Hierarchical Semiparametric Model for Incorporating Intergene Information for Analysis of Genomic Data
For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two‐component mixture model has been widely used in practice to detect differentially expressed genes. However, it naïvely imposes strong exchangeability assumptions across genes and does not make act...
Gespeichert in:
| Veröffentlicht in: | Biometrics Jg. 68; H. 4; S. 1168 - 1177 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Malden, USA
Blackwell Publishing Inc
01.12.2012
Wiley-Blackwell Blackwell Publishing Ltd |
| Schlagworte: | |
| ISSN: | 0006-341X, 1541-0420, 1541-0420 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two‐component mixture model has been widely used in practice to detect differentially expressed genes. However, it naïvely imposes strong exchangeability assumptions across genes and does not make active use of a priori information about intergene relationships that is currently available, e.g., gene annotations through the Gene Ontology (GO) project. We propose a general strategy that first generates a set of covariates that summarizes the intergene information and then extends the two‐component mixture model into a hierarchical semiparametric model utilizing the generated covariates through latent nonparametric regression. Simulations and analysis of real microarray data show that our method can outperform the naïve two‐component mixture model. |
|---|---|
| AbstractList | For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two‐component mixture model has been widely used in practice to detect differentially expressed genes. However, it naïvely imposes strong exchangeability assumptions across genes and does not make active use of a priori information about intergene relationships that is currently available, e.g., gene annotations through the Gene Ontology (GO) project. We propose a general strategy that first generates a set of covariates that summarizes the intergene information and then extends the two‐component mixture model into a hierarchical semiparametric model utilizing the generated covariates through latent nonparametric regression. Simulations and analysis of real microarray data show that our method can outperform the naïve two‐component mixture model. For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the twocomponent mixture model has been widely used in practice to detect differentially expressed genes. However, it naively imposes strong exchangeability assumptions across genes and does not make active use of a priori information about intergene relationships that is currently available, e.g., gene annotations through the Gene Ontology (GO) project. We propose a general strategy that first generates a set of covariates that summarizes the intergene information and then extends the two-component mixture model into a hierarchical semiparametric model utilizing the generated covariates through latent nonparametric regression. Simulations and analysis of real microarray data show that our method can outperform the naïve two-component mixture model. For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two-component mixture model has been widely used in practice to detect differentially expressed genes. However, it naïvely imposes strong exchangeability assumptions across genes and does not make active use of a priori information about intergene relationships that is currently available, e.g., gene annotations through the Gene Ontology (GO) project. We propose a general strategy that first generates a set of covariates that summarizes the intergene information and then extends the two-component mixture model into a hierarchical semiparametric model utilizing the generated covariates through latent nonparametric regression. Simulations and analysis of real microarray data show that our method can outperform the naïve two-component mixture model.For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two-component mixture model has been widely used in practice to detect differentially expressed genes. However, it naïvely imposes strong exchangeability assumptions across genes and does not make active use of a priori information about intergene relationships that is currently available, e.g., gene annotations through the Gene Ontology (GO) project. We propose a general strategy that first generates a set of covariates that summarizes the intergene information and then extends the two-component mixture model into a hierarchical semiparametric model utilizing the generated covariates through latent nonparametric regression. Simulations and analysis of real microarray data show that our method can outperform the naïve two-component mixture model. For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two-component mixture model has been widely used in practice to detect differentially expressed genes. However, it naïvely imposes strong exchangeability assumptions across genes and does not make active use of a priori information about intergene relationships that is currently available, e.g., gene annotations through the Gene Ontology (GO) project. We propose a general strategy that first generates a set of covariates that summarizes the intergene information and then extends the two-component mixture model into a hierarchical semiparametric model utilizing the generated covariates through latent nonparametric regression. Simulations and analysis of real microarray data show that our method can outperform the naïve two-component mixture model. [PUBLICATION ABSTRACT] Summary For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two-component mixture model has been widely used in practice to detect differentially expressed genes. However, it naively imposes strong exchangeability assumptions across genes and does not make active use of a priori information about intergene relationships that is currently available, e.g., gene annotations through the Gene Ontology (GO) project. We propose a general strategy that first generates a set of covariates that summarizes the intergene information and then extends the