, P3.
Schaefer, C. F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T., and Buetow, K. H. (2009). PID: The pathway interaction database. Nucleic Acids Research 37, D674-679.
The Gene Ontology Consortium, (2000). Gene ontology: Tool for the unification of biology. Nature Genetics 25, 25-29.
Li, H., Wei, Z., and Maris, J. (2010b). A hidden Markov random field model for genome-wide association studies. Biostatistics 11, 139-50.
Cox, T. F. and Cox, M. A. A. (2001). Multidimensional Scaling . Monographs on Statistics and Applied Probability, 2nd edition. Boca Raton: Chapman & Hall/CRC.
McGee, V. E. (1966). The multidimensional scaling of "elastic" distances. British Journal of Mathematical and Statistical Psychology 19, 181-196.
Efron, B. (2010). Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction . IMS Monographs . New York: Cambridge University Press.
Pan, W. (2009). Network-based multiple locus linkage analysis of expression traits. Bioinformatics 25, 1390-1396.
Lerman, G. and Shakhnovich, B. E. (2007). Defining functional distance using manifold embeddings of gene ontology annotations. Proceedings of the National Academy of Sciences of the United States of America 104, 11334-11339.
Sneath, P. H. and Sokal, R. R. (1962). Numerical taxonomy. Nature 193, 855-860.
Couture, O., Callenberg, K., Koul, N., Pandit, S., Younes, R., Hu, Z. L., Dekkers, J., Reecy, J., Honavar, V., and Tuggle, C. (2009). ANEXdb: An integrated animal annotation and microarray expression database. Mammalian Genome 20, 768-777.
Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology Article 3.
Li, C. and Li, H. (2008). Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 24, 1175-1182.
Kenkel, N. C. and Orlóci, L. (1986). Applying metric and nonmetric multidimensional scaling to ecological studies: Some new results. Ecology 67, 919-928.
Pan, W., Xie, B., and Shen, X. (2010). Incorporating predictor network in penalized regression with application to microarray data. Biometrics 66, 474-484.
Ripley, B. D. (1996). Pattern Recognition and Neural Networks . Cambridge : Cambridge University Press.
Sanguinetti, G., Noirel, J., and Wright, P. C. (2008). MMG: A probabilistic tool to identify submodules of metabolic pathways. Bioinformatics 24, 1078-1084.
Barrett, T., Suzek, T. O., Troup, D. B., Wilhite, S. E., Ngau, W.-C., Ledoux, P., Rudnev, D., Lash, A. E., Fujibuchi, W., and Edgar, R. (2005). NCBI GEO: Mining millions of expression profiles-Database and tools. Nucleic Acids Research 33, D562-566.
Wei, Z. and Li, H. (2007). A Markov random field model for network-based analysis of genomic data. Bioinformatics 23, 1537-1544.
Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America 95, 14863-14868.
Wei, P. and Pan, W. (2010). Network-based genomic discovery: Application and comparison of Markov random-field models. Journal of the Royal Statistical Society: Series C (Applied Statistics) 59, 105-125.
Li, Y. and Ruppert, D. (2008). On the asymptotics of penalized splines. Biometrika 95, 415-436.
2007; 104
2009; 25
1966; 19
2007; 102
2006b; 22
2004; Article 3
2010; 59
2009; 20
2000; 28
2000; 25
2010
2010; 105
2002; 11
2008; 9
2006; 7
1996
2006
2005
1969; 18
2002
1991
2008; 95
2010b; 11
2006a; 55
2004; 99
2010; 66
2009; 96
2010a; 20
1960; 20
2001
1967; 10
2006; 22
1986; 67
1986; 48
1962; 193
2007; 8
2003; 68
2003; 4
2008; 24
2005; 1
2007; 63
1998; 95
2007; 23
2005; 33
2009; 38
2009; 16
2009; 37
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Borg I. (e_1_2_10_5_1) 2005
e_1_2_10_2_1
Fröhlich H. (e_1_2_10_17_1) 2006
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Cox T. F. (e_1_2_10_10_1) 2001
Smyth G. K. (e_1_2_10_47_1) 2004; 3
Burnham K. P. (e_1_2_10_6_1) 2002
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_38_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
References_xml – reference: Barrett, T., Suzek, T. O., Troup, D. B., Wilhite, S. E., Ngau, W.-C., Ledoux, P., Rudnev, D., Lash, A. E., Fujibuchi, W., and Edgar, R. (2005). NCBI GEO: Mining millions of expression profiles-Database and tools. Nucleic Acids Research 33, D562-566.
– reference: Joshi-Tope, G., Vastrik, I., Gopinath, G. R., Matthews, L., Schmidt, E., Gillespie, M., D'Eustachio, P., Jassal, B., Lewis, S., Wu, G., Birney, E., and Stein, L. (2003). The genome knowledgebase: A resource for biologists and bioinformaticists. Cold Spring Harbor Symposia on Quantitative Biology 68, 237-43.
– reference: Schaefer, C. F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T., and Buetow, K. H. (2009). PID: The pathway interaction database. Nucleic Acids Research 37, D674-679.
– reference: Alexa, A., Rahnenfuhrer, J., and Lengauer, T. (2006). Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600-1607.
– reference: Schlicker, A., Domingues, F., Rahnenführer, J., and Lengauer, T. (2006). A new measure for functional similarity of gene products based on gene ontology. BMC Bioinformatics 7, 302.
– reference: Reinsch, C. (1967). Smoothing by spline functions. Numerische Mathematik 10, 177-183.
– reference: Sun, W. and Cai, T. T. (2007). Oracle and adaptive compound decision rules for false discovery rate control. Journal of the American Statistical Association 102, 901-912.
– reference: Efron, B. (2004). Large-scale simultaneous hypothesis testing: The choice of a null hypothesis. Journal of the American Statistical Association 99, 96-104.
– reference: Wei, P. and Pan, W. (2010). Network-based genomic discovery: Application and comparison of Markov random-field models. Journal of the Royal Statistical Society: Series C (Applied Statistics) 59, 105-125.
– reference: Sammon, J. W., Jr. (1969). A nonlinear mapping for data structure analysis. Computers, IEEE Transactions on Computers 18, 401-409.
– reference: Lerman, G. and Shakhnovich, B. E. (2007). Defining functional distance using manifold embeddings of gene ontology annotations. Proceedings of the National Academy of Sciences of the United States of America 104, 11334-11339.
– reference: Fröhlich, H., Speer, N., Poustka, A., and Beißbarth, T. (2007). GOSim-An R-package for computation of information theoretic GO similarities between terms and gene products. BMC Bioinformatics 8, 166.
– reference: Sanguinetti, G., Noirel, J., and Wright, P. C. (2008). MMG: A probabilistic tool to identify submodules of metabolic pathways. Bioinformatics 24, 1078-1084.
– reference: Cox, T. F. and Cox, M. A. A. (2001). Multidimensional Scaling . Monographs on Statistics and Applied Probability, 2nd edition. Boca Raton: Chapman & Hall/CRC.
– reference: Claeskens, G., Krivobokova, T., and Opsomer, J. D. (2009). Asymptotic properties of penalized spline estimators. Biometrika 96, 529-544.
– reference: Ripley, B. D. (1996). Pattern Recognition and Neural Networks . Cambridge : Cambridge University Press.
– reference: Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20, 37-46.
– reference: Lkhagvadorj, S., Qu, L., Cai, W., Couture, O. P., Barb, C. R., Hausman, G. J., Nettleton, D., Anderson, L. L., Dekkers, J. C., and Tuggle, C. K. (2009). Microarray gene expression profiles of fasting induced changes in liver and adipose tissues of pigs expressing the melanocortin-4 receptor D298N variant. Physiological Genomics 38, 98-111.
– reference: Borg, I. and Groenen, P. J. F. (2005). Modern Multidimensional Scaling: Theory and Applications , 2nd edition. Springer Series in Statistics. New York: Springer-Verlag New York, Inc.
– reference: Pan, W. (2006a). Incorporating gene functional annotations in detecting differential gene expression. Journal of the Royal Statistical Society Series C (Applied Statistics) 55, 301-316.
– reference: The Gene Ontology Consortium, (2000). Gene ontology: Tool for the unification of biology. Nature Genetics 25, 25-29.
– reference: Li, C., Wei, Z., and Li, H. (2010a). Network-based empirical Bayes methods for linear models with applications to genomic data. Journal of Biopharmaceutical Statistics 20, 209-222.
– reference: Mistry, M. and Pavlidis, P. (2008). Gene ontology term overlap as a measure of gene functional similarity. BMC Bioinformatics 9, 327.
– reference: McLachlan, G., Bean, R., and Jones, L. B.-T. (2006). A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays. Bioinformatics 22, 1608-1615.
– reference: Huang, D. and Pan, W. (2006). Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data. Bioinformatics 22, 1259-1268.
– reference: McGee, V. E. (1966). The multidimensional scaling of "elastic" distances. British Journal of Mathematical and Statistical Psychology 19, 181-196.
– reference: Ruppert, D., Nettleton, D., and Hwang, J. T. G. (2007). Exploring the information in p-values for the analysis and planning of multiple-test experiments. Biometrics 63, 483-495.
– reference: Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach . New York : Springer.
– reference: Couture, O., Callenberg, K., Koul, N., Pandit, S., Younes, R., Hu, Z. L., Dekkers, J., Reecy, J., Honavar, V., and Tuggle, C. (2009). ANEXdb: An integrated animal annotation and microarray expression database. Mammalian Genome 20, 768-777.
– reference: Li, Y. and Ruppert, D. (2008). On the asymptotics of penalized splines. Biometrika 95, 415-436.
– reference: Wei, P. and Pan, W. (2008). Incorporating gene networks into statistical tests for genomic data via a spatially correlated mixture model. Bioinformatics 24, 404-411.
– reference: Ruppert, D. (2002). Selecting the number of knots for penalized splines. Journal of Computational and Graphical Statistics 11, 735-757.
– reference: del Pozo, A., Pazos, F., and Valencia, A. (2008). Defining functional distances over gene ontology. BMC Bioinformatics 9, 50.
– reference: Kenkel, N. C. and Orlóci, L. (1986). Applying metric and nonmetric multidimensional scaling to ecological studies: Some new results. Ecology 67, 919-928.
– reference: Pan, W., Xie, B., and Shen, X. (2010). Incorporating predictor network in penalized regression with application to microarray data. Biometrics 66, 474-484.
– reference: Dennis, G., Sherman, B., Hosack, D., Yang, J., Gao, W., Lane, H., and Lempicki, R. (2003). DAVID: Database for annotation, visualization, and integrated discovery. Genome Biology 4, P3.
– reference: Kanehisa, M. and Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28, 27-30.
– reference: Sneath, P. H. and Sokal, R. R. (1962). Numerical taxonomy. Nature 193, 855-860.
– reference: Li, C. and Li, H. (2008). Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 24, 1175-1182.
– reference: Liang, K. and Nettleton, D. (2010). A hidden Markov model approach to testing multiple hypotheses on a tree-transformed gene ontology graph. Journal of the American Statistical Association 105, 1444-1454.
– reference: Pan, W. (2009). Network-based multiple locus linkage analysis of expression traits. Bioinformatics 25, 1390-1396.
– reference: Pan, W. (2006b). Incorporating gene functions as priors in model-based clustering of microarray gene expression data. Bioinformatics 22, 795-801.
– reference: Efron, B. (2010). Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction . IMS Monographs . New York: Cambridge University Press.
– reference: Shojaie, A. and Michailidis, G. (2009). Analysis of gene sets based on the underlying regulatory network. Journal of Computational Biology 16, 407-426.
– reference: Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology Article 3.
– reference: Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America 95, 14863-14868.
– reference: Besag, J. (1986). On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society. Series B (Methodological) 48, 259-302.
– reference: Wei, Z. and Li, H. (2007). A Markov random field model for network-based analysis of genomic data. Bioinformatics 23, 1537-1544.
– reference: Li, H., Wei, Z., and Maris, J. (2010b). A hidden Markov random field model for genome-wide association studies. Biostatistics 11, 139-50.
– reference: Ng, S. K., McLachlan, G. J., Wang, K., Ben-Tovim, L., and Ng, S.-W. (2006). A mixture model with random-effects components for clustering correlated gene-expression profiles. Bioinformatics 22, 1745-1752.
– volume: 1
  start-page: 298
  year: 2005
  end-page: 303
– volume: 25
  start-page: 25
  year: 2000
  end-page: 29
  article-title: Gene ontology: Tool for the unification of biology
  publication-title: Nature Genetics
– volume: 23
  start-page: 1537
  year: 2007
  end-page: 1544
  article-title: A Markov random field model for network‐based analysis of genomic data
  publication-title: Bioinformatics
– volume: Article 3
  year: 2004
  article-title: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
  publication-title: Statistical Applications in Genetics and Molecular Biology
– volume: 20
  start-page: 209
  year: 2010a
  end-page: 222
  article-title: Network‐based empirical Bayes methods for linear models with applications to genomic data
  publication-title: Journal of Biopharmaceutical Statistics
– volume: 24
  start-page: 1078
  year: 2008
  end-page: 1084
  article-title: MMG: A probabilistic tool to identify submodules of metabolic pathways
  publication-title: Bioinformatics
– volume: 20
  start-page: 37
  year: 1960
  end-page: 46
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educational and Psychological Measurement
– volume: 20
  start-page: 768
  year: 2009
  end-page: 777
  article-title: ANEXdb: An integrated animal annotation and microarray expression database
  publication-title: Mammalian Genome
– volume: 66
  start-page: 474
  year: 2010
  end-page: 484
  article-title: Incorporating predictor network in penalized regression with application to microarray data
  publication-title: Biometrics
– volume: 11
  start-page: 139
  year: 2010b
  end-page: 50
  article-title: A hidden Markov random field model for genome‐wide association studies
  publication-title: Biostatistics
– volume: 99
  start-page: 96
  year: 2004
  end-page: 104
  article-title: Large‐scale simultaneous hypothesis testing: The choice of a null hypothesis
  publication-title: Journal of the American Statistical Association
– volume: 18
  start-page: 401
  year: 1969
  end-page: 409
  article-title: A nonlinear mapping for data structure analysis
  publication-title: Computers, IEEE Transactions on Computers
– volume: 59
  start-page: 105
  year: 2010
  end-page: 125
  article-title: Network‐based genomic discovery: Application and comparison of Markov random‐field models
  publication-title: Journal of the Royal Statistical Society: Series C (Applied Statistics)
– volume: 104
  start-page: 11334
  year: 2007
  end-page: 11339
  article-title: Defining functional distance using manifold embeddings of gene ontology annotations
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 105
  start-page: 1444
  year: 2010
  end-page: 1454
  article-title: A hidden Markov model approach to testing multiple hypotheses on a tree‐transformed gene ontology graph
  publication-title: Journal of the American Statistical Association
– volume: 24
  start-page: 404
  year: 2008
  end-page: 411
  article-title: Incorporating gene networks into statistical tests for genomic data via a spatially correlated mixture model
  publication-title: Bioinformatics
– volume: 37
  start-page: D674
  year: 2009
  end-page: 679
  article-title: PID: The pathway interaction database
  publication-title: Nucleic Acids Research
– year: 2001
  publication-title: Multidimensional Scaling
– start-page: 3580
  year: 2006
  end-page: 3585
– volume: 102
  start-page: 901
  year: 2007
  end-page: 912
  article-title: Oracle and adaptive compound decision rules for false discovery rate control
  publication-title: Journal of the American Statistical Association
– volume: 16
  start-page: 407
  year: 2009
  end-page: 426
  article-title: Analysis of gene sets based on the underlying regulatory network
  publication-title: Journal of Computational Biology
– volume: 10
  start-page: 177
  year: 1967
  end-page: 183
  article-title: Smoothing by spline functions
  publication-title: Numerische Mathematik
– volume: 9
  start-page: 50
  year: 2008
  article-title: Defining functional distances over gene ontology
  publication-title: BMC Bioinformatics
– volume: 22
  start-page: 795
  year: 2006b
  end-page: 801
  article-title: Incorporating gene functions as priors in model‐based clustering of microarray gene expression data
  publication-title: Bioinformatics
– year: 2005
  publication-title: Modern Multidimensional Scaling: Theory and Applications
– volume: 22
  start-page: 1745
  year: 2006
  end-page: 1752
  article-title: A mixture model with random‐effects components for clustering correlated gene‐expression profiles
  publication-title: Bioinformatics
– volume: 22
  start-page: 1259
  year: 2006
  end-page: 1268
  article-title: Incorporating biological knowledge into distance‐based clustering analysis of microarray gene expression data
  publication-title: Bioinformatics
– volume: 11
  start-page: 735
  year: 2002
  end-page: 757
  article-title: Selecting the number of knots for penalized splines
  publication-title: Journal of Computational and Graphical Statistics
– volume: 24
  start-page: 1175
  year: 2008
  end-page: 1182
  article-title: Network‐constrained regularization and variable selection for analysis of genomic data
  publication-title: Bioinformatics
– volume: 55
  start-page: 301
  year: 2006a
  end-page: 316
  article-title: Incorporating gene functional annotations in detecting differential gene expression
  publication-title: Journal of the Royal Statistical Society Series C (Applied Statistics)
– volume: 28
  start-page: 27
  year: 2000
  end-page: 30
  article-title: KEGG: Kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Research
– volume: 9
  start-page: 327
  year: 2008
  article-title: Gene ontology term overlap as a measure of gene functional similarity
  publication-title: BMC Bioinformatics
– volume: 7
  start-page: 302
  year: 2006
  article-title: A new measure for functional similarity of gene products based on gene ontology
  publication-title: BMC Bioinformatics
– volume: 4
  start-page: P3
  year: 2003
  article-title: DAVID: Database for annotation, visualization, and integrated discovery
  publication-title: Genome Biology
– volume: 95
  start-page: 415
  year: 2008
  end-page: 436
  article-title: On the asymptotics of penalized splines
  publication-title: Biometrika
– year: 1996
– volume: 33
  start-page: D562
  year: 2005
  end-page: 566
  article-title: NCBI GEO: Mining millions of expression profiles—Database and tools
  publication-title: Nucleic Acids Research
– volume: 193
  start-page: 855
  year: 1962
  end-page: 860
  article-title: Numerical taxonomy
  publication-title: Nature
– volume: 95
  start-page: 14863
  year: 1998
  end-page: 14868
  article-title: Cluster analysis and display of genome‐wide expression patterns
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 67
  start-page: 919
  year: 1986
  end-page: 928
  article-title: Applying metric and nonmetric multidimensional scaling to ecological studies: Some new results
  publication-title: Ecology
– volume: 8
  start-page: 166
  year: 2007
  article-title: GOSim—An R‐package for computation of information theoretic GO similarities between terms and gene products
  publication-title: BMC Bioinformatics
– volume: 68
  start-page: 237
  year: 2003
  end-page: 43
  article-title: The genome knowledgebase: A resource for biologists and bioinformaticists
  publication-title: Cold Spring Harbor Symposia on Quantitative Biology
– year: 2010
– start-page: 1
  year: 1991
  end-page: 10
– volume: 22
  start-page: 1600
  year: 2006
  end-page: 1607
  article-title: Improved scoring of functional groups from gene expression data by decorrelating GO graph structure
  publication-title: Bioinformatics
– volume: 38
  start-page: 98
  year: 2009
  end-page: 111
  article-title: Microarray gene expression profiles of fasting induced changes in liver and adipose tissues of pigs expressing the melanocortin‐4 receptor D298N variant
  publication-title: Physiological Genomics
– volume: 48
  start-page: 259
  year: 1986
  end-page: 302
  article-title: On the statistical analysis of dirty pictures
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
– year: 2002
– volume: 25
  start-page: 1390
  year: 2009
  end-page: 1396
  article-title: Network‐based multiple locus linkage analysis of expression traits
  publication-title: Bioinformatics
– volume: 63
  start-page: 483
  year: 2007
  end-page: 495
  article-title: Exploring the information in ‐values for the analysis and planning of multiple‐test experiments
  publication-title: Biometrics
– volume: 96
  start-page: 529
  year: 2009
  end-page: 544
  article-title: Asymptotic properties of penalized spline estimators
  publication-title: Biometrika
– volume: 19
  start-page: 181
  year: 1966
  end-page: 196
  article-title: The multidimensional scaling of “elastic” distances
  publication-title: British Journal of Mathematical and Statistical Psychology
– volume: 22
  start-page: 1608
  year: 2006
  end-page: 1615
  article-title: A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays
  publication-title: Bioinformatics
– ident: e_1_2_10_9_1
  doi: 10.1007/s00335-009-9234-1
– ident: e_1_2_10_28_1
  doi: 10.1152/physiolgenomics.90372.2008
– ident: e_1_2_10_43_1
  doi: 10.1093/bioinformatics/btn066
– year: 2001
  ident: e_1_2_10_10_1
  publication-title: Multidimensional Scaling
– ident: e_1_2_10_40_1
  doi: 10.1198/106186002853
– year: 2005
  ident: e_1_2_10_5_1
  publication-title: Modern Multidimensional Scaling: Theory and Applications
– ident: e_1_2_10_39_1
  doi: 10.1017/CBO9780511812651
– ident: e_1_2_10_34_1
  doi: 10.1111/1467-9876.00066-i1
– start-page: 3580
  volume-title: Proceedings of the IJCNN ’06 (International Joint Conference on Neural Networks 2006)
  year: 2006
  ident: e_1_2_10_17_1
– ident: e_1_2_10_23_1
  doi: 10.1093/bioinformatics/btn081
– ident: e_1_2_10_51_1
  doi: 10.1038/75556
– ident: e_1_2_10_8_1
  doi: 10.1177/001316446002000104
– ident: e_1_2_10_46_1
  doi: 10.1089/cmb.2008.0081
– ident: e_1_2_10_13_1
  doi: 10.1198/016214504000000089
– ident: e_1_2_10_7_1
  doi: 10.1093/biomet/asp035
– ident: e_1_2_10_41_1
  doi: 10.1111/j.1541-0420.2006.00704.x
– ident: e_1_2_10_2_1
  doi: 10.1093/bioinformatics/btl140
– ident: e_1_2_10_42_1
  doi: 10.1109/T-C.1969.222678
– ident: e_1_2_10_32_1
  doi: 10.1109/NNSP.1991.239541
– ident: e_1_2_10_21_1
  doi: 10.2307/1939814
– ident: e_1_2_10_19_1
  doi: 10.1101/sqb.2003.68.237
– ident: e_1_2_10_18_1
  doi: 10.1093/bioinformatics/btl065
– ident: e_1_2_10_25_1
  doi: 10.1093/biostatistics/kxp043
– ident: e_1_2_10_3_1
  doi: 10.1093/nar/gki022
– ident: e_1_2_10_22_1
  doi: 10.1073/pnas.0702965104
– ident: e_1_2_10_4_1
  doi: 10.1111/j.2517-6161.1986.tb01412.x
– ident: e_1_2_10_44_1
  doi: 10.1093/nar/gkn653
– ident: e_1_2_10_16_1
  doi: 10.1186/1471-2105-8-166
– ident: e_1_2_10_52_1
  doi: 10.1093/bioinformatics/btm612
– ident: e_1_2_10_26_1
  doi: 10.1093/biomet/asn010
– ident: e_1_2_10_27_1
  doi: 10.1198/jasa.2010.tm10195
– ident: e_1_2_10_45_1
  doi: 10.1186/1471-2105-7-302
– volume-title: Model Selection and Multimodel Inference: A Practical Information‐Theoretic Approach
  year: 2002
  ident: e_1_2_10_6_1
– ident: e_1_2_10_50_1
  doi: 10.1198/016214507000000545
– ident: e_1_2_10_24_1
  doi: 10.1080/10543400903572712
– ident: e_1_2_10_37_1
  doi: 10.1111/j.1541-0420.2009.01296.x
– ident: e_1_2_10_20_1
  doi: 10.1093/nar/28.1.27
– ident: e_1_2_10_15_1
  doi: 10.1073/pnas.95.25.14863
– ident: e_1_2_10_54_1
  doi: 10.1093/bioinformatics/btm129
– ident: e_1_2_10_49_1
  doi: 10.1109/IJCNN.2005.1555846
– ident: e_1_2_10_38_1
  doi: 10.1007/BF02162161
– ident: e_1_2_10_33_1
  doi: 10.1093/bioinformatics/btl165
– ident: e_1_2_10_53_1
  doi: 10.1111/j.1467-9876.2009.00686.x
– ident: e_1_2_10_48_1
  doi: 10.1038/193855a0
– ident: e_1_2_10_31_1
  doi: 10.1186/1471-2105-9-327
– ident: e_1_2_10_35_1
  doi: 10.1093/bioinformatics/btl011
– volume: 3
  year: 2004
  ident: e_1_2_10_47_1
  article-title: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
  publication-title: Statistical Applications in Genetics and Molecular Biology
  doi: 10.2202/1544-6115.1027
– ident: e_1_2_10_14_1
  doi: 10.1017/CBO9780511761362
– ident: e_1_2_10_12_1
  doi: 10.1186/gb-2003-4-5-p3
– ident: e_1_2_10_36_1
  doi: 10.1093/bioinformatics/btp177
– ident: e_1_2_10_29_1
  doi: 10.1111/j.2044-8317.1966.tb00367.x
– ident: e_1_2_10_11_1
  doi: 10.1186/1471-2105-9-50
– ident: e_1_2_10_30_1
  doi: 10.1093/bioinformatics/btl148
SSID ssj0009502
Score 2.0230582
Snippet For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two‐component mixture model has been widely used in...
For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the twocomponent mixture model has been widely used in practice...
Summary For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two‐component mixture model has been widely used in...
Summary For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two‐component mixture model has been widely used in...
For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two-component mixture model has been widely used in...
Summary For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two-component mixture model has been widely used in...
SourceID proquest
pubmed
crossref
wiley
jstor
istex
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 1168
SubjectTerms A priori knowledge
Algorithms
Bioinformatics
BIOMETRIC METHODOLOGY
Biometrics
biometry
Chromosome Mapping - methods
Computer Simulation
Data analysis
Data Interpretation, Statistical
DNA, Intergenic - genetics
Domain ontologies
Exchange
False discovery rates
Gene expression
Gene Expression Profiling - methods
gene expression regulation
Gene ontology
Genes
Genomics
Hierarchical model
Microarray
microarray technology
Modeling
Models, Statistical
Multidimensional scaling
Nonparametric models
Nonparametric regression
Oligonucleotide Array Sequence Analysis - methods
Parametric models
Profiling
Regression
Regression Analysis
Strategy
Title Hierarchical Semiparametric Model for Incorporating Intergene Information for Analysis of Genomic Data
URI https://api.istex.fr/ark:/67375/WNG-6WG4D0DW-N/fulltext.pdf
https://www.jstor.org/stable/41806035
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2012.01778.x
https://www.ncbi.nlm.nih.gov/pubmed/22994883
https://www.proquest.com/docview/1242264134
https://www.proquest.com/docview/1273121831
https://www.proquest.com/docview/1417865119
https://www.proquest.com/docview/1678523545
https://www.proquest.com/docview/1762127465
Volume 68
WOSCitedRecordID wos000314236200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1541-0420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6xDqTxwI_CWGBMRkK8ZWoSJ44fB6XbpK0gRtW-WY5_wMTWonZD47_nzkmjVZoqhHir2muinL-zv3PO3wG8NV5zW0of5xg7MbcYipWQJraVLIystMx0EHE9EcNhOZnIz039E52FqfUh2g03iowwX1OA62qxGuQ5x1SYpz2q0Er3EVui3Ec-uZkijPMObPa_DEYntyR4e7V2OFV78WSyWtdz57VWFqsNr2dIYcn7N8vqxbt46SrNDevU4PH_fMIn8Khhq-yghtdTuOemXXhQ96_83YWHp63o66ILW0Rca93nZ_D9gB2d0-Hm0Gvlgp25y3OSGb-kDl6GUQu2C4aEmR2TkGYQU8ZFlIUNSsS0Y805KcJNsFuqp7CZZ4cuHKZmfX2ln8No8PHrh6O46eoQG5KWidPcpCK1pc-qDJNTXdjM6jzPrfYZTicOU06JWZZzhbekBmel9IkonHam0AYT6m3oTGdTtwMM6UflufOlTSTXiS1NKrXw1jku8QYmgmQ5fOpnLd6hbiU96FxFzlXkXBWcq24i2MFxVvobzrFqdJbSjhDtuqJdBO_C4LfX0vMfVBcncjUeHqpifMj7vf5YDSPYDuhoDXlS9grEZAS7S7ioZq5YKGRYdJo5yXgEb9qfMcrp1Y2eutk12YgsITabrLHhiSgLei-8xga5SZ6i3_M1Nrg-4v14gTYvaki3D5Iie8EpP4tABOT-tVvV--NPp_Tx5T__8xVs0fd1LdEudK7m1-413De_ENrzPdgQk3Kvifk_AqlPbA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BC6IceARKDQUWCXFzFdvrxx4LIQ-RBEQbJbfVeh9Q0SYobVH598ysHauRqgghbpEytuXZb3a_Wc9-A_BWO8VNIVyYYuyE3GAolrnQoSlFpkWpRKK8iOswH4-L2Ux8qdsB0VmYSh-i2XCjyPDzNQU4bUivR3nKMRfmcZtKtOIDBFdeHCCh3OaIKoT7dudrdzK8psHbrsTDqdyLR7P1wp4b77W2Wt12aoEcltx_tSpfvImYrvNcv1B1H_7XV3wED2q-yg4rgD2GW3begrtVB8vfLbg_amRfz1uwQ9S1Un5-At8PWf-Ejjf7biun7MienZDQ-Bn18NKMmrCdMqTMbEBSml5OGZdR5rcoEdWW1SelCDnebqWfwhaO9aw_Ts066kI9hUn34_GHflj3dQg1icuEcarjPDaFS8oE01OVmcSoNE2NcglOKBaTToF5lrWZM6QHZ4RwUZ5ZZXWmNKbUu7A1X8ztHjAkIKXj1hUmElxFptCxULkz1nKBD9ABRKvxkz8r-Q55Le1B50pyriTnSu9ceRXAHg60VN9wlpWTo5j2hGjfFe0CeOdHv7mXWv6gyrg8ldNxT2bTHu-0O1M5DmDXw6Mx5FHRztpJGsD-Ci-yni3OJXIsOs8cJTyAN83fGOf08UbN7eKSbPIkIj4bbbDhUV5k9GV4gw2ykzRGv6cbbHCFxOfxDG2eVZhuXiRG_oKTfhJA7qH7126V7wefR_Tz-T9f-Rru9Y9HQzkcjD-9gB2yqSqL9mHrYnlpX8Id_QthvnxVh_4fOk9SdA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9NADLegAzQe-OgYCww4JMRbpia5fNzjoLSr6MrEqNq30-U-YGJrp25D47_HvqTRKk0VQrxVqpMoPtv388X-GeCddoqbQrgwRd8JuUFXLHOhQ1OKTItSiUR5EtdhPhoV06k4qscBUS9MxQ_RHLiRZ_h4TQ5uz41b9fKUYy7M4w6VaMV7aFx5sYeAcoPTTJkWbHS_9sbDGxy8nYo8nMq9eDRdLey59V4ru9Vdp-aIYUn918vyxduA6SrO9RtV7_F_fcUn8KjGq2y_MrCncMfO2nC_mmD5uw0PDxva14s2bBJ0rZift-DHPjs4ofZmP23llB3bsxMiGj-jGV6a0RC2U4aQmQ2IStPTKeM2yvwRJVq1ZXWnFFmOl1vyp7C5Y33r26lZV12qZzDuffr28SCs5zqEmshlwjjVcR6bwiVlgumpykxiVJqmRrkEA4rFpBOXL7M2c4b44IwQLsozq6zOlMaUehtas_nM7gBDAFI6bl1hIsFVZAodC5U7Yy0X-AAdQLRcP3le0XfIG2kPKleSciUpV3rlyusAdnChpfqOUVaOj2M6E6JzV5QL4L1f_eZeavGTKuPyVE5GfZlN-rzb6U7kKIBtbx6NII-KTtZJ0gB2l_Yi62hxIRFjUT9zlPAA3jZ_o5_Txxs1s_MrksmTiPBstEaGR3mR0ZfhNTKITtIY9Z6ukcEdEp_HM5R5Xtl08yIx4hcM-kkAuTfdv1ar_DD4ckg_X_zzlW_gwVG3J4eD0eeXsEkiVWHRLrQuF1f2FdzTv9DKF69rz_8DSNpR7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hierarchical+Semiparametric+Model+for+Incorporating+Intergene+Information+for+Analysis+of+Genomic+Data&rft.jtitle=Biometrics&rft.au=Qu%2C+Long&rft.au=Nettleton%2C+Dan&rft.au=Dekkers%2C+Jack+C.+M&rft.date=2012-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=68&rft.issue=4&rft.spage=1168&rft_id=info:doi/10.1111%2Fj.1541-0420.2012.01778.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2848053201
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon