Tensor decompositions, alternating least squares and other tales

This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple ‘bottlenecks’, and on ‘swamps’. Existing theoretical results are surveyed, some numerical algorithms are described in details, and their numerical complexity...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of chemometrics Ročník 23; číslo 7-8; s. 393 - 405
Hlavní autori: Comon, P., Luciani, X., de Almeida, A. L. F.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester, UK John Wiley & Sons, Ltd 01.07.2009
Wiley
Wiley Subscription Services, Inc
Predmet:
ISSN:0886-9383, 1099-128X, 1099-128X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple ‘bottlenecks’, and on ‘swamps’. Existing theoretical results are surveyed, some numerical algorithms are described in details, and their numerical complexity is calculated. In particular, the interest in using the enhanced line search (ELS) enhancement in these algorithms is discussed. Computer simulations feed this discussion. Copyright © 2009 John Wiley & Sons, Ltd. Various aspects of tensor decompositions are addressed: existence, uniqueness and computation. The state of the art is surveyed, by making the difference between conjectures and proved results. Some numerical algorithms are described in details, and their numerical complexity is evaluated. The slowness of numerical algorithms is often due to a form of ill‐conditioning of the tensor to be decomposed. In particular, Richard Harshman called ‘bottleneck’ the fact that two or more factors in a mode are almost collinear.
AbstractList This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple ''bottlenecks'', and on ''swamps''. Existing theoretical results are surveyed, some numerical algorithms are described in details, and their numerical complexity is calculated. In particular, the interest in using the ELS enhancement in these algorithms is discussed. Computer simulations feed this discussion.
This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple 'bottlenecks', and on 'swamps'. Existing theoretical results are surveyed, some numerical algorithms are described in details, and their numerical complexity is calculated. In particular, the interest in using the enhanced line search (ELS) enhancement in these algorithms is discussed. Computer simulations feed this discussion.
This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple 'bottlenecks', and on 'swamps'. Existing theoretical results are surveyed, some numerical algorithms are described in details, and their numerical complexity is calculated. In particular, the interest in using the enhanced line search (ELS) enhancement in these algorithms is discussed. Computer simulations feed this discussion. [PUBLICATION ABSTRACT]
This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple ‘bottlenecks’, and on ‘swamps’. Existing theoretical results are surveyed, some numerical algorithms are described in details, and their numerical complexity is calculated. In particular, the interest in using the enhanced line search (ELS) enhancement in these algorithms is discussed. Computer simulations feed this discussion. Copyright © 2009 John Wiley & Sons, Ltd. Various aspects of tensor decompositions are addressed: existence, uniqueness and computation. The state of the art is surveyed, by making the difference between conjectures and proved results. Some numerical algorithms are described in details, and their numerical complexity is evaluated. The slowness of numerical algorithms is often due to a form of ill‐conditioning of the tensor to be decomposed. In particular, Richard Harshman called ‘bottleneck’ the fact that two or more factors in a mode are almost collinear.
Author Comon, P.
de Almeida, A. L. F.
Luciani, X.
Author_xml – sequence: 1
  givenname: P.
  surname: Comon
  fullname: Comon, P.
  email: pcomon@unice.fr
  organization: Laboratory I3S, UMR6070, University of Nice, Algorithmes/Euclide-B, 2000 route des Lucioles, BP 121, F-06903 Sophia-Antipolis Cedex
– sequence: 2
  givenname: X.
  surname: Luciani
  fullname: Luciani, X.
  organization: Laboratory I3S, UMR6070, University of Nice, Algorithmes/Euclide-B, 2000 route des Lucioles, BP 121, F-06903 Sophia-Antipolis Cedex
– sequence: 3
  givenname: A. L. F.
  surname: de Almeida
  fullname: de Almeida, A. L. F.
  organization: Laboratory I3S, UMR6070, University of Nice, Algorithmes/Euclide-B, 2000 route des Lucioles, BP 121, F-06903 Sophia-Antipolis Cedex
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21820016$$DView record in Pascal Francis
https://hal.science/hal-00410057$$DView record in HAL
BookMark eNp10W1rFDEQB_AgLXhtBT_CIogK7pmHfci-s5y1FU59YbXimzCXm7Wpuc01k9P22zfLlQOLvgokvxky8z9ge0MYkLGngk8F5_KNxdVUSNU8YhPBu64UUn_fYxOudVN2SqvH7IDoivP8pqoJe3uOA4VYLNGG1TqQSy4M9LoAnzAOkNzws_AIlAq63kBEKmBYFiFdYiwSeKQjtt-DJ3xyfx6yr-9Pzmdn5fzz6YfZ8by0tWyaspXLTi2srJSqtRZNX_EFtJXtdF0voea8to1A4C23AlWvq2pR1VbwfoEoO43qkL3a9r0Eb9bRrSDemgDOnB3PzXjHeZUXULe_RbYvtnYdw_UGKZmVI4vew4BhQ6bjotFaiirLZw_kVdjkuT0ZKYWUY9OMnt8jIAu-jzBYR7tPSKGzE012L7fOxkAUsd8Rwc0YjsnhmDGcTKcPqHUJxt2nCM7_q6DcFvxxHm__29jMTj7-7R0lvNl5iL9M06q2NhefTs03eSHf_ehm5ou6A_qXrds
CODEN JOCHEU
CitedBy_id crossref_primary_10_5802_crmeca_90
crossref_primary_10_1007_s11280_018_0595_9
crossref_primary_10_1109_LSP_2013_2267797
crossref_primary_10_1007_s10589_022_00428_1
crossref_primary_10_1137_120868323
crossref_primary_10_1007_s10812_023_01506_w
crossref_primary_10_1007_s11042_019_7189_0
crossref_primary_10_1137_140956865
crossref_primary_10_1016_j_anucene_2025_111244
crossref_primary_10_1109_MSP_2015_2413711
crossref_primary_10_1038_s41598_019_53565_9
crossref_primary_10_1016_j_image_2017_10_001
crossref_primary_10_1016_j_cviu_2013_12_010
crossref_primary_10_1137_100808034
crossref_primary_10_1007_s11464_014_0377_3
crossref_primary_10_1016_j_sigpro_2022_108457
crossref_primary_10_1109_JSTARS_2024_3509477
crossref_primary_10_1016_j_laa_2011_10_044
crossref_primary_10_1016_j_medengphy_2014_08_009
crossref_primary_10_1109_TNNLS_2019_2929063
crossref_primary_10_1016_j_jcp_2018_08_057
crossref_primary_10_1109_TSP_2013_2238534
crossref_primary_10_1109_TAES_2023_3326793
crossref_primary_10_1109_TSP_2018_2887192
crossref_primary_10_1016_j_jcp_2015_02_026
crossref_primary_10_1137_110825327
crossref_primary_10_1137_20M1386414
crossref_primary_10_1016_j_laa_2021_02_019
crossref_primary_10_1016_j_sigpro_2025_109979
crossref_primary_10_1007_s40305_023_00455_7
crossref_primary_10_1109_TSP_2022_3231195
crossref_primary_10_1155_2018_2708416
crossref_primary_10_1109_TSP_2013_2269046
crossref_primary_10_1109_TBME_2022_3202962
crossref_primary_10_1016_j_eswa_2025_129576
crossref_primary_10_1137_140970276
crossref_primary_10_1109_TSP_2025_3587089
crossref_primary_10_1007_s10915_023_02404_1
crossref_primary_10_1007_s12559_018_9587_4
crossref_primary_10_1016_j_measurement_2023_112478
crossref_primary_10_1109_TCYB_2023_3265279
crossref_primary_10_1016_j_csda_2014_02_010
crossref_primary_10_1109_TSP_2012_2208956
crossref_primary_10_1016_j_sigpro_2014_05_017
crossref_primary_10_1109_TKDE_2020_2967045
crossref_primary_10_1109_JSEN_2023_3256039
crossref_primary_10_1109_LSP_2012_2205237
crossref_primary_10_1109_TSP_2016_2572047
crossref_primary_10_1137_17M112213X
crossref_primary_10_1016_j_chemolab_2014_06_009
crossref_primary_10_1109_TSP_2015_2404311
crossref_primary_10_1016_j_laa_2018_06_006
crossref_primary_10_1109_TBDATA_2021_3079234
crossref_primary_10_1109_TKDE_2020_3016208
crossref_primary_10_1007_s10898_022_01140_4
crossref_primary_10_1049_iet_spr_2020_0373
crossref_primary_10_3390_math12070982
crossref_primary_10_1016_j_cnsns_2014_08_023
crossref_primary_10_1186_1687_6180_2013_124
crossref_primary_10_1049_iet_com_2013_1155
crossref_primary_10_1109_LWC_2023_3328838
crossref_primary_10_1109_MSP_2014_2298533
crossref_primary_10_1016_j_chemolab_2013_04_014
crossref_primary_10_1109_TSP_2015_2458785
crossref_primary_10_3390_cryst11010012
crossref_primary_10_1109_TCAD_2016_2618879
crossref_primary_10_1109_TKDE_2017_2786695
crossref_primary_10_1016_j_cam_2018_05_046
crossref_primary_10_1137_120877234
crossref_primary_10_1109_TSP_2011_2164911
crossref_primary_10_1016_j_jsc_2012_05_012
crossref_primary_10_3390_en12142709
crossref_primary_10_1109_JSEN_2021_3129208
crossref_primary_10_1007_s10707_021_00457_8
crossref_primary_10_1109_LSP_2024_3495555
crossref_primary_10_1137_130916084
crossref_primary_10_1162_neco_a_01402
crossref_primary_10_1109_LSP_2017_2685244
crossref_primary_10_1155_2018_8045909
crossref_primary_10_1109_TSP_2016_2576425
crossref_primary_10_1016_j_jcp_2020_109744
crossref_primary_10_1038_s41467_024_50513_8
crossref_primary_10_1186_1687_6180_2014_150
crossref_primary_10_1016_j_laa_2014_02_001
crossref_primary_10_1016_j_ress_2023_109695
crossref_primary_10_1016_j_jneumeth_2015_03_018
crossref_primary_10_1109_TVLSI_2021_3080318
crossref_primary_10_1109_TSP_2022_3163896
crossref_primary_10_1109_TCSII_2022_3205933
crossref_primary_10_1209_0295_5075_ac949a
crossref_primary_10_1016_j_sigpro_2020_107472
crossref_primary_10_1088_2632_2153_ab8240
crossref_primary_10_1186_1687_6180_2014_146
crossref_primary_10_1016_j_patcog_2024_110954
crossref_primary_10_1137_120877258
crossref_primary_10_1109_TSP_2017_2725219
crossref_primary_10_1016_j_epsr_2020_106431
crossref_primary_10_1109_JSEN_2025_3580197
crossref_primary_10_1007_s10915_022_01805_y
crossref_primary_10_1002_nla_2516
crossref_primary_10_1002_cem_2709
crossref_primary_10_1109_TNNLS_2019_2944664
crossref_primary_10_1109_TCDS_2023_3267010
crossref_primary_10_1016_j_sigpro_2021_108178
crossref_primary_10_1137_24M1666744
crossref_primary_10_1109_ACCESS_2017_2680463
crossref_primary_10_1109_TVT_2024_3492998
crossref_primary_10_1109_ACCESS_2024_3440633
crossref_primary_10_3390_e20030203
crossref_primary_10_1109_TAES_2023_3263153
crossref_primary_10_1007_s10589_025_00668_x
crossref_primary_10_1016_j_ins_2019_06_044
crossref_primary_10_1109_TMI_2023_3295657
crossref_primary_10_1109_TSP_2023_3307886
crossref_primary_10_1109_JBHI_2014_2328315
crossref_primary_10_1016_j_sigpro_2013_02_016
crossref_primary_10_1016_j_dsp_2023_104043
crossref_primary_10_3390_electronics8050550
crossref_primary_10_1109_ACCESS_2020_2988485
crossref_primary_10_1109_TITS_2020_3001687
crossref_primary_10_1002_gamm_201310004
crossref_primary_10_1186_1687_6180_2014_128
crossref_primary_10_1137_21M1462052
crossref_primary_10_1016_j_sigpro_2011_10_014
crossref_primary_10_1049_iet_spr_2018_5115
crossref_primary_10_1109_TVT_2023_3347290
crossref_primary_10_1016_j_neuron_2018_05_015
crossref_primary_10_1016_j_bspc_2021_102523
crossref_primary_10_3934_math_2025297
crossref_primary_10_1073_pnas_1620045114
crossref_primary_10_1007_s00034_014_9858_6
crossref_primary_10_1109_TIT_2022_3203972
crossref_primary_10_1109_TWC_2023_3244487
crossref_primary_10_1109_ACCESS_2021_3074930
crossref_primary_10_1109_ACCESS_2019_2902122
crossref_primary_10_1109_LSP_2014_2374838
crossref_primary_10_1109_TMM_2016_2629758
crossref_primary_10_1002_qre_3223
crossref_primary_10_1016_j_patcog_2024_110946
crossref_primary_10_1137_120875806
crossref_primary_10_1016_j_sigpro_2022_108610
crossref_primary_10_1007_s10107_020_01579_x
crossref_primary_10_1016_j_chemolab_2015_11_002
crossref_primary_10_1134_S0362119719030150
crossref_primary_10_1002_nla_1875
crossref_primary_10_1016_j_camwa_2014_04_017
crossref_primary_10_1109_TSP_2016_2628348
crossref_primary_10_1137_18M1181389
crossref_primary_10_1016_j_sigpro_2014_01_031
crossref_primary_10_1109_LSP_2016_2570862
crossref_primary_10_1021_acs_jpca_4c06712
crossref_primary_10_1109_MSP_2013_2297439
crossref_primary_10_1109_ACCESS_2019_2927440
crossref_primary_10_1007_s10115_021_01628_7
crossref_primary_10_1016_j_sigpro_2011_02_003
crossref_primary_10_1109_TIT_2013_2291876
crossref_primary_10_1016_j_apm_2025_116278
crossref_primary_10_1109_LWC_2025_3578960
crossref_primary_10_1155_2021_6629243
crossref_primary_10_1137_140955963
crossref_primary_10_3389_fnins_2020_00261
crossref_primary_10_1109_TIM_2021_3104394
crossref_primary_10_1109_ACCESS_2021_3063382
crossref_primary_10_1109_ACCESS_2019_2931371
crossref_primary_10_1109_LSP_2016_2577383
crossref_primary_10_1007_s10208_016_9317_9
crossref_primary_10_1109_LSP_2024_3453655
crossref_primary_10_1016_j_cpc_2018_05_016
crossref_primary_10_1016_j_dsp_2024_104646
crossref_primary_10_1137_20M1336059
crossref_primary_10_1137_110843587
crossref_primary_10_1007_s10898_021_01043_w
crossref_primary_10_1109_LSP_2015_2453205
crossref_primary_10_1109_TKDE_2015_2445757
crossref_primary_10_1109_TNNLS_2021_3069399
crossref_primary_10_1016_j_ifacol_2021_08_403
crossref_primary_10_1109_TSP_2010_2089625
crossref_primary_10_1016_j_procs_2020_08_058
crossref_primary_10_1109_TSP_2024_3510680
crossref_primary_10_3390_s22197463
crossref_primary_10_1109_TITS_2020_2984175
crossref_primary_10_1109_TITS_2022_3215613
crossref_primary_10_1016_j_chemolab_2013_12_009
crossref_primary_10_1109_TNNLS_2013_2271507
crossref_primary_10_1137_16M1107528
crossref_primary_10_1002_nla_2262
crossref_primary_10_1016_j_cam_2016_12_007
crossref_primary_10_1109_TIP_2012_2206036
crossref_primary_10_1016_j_jsv_2020_115586
crossref_primary_10_1137_130938207
crossref_primary_10_1016_j_laa_2019_11_005
crossref_primary_10_1109_ACCESS_2017_2698142
crossref_primary_10_1162_neco_a_01598
crossref_primary_10_1137_130943133
crossref_primary_10_1002_widm_1
crossref_primary_10_1016_j_neuroimage_2014_03_043
crossref_primary_10_1007_s00778_023_00790_4
crossref_primary_10_1016_j_sigpro_2017_04_001
crossref_primary_10_1109_TII_2025_3552709
crossref_primary_10_1007_s10492_013_0026_2
crossref_primary_10_1109_TITS_2023_3289193
crossref_primary_10_1109_TSP_2020_2982321
crossref_primary_10_1007_s10092_021_00450_5
crossref_primary_10_1002_lom3_10541
crossref_primary_10_1016_j_sigpro_2011_03_006
crossref_primary_10_1016_j_laa_2021_07_002
crossref_primary_10_1007_s00034_020_01385_y
crossref_primary_10_1109_LSP_2019_2943060
crossref_primary_10_1109_TKDE_2022_3230874
crossref_primary_10_1109_LSP_2022_3203298
crossref_primary_10_1109_TCSS_2024_3462552
crossref_primary_10_1186_s13634_022_00928_6
crossref_primary_10_1109_JSTSP_2021_3061274
crossref_primary_10_1109_TIM_2023_3251399
crossref_primary_10_1109_JPROC_2015_2455028
Cites_doi 10.1007/BF01444970
10.1002/cem.1244
10.1016/j.sigpro.2007.07.024
10.1007/s11336-008-9056-1
10.1016/0024-3795(83)80041-X
10.1016/0024-3795(85)90070-9
10.1007/BF02310791
10.1016/j.laa.2006.08.010
10.1016/0165-1684(96)00079-5
10.1016/0024-3795(77)90069-6
10.1137/S0895479898346995
10.1137/050644677
10.1109/5.58320
10.1016/j.csda.2004.11.013
10.1109/78.824675
10.1007/BF02294495
10.1016/j.sigpro.2005.10.007
10.1016/S0169-7439(98)00011-2
10.1016/j.laa.2006.02.002
10.1007/BF02289464
10.1016/j.jpaa.2007.09.014
10.1016/j.laa.2009.01.014/
10.1112/S0024610706022630
10.1137/06066518X
10.1016/S0169-7439(97)00033-6
10.1137/040608830
10.1016/S0024-3795(99)00057-9
10.1007/978-1-4757-2181-2
10.1090/S0002-9947-06-03893-1
10.1002/cem.839
10.1137/060661569
10.2307/1390831
10.1145/355984.355990
10.1137/06065577
10.1007/s11336-004-1266-6
10.1137/S0895479896305696
10.1002/1099-128X(200005/06)14:3<285::AID-CEM584>3.0.CO;2-1
10.1016/j.sigpro.2005.12.015
10.1007/s11336-007-9022-3
10.1016/j.sigpro.2005.12.014
10.1007/978-3-662-03338-8
10.1016/0024-3795(86)90291-0
10.1002/cem.1180080207
10.1016/B978-0-12-514250-2.50012-3
10.1007/BF02296342
10.1007/BF01231903
10.1016/S0169-7439(97)00032-4
10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N
10.1016/0167-9473(94)90132-5
10.1006/jabr.1995.6650
ContentType Journal Article
Copyright Copyright © 2009 John Wiley & Sons, Ltd.
2009 INIST-CNRS
Copyright John Wiley and Sons, Limited Jul/Aug 2009
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2009 John Wiley & Sons, Ltd.
– notice: 2009 INIST-CNRS
– notice: Copyright John Wiley and Sons, Limited Jul/Aug 2009
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1002/cem.1236
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Computer Science
Environmental Sciences
EISSN 1099-128X
EndPage 405
ExternalDocumentID oai:HAL:hal-00410057v1
1831360671
21820016
10_1002_cem_1236
CEM1236
ark_67375_WNG_V2W2DZ9C_S
Genre article
Feature
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
UB1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
IQODW
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c5266-72d93bc243358816f40ba74c9855da5005c61ea070c1e3f844b45c10fbee298e3
IEDL.DBID DRFUL
ISICitedReferencesCount 338
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000269365200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0886-9383
1099-128X
IngestDate Tue Oct 14 20:53:13 EDT 2025
Fri Jul 11 15:23:28 EDT 2025
Mon Nov 10 02:54:55 EST 2025
Mon Jul 21 09:15:37 EDT 2025
Tue Nov 18 22:19:53 EST 2025
Sat Nov 29 07:15:41 EST 2025
Tue Nov 11 03:12:45 EST 2025
Sun Sep 21 06:20:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7-8
Keywords canonical decomposition
degeneracy
Computer simulation
Classification
PARAFAC
Decomposition
three-way array
Algorithm
Chemometrics
tensor rank
computational complexity
Performance measure
Levenberg-Marquardt
Parafac
Tensor rank
Canonical Decomposition
Three-way Array
Candecomp
greedy algorithm
Indeterminacy
compression
dimension reduction
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5266-72d93bc243358816f40ba74c9855da5005c61ea070c1e3f844b45c10fbee298e3
Notes ArticleID:CEM1236
istex:08365BFD62B0C2E3E6D66C483068E166F00BC322
ark:/67375/WNG-V2W2DZ9C-S
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ORCID 0000-0001-9436-9228
OpenAccessLink https://hal.science/hal-00410057
PQID 221220041
PQPubID 37374
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_00410057v1
proquest_miscellaneous_901688214
proquest_journals_221220041
pascalfrancis_primary_21820016
crossref_primary_10_1002_cem_1236
crossref_citationtrail_10_1002_cem_1236
wiley_primary_10_1002_cem_1236_CEM1236
istex_primary_ark_67375_WNG_V2W2DZ9C_S
PublicationCentury 2000
PublicationDate July ‐ August 2009
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: July ‐ August 2009
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
– name: Chichester
PublicationTitle Journal of chemometrics
PublicationTitleAlternate J. Chemometrics
PublicationYear 2009
Publisher John Wiley & Sons, Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References ten Berge JMF. Partial uniqueness in CANDECOMP/PARAFAC. Jour. Chemometrics 2004; 18: 12-16.
Stegeman A, Sidiropoulos ND. On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition. Linear Algebra Appl. 2007; 420: 540-552.
Brambilla MC, Ottaviani G. On the Alexander-Hirschowitz theorem. J. Pure Appl. Algebra 2008; 212: 1229-1251.
Hitchcock FL. Multiple invariants and generalized rank of a p-way matrix or tensor. J. Math. Phys. 1927; 7 (1): 39-79.
Stegeman A. Degeneracy in Candecomp/Parafac and Indscal explained for several three-sliced arrays with a two-valued typical rank. Psychometrika 2007; 72 (4): 601-619.
Strassen V. Rank and optimal computation of generic tensors. Linear Algebra Appl. 1983; 52: 645-685.
Mitchell BC, Burdick DS. Slowly converging Parafac sequences: Swamps and two-factor degeneracies. J. Chemom. 1994; 8: 155-168.
Rao CR, Mitra S. Generalized Inverse of Matrices and Its Applications. New York: Wiley, 1971.
Tucker LR. Some mathematical notes for three-mode factor analysis. Psychometrika 1966; 31: 279-311.
Tomasi G, Bro R. A comparison of algorithms for fitting the Parafac model. Comp. Stat. Data Anal. 2006; 50: 1700-1734.
Golub GH, Van Loan CF. Matrix Computations. Hopkins Univ. Press: Baltimore, 1989.
Cox D, Little J, O'Shea D. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer Verlag: New York, 1992; 2nd edition in 1996.
de Almeida ALF, Favier G, Mota JCM. PARAFAC-based unified tensor modeling for wireless communication systems with application to blind multiuser equalization. Signal Processing 2007; 87 (2): 337-351.
ten Berge JMF. The typical rank of tall three-way arrays. Psychometrika 2000; 65 (5): 525-532.
Comon P, Golub G, Lim L-H, Mourrain B. Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 2008; 30 (3): 1254-1279.
Comon P, Mourrain B. Decomposition of quantics in sums of powers of linear forms. Signal Processing, Elsevier 1996; 53 (2): 93-107; Special Issue on High-Order Statistics.
Terracini A. Sulla rappresentazione delle forme quaternarie mediante somme di potenze di forme lineari. Atti della R. Acc. delle Scienze di Torino 1916; 51: 107-117.
Chiantini L, Ciliberto C. On the concept of k-sectant order of a variety. J. London Math. Soc. 2006; 73 (2): 436-454.
Stegeman A. Low-rank approximation of generic p× q× 2 arrays and diverging components in the Candecomp/Parafac model. SIAM J. Matrix Anal. Appl. 2008; 30 (3): 988-1007.
Paatero P. Construction and analysis of degenerate Parafac models. J. Chemom. 2000; 14: 285-299.
DeLathauwer L, de Moor B, Vandewalle J. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 2000; 21 (4): 1253-1278.
Chan TF. An improved algorithm for computing the singular value decomposition. ACM Trans. Math. Soft. 1982; 8 (1): 72-83.
Lasker E. Kanonische formen. Math. Annal. 1904; 58: 434-440.
Smilde A, Bro R, Geladi P. Multi-Way Analysis. Wiley: Chichester, 2004.
Cayley A. On the theory of linear transformation. Cambridge Math. J. 1845; 4: 193-209.
Comon P, ten Berge JMF, DeLathauwer L, Castaing J. Generic and typical ranks of multi-way arrays. Linear Algebra Appl., 2009, DOI: 10.1016/j.laa.2009.01.014
DeLathauwer L, Castaing J. Tensor-based techniques for the blind separation of DS-CDMA signals. Signal Processing 2007; 87 (2): 322-336.
Rao CR. Linear Statistical Inference and its Applications. Probability and Statistics. Wiley: New York, 1965.
Kruskal JB. Three-way arrays: Rank and uniqueness of trilinear decompositions. Linear Algebra Appl. 1977; 18: 95-138.
ten Berge JMF. Kruskal's polynomial for 2×2×2 arrays and a generalization to 2×n×n arrays. Psychometrika 1991; 56: 631-636.
Carroll JD, Chang JJ. Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart-Young decomposition. Psychometrika 1970; 35 (3): 283-319.
Krijnen WP, Dijkstra TK, Stegeman A. On the non-existence of optimal solutions and the occurrence of degeneracy in the Candecomp/Parafac model. Psychometrika 2008; 73 (3): 431-439.
Mella M. Singularities of linear systems and the Waring problem. Trans. Am. Math. Soc. 2006; 358 (12): 5523-5538.
Harshman RA. Foundations of the Parafac procedure: Models and conditions for an explanatory multimodal factor analysis. UCLA Working Papers in Phonetics 1970; 16: 1-84. http://www.publish.uwo.ca/harshman.
Comon P, Golub GH. Tracking of a few extreme singular values and vectors in signal processing. Proceedings of the IEEE 1990; 78 (8): 1327-1343 (published from Stanford report 78NA-89-01, February 1989).
Bürgisser P, Clausen M, Shokrollahi MA. Algebraic Complexity Theory, vol. 315. Springer: Berlin, 1997.
ten Berge JMF, Stegeman A. Symmetry transformations for square sliced three way arrays, with applications to their typical rank. Linear Algebra Appl. 2006; 418: 215-224.
De Silva V, Lim L-H. Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 2008; 30 (3): 1084-1127.
Lim L-H, Comon P. Nonnegative approximations of nonnegative tensors. J. Chemom., 2009 , this issue.
Sidiropoulos ND, Bro R. On the uniqueness of multilinear decomposition of N-way arrays. J. Chemom. 2000; 14: 229-239.
ten Berge JMF, Kiers HAL. Simplicity of core arrays in three-way principal component analysis and the typical rank of p× q× 2 arrays. Linear Algebra Appl. 1999; 294: 169-179.
Alexander J, Hirschowitz A. La methode d'Horace eclatee: application a l'interpolation en degre quatre. Invent. Math. 1992; 107 (3): 585-602.
Paatero P. The multilinear engine: a table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. J. Comput. Graph. Stat. 1999; 8 (4): 854-888.
DeLathauwer L, de Moor B, Vandewalle J. On the best rank-1 and rank-(R1,R2,/,/ldots/,RN) approximation of high-order tensors. SIAM J. Matrix Anal. Appl. 2000; 21 (4): 1324-1342.
Kroonenberg P. Three Mode Principal Component Analysis. SWO Press: Leiden, 1983.
Ehrenborg R. Canonical forms of two by two matrices. Jour. of Algebra 1999; 213: 195-224.
Lickteig T. Typical tensorial rank. Linear Algebra Appl. 1985; 69: 95-120.
DeLathauwer L. A link between canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM J. Matrix Anal. 2006; 28 (3): 642-666.
Bro R. Parafac, tutorial and applications. Chemom. Intel. Lab. Syst. 1997; 38: 149-171.
Stegeman A. Degeneracy in Candecomp/Parafac explained for p× p× 2 arrays of rank p+1 or higher. Psychometrika 2006; 71 (3): 483-501.
Rayens WS, Mitchell BC. Two-factor degeneracies and a stabilization of Parafac. Chemom. Intell. Lab. Syst. 1997; 38: 173-181.
Harshman RA, Lundy ME. Parafac: Parallel factor analysis. Computational Statistics and Data Analysis 1994; 39-72.
Sidiropoulos ND, Giannakis GB, Bro R. Blind PARAFAC receivers for DS-CDMA systems. Trans. Sig. Proc. 2000; 48 (3): 810-823.
Comon P, Rajih M. Blind identification of under-determined mixtures based on the characteristic function. Signal Processing 2006; 86 (9): 2271-2281.
Nion D, DeLathauwer L. An enhanced line search scheme for complex-valued tensor decompositions. application in DS-CDMA. Signal Processing 2008; 88 (3): 749-755.
Bini D. Border rank of m× n×(mn-q) tensors. Linear Algebra Appl. 1986; 79: 45-51.
Rajih M, Comon P, Harshman R. Enhanced line search: a novel method to accelerate PARAFAC. SIAM J. Matrix Anal. Appl. 2008; 30 (3): 1148-1171.
Bro R, Andersson CA. Improving the speed of multiway algorithms. part ii: Compression. Chemom. Intell. Lab. Syst. 1998; 42 (1-1): 105-113.
2006; 71
2007; 420
1997; 315
2006; 418
2006; 73
1991; 56
2000; 48
1980; 85
1986; 79
1976
1983; 52
2007; 72
1971
2008; 30
2008; 73
1998; 42
1970; 35
1985; 69
2000; 14
2006; 28
1845; 4
1999; 294
1982; 8
1983
1927; 7
1999; 213
1989
1990; 78
2006; 50
2000; 21
2000; 65
2009
2008
1992; 107
2006
1994
2005
2004
1992
2002
2006; 358
1999; 8
1970; 16
1996; 53
1966; 31
1916; 51
1994; 8
2006; 86
2004; 18
1904; 58
1977; 18
1965
1997; 38
2008; 88
2008; 212
2007; 87
Terracini A (e_1_2_1_44_2) 1916; 51
e_1_2_1_64_2
e_1_2_1_66_2
e_1_2_1_22_2
e_1_2_1_45_2
e_1_2_1_60_2
e_1_2_1_20_2
e_1_2_1_43_2
e_1_2_1_49_2
e_1_2_1_24_2
e_1_2_1_47_2
e_1_2_1_68_2
e_1_2_1_28_2
Harshman RA (e_1_2_1_33_2) 1970; 16
Hitchcock FL (e_1_2_1_31_2) 1927; 7
e_1_2_1_54_2
e_1_2_1_4_2
Kruskal JB (e_1_2_1_13_2) 1989
e_1_2_1_56_2
e_1_2_1_2_2
e_1_2_1_12_2
e_1_2_1_50_2
e_1_2_1_71_2
e_1_2_1_52_2
e_1_2_1_16_2
e_1_2_1_37_2
e_1_2_1_14_2
e_1_2_1_58_2
e_1_2_1_8_2
e_1_2_1_18_2
e_1_2_1_39_2
Cayley A (e_1_2_1_41_2) 1845; 4
Comon P (e_1_2_1_6_2) 2002
Smilde A (e_1_2_1_10_2) 2004
e_1_2_1_40_2
e_1_2_1_65_2
e_1_2_1_67_2
e_1_2_1_23_2
e_1_2_1_61_2
e_1_2_1_21_2
e_1_2_1_42_2
e_1_2_1_27_2
e_1_2_1_48_2
Rao CR (e_1_2_1_63_2) 1971
e_1_2_1_25_2
e_1_2_1_46_2
e_1_2_1_29_2
Golub GH (e_1_2_1_69_2) 1989
e_1_2_1_70_2
e_1_2_1_30_2
e_1_2_1_53_2
e_1_2_1_7_2
e_1_2_1_55_2
Rao CR (e_1_2_1_62_2) 1965
e_1_2_1_5_2
e_1_2_1_11_2
Bini D (e_1_2_1_26_2) 1980
e_1_2_1_34_2
e_1_2_1_3_2
Kroonenberg P (e_1_2_1_35_2) 1983
e_1_2_1_32_2
e_1_2_1_51_2
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_36_2
e_1_2_1_19_2
e_1_2_1_57_2
e_1_2_1_17_2
e_1_2_1_59_2
e_1_2_1_9_2
References_xml – reference: Rao CR, Mitra S. Generalized Inverse of Matrices and Its Applications. New York: Wiley, 1971.
– reference: Paatero P. Construction and analysis of degenerate Parafac models. J. Chemom. 2000; 14: 285-299.
– reference: ten Berge JMF, Stegeman A. Symmetry transformations for square sliced three way arrays, with applications to their typical rank. Linear Algebra Appl. 2006; 418: 215-224.
– reference: Carroll JD, Chang JJ. Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart-Young decomposition. Psychometrika 1970; 35 (3): 283-319.
– reference: Cox D, Little J, O'Shea D. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer Verlag: New York, 1992; 2nd edition in 1996.
– reference: Chiantini L, Ciliberto C. On the concept of k-sectant order of a variety. J. London Math. Soc. 2006; 73 (2): 436-454.
– reference: Mella M. Singularities of linear systems and the Waring problem. Trans. Am. Math. Soc. 2006; 358 (12): 5523-5538.
– reference: Kroonenberg P. Three Mode Principal Component Analysis. SWO Press: Leiden, 1983.
– reference: Bro R, Andersson CA. Improving the speed of multiway algorithms. part ii: Compression. Chemom. Intell. Lab. Syst. 1998; 42 (1-1): 105-113.
– reference: Rajih M, Comon P, Harshman R. Enhanced line search: a novel method to accelerate PARAFAC. SIAM J. Matrix Anal. Appl. 2008; 30 (3): 1148-1171.
– reference: Comon P, ten Berge JMF, DeLathauwer L, Castaing J. Generic and typical ranks of multi-way arrays. Linear Algebra Appl., 2009, DOI: 10.1016/j.laa.2009.01.014/
– reference: Golub GH, Van Loan CF. Matrix Computations. Hopkins Univ. Press: Baltimore, 1989.
– reference: Stegeman A, Sidiropoulos ND. On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition. Linear Algebra Appl. 2007; 420: 540-552.
– reference: Strassen V. Rank and optimal computation of generic tensors. Linear Algebra Appl. 1983; 52: 645-685.
– reference: Hitchcock FL. Multiple invariants and generalized rank of a p-way matrix or tensor. J. Math. Phys. 1927; 7 (1): 39-79.
– reference: Lickteig T. Typical tensorial rank. Linear Algebra Appl. 1985; 69: 95-120.
– reference: Lim L-H, Comon P. Nonnegative approximations of nonnegative tensors. J. Chemom., 2009 , this issue.
– reference: Harshman RA. Foundations of the Parafac procedure: Models and conditions for an explanatory multimodal factor analysis. UCLA Working Papers in Phonetics 1970; 16: 1-84. http://www.publish.uwo.ca/harshman.
– reference: Bini D. Border rank of m× n×(mn-q) tensors. Linear Algebra Appl. 1986; 79: 45-51.
– reference: Sidiropoulos ND, Bro R. On the uniqueness of multilinear decomposition of N-way arrays. J. Chemom. 2000; 14: 229-239.
– reference: Stegeman A. Degeneracy in Candecomp/Parafac explained for p× p× 2 arrays of rank p+1 or higher. Psychometrika 2006; 71 (3): 483-501.
– reference: Tucker LR. Some mathematical notes for three-mode factor analysis. Psychometrika 1966; 31: 279-311.
– reference: ten Berge JMF. Kruskal's polynomial for 2×2×2 arrays and a generalization to 2×n×n arrays. Psychometrika 1991; 56: 631-636.
– reference: Chan TF. An improved algorithm for computing the singular value decomposition. ACM Trans. Math. Soft. 1982; 8 (1): 72-83.
– reference: Alexander J, Hirschowitz A. La methode d'Horace eclatee: application a l'interpolation en degre quatre. Invent. Math. 1992; 107 (3): 585-602.
– reference: DeLathauwer L. A link between canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM J. Matrix Anal. 2006; 28 (3): 642-666.
– reference: Mitchell BC, Burdick DS. Slowly converging Parafac sequences: Swamps and two-factor degeneracies. J. Chemom. 1994; 8: 155-168.
– reference: Comon P, Golub G, Lim L-H, Mourrain B. Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 2008; 30 (3): 1254-1279.
– reference: Sidiropoulos ND, Giannakis GB, Bro R. Blind PARAFAC receivers for DS-CDMA systems. Trans. Sig. Proc. 2000; 48 (3): 810-823.
– reference: Comon P, Golub GH. Tracking of a few extreme singular values and vectors in signal processing. Proceedings of the IEEE 1990; 78 (8): 1327-1343 (published from Stanford report 78NA-89-01, February 1989).
– reference: Stegeman A. Low-rank approximation of generic p× q× 2 arrays and diverging components in the Candecomp/Parafac model. SIAM J. Matrix Anal. Appl. 2008; 30 (3): 988-1007.
– reference: Terracini A. Sulla rappresentazione delle forme quaternarie mediante somme di potenze di forme lineari. Atti della R. Acc. delle Scienze di Torino 1916; 51: 107-117.
– reference: DeLathauwer L, Castaing J. Tensor-based techniques for the blind separation of DS-CDMA signals. Signal Processing 2007; 87 (2): 322-336.
– reference: Comon P, Mourrain B. Decomposition of quantics in sums of powers of linear forms. Signal Processing, Elsevier 1996; 53 (2): 93-107; Special Issue on High-Order Statistics.
– reference: de Almeida ALF, Favier G, Mota JCM. PARAFAC-based unified tensor modeling for wireless communication systems with application to blind multiuser equalization. Signal Processing 2007; 87 (2): 337-351.
– reference: Rayens WS, Mitchell BC. Two-factor degeneracies and a stabilization of Parafac. Chemom. Intell. Lab. Syst. 1997; 38: 173-181.
– reference: DeLathauwer L, de Moor B, Vandewalle J. On the best rank-1 and rank-(R1,R2,/,/ldots/,RN) approximation of high-order tensors. SIAM J. Matrix Anal. Appl. 2000; 21 (4): 1324-1342.
– reference: ten Berge JMF, Kiers HAL. Simplicity of core arrays in three-way principal component analysis and the typical rank of p× q× 2 arrays. Linear Algebra Appl. 1999; 294: 169-179.
– reference: De Silva V, Lim L-H. Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 2008; 30 (3): 1084-1127.
– reference: Stegeman A. Degeneracy in Candecomp/Parafac and Indscal explained for several three-sliced arrays with a two-valued typical rank. Psychometrika 2007; 72 (4): 601-619.
– reference: Nion D, DeLathauwer L. An enhanced line search scheme for complex-valued tensor decompositions. application in DS-CDMA. Signal Processing 2008; 88 (3): 749-755.
– reference: Kruskal JB. Three-way arrays: Rank and uniqueness of trilinear decompositions. Linear Algebra Appl. 1977; 18: 95-138.
– reference: ten Berge JMF. Partial uniqueness in CANDECOMP/PARAFAC. Jour. Chemometrics 2004; 18: 12-16.
– reference: Paatero P. The multilinear engine: a table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. J. Comput. Graph. Stat. 1999; 8 (4): 854-888.
– reference: Smilde A, Bro R, Geladi P. Multi-Way Analysis. Wiley: Chichester, 2004.
– reference: Bro R. Parafac, tutorial and applications. Chemom. Intel. Lab. Syst. 1997; 38: 149-171.
– reference: Harshman RA, Lundy ME. Parafac: Parallel factor analysis. Computational Statistics and Data Analysis 1994; 39-72.
– reference: Tomasi G, Bro R. A comparison of algorithms for fitting the Parafac model. Comp. Stat. Data Anal. 2006; 50: 1700-1734.
– reference: Krijnen WP, Dijkstra TK, Stegeman A. On the non-existence of optimal solutions and the occurrence of degeneracy in the Candecomp/Parafac model. Psychometrika 2008; 73 (3): 431-439.
– reference: Comon P, Rajih M. Blind identification of under-determined mixtures based on the characteristic function. Signal Processing 2006; 86 (9): 2271-2281.
– reference: Brambilla MC, Ottaviani G. On the Alexander-Hirschowitz theorem. J. Pure Appl. Algebra 2008; 212: 1229-1251.
– reference: Lasker E. Kanonische formen. Math. Annal. 1904; 58: 434-440.
– reference: Cayley A. On the theory of linear transformation. Cambridge Math. J. 1845; 4: 193-209.
– reference: Rao CR. Linear Statistical Inference and its Applications. Probability and Statistics. Wiley: New York, 1965.
– reference: Bürgisser P, Clausen M, Shokrollahi MA. Algebraic Complexity Theory, vol. 315. Springer: Berlin, 1997.
– reference: DeLathauwer L, de Moor B, Vandewalle J. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 2000; 21 (4): 1253-1278.
– reference: Ehrenborg R. Canonical forms of two by two matrices. Jour. of Algebra 1999; 213: 195-224.
– reference: ten Berge JMF. The typical rank of tall three-way arrays. Psychometrika 2000; 65 (5): 525-532.
– volume: 52
  start-page: 645
  year: 1983
  end-page: 685
  article-title: Rank and optimal computation of generic tensors
  publication-title: Linear Algebra Appl.
– volume: 53
  start-page: 93
  issue: 2
  year: 1996
  end-page: 107
  article-title: Decomposition of quantics in sums of powers of linear forms
  publication-title: Signal Processing, Elsevier
– volume: 420
  start-page: 540
  year: 2007
  end-page: 552
  article-title: On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition
  publication-title: Linear Algebra Appl.
– volume: 212
  start-page: 1229
  year: 2008
  end-page: 1251
  article-title: On the Alexander‐Hirschowitz theorem
  publication-title: J. Pure Appl. Algebra
– volume: 294
  start-page: 169
  year: 1999
  end-page: 179
  article-title: Simplicity of core arrays in three‐way principal component analysis and the typical rank of p× q× 2 arrays
  publication-title: Linear Algebra Appl.
– volume: 14
  start-page: 229
  year: 2000
  end-page: 239
  article-title: On the uniqueness of multilinear decomposition of N‐way arrays
  publication-title: J. Chemom.
– year: 1989
– volume: 21
  start-page: 1324
  issue: 4
  year: 2000
  end-page: 1342
  article-title: On the best rank‐1 and rank‐(R1,R2,/,/ldots/,RN) approximation of high‐order tensors
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 358
  start-page: 5523
  issue: 12
  year: 2006
  end-page: 5538
  article-title: Singularities of linear systems and the Waring problem
  publication-title: Trans. Am. Math. Soc.
– year: 1971
– volume: 418
  start-page: 215
  year: 2006
  end-page: 224
  article-title: Symmetry transformations for square sliced three way arrays, with applications to their typical rank
  publication-title: Linear Algebra Appl.
– volume: 56
  start-page: 631
  year: 1991
  end-page: 636
  article-title: Kruskal's polynomial for 2×2×2 arrays and a generalization to 2×n×n arrays
  publication-title: Psychometrika
– volume: 65
  start-page: 525
  issue: 5
  year: 2000
  end-page: 532
  article-title: The typical rank of tall three‐way arrays
  publication-title: Psychometrika
– volume: 30
  start-page: 1254
  issue: 3
  year: 2008
  end-page: 1279
  article-title: Symmetric tensors and symmetric tensor rank
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 21
  start-page: 1253
  issue: 4
  year: 2000
  end-page: 1278
  article-title: A multilinear singular value decomposition
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 30
  start-page: 1084
  issue: 3
  year: 2008
  end-page: 1127
  article-title: Tensor rank and the ill‐posedness of the best low‐rank approximation problem
  publication-title: SIAM J. Matrix Anal. Appl.
– start-page: 303
  year: 1976
  end-page: 324
– volume: 86
  start-page: 2271
  issue: 9
  year: 2006
  end-page: 2281
  article-title: Blind identification of under‐determined mixtures based on the characteristic function
  publication-title: Signal Processing
– volume: 30
  start-page: 1148
  issue: 3
  year: 2008
  end-page: 1171
  article-title: Enhanced line search: a novel method to accelerate PARAFAC
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 14
  start-page: 285
  year: 2000
  end-page: 299
  article-title: Construction and analysis of degenerate Parafac models
  publication-title: J. Chemom.
– start-page: 4
  year: 2005
  end-page: 8
– volume: 73
  start-page: 431
  issue: 3
  year: 2008
  end-page: 439
  article-title: On the non‐existence of optimal solutions and the occurrence of degeneracy in the Candecomp/Parafac model
  publication-title: Psychometrika
– volume: 88
  start-page: 749
  issue: 3
  year: 2008
  end-page: 755
  article-title: An enhanced line search scheme for complex‐valued tensor decompositions. application in DS‐CDMA
  publication-title: Signal Processing
– volume: 72
  start-page: 601
  issue: 4
  year: 2007
  end-page: 619
  article-title: Degeneracy in Candecomp/Parafac and Indscal explained for several three‐sliced arrays with a two‐valued typical rank
  publication-title: Psychometrika
– year: 1965
– volume: 4
  start-page: 193
  year: 1845
  end-page: 209
  article-title: On the theory of linear transformation
  publication-title: Cambridge Math. J.
– year: 2008
– year: 2004
– volume: 8
  start-page: 854
  issue: 4
  year: 1999
  end-page: 888
  article-title: The multilinear engine: a table‐driven, least squares program for solving multilinear problems, including the n‐way parallel factor analysis model
  publication-title: J. Comput. Graph. Stat.
– volume: 35
  start-page: 283
  issue: 3
  year: 1970
  end-page: 319
  article-title: Analysis of individual differences in multidimensional scaling via n‐way generalization of Eckart‐Young decomposition
  publication-title: Psychometrika
– volume: 28
  start-page: 642
  issue: 3
  year: 2006
  end-page: 666
  article-title: A link between canonical decomposition in multilinear algebra and simultaneous matrix diagonalization
  publication-title: SIAM J. Matrix Anal.
– volume: 16
  start-page: 1
  year: 1970
  end-page: 84
  article-title: Foundations of the Parafac procedure: Models and conditions for an explanatory multimodal factor analysis
  publication-title: UCLA Working Papers in Phonetics
– volume: 38
  start-page: 173
  year: 1997
  end-page: 181
  article-title: Two‐factor degeneracies and a stabilization of Parafac
  publication-title: Chemom. Intell. Lab. Syst.
– year: 2009
  article-title: Nonnegative approximations of nonnegative tensors
  publication-title: J. Chemom.
– volume: 38
  start-page: 149
  year: 1997
  end-page: 171
  article-title: Parafac, tutorial and applications
  publication-title: Chemom. Intel. Lab. Syst.
– start-page: 115
  year: 1989
  end-page: 121
– start-page: 25
  year: 2008
  end-page: 29
– volume: 87
  start-page: 337
  issue: 2
  year: 2007
  end-page: 351
  article-title: PARAFAC‐based unified tensor modeling for wireless communication systems with application to blind multiuser equalization
  publication-title: Signal Processing
– volume: 8
  start-page: 155
  year: 1994
  end-page: 168
  article-title: Slowly converging Parafac sequences: Swamps and two‐factor degeneracies
  publication-title: J. Chemom.
– volume: 315
  year: 1997
– volume: 48
  start-page: 810
  issue: 3
  year: 2000
  end-page: 823
  article-title: Blind PARAFAC receivers for DS‐CDMA systems
  publication-title: Trans. Sig. Proc.
– volume: 71
  start-page: 483
  issue: 3
  year: 2006
  end-page: 501
  article-title: Degeneracy in Candecomp/Parafac explained for p× p× 2 arrays of rank p+1 or higher
  publication-title: Psychometrika
– year: 1983
– volume: 8
  start-page: 72
  issue: 1
  year: 1982
  end-page: 83
  article-title: An improved algorithm for computing the singular value decomposition
  publication-title: ACM Trans. Math. Soft.
– volume: 213
  start-page: 195
  year: 1999
  end-page: 224
  article-title: Canonical forms of two by two matrices
  publication-title: Jour. of Algebra
– year: 2009
  article-title: Generic and typical ranks of multi‐way arrays
  publication-title: Linear Algebra Appl.
– volume: 85
  start-page: 98
  year: 1980
  end-page: 108
– volume: 7
  start-page: 39
  issue: 1
  year: 1927
  end-page: 79
  article-title: Multiple invariants and generalized rank of a p‐way matrix or tensor
  publication-title: J. Math. Phys.
– volume: 42
  start-page: 105
  issue: 1–1
  year: 1998
  end-page: 113
  article-title: Improving the speed of multiway algorithms. part ii: Compression
  publication-title: Chemom. Intell. Lab. Syst.
– year: 1992
– volume: 107
  start-page: 585
  issue: 3
  year: 1992
  end-page: 602
  article-title: La methode d'Horace eclatee: application a l'interpolation en degre quatre
  publication-title: Invent. Math.
– volume: 73
  start-page: 436
  issue: 2
  year: 2006
  end-page: 454
  article-title: On the concept of ‐sectant order of a variety
  publication-title: J. London Math. Soc.
– start-page: 1
  year: 2002
  end-page: 24
– volume: 18
  start-page: 12
  year: 2004
  end-page: 16
  article-title: Partial uniqueness in CANDECOMP/PARAFAC
  publication-title: Jour. Chemometrics
– volume: 69
  start-page: 95
  year: 1985
  end-page: 120
  article-title: Typical tensorial rank
  publication-title: Linear Algebra Appl.
– volume: 18
  start-page: 95
  year: 1977
  end-page: 138
  article-title: Three‐way arrays: Rank and uniqueness of trilinear decompositions
  publication-title: Linear Algebra Appl.
– volume: 87
  start-page: 322
  issue: 2
  year: 2007
  end-page: 336
  article-title: Tensor‐based techniques for the blind separation of DS‐CDMA signals
  publication-title: Signal Processing
– year: 2006
– volume: 50
  start-page: 1700
  year: 2006
  end-page: 1734
  article-title: A comparison of algorithms for fitting the Parafac model
  publication-title: Comp. Stat. Data Anal.
– volume: 51
  start-page: 107
  year: 1916
  end-page: 117
  article-title: Sulla rappresentazione delle forme quaternarie mediante somme di potenze di forme lineari
  publication-title: Atti della R. Acc. delle Scienze di Torino
– start-page: 39
  year: 1994
  end-page: 72
  article-title: Parafac: Parallel factor analysis
  publication-title: Computational Statistics and Data Analysis
– volume: 58
  start-page: 434
  year: 1904
  end-page: 440
  article-title: Kanonische formen
  publication-title: Math. Annal.
– volume: 78
  issue: 8
  year: 1990
  article-title: Tracking of a few extreme singular values and vectors in signal processing
  publication-title: Proceedings of the IEEE
– volume: 30
  start-page: 988
  issue: 3
  year: 2008
  end-page: 1007
  article-title: Low‐rank approximation of generic p× q× 2 arrays and diverging components in the Candecomp/Parafac model
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 79
  start-page: 45
  year: 1986
  end-page: 51
  article-title: Border rank of m× n×(mn‐q) tensors
  publication-title: Linear Algebra Appl.
– volume: 31
  start-page: 279
  year: 1966
  end-page: 311
  article-title: Some mathematical notes for three‐mode factor analysis
  publication-title: Psychometrika
– ident: e_1_2_1_45_2
  doi: 10.1007/BF01444970
– ident: e_1_2_1_50_2
– ident: e_1_2_1_42_2
  doi: 10.1002/cem.1244
– ident: e_1_2_1_28_2
  doi: 10.1016/j.sigpro.2007.07.024
– volume: 4
  start-page: 193
  year: 1845
  ident: e_1_2_1_41_2
  article-title: On the theory of linear transformation
  publication-title: Cambridge Math. J.
– volume-title: Multi‐Way Analysis
  year: 2004
  ident: e_1_2_1_10_2
– ident: e_1_2_1_24_2
  doi: 10.1007/s11336-008-9056-1
– ident: e_1_2_1_8_2
  doi: 10.1016/0024-3795(83)80041-X
– ident: e_1_2_1_49_2
  doi: 10.1016/0024-3795(85)90070-9
– ident: e_1_2_1_32_2
  doi: 10.1007/BF02310791
– ident: e_1_2_1_47_2
– ident: e_1_2_1_56_2
  doi: 10.1016/j.laa.2006.08.010
– ident: e_1_2_1_39_2
  doi: 10.1016/0165-1684(96)00079-5
– volume-title: Matrix Computations
  year: 1989
  ident: e_1_2_1_69_2
– ident: e_1_2_1_7_2
  doi: 10.1016/0024-3795(77)90069-6
– ident: e_1_2_1_61_2
  doi: 10.1137/S0895479898346995
– ident: e_1_2_1_25_2
  doi: 10.1137/050644677
– volume: 51
  start-page: 107
  year: 1916
  ident: e_1_2_1_44_2
  article-title: Sulla rappresentazione delle forme quaternarie mediante somme di potenze di forme lineari
  publication-title: Atti della R. Acc. delle Scienze di Torino
– start-page: 115
  volume-title: Multiway Data Analysis
  year: 1989
  ident: e_1_2_1_13_2
– ident: e_1_2_1_71_2
  doi: 10.1109/5.58320
– ident: e_1_2_1_66_2
  doi: 10.1016/j.csda.2004.11.013
– ident: e_1_2_1_3_2
  doi: 10.1109/78.824675
– ident: e_1_2_1_19_2
  doi: 10.1007/BF02294495
– ident: e_1_2_1_12_2
  doi: 10.1016/j.sigpro.2005.10.007
– ident: e_1_2_1_30_2
  doi: 10.1016/S0169-7439(98)00011-2
– ident: e_1_2_1_53_2
  doi: 10.1016/j.laa.2006.02.002
– ident: e_1_2_1_64_2
  doi: 10.1007/BF02289464
– ident: e_1_2_1_18_2
– ident: e_1_2_1_36_2
  doi: 10.1016/j.jpaa.2007.09.014
– ident: e_1_2_1_48_2
  doi: 10.1016/j.laa.2009.01.014/
– ident: e_1_2_1_55_2
  doi: 10.1112/S0024610706022630
– ident: e_1_2_1_23_2
  doi: 10.1137/06066518X
– ident: e_1_2_1_16_2
  doi: 10.1016/S0169-7439(97)00033-6
– ident: e_1_2_1_59_2
  doi: 10.1137/040608830
– ident: e_1_2_1_67_2
– volume-title: Three Mode Principal Component Analysis
  year: 1983
  ident: e_1_2_1_35_2
– ident: e_1_2_1_54_2
  doi: 10.1016/S0024-3795(99)00057-9
– ident: e_1_2_1_38_2
  doi: 10.1007/978-1-4757-2181-2
– ident: e_1_2_1_46_2
  doi: 10.1090/S0002-9947-06-03893-1
– ident: e_1_2_1_51_2
  doi: 10.1002/cem.839
– ident: e_1_2_1_22_2
  doi: 10.1137/060661569
– ident: e_1_2_1_65_2
  doi: 10.2307/1390831
– volume-title: Linear Statistical Inference and its Applications
  year: 1965
  ident: e_1_2_1_62_2
– ident: e_1_2_1_70_2
  doi: 10.1145/355984.355990
– ident: e_1_2_1_14_2
  doi: 10.1137/06065577
– ident: e_1_2_1_20_2
  doi: 10.1007/s11336-004-1266-6
– ident: e_1_2_1_29_2
  doi: 10.1137/S0895479896305696
– ident: e_1_2_1_17_2
  doi: 10.1002/1099-128X(200005/06)14:3<285::AID-CEM584>3.0.CO;2-1
– volume: 16
  start-page: 1
  year: 1970
  ident: e_1_2_1_33_2
  article-title: Foundations of the Parafac procedure: Models and conditions for an explanatory multimodal factor analysis
  publication-title: UCLA Working Papers in Phonetics
– ident: e_1_2_1_4_2
  doi: 10.1016/j.sigpro.2005.12.015
– ident: e_1_2_1_21_2
  doi: 10.1007/s11336-007-9022-3
– volume-title: Generalized Inverse of Matrices and Its Applications
  year: 1971
  ident: e_1_2_1_63_2
– ident: e_1_2_1_5_2
  doi: 10.1016/j.sigpro.2005.12.014
– ident: e_1_2_1_9_2
  doi: 10.1007/978-3-662-03338-8
– ident: e_1_2_1_27_2
  doi: 10.1016/0024-3795(86)90291-0
– ident: e_1_2_1_60_2
– start-page: 1
  volume-title: Mathematics in Signal Processing V
  year: 2002
  ident: e_1_2_1_6_2
– ident: e_1_2_1_15_2
  doi: 10.1002/cem.1180080207
– ident: e_1_2_1_2_2
  doi: 10.1016/B978-0-12-514250-2.50012-3
– ident: e_1_2_1_43_2
– ident: e_1_2_1_52_2
  doi: 10.1007/BF02296342
– ident: e_1_2_1_37_2
  doi: 10.1007/BF01231903
– start-page: 98
  volume-title: Proceedings of the 7th Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science
  year: 1980
  ident: e_1_2_1_26_2
– volume: 7
  start-page: 39
  issue: 1
  year: 1927
  ident: e_1_2_1_31_2
  article-title: Multiple invariants and generalized rank of a p‐way matrix or tensor
  publication-title: J. Math. Phys.
– ident: e_1_2_1_57_2
– ident: e_1_2_1_11_2
  doi: 10.1016/S0169-7439(97)00032-4
– ident: e_1_2_1_58_2
  doi: 10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N
– ident: e_1_2_1_34_2
  doi: 10.1016/0167-9473(94)90132-5
– ident: e_1_2_1_68_2
– ident: e_1_2_1_40_2
  doi: 10.1006/jabr.1995.6650
SSID ssj0009934
Score 2.4524066
Snippet This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple ‘bottlenecks’,...
This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple 'bottlenecks',...
This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple ''bottlenecks'',...
SourceID hal
proquest
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 393
SubjectTerms Algorithms
canonical decomposition
Chemical Sciences
Cheminformatics
Chemistry
Chemometrics
Classification
computational complexity
Computer Science
Computer simulation
degeneracy
Engineering Sciences
Environmental Sciences
Exact sciences and technology
General and physical chemistry
General. Nomenclature, chemical documentation, computer chemistry
Least squares method
Mathematical analysis
Numerical analysis
PARAFAC
Signal and Image Processing
Swamps
tensor rank
Tensors
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
three-way array
Title Tensor decompositions, alternating least squares and other tales
URI https://api.istex.fr/ark:/67375/WNG-V2W2DZ9C-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcem.1236
https://www.proquest.com/docview/221220041
https://www.proquest.com/docview/901688214
https://hal.science/hal-00410057
Volume 23
WOSCitedRecordID wos000269365200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-128X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009934
  issn: 0886-9383
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLhJc2vJS09LKIAQXQhPHed1abbv0sKwQ9CUulu04BdFm20236s9nxnmUlUBC4hTJGSvx2DOesWe-AXgjEh1plQU-T3TqC8WFnxme-6gRreBhURYuyvdknE4m2dlZ_rmNqqRcmAYfoj9wI8lw-poEXOl65x401NjLDwQdsgQDyqlCx2uw_2V0PL6H3M3dnTKKUeLn6Ih10LMB3-n6LmxGS98pFHJA3L2jEElVI5fKprzFgv35uxXrtqHR6v8MYA1WWuOT7TWr5Qk8sNVTeDTsar49g90j9GqnM1ZYCjXv4rneM3enTueG1Tm7oGo_rL6eU-YSU1XBXBIXQyve1s_heHRwNDz02xoLvolxb_ZTXuSRNlxEUZxlYVKKQKtUmDyL44KqJcQmCa1CxWBCG5WZEFrEJgxKbS3PMxu9gOVqWtl1YGEa2cSUKNWlRbNAKRR9rYrSaGzROvDgXcdsaVoAcqqDcSEb6GQukSOSOOLBq57yqgHd-APNa5yv_jWhZB_ujSW1EYYYJdnehh68ddPZk6nZT4pkS2N5OvkoT_gp3_-WD-VXD7YX5rvv4ADu0Sz2YLNbALKV8lpy3PdJy-B3WP8WZ4zuXFRlp_NaormVoBMTCvwVtxj-OiA5PPhEz41_JdyEx83VFsUOv4Tlm9ncbsFDc3vzo55tt9LwC19iC1A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB61u0jlhRsRCsUgBC-EJo5ziReqbZdFpCsE20N9sWzHaRElC5tuxc9nJldZCSQkniI5thLPeA7bM98APBeRDrRKPJdHOnaF4sJNDE9d1IhWcD8v8jrK9zCLp9Pk-Dj9uAZvulyYBh-iP3Ajyaj1NQk4HUhvX6GGGvvtNWGHrMNQREGcDGC4-2l8kF1h7qb1pTLKUeSmuBPrsGc9vt2NXbFG62cUCzkk8v6kGElVIZmKpr7FigP6uxtb26Hxzf-awS240bqfbKdZL7dhzZZ3YGPUVX27C29nuK-dL1huKdi8i-h6xepbdTo5LE_ZOdX7YdWPJeUuMVXmrE7jYujH2-oeHIz3ZqOJ21ZZcE2I1tmNeZ4G2nARBGGS-FEhPK1iYdIkDHOqlxCayLcKVYPxbVAkQmgRGt8rtLU8TWxwHwblvLQPgPlxYCNToFwXFh0DpVD4tcoLo7FFa8-Blx21pWkhyKkSxrlswJO5RIpIoogDT_ue3xvYjT_0eYYM618TTvZkJ5PURihilGZ76TvwouZn300tvlIsWxzKo-k7eciP-O5JOpKfHdhaYXg_oIa4R8fYgc1uBchWzivJ0fKTnsHvsP4tcoxuXVRp58tKosMV4TbGF_gr9Wr464TkaG-fng__teMT2JjM9jOZvZ9-2ITrzUUXRRI_gsHFYmkfwzVzefGlWmy1ovELWaMPQA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB61uwh44UaEQjEIwQuhieNc4oVqt0sRy6qCXuLFsh0HECVbNt2Kn8-Mc5SVQELiKZJjK_GM57A98w3AU5HoSKss8HmiU18oLvzM8NxHjWgFD4uycFG-h9N0NsuOj_O9NXjV5cI0-BD9gRtJhtPXJOD2tCi3LlBDjf3-krBD1mEo4jwWAxiOP0wOpheYu7m7VEY5Svwcd2Id9mzAt7qxK9Zo_QvFQg6JvD8pRlLVSKayqW-x4oD-7sY6OzS5_l8zuAHXWveTbTfr5Sas2eoWXBl1Vd9uw-t93NfOF6ywFGzeRXS9YO5WnU4Oq8_shOr9sPrHknKXmKoK5tK4GPrxtr4DB5Od_dGu31ZZ8E2M1tlPeZFH2nARRXGWhUkpAq1SYfIsjguqlxCbJLQKVYMJbVRmQmgRmzAotbU8z2x0FwbVvLL3gIVpZBNTolyXFh0DpVD4tSpKo7FF68CD5x21pWkhyKkSxolswJO5RIpIoogHj_uepw3sxh_6PEGG9a8JJ3t3eyqpjVDEKM32PPTgmeNn300tvlEsWxrLo9kbeciP-PhTPpIfPdhcYXg_wEHco2PswUa3AmQr57XkaPlJz-B3WP8WOUa3Lqqy82Ut0eFKcBsTCvwVtxr-OiE52nlPz_v_2vERXN4bT-T07ezdBlxt7rkokPgBDM4WS_sQLpnzs6_1YrOVjF_POA67
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor+decompositions%2C+alternating+least+squares+and+other+tales&rft.jtitle=Journal+of+chemometrics&rft.au=Comon%2C+P.&rft.au=Luciani%2C+X.&rft.au=de+Almeida%2C+A.+L.+F.&rft.date=2009-07-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0886-9383&rft.eissn=1099-128X&rft.volume=23&rft.issue=7%E2%80%908&rft.spage=393&rft.epage=405&rft_id=info:doi/10.1002%2Fcem.1236&rft.externalDBID=10.1002%252Fcem.1236&rft.externalDocID=CEM1236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-9383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-9383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-9383&client=summon