two-component mixture model into a hierarchical semiparametric model utilizing the generated covariates through latent nonparametric regression. Simulations and analysis of real microarray data show that our method can outperform the naive two-component mixture model. Summary For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two‐component mixture model has been widely used in practice to detect differentially expressed genes. However, it naïvely imposes strong exchangeability assumptions across genes and does not make active use of a priori information about intergene relationships that is currently available, e.g., gene annotations through the Gene Ontology (GO) project. We propose a general strategy that first generates a set of covariates that summarizes the intergene information and then extends the two‐component mixture model into a hierarchical semiparametric model utilizing the generated covariates through latent nonparametric regression. Simulations and analysis of real microarray data show that our method can outperform the naïve two‐component mixture model. Summary For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two‐component mixture model has been widely used in practice to detect differentially expressed genes. However, it naïvely imposes strong exchangeability assumptions across genes and does not make active use of a priori information about intergene relationships that is currently available, e.g., gene annotations through the Gene Ontology (GO) project. We propose a general strategy that first generates a set of covariates that summarizes the intergene information and then extends the two‐component mixture model into a hierarchical semiparametric model utilizing the generated covariates through latent nonparametric regression. Simulations and analysis of real microarray data show that our method can outperform the naïve two‐component mixture model. |
| Author | Qu, Long Dekkers, Jack C. M. Nettleton, Dan |
| Author_xml | – sequence: 1 givenname: Long surname: Qu fullname: Qu, Long – sequence: 2 givenname: Dan surname: Nettleton fullname: Nettleton, Dan – sequence: 3 givenname: Jack C. M. surname: Dekkers fullname: Dekkers, Jack C. M. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22994883$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1v1DAQhi1URLeFnwBE4sIlwd9xLkilC9uV-nEo1XKz3GSyOCTxYmfF7r_HacoeuLS-2ON55vVo_J6go971gFBCcEbi-tRkRHCSYk5xRjGhGSZ5rrLdCzQ7JI7QDGMsU8bJj2N0EkITw0Jg-godU1oUXCk2Q_WFBW98-dOWpk1uobMb400Hg7dlcuUqaJPa-WTZl85vnDeD7dcxGsCvoYd4itku3rr-gTvrTbsPNiSuThbQuy6qzM1gXqOXtWkDvHncT9Hdt6_fzy_Sy5vF8vzsMi0FlSqloqQ5rVTN7pnghZEVq4wQojI1w1wBUbyQVALIuuJUsaooapJLMFBKUzLFTtHHSXfj3e8thEF3NpTQtqYHtw06wpTQnEvxNCpzJWhs4xkoJ7mSgpDiaZTmjFCiGInoh__Qxm19HOBIcUolJ4xH6t0jtb3voNIbbzvj9_rfF0ZATUDpXQge6gNCsB7dohs9mkKPptCjW_SDW_Quln6eSv_YFvbPrtNfljdX4zEKvJ0EmjA4fxDgRGGJ2Ti4dMrbMMDukDf-l5Y5y4VeXS-0XC34HM9X-jry7ye-Nk6btbdB393GpwXGhKvYB_sLDUvkaA |
| CODEN | BIOMA5 |
| Cites_doi | 10.1007/s00335-009-9234-1 10.1152/physiolgenomics.90372.2008 10.1093/bioinformatics/btn066 10.1198/106186002853 10.1017/CBO9780511812651 10.1111/1467-9876.00066-i1 10.1093/bioinformatics/btn081 10.1038/75556 10.1177/001316446002000104 10.1089/cmb.2008.0081 10.1198/016214504000000089 10.1093/biomet/asp035 10.1111/j.1541-0420.2006.00704.x 10.1093/bioinformatics/btl140 10.1109/T-C.1969.222678 10.1109/NNSP.1991.239541 10.2307/1939814 10.1101/sqb.2003.68.237 10.1093/bioinformatics/btl065 10.1093/biostatistics/kxp043 10.1093/nar/gki022 10.1073/pnas.0702965104 10.1111/j.2517-6161.1986.tb01412.x 10.1093/nar/gkn653 10.1186/1471-2105-8-166 10.1093/bioinformatics/btm612 10.1093/biomet/asn010 10.1198/jasa.2010.tm10195 10.1186/1471-2105-7-302 10.1198/016214507000000545 10.1080/10543400903572712 10.1111/j.1541-0420.2009.01296.x 10.1093/nar/28.1.27 10.1073/pnas.95.25.14863 10.1093/bioinformatics/btm129 10.1109/IJCNN.2005.1555846 10.1007/BF02162161 10.1093/bioinformatics/btl165 10.1111/j.1467-9876.2009.00686.x 10.1038/193855a0 10.1186/1471-2105-9-327 10.1093/bioinformatics/btl011 10.2202/1544-6115.1027 10.1017/CBO9780511761362 10.1186/gb-2003-4-5-p3 10.1093/bioinformatics/btp177 10.1111/j.2044-8317.1966.tb00367.x 10.1186/1471-2105-9-50 10.1093/bioinformatics/btl148 |
| ContentType | Journal Article |
| Copyright | 2012 The International Biometric Society 2012, The International Biometric Society 2012, The International Biometric Society. |
| Copyright_xml | – notice: 2012 The International Biometric Society – notice: 2012, The International Biometric Society – notice: 2012, The International Biometric Society. |
| DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7X8 8FD FR3 P64 RC3 7S9 L.6 7SC 7U5 L7M L~C L~D |
| DOI | 10.1111/j.1541-0420.2012.01778.x |
| DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection MEDLINE - Academic Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic Computer and Information Systems Abstracts – Academic Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Computer Science Collection Technology Research Database Genetics Abstracts CrossRef AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Biology Mathematics |
| EISSN | 1541-0420 |
| EndPage | 1177 |
| ExternalDocumentID | 2848053201 22994883 10_1111_j_1541_0420_2012_01778_x BIOM1778 41806035 ark_67375_WNG_6WG4D0DW_N US201500148420 |
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 3V. 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABCVL ABDBF ABEML ABFAN ABHUG ABJCF ABJNI ABLJU ABPPZ ABPTK ABPVW ABTAH ABUWG ABWRO ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACSCC ACTMH ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIPN ADIZJ ADKYN ADMGS ADODI ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELPN AENEX AEQDE AEUPB AEUQT AEUYR AFBPY AFDVO AFEBI AFFTP AFGKR AFKRA AFPWT AFVGU AFVYC AFXKK AFZJQ AGJLS AGTJU AHMBA AIAGR AIBGX AIURR AIWBW AJBDE AJXKR ALAGY ALEEW ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANPLD APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EFSUC EJD EMB EMK EMOBN EST ESTFP ESX F00 F01 F04 F5P FBQ FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K48 K6V K7- L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OWPYF P0- P2P P2W P2X P4D P62 PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K VQA W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WXSBR WYISQ X6Y XBAML XFK XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHBH AAMMB AANHP AAUAY AAWIL AAYCA AAZSN ABAWQ ABDFA ABEJV ABGNP ABMNT ABXSQ ABXVV ACHJO ACRPL ACUHS ACYXJ ADNBA ADNMO ADVOB AEFGJ AEOTA AFFHD AFWVQ AGLNM AGQPQ AGXDD AHGBF AIDQK AIDYY AIHAF AJAOE AJBYB AJNCP ALRMG BSCLL H13 IPSME KOP NU- OIG OJZSN PHGZM PHGZT PJZUB PPXIY PQGLB ROX AGORE ALIPV AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM JQ2 7X8 8FD FR3 P64 RC3 7S9 L.6 7SC 7U5 L7M L~C L~D |
| ID | FETCH-LOGICAL-c5268-25c272d8f3b3549a6d3da555daf3048e1849626ee6fd4283d99f176eaec6ac383 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000314236200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0006-341X 1541-0420 |
| IngestDate | Sat Sep 27 21:42:06 EDT 2025 Fri Oct 03 00:12:59 EDT 2025 Sun Nov 09 13:24:23 EST 2025 Sun Nov 09 11:28:04 EST 2025 Wed Aug 13 10:53:05 EDT 2025 Mon Jul 21 06:03:47 EDT 2025 Sat Nov 29 02:09:59 EST 2025 Wed Jan 22 16:58:15 EST 2025 Thu Jul 03 21:22:34 EDT 2025 Tue Nov 11 03:32:36 EST 2025 Wed Dec 27 19:21:01 EST 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2012, The International Biometric Society. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5268-25c272d8f3b3549a6d3da555daf3048e1849626ee6fd4283d99f176eaec6ac383 |
| Notes | http://dx.doi.org/10.1111/j.1541-0420.2012.01778.x istex:921DCFB922DE5C4C2ED717C33D42D5606628391C ark:/67375/WNG-6WG4D0DW-N ArticleID:BIOM1778 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 22994883 |
| PQID | 1242264134 |
| PQPubID | 35366 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1762127465 proquest_miscellaneous_1678523545 proquest_miscellaneous_1417865119 proquest_miscellaneous_1273121831 proquest_journals_1242264134 pubmed_primary_22994883 crossref_primary_10_1111_j_1541_0420_2012_01778_x wiley_primary_10_1111_j_1541_0420_2012_01778_x_BIOM1778 jstor_primary_41806035 istex_primary_ark_67375_WNG_6WG4D0DW_N fao_agris_US201500148420 |
| PublicationCentury | 2000 |
| PublicationDate | December 2012 |
| PublicationDateYYYYMMDD | 2012-12-01 |
| PublicationDate_xml | – month: 12 year: 2012 text: December 2012 |
| PublicationDecade | 2010 |
| PublicationPlace | Malden, USA |
| PublicationPlace_xml | – name: Malden, USA – name: United States – name: Washington |
| PublicationTitle | Biometrics |
| PublicationTitleAlternate | Biometrics |
| PublicationYear | 2012 |
| Publisher | Blackwell Publishing Inc Wiley-Blackwell Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Inc – name: Wiley-Blackwell – name: Blackwell Publishing Ltd |
| References | Sammon, J. W., Jr. (1969). A nonlinear mapping for data structure analysis. Computers, IEEE Transactions on Computers 18, 401-409. Borg, I. and Groenen, P. J. F. (2005). Modern Multidimensional Scaling: Theory and Applications , 2nd edition. Springer Series in Statistics. New York: Springer-Verlag New York, Inc. del Pozo, A., Pazos, F., and Valencia, A. (2008). Defining functional distances over gene ontology. BMC Bioinformatics 9, 50. Pan, W. (2006b). Incorporating gene functions as priors in model-based clustering of microarray gene expression data. Bioinformatics 22, 795-801. Ng, S. K., McLachlan, G. J., Wang, K., Ben-Tovim, L., and Ng, S.-W. (2006). A mixture model with random-effects components for clustering correlated gene-expression profiles. Bioinformatics 22, 1745-1752. Wei, P. and Pan, W. (2008). Incorporating gene networks into statistical tests for genomic data via a spatially correlated mixture model. Bioinformatics 24, 404-411. Besag, J. (1986). On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society. Series B (Methodological) 48, 259-302. Li, C., Wei, Z., and Li, H. (2010a). Network-based empirical Bayes methods for linear models with applications to genomic data. Journal of Biopharmaceutical Statistics 20, 209-222. Shojaie, A. and Michailidis, G. (2009). Analysis of gene sets based on the underlying regulatory network. Journal of Computational Biology 16, 407-426. Liang, K. and Nettleton, D. (2010). A hidden Markov model approach to testing multiple hypotheses on a tree-transformed gene ontology graph. Journal of the American Statistical Association 105, 1444-1454. Sun, W. and Cai, T. T. (2007). Oracle and adaptive compound decision rules for false discovery rate control. Journal of the American Statistical Association 102, 901-912. McLachlan, G., Bean, R., and Jones, L. B.-T. (2006). A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays. Bioinformatics 22, 1608-1615. Efron, B. (2004). Large-scale simultaneous hypothesis testing: The choice of a null hypothesis. Journal of the American Statistical Association 99, 96-104. Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach . New York : Springer. Alexa, A., Rahnenfuhrer, J., and Lengauer, T. (2006). Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600-1607. Kanehisa, M. and Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28, 27-30. Schlicker, A., Domingues, F., Rahnenführer, J., and Lengauer, T. (2006). A new measure for functional similarity of gene products based on gene ontology. BMC Bioinformatics 7, 302. Mistry, M. and Pavlidis, P. (2008). Gene ontology term overlap as a measure of gene functional similarity. BMC Bioinformatics 9, 327. Ruppert, D., Nettleton, D., and Hwang, J. T. G. (2007). Exploring the information in p-values for the analysis and planning of multiple-test experiments. Biometrics 63, 483-495. Claeskens, G., Krivobokova, T., and Opsomer, J. D. (2009). Asymptotic properties of penalized spline estimators. Biometrika 96, 529-544. Reinsch, C. (1967). Smoothing by spline functions. Numerische Mathematik 10, 177-183. Lkhagvadorj, S., Qu, L., Cai, W., Couture, O. P., Barb, C. R., Hausman, G. J., Nettleton, D., Anderson, L. L., Dekkers, J. C., and Tuggle, C. K. (2009). Microarray gene expression profiles of fasting induced changes in liver and adipose tissues of pigs expressing the melanocortin-4 receptor D298N variant. Physiological Genomics 38, 98-111. Ruppert, D. (2002). Selecting the number of knots for penalized splines. Journal of Computational and Graphical Statistics 11, 735-757. Fröhlich, H., Speer, N., Poustka, A., and Beißbarth, T. (2007). GOSim-An R-package for computation of information theoretic GO similarities between terms and gene products. BMC Bioinformatics 8, 166. Joshi-Tope, G., Vastrik, I., Gopinath, G. R., Matthews, L., Schmidt, E., Gillespie, M., D'Eustachio, P., Jassal, B., Lewis, S., Wu, G., Birney, E., and Stein, L. (2003). The genome knowledgebase: A resource for biologists and bioinformaticists. Cold Spring Harbor Symposia on Quantitative Biology 68, 237-43. Huang, D. and Pan, W. (2006). Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data. Bioinformatics 22, 1259-1268. Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20, 37-46. Pan, W. (2006a). Incorporating gene functional annotations in detecting differential gene expression. Journal of the Royal Statistical Society Series C (Applied Statistics) 55, 301-316. Dennis, G., Sherman, B., Hosack, D., Yang, J., Gao, W., Lane, H., and Lempicki, R. (2003). DAVID: Database for annotation, visualization, and integrated discovery. Genome Biology 4, P3. Schaefer, C. F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T., and Buetow, K. H. (2009). PID: The pathway interaction database. Nucleic Acids Research 37, D674-679. The Gene Ontology Consortium, (2000). Gene ontology: Tool for the unification of biology. Nature Genetics 25, 25-29. Li, H., Wei, Z., and Maris, J. (2010b). A hidden Markov random field model for genome-wide association studies. Biostatistics 11, 139-50. Cox, T. F. and Cox, M. A. A. (2001). Multidimensional Scaling . Monographs on Statistics and Applied Probability, 2nd edition. Boca Raton: Chapman & Hall/CRC. McGee, V. E. (1966). The multidimensional scaling of "elastic" distances. British Journal of Mathematical and Statistical Psychology 19, 181-196. Efron, B. (2010). Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction . IMS Monographs . New York: Cambridge University Press. Pan, W. (2009). Network-based multiple locus linkage analysis of expression traits. Bioinformatics 25, 1390-1396. Lerman, G. and Shakhnovich, B. E. (2007). Defining functional distance using manifold embeddings of gene ontology annotations. Proceedings of the National Academy of Sciences of the United States of America 104, 11334-11339. Sneath, P. H. and Sokal, R. R. (1962). Numerical taxonomy. Nature 193, 855-860. Couture, O., Callenberg, K., Koul, N., Pandit, S., Younes, R., Hu, Z. L., Dekkers, J., Reecy, J., Honavar, V., and Tuggle, C. (2009). ANEXdb: An integrated animal annotation and microarray expression database. Mammalian Genome 20, 768-777. Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology Article 3. Li, C. and Li, H. (2008). Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 24, 1175-1182. Kenkel, N. C. and Orlóci, L. (1986). Applying metric and nonmetric multidimensional scaling to ecological studies: Some new results. Ecology 67, 919-928. Pan, W., Xie, B., and Shen, X. (2010). Incorporating predictor network in penalized regression with application to microarray data. Biometrics 66, 474-484. Ripley, B. D. (1996). Pattern Recognition and Neural Networks . Cambridge : Cambridge University Press. Sanguinetti, G., Noirel, J., and Wright, P. C. (2008). MMG: A probabilistic tool to identify submodules of metabolic pathways. Bioinformatics 24, 1078-1084. Barrett, T., Suzek, T. O., Troup, D. B., Wilhite, S. E., Ngau, W.-C., Ledoux, P., Rudnev, D., Lash, A. E., Fujibuchi, W., and Edgar, R. (2005). NCBI GEO: Mining millions of expression profiles-Database and tools. Nucleic Acids Research 33, D562-566. Wei, Z. and Li, H. (2007). A Markov random field model for network-based analysis of genomic data. Bioinformatics 23, 1537-1544. Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America 95, 14863-14868. Wei, P. and Pan, W. (2010). Network-based genomic discovery: Application and comparison of Markov random-field models. Journal of the Royal Statistical Society: Series C (Applied Statistics) 59, 105-125. Li, Y. and Ruppert, D. (2008). On the asymptotics of penalized splines. Biometrika 95, 415-436. 2007; 104 2009; 25 1966; 19 2007; 102 2006b; 22 2004; Article 3 2010; 59 2009; 20 2000; 28 2000; 25 2010 2010; 105 2002; 11 2008; 9 2006; 7 1996 2006 2005 1969; 18 2002 1991 2008; 95 2010b; 11 2006a; 55 2004; 99 2010; 66 2009; 96 2010a; 20 1960; 20 2001 1967; 10 2006; 22 1986; 67 1986; 48 1962; 193 2007; 8 2003; 68 2003; 4 2008; 24 2005; 1 2007; 63 1998; 95 2007; 23 2005; 33 2009; 38 2009; 16 2009; 37 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Borg I. (e_1_2_10_5_1) 2005 e_1_2_10_2_1 Fröhlich H. (e_1_2_10_17_1) 2006 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Cox T. F. (e_1_2_10_10_1) 2001 Smyth G. K. (e_1_2_10_47_1) 2004; 3 Burnham K. P. (e_1_2_10_6_1) 2002 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_38_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 |
| References_xml | – reference: Barrett, T., Suzek, T. O., Troup, D. B., Wilhite, S. E., Ngau, W.-C., Ledoux, P., Rudnev, D., Lash, A. E., Fujibuchi, W., and Edgar, R. (2005). NCBI GEO: Mining millions of expression profiles-Database and tools. Nucleic Acids Research 33, D562-566. – reference: Joshi-Tope, G., Vastrik, I., Gopinath, G. R., Matthews, L., Schmidt, E., Gillespie, M., D'Eustachio, P., Jassal, B., Lewis, S., Wu, G., Birney, E., and Stein, L. (2003). The genome knowledgebase: A resource for biologists and bioinformaticists. Cold Spring Harbor Symposia on Quantitative Biology 68, 237-43. – reference: Schaefer, C. F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T., and Buetow, K. H. (2009). PID: The pathway interaction database. Nucleic Acids Research 37, D674-679. – reference: Alexa, A., Rahnenfuhrer, J., and Lengauer, T. (2006). Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600-1607. – reference: Schlicker, A., Domingues, F., Rahnenführer, J., and Lengauer, T. (2006). A new measure for functional similarity of gene products based on gene ontology. BMC Bioinformatics 7, 302. – reference: Reinsch, C. (1967). Smoothing by spline functions. Numerische Mathematik 10, 177-183. – reference: Sun, W. and Cai, T. T. (2007). Oracle and adaptive compound decision rules for false discovery rate control. Journal of the American Statistical Association 102, 901-912. – reference: Efron, B. (2004). Large-scale simultaneous hypothesis testing: The choice of a null hypothesis. Journal of the American Statistical Association 99, 96-104. – reference: Wei, P. and Pan, W. (2010). Network-based genomic discovery: Application and comparison of Markov random-field models. Journal of the Royal Statistical Society: Series C (Applied Statistics) 59, 105-125. – reference: Sammon, J. W., Jr. (1969). A nonlinear mapping for data structure analysis. Computers, IEEE Transactions on Computers 18, 401-409. – reference: Lerman, G. and Shakhnovich, B. E. (2007). Defining functional distance using manifold embeddings of gene ontology annotations. Proceedings of the National Academy of Sciences of the United States of America 104, 11334-11339. – reference: Fröhlich, H., Speer, N., Poustka, A., and Beißbarth, T. (2007). GOSim-An R-package for computation of information theoretic GO similarities between terms and gene products. BMC Bioinformatics 8, 166. – reference: Sanguinetti, G., Noirel, J., and Wright, P. C. (2008). MMG: A probabilistic tool to identify submodules of metabolic pathways. Bioinformatics 24, 1078-1084. – reference: Cox, T. F. and Cox, M. A. A. (2001). Multidimensional Scaling . Monographs on Statistics and Applied Probability, 2nd edition. Boca Raton: Chapman & Hall/CRC. – reference: Claeskens, G., Krivobokova, T., and Opsomer, J. D. (2009). Asymptotic properties of penalized spline estimators. Biometrika 96, 529-544. – reference: Ripley, B. D. (1996). Pattern Recognition and Neural Networks . Cambridge : Cambridge University Press. – reference: Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20, 37-46. – reference: Lkhagvadorj, S., Qu, L., Cai, W., Couture, O. P., Barb, C. R., Hausman, G. J., Nettleton, D., Anderson, L. L., Dekkers, J. C., and Tuggle, C. K. (2009). Microarray gene expression profiles of fasting induced changes in liver and adipose tissues of pigs expressing the melanocortin-4 receptor D298N variant. Physiological Genomics 38, 98-111. – reference: Borg, I. and Groenen, P. J. F. (2005). Modern Multidimensional Scaling: Theory and Applications , 2nd edition. Springer Series in Statistics. New York: Springer-Verlag New York, Inc. – reference: Pan, W. (2006a). Incorporating gene functional annotations in detecting differential gene expression. Journal of the Royal Statistical Society Series C (Applied Statistics) 55, 301-316. – reference: The Gene Ontology Consortium, (2000). Gene ontology: Tool for the unification of biology. Nature Genetics 25, 25-29. – reference: Li, C., Wei, Z., and Li, H. (2010a). Network-based empirical Bayes methods for linear models with applications to genomic data. Journal of Biopharmaceutical Statistics 20, 209-222. – reference: Mistry, M. and Pavlidis, P. (2008). Gene ontology term overlap as a measure of gene functional similarity. BMC Bioinformatics 9, 327. – reference: McLachlan, G., Bean, R., and Jones, L. B.-T. (2006). A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays. Bioinformatics 22, 1608-1615. – reference: Huang, D. and Pan, W. (2006). Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data. Bioinformatics 22, 1259-1268. – reference: McGee, V. E. (1966). The multidimensional scaling of "elastic" distances. British Journal of Mathematical and Statistical Psychology 19, 181-196. – reference: Ruppert, D., Nettleton, D., and Hwang, J. T. G. (2007). Exploring the information in p-values for the analysis and planning of multiple-test experiments. Biometrics 63, 483-495. – reference: Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach . New York : Springer. – reference: Couture, O., Callenberg, K., Koul, N., Pandit, S., Younes, R., Hu, Z. L., Dekkers, J., Reecy, J., Honavar, V., and Tuggle, C. (2009). ANEXdb: An integrated animal annotation and microarray expression database. Mammalian Genome 20, 768-777. – reference: Li, Y. and Ruppert, D. (2008). On the asymptotics of penalized splines. Biometrika 95, 415-436. – reference: Wei, P. and Pan, W. (2008). Incorporating gene networks into statistical tests for genomic data via a spatially correlated mixture model. Bioinformatics 24, 404-411. – reference: Ruppert, D. (2002). Selecting the number of knots for penalized splines. Journal of Computational and Graphical Statistics 11, 735-757. – reference: del Pozo, A., Pazos, F., and Valencia, A. (2008). Defining functional distances over gene ontology. BMC Bioinformatics 9, 50. – reference: Kenkel, N. C. and Orlóci, L. (1986). Applying metric and nonmetric multidimensional scaling to ecological studies: Some new results. Ecology 67, 919-928. – reference: Pan, W., Xie, B., and Shen, X. (2010). Incorporating predictor network in penalized regression with application to microarray data. Biometrics 66, 474-484. – reference: Dennis, G., Sherman, B., Hosack, D., Yang, J., Gao, W., Lane, H., and Lempicki, R. (2003). DAVID: Database for annotation, visualization, and integrated discovery. Genome Biology 4, P3. – reference: Kanehisa, M. and Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28, 27-30. – reference: Sneath, P. H. and Sokal, R. R. (1962). Numerical taxonomy. Nature 193, 855-860. – reference: Li, C. and Li, H. (2008). Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 24, 1175-1182. – reference: Liang, K. and Nettleton, D. (2010). A hidden Markov model approach to testing multiple hypotheses on a tree-transformed gene ontology graph. Journal of the American Statistical Association 105, 1444-1454. – reference: Pan, W. (2009). Network-based multiple locus linkage analysis of expression traits. Bioinformatics 25, 1390-1396. – reference: Pan, W. (2006b). Incorporating gene functions as priors in model-based clustering of microarray gene expression data. Bioinformatics 22, 795-801. – reference: Efron, B. (2010). Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction . IMS Monographs . New York: Cambridge University Press. – reference: Shojaie, A. and Michailidis, G. (2009). Analysis of gene sets based on the underlying regulatory network. Journal of Computational Biology 16, 407-426. – reference: Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology Article 3. – reference: Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America 95, 14863-14868. – reference: Besag, J. (1986). On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society. Series B (Methodological) 48, 259-302. – reference: Wei, Z. and Li, H. (2007). A Markov random field model for network-based analysis of genomic data. Bioinformatics 23, 1537-1544. – reference: Li, H., Wei, Z., and Maris, J. (2010b). A hidden Markov random field model for genome-wide association studies. Biostatistics 11, 139-50. – reference: Ng, S. K., McLachlan, G. J., Wang, K., Ben-Tovim, L., and Ng, S.-W. (2006). A mixture model with random-effects components for clustering correlated gene-expression profiles. Bioinformatics 22, 1745-1752. – volume: 1 start-page: 298 year: 2005 end-page: 303 – volume: 25 start-page: 25 year: 2000 end-page: 29 article-title: Gene ontology: Tool for the unification of biology publication-title: Nature Genetics – volume: 23 start-page: 1537 year: 2007 end-page: 1544 article-title: A Markov random field model for network‐based analysis of genomic data publication-title: Bioinformatics – volume: Article 3 year: 2004 article-title: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments publication-title: Statistical Applications in Genetics and Molecular Biology – volume: 20 start-page: 209 year: 2010a end-page: 222 article-title: Network‐based empirical Bayes methods for linear models with applications to genomic data publication-title: Journal of Biopharmaceutical Statistics – volume: 24 start-page: 1078 year: 2008 end-page: 1084 article-title: MMG: A probabilistic tool to identify submodules of metabolic pathways publication-title: Bioinformatics – volume: 20 start-page: 37 year: 1960 end-page: 46 article-title: A coefficient of agreement for nominal scales publication-title: Educational and Psychological Measurement – volume: 20 start-page: 768 year: 2009 end-page: 777 article-title: ANEXdb: An integrated animal annotation and microarray expression database publication-title: Mammalian Genome – volume: 66 start-page: 474 year: 2010 end-page: 484 article-title: Incorporating predictor network in penalized regression with application to microarray data publication-title: Biometrics – volume: 11 start-page: 139 year: 2010b end-page: 50 article-title: A hidden Markov random field model for genome‐wide association studies publication-title: Biostatistics – volume: 99 start-page: 96 year: 2004 end-page: 104 article-title: Large‐scale simultaneous hypothesis testing: The choice of a null hypothesis publication-title: Journal of the American Statistical Association – volume: 18 start-page: 401 year: 1969 end-page: 409 article-title: A nonlinear mapping for data structure analysis publication-title: Computers, IEEE Transactions on Computers – volume: 59 start-page: 105 year: 2010 end-page: 125 article-title: Network‐based genomic discovery: Application and comparison of Markov random‐field models publication-title: Journal of the Royal Statistical Society: Series C (Applied Statistics) – volume: 104 start-page: 11334 year: 2007 end-page: 11339 article-title: Defining functional distance using manifold embeddings of gene ontology annotations publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 105 start-page: 1444 year: 2010 end-page: 1454 article-title: A hidden Markov model approach to testing multiple hypotheses on a tree‐transformed gene ontology graph publication-title: Journal of the American Statistical Association – volume: 24 start-page: 404 year: 2008 end-page: 411 article-title: Incorporating gene networks into statistical tests for genomic data via a spatially correlated mixture model publication-title: Bioinformatics – volume: 37 start-page: D674 year: 2009 end-page: 679 article-title: PID: The pathway interaction database publication-title: Nucleic Acids Research – year: 2001 publication-title: Multidimensional Scaling – start-page: 3580 year: 2006 end-page: 3585 – volume: 102 start-page: 901 year: 2007 end-page: 912 article-title: Oracle and adaptive compound decision rules for false discovery rate control publication-title: Journal of the American Statistical Association – volume: 16 start-page: 407 year: 2009 end-page: 426 article-title: Analysis of gene sets based on the underlying regulatory network publication-title: Journal of Computational Biology – volume: 10 start-page: 177 year: 1967 end-page: 183 article-title: Smoothing by spline functions publication-title: Numerische Mathematik – volume: 9 start-page: 50 year: 2008 article-title: Defining functional distances over gene ontology publication-title: BMC Bioinformatics – volume: 22 start-page: 795 year: 2006b end-page: 801 article-title: Incorporating gene functions as priors in model‐based clustering of microarray gene expression data publication-title: Bioinformatics – year: 2005 publication-title: Modern Multidimensional Scaling: Theory and Applications – volume: 22 start-page: 1745 year: 2006 end-page: 1752 article-title: A mixture model with random‐effects components for clustering correlated gene‐expression profiles publication-title: Bioinformatics – volume: 22 start-page: 1259 year: 2006 end-page: 1268 article-title: Incorporating biological knowledge into distance‐based clustering analysis of microarray gene expression data publication-title: Bioinformatics – volume: 11 start-page: 735 year: 2002 end-page: 757 article-title: Selecting the number of knots for penalized splines publication-title: Journal of Computational and Graphical Statistics – volume: 24 start-page: 1175 year: 2008 end-page: 1182 article-title: Network‐constrained regularization and variable selection for analysis of genomic data publication-title: Bioinformatics – volume: 55 start-page: 301 year: 2006a end-page: 316 article-title: Incorporating gene functional annotations in detecting differential gene expression publication-title: Journal of the Royal Statistical Society Series C (Applied Statistics) – volume: 28 start-page: 27 year: 2000 end-page: 30 article-title: KEGG: Kyoto encyclopedia of genes and genomes publication-title: Nucleic Acids Research – volume: 9 start-page: 327 year: 2008 article-title: Gene ontology term overlap as a measure of gene functional similarity publication-title: BMC Bioinformatics – volume: 7 start-page: 302 year: 2006 article-title: A new measure for functional similarity of gene products based on gene ontology publication-title: BMC Bioinformatics – volume: 4 start-page: P3 year: 2003 article-title: DAVID: Database for annotation, visualization, and integrated discovery publication-title: Genome Biology – volume: 95 start-page: 415 year: 2008 end-page: 436 article-title: On the asymptotics of penalized splines publication-title: Biometrika – year: 1996 – volume: 33 start-page: D562 year: 2005 end-page: 566 article-title: NCBI GEO: Mining millions of expression profiles—Database and tools publication-title: Nucleic Acids Research – volume: 193 start-page: 855 year: 1962 end-page: 860 article-title: Numerical taxonomy publication-title: Nature – volume: 95 start-page: 14863 year: 1998 end-page: 14868 article-title: Cluster analysis and display of genome‐wide expression patterns publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 67 start-page: 919 year: 1986 end-page: 928 article-title: Applying metric and nonmetric multidimensional scaling to ecological studies: Some new results publication-title: Ecology – volume: 8 start-page: 166 year: 2007 article-title: GOSim—An R‐package for computation of information theoretic GO similarities between terms and gene products publication-title: BMC Bioinformatics – volume: 68 start-page: 237 year: 2003 end-page: 43 article-title: The genome knowledgebase: A resource for biologists and bioinformaticists publication-title: Cold Spring Harbor Symposia on Quantitative Biology – year: 2010 – start-page: 1 year: 1991 end-page: 10 – volume: 22 start-page: 1600 year: 2006 end-page: 1607 article-title: Improved scoring of functional groups from gene expression data by decorrelating GO graph structure publication-title: Bioinformatics – volume: 38 start-page: 98 year: 2009 end-page: 111 article-title: Microarray gene expression profiles of fasting induced changes in liver and adipose tissues of pigs expressing the melanocortin‐4 receptor D298N variant publication-title: Physiological Genomics – volume: 48 start-page: 259 year: 1986 end-page: 302 article-title: On the statistical analysis of dirty pictures publication-title: Journal of the Royal Statistical Society. Series B (Methodological) – year: 2002 – volume: 25 start-page: 1390 year: 2009 end-page: 1396 article-title: Network‐based multiple locus linkage analysis of expression traits publication-title: Bioinformatics – volume: 63 start-page: 483 year: 2007 end-page: 495 article-title: Exploring the information in ‐values for the analysis and planning of multiple‐test experiments publication-title: Biometrics – volume: 96 start-page: 529 year: 2009 end-page: 544 article-title: Asymptotic properties of penalized spline estimators publication-title: Biometrika – volume: 19 start-page: 181 year: 1966 end-page: 196 article-title: The multidimensional scaling of “elastic” distances publication-title: British Journal of Mathematical and Statistical Psychology – volume: 22 start-page: 1608 year: 2006 end-page: 1615 article-title: A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays publication-title: Bioinformatics – ident: e_1_2_10_9_1 doi: 10.1007/s00335-009-9234-1 – ident: e_1_2_10_28_1 doi: 10.1152/physiolgenomics.90372.2008 – ident: e_1_2_10_43_1 doi: 10.1093/bioinformatics/btn066 – year: 2001 ident: e_1_2_10_10_1 publication-title: Multidimensional Scaling – ident: e_1_2_10_40_1 doi: 10.1198/106186002853 – year: 2005 ident: e_1_2_10_5_1 publication-title: Modern Multidimensional Scaling: Theory and Applications – ident: e_1_2_10_39_1 doi: 10.1017/CBO9780511812651 – ident: e_1_2_10_34_1 doi: 10.1111/1467-9876.00066-i1 – start-page: 3580 volume-title: Proceedings of the IJCNN ’06 (International Joint Conference on Neural Networks 2006) year: 2006 ident: e_1_2_10_17_1 – ident: e_1_2_10_23_1 doi: 10.1093/bioinformatics/btn081 – ident: e_1_2_10_51_1 doi: 10.1038/75556 – ident: e_1_2_10_8_1 doi: 10.1177/001316446002000104 – ident: e_1_2_10_46_1 doi: 10.1089/cmb.2008.0081 – ident: e_1_2_10_13_1 doi: 10.1198/016214504000000089 – ident: e_1_2_10_7_1 doi: 10.1093/biomet/asp035 – ident: e_1_2_10_41_1 doi: 10.1111/j.1541-0420.2006.00704.x – ident: e_1_2_10_2_1 doi: 10.1093/bioinformatics/btl140 – ident: e_1_2_10_42_1 doi: 10.1109/T-C.1969.222678 – ident: e_1_2_10_32_1 doi: 10.1109/NNSP.1991.239541 – ident: e_1_2_10_21_1 doi: 10.2307/1939814 – ident: e_1_2_10_19_1 doi: 10.1101/sqb.2003.68.237 – ident: e_1_2_10_18_1 doi: 10.1093/bioinformatics/btl065 – ident: e_1_2_10_25_1 doi: 10.1093/biostatistics/kxp043 – ident: e_1_2_10_3_1 doi: 10.1093/nar/gki022 – ident: e_1_2_10_22_1 doi: 10.1073/pnas.0702965104 – ident: e_1_2_10_4_1 doi: 10.1111/j.2517-6161.1986.tb01412.x – ident: e_1_2_10_44_1 doi: 10.1093/nar/gkn653 – ident: e_1_2_10_16_1 doi: 10.1186/1471-2105-8-166 – ident: e_1_2_10_52_1 doi: 10.1093/bioinformatics/btm612 – ident: e_1_2_10_26_1 doi: 10.1093/biomet/asn010 – ident: e_1_2_10_27_1 doi: 10.1198/jasa.2010.tm10195 – ident: e_1_2_10_45_1 doi: 10.1186/1471-2105-7-302 – volume-title: Model Selection and Multimodel Inference: A Practical Information‐Theoretic Approach year: 2002 ident: e_1_2_10_6_1 – ident: e_1_2_10_50_1 doi: 10.1198/016214507000000545 – ident: e_1_2_10_24_1 doi: 10.1080/10543400903572712 – ident: e_1_2_10_37_1 doi: 10.1111/j.1541-0420.2009.01296.x – ident: e_1_2_10_20_1 doi: 10.1093/nar/28.1.27 – ident: e_1_2_10_15_1 doi: 10.1073/pnas.95.25.14863 – ident: e_1_2_10_54_1 doi: 10.1093/bioinformatics/btm129 – ident: e_1_2_10_49_1 doi: 10.1109/IJCNN.2005.1555846 – ident: e_1_2_10_38_1 doi: 10.1007/BF02162161 – ident: e_1_2_10_33_1 doi: 10.1093/bioinformatics/btl165 – ident: e_1_2_10_53_1 doi: 10.1111/j.1467-9876.2009.00686.x – ident: e_1_2_10_48_1 doi: 10.1038/193855a0 – ident: e_1_2_10_31_1 doi: 10.1186/1471-2105-9-327 – ident: e_1_2_10_35_1 doi: 10.1093/bioinformatics/btl011 – volume: 3 year: 2004 ident: e_1_2_10_47_1 article-title: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments publication-title: Statistical Applications in Genetics and Molecular Biology doi: 10.2202/1544-6115.1027 – ident: e_1_2_10_14_1 doi: 10.1017/CBO9780511761362 – ident: e_1_2_10_12_1 doi: 10.1186/gb-2003-4-5-p3 – ident: e_1_2_10_36_1 doi: 10.1093/bioinformatics/btp177 – ident: e_1_2_10_29_1 doi: 10.1111/j.2044-8317.1966.tb00367.x – ident: e_1_2_10_11_1 doi: 10.1186/1471-2105-9-50 – ident: e_1_2_10_30_1 doi: 10.1093/bioinformatics/btl148 |
| SSID | ssj0009502 |
| Score | 2.0230582 |
| Snippet | For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two‐component mixture model has been widely used in... For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the twocomponent mixture model has been widely used in practice... Summary For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two‐component mixture model has been widely used in... Summary For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two‐component mixture model has been widely used in... For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two-component mixture model has been widely used in... Summary For analysis of genomic data, e.g., microarray data from gene expression profiling experiments, the two-component mixture model has been widely used in... |
| SourceID | proquest pubmed crossref wiley jstor istex fao |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1168 |
| SubjectTerms | A priori knowledge Algorithms Bioinformatics BIOMETRIC METHODOLOGY Biometrics biometry Chromosome Mapping - methods Computer Simulation Data analysis Data Interpretation, Statistical DNA, Intergenic - genetics Domain ontologies Exchange False discovery rates Gene expression Gene Expression Profiling - methods gene expression regulation Gene ontology Genes Genomics Hierarchical model Microarray microarray technology Modeling Models, Statistical Multidimensional scaling Nonparametric models Nonparametric regression Oligonucleotide Array Sequence Analysis - methods Parametric models Profiling Regression Regression Analysis Strategy |
| Title | Hierarchical Semiparametric Model for Incorporating Intergene Information for Analysis of Genomic Data |
| URI | https://api.istex.fr/ark:/67375/WNG-6WG4D0DW-N/fulltext.pdf https://www.jstor.org/stable/41806035 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2012.01778.x https://www.ncbi.nlm.nih.gov/pubmed/22994883 https://www.proquest.com/docview/1242264134 https://www.proquest.com/docview/1273121831 https://www.proquest.com/docview/1417865119 https://www.proquest.com/docview/1678523545 https://www.proquest.com/docview/1762127465 |
| Volume | 68 |
| WOSCitedRecordID | wos000314236200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1541-0420 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6xDqTxwI_CWGBMRkK8ZWoSJ44fB6XbpK0gRtW-WY5_wMTWonZD47_nzkmjVZoqhHir2muinL-zv3PO3wG8NV5zW0of5xg7MbcYipWQJraVLIystMx0EHE9EcNhOZnIz039E52FqfUh2g03iowwX1OA62qxGuQ5x1SYpz2q0Er3EVui3Ec-uZkijPMObPa_DEYntyR4e7V2OFV78WSyWtdz57VWFqsNr2dIYcn7N8vqxbt46SrNDevU4PH_fMIn8Khhq-yghtdTuOemXXhQ96_83YWHp63o66ILW0Rca93nZ_D9gB2d0-Hm0Gvlgp25y3OSGb-kDl6GUQu2C4aEmR2TkGYQU8ZFlIUNSsS0Y805KcJNsFuqp7CZZ4cuHKZmfX2ln8No8PHrh6O46eoQG5KWidPcpCK1pc-qDJNTXdjM6jzPrfYZTicOU06JWZZzhbekBmel9IkonHam0AYT6m3oTGdTtwMM6UflufOlTSTXiS1NKrXw1jku8QYmgmQ5fOpnLd6hbiU96FxFzlXkXBWcq24i2MFxVvobzrFqdJbSjhDtuqJdBO_C4LfX0vMfVBcncjUeHqpifMj7vf5YDSPYDuhoDXlS9grEZAS7S7ioZq5YKGRYdJo5yXgEb9qfMcrp1Y2eutk12YgsITabrLHhiSgLei-8xga5SZ6i3_M1Nrg-4v14gTYvaki3D5Iie8EpP4tABOT-tVvV--NPp_Tx5T__8xVs0fd1LdEudK7m1-413De_ENrzPdgQk3Kvifk_AqlPbA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BC6IceARKDQUWCXFzFdvrxx4LIQ-RBEQbJbfVeh9Q0SYobVH598ysHauRqgghbpEytuXZb3a_Wc9-A_BWO8VNIVyYYuyE3GAolrnQoSlFpkWpRKK8iOswH4-L2Ux8qdsB0VmYSh-i2XCjyPDzNQU4bUivR3nKMRfmcZtKtOIDBFdeHCCh3OaIKoT7dudrdzK8psHbrsTDqdyLR7P1wp4b77W2Wt12aoEcltx_tSpfvImYrvNcv1B1H_7XV3wED2q-yg4rgD2GW3begrtVB8vfLbg_amRfz1uwQ9S1Un5-At8PWf-Ejjf7biun7MienZDQ-Bn18NKMmrCdMqTMbEBSml5OGZdR5rcoEdWW1SelCDnebqWfwhaO9aw_Ts066kI9hUn34_GHflj3dQg1icuEcarjPDaFS8oE01OVmcSoNE2NcglOKBaTToF5lrWZM6QHZ4RwUZ5ZZXWmNKbUu7A1X8ztHjAkIKXj1hUmElxFptCxULkz1nKBD9ABRKvxkz8r-Q55Le1B50pyriTnSu9ceRXAHg60VN9wlpWTo5j2hGjfFe0CeOdHv7mXWv6gyrg8ldNxT2bTHu-0O1M5DmDXw6Mx5FHRztpJGsD-Ci-yni3OJXIsOs8cJTyAN83fGOf08UbN7eKSbPIkIj4bbbDhUV5k9GV4gw2ykzRGv6cbbHCFxOfxDG2eVZhuXiRG_oKTfhJA7qH7126V7wefR_Tz-T9f-Rru9Y9HQzkcjD-9gB2yqSqL9mHrYnlpX8Id_QthvnxVh_4fOk9SdA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9NADLegAzQe-OgYCww4JMRbpia5fNzjoLSr6MrEqNq30-U-YGJrp25D47_HvqTRKk0VQrxVqpMoPtv388X-GeCddoqbQrgwRd8JuUFXLHOhQ1OKTItSiUR5EtdhPhoV06k4qscBUS9MxQ_RHLiRZ_h4TQ5uz41b9fKUYy7M4w6VaMV7aFx5sYeAcoPTTJkWbHS_9sbDGxy8nYo8nMq9eDRdLey59V4ru9Vdp-aIYUn918vyxduA6SrO9RtV7_F_fcUn8KjGq2y_MrCncMfO2nC_mmD5uw0PDxva14s2bBJ0rZift-DHPjs4ofZmP23llB3bsxMiGj-jGV6a0RC2U4aQmQ2IStPTKeM2yvwRJVq1ZXWnFFmOl1vyp7C5Y33r26lZV12qZzDuffr28SCs5zqEmshlwjjVcR6bwiVlgumpykxiVJqmRrkEA4rFpBOXL7M2c4b44IwQLsozq6zOlMaUehtas_nM7gBDAFI6bl1hIsFVZAodC5U7Yy0X-AAdQLRcP3le0XfIG2kPKleSciUpV3rlyusAdnChpfqOUVaOj2M6E6JzV5QL4L1f_eZeavGTKuPyVE5GfZlN-rzb6U7kKIBtbx6NII-KTtZJ0gB2l_Yi62hxIRFjUT9zlPAA3jZ_o5_Txxs1s_MrksmTiPBstEaGR3mR0ZfhNTKITtIY9Z6ukcEdEp_HM5R5Xtl08yIx4hcM-kkAuTfdv1ar_DD4ckg_X_zzlW_gwVG3J4eD0eeXsEkiVWHRLrQuF1f2FdzTv9DKF69rz_8DSNpR7w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hierarchical+Semiparametric+Model+for+Incorporating+Intergene+Information+for+Analysis+of+Genomic+Data&rft.jtitle=Biometrics&rft.au=Qu%2C+Long&rft.au=Nettleton%2C+Dan&rft.au=Dekkers%2C+Jack+C.+M&rft.date=2012-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=68&rft.issue=4&rft.spage=1168&rft_id=info:doi/10.1111%2Fj.1541-0420.2012.01778.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2848053201 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |