Tensor decompositions, alternating least squares and other tales
This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple ‘bottlenecks’, and on ‘swamps’. Existing theoretical results are surveyed, some numerical algorithms are described in details, and their numerical complexity...
Uložené v:
| Vydané v: | Journal of chemometrics Ročník 23; číslo 7-8; s. 393 - 405 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Chichester, UK
John Wiley & Sons, Ltd
01.07.2009
Wiley Wiley Subscription Services, Inc |
| Predmet: | |
| ISSN: | 0886-9383, 1099-128X, 1099-128X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple ‘bottlenecks’, and on ‘swamps’. Existing theoretical results are surveyed, some numerical algorithms are described in details, and their numerical complexity is calculated. In particular, the interest in using the enhanced line search (ELS) enhancement in these algorithms is discussed. Computer simulations feed this discussion. Copyright © 2009 John Wiley & Sons, Ltd.
Various aspects of tensor decompositions are addressed: existence, uniqueness and computation. The state of the art is surveyed, by making the difference between conjectures and proved results. Some numerical algorithms are described in details, and their numerical complexity is evaluated. The slowness of numerical algorithms is often due to a form of ill‐conditioning of the tensor to be decomposed. In particular, Richard Harshman called ‘bottleneck’ the fact that two or more factors in a mode are almost collinear. |
|---|---|
| AbstractList | This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple ''bottlenecks'', and on ''swamps''. Existing theoretical results are surveyed, some numerical algorithms are described in details, and their numerical complexity is calculated. In particular, the interest in using the ELS enhancement in these algorithms is discussed. Computer simulations feed this discussion. This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple 'bottlenecks', and on 'swamps'. Existing theoretical results are surveyed, some numerical algorithms are described in details, and their numerical complexity is calculated. In particular, the interest in using the enhanced line search (ELS) enhancement in these algorithms is discussed. Computer simulations feed this discussion. This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple 'bottlenecks', and on 'swamps'. Existing theoretical results are surveyed, some numerical algorithms are described in details, and their numerical complexity is calculated. In particular, the interest in using the enhanced line search (ELS) enhancement in these algorithms is discussed. Computer simulations feed this discussion. [PUBLICATION ABSTRACT] This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple ‘bottlenecks’, and on ‘swamps’. Existing theoretical results are surveyed, some numerical algorithms are described in details, and their numerical complexity is calculated. In particular, the interest in using the enhanced line search (ELS) enhancement in these algorithms is discussed. Computer simulations feed this discussion. Copyright © 2009 John Wiley & Sons, Ltd. Various aspects of tensor decompositions are addressed: existence, uniqueness and computation. The state of the art is surveyed, by making the difference between conjectures and proved results. Some numerical algorithms are described in details, and their numerical complexity is evaluated. The slowness of numerical algorithms is often due to a form of ill‐conditioning of the tensor to be decomposed. In particular, Richard Harshman called ‘bottleneck’ the fact that two or more factors in a mode are almost collinear. |
| Author | Comon, P. de Almeida, A. L. F. Luciani, X. |
| Author_xml | – sequence: 1 givenname: P. surname: Comon fullname: Comon, P. email: pcomon@unice.fr organization: Laboratory I3S, UMR6070, University of Nice, Algorithmes/Euclide-B, 2000 route des Lucioles, BP 121, F-06903 Sophia-Antipolis Cedex – sequence: 2 givenname: X. surname: Luciani fullname: Luciani, X. organization: Laboratory I3S, UMR6070, University of Nice, Algorithmes/Euclide-B, 2000 route des Lucioles, BP 121, F-06903 Sophia-Antipolis Cedex – sequence: 3 givenname: A. L. F. surname: de Almeida fullname: de Almeida, A. L. F. organization: Laboratory I3S, UMR6070, University of Nice, Algorithmes/Euclide-B, 2000 route des Lucioles, BP 121, F-06903 Sophia-Antipolis Cedex |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21820016$$DView record in Pascal Francis https://hal.science/hal-00410057$$DView record in HAL |
| BookMark | eNp10W1rFDEQB_AgLXhtBT_CIogK7pmHfci-s5y1FU59YbXimzCXm7Wpuc01k9P22zfLlQOLvgokvxky8z9ge0MYkLGngk8F5_KNxdVUSNU8YhPBu64UUn_fYxOudVN2SqvH7IDoivP8pqoJe3uOA4VYLNGG1TqQSy4M9LoAnzAOkNzws_AIlAq63kBEKmBYFiFdYiwSeKQjtt-DJ3xyfx6yr-9Pzmdn5fzz6YfZ8by0tWyaspXLTi2srJSqtRZNX_EFtJXtdF0voea8to1A4C23AlWvq2pR1VbwfoEoO43qkL3a9r0Eb9bRrSDemgDOnB3PzXjHeZUXULe_RbYvtnYdw_UGKZmVI4vew4BhQ6bjotFaiirLZw_kVdjkuT0ZKYWUY9OMnt8jIAu-jzBYR7tPSKGzE012L7fOxkAUsd8Rwc0YjsnhmDGcTKcPqHUJxt2nCM7_q6DcFvxxHm__29jMTj7-7R0lvNl5iL9M06q2NhefTs03eSHf_ehm5ou6A_qXrds |
| CODEN | JOCHEU |
| CitedBy_id | crossref_primary_10_5802_crmeca_90 crossref_primary_10_1007_s11280_018_0595_9 crossref_primary_10_1109_LSP_2013_2267797 crossref_primary_10_1007_s10589_022_00428_1 crossref_primary_10_1137_120868323 crossref_primary_10_1007_s10812_023_01506_w crossref_primary_10_1007_s11042_019_7189_0 crossref_primary_10_1137_140956865 crossref_primary_10_1016_j_anucene_2025_111244 crossref_primary_10_1109_MSP_2015_2413711 crossref_primary_10_1038_s41598_019_53565_9 crossref_primary_10_1016_j_image_2017_10_001 crossref_primary_10_1016_j_cviu_2013_12_010 crossref_primary_10_1137_100808034 crossref_primary_10_1007_s11464_014_0377_3 crossref_primary_10_1016_j_sigpro_2022_108457 crossref_primary_10_1109_JSTARS_2024_3509477 crossref_primary_10_1016_j_laa_2011_10_044 crossref_primary_10_1016_j_medengphy_2014_08_009 crossref_primary_10_1109_TNNLS_2019_2929063 crossref_primary_10_1016_j_jcp_2018_08_057 crossref_primary_10_1109_TSP_2013_2238534 crossref_primary_10_1109_TAES_2023_3326793 crossref_primary_10_1109_TSP_2018_2887192 crossref_primary_10_1016_j_jcp_2015_02_026 crossref_primary_10_1137_110825327 crossref_primary_10_1137_20M1386414 crossref_primary_10_1016_j_laa_2021_02_019 crossref_primary_10_1016_j_sigpro_2025_109979 crossref_primary_10_1007_s40305_023_00455_7 crossref_primary_10_1109_TSP_2022_3231195 crossref_primary_10_1155_2018_2708416 crossref_primary_10_1109_TSP_2013_2269046 crossref_primary_10_1109_TBME_2022_3202962 crossref_primary_10_1016_j_eswa_2025_129576 crossref_primary_10_1137_140970276 crossref_primary_10_1109_TSP_2025_3587089 crossref_primary_10_1007_s10915_023_02404_1 crossref_primary_10_1007_s12559_018_9587_4 crossref_primary_10_1016_j_measurement_2023_112478 crossref_primary_10_1109_TCYB_2023_3265279 crossref_primary_10_1016_j_csda_2014_02_010 crossref_primary_10_1109_TSP_2012_2208956 crossref_primary_10_1016_j_sigpro_2014_05_017 crossref_primary_10_1109_TKDE_2020_2967045 crossref_primary_10_1109_JSEN_2023_3256039 crossref_primary_10_1109_LSP_2012_2205237 crossref_primary_10_1109_TSP_2016_2572047 crossref_primary_10_1137_17M112213X crossref_primary_10_1016_j_chemolab_2014_06_009 crossref_primary_10_1109_TSP_2015_2404311 crossref_primary_10_1016_j_laa_2018_06_006 crossref_primary_10_1109_TBDATA_2021_3079234 crossref_primary_10_1109_TKDE_2020_3016208 crossref_primary_10_1007_s10898_022_01140_4 crossref_primary_10_1049_iet_spr_2020_0373 crossref_primary_10_3390_math12070982 crossref_primary_10_1016_j_cnsns_2014_08_023 crossref_primary_10_1186_1687_6180_2013_124 crossref_primary_10_1049_iet_com_2013_1155 crossref_primary_10_1109_LWC_2023_3328838 crossref_primary_10_1109_MSP_2014_2298533 crossref_primary_10_1016_j_chemolab_2013_04_014 crossref_primary_10_1109_TSP_2015_2458785 crossref_primary_10_3390_cryst11010012 crossref_primary_10_1109_TCAD_2016_2618879 crossref_primary_10_1109_TKDE_2017_2786695 crossref_primary_10_1016_j_cam_2018_05_046 crossref_primary_10_1137_120877234 crossref_primary_10_1109_TSP_2011_2164911 crossref_primary_10_1016_j_jsc_2012_05_012 crossref_primary_10_3390_en12142709 crossref_primary_10_1109_JSEN_2021_3129208 crossref_primary_10_1007_s10707_021_00457_8 crossref_primary_10_1109_LSP_2024_3495555 crossref_primary_10_1137_130916084 crossref_primary_10_1162_neco_a_01402 crossref_primary_10_1109_LSP_2017_2685244 crossref_primary_10_1155_2018_8045909 crossref_primary_10_1109_TSP_2016_2576425 crossref_primary_10_1016_j_jcp_2020_109744 crossref_primary_10_1038_s41467_024_50513_8 crossref_primary_10_1186_1687_6180_2014_150 crossref_primary_10_1016_j_laa_2014_02_001 crossref_primary_10_1016_j_ress_2023_109695 crossref_primary_10_1016_j_jneumeth_2015_03_018 crossref_primary_10_1109_TVLSI_2021_3080318 crossref_primary_10_1109_TSP_2022_3163896 crossref_primary_10_1109_TCSII_2022_3205933 crossref_primary_10_1209_0295_5075_ac949a crossref_primary_10_1016_j_sigpro_2020_107472 crossref_primary_10_1088_2632_2153_ab8240 crossref_primary_10_1186_1687_6180_2014_146 crossref_primary_10_1016_j_patcog_2024_110954 crossref_primary_10_1137_120877258 crossref_primary_10_1109_TSP_2017_2725219 crossref_primary_10_1016_j_epsr_2020_106431 crossref_primary_10_1109_JSEN_2025_3580197 crossref_primary_10_1007_s10915_022_01805_y crossref_primary_10_1002_nla_2516 crossref_primary_10_1002_cem_2709 crossref_primary_10_1109_TNNLS_2019_2944664 crossref_primary_10_1109_TCDS_2023_3267010 crossref_primary_10_1016_j_sigpro_2021_108178 crossref_primary_10_1137_24M1666744 crossref_primary_10_1109_ACCESS_2017_2680463 crossref_primary_10_1109_TVT_2024_3492998 crossref_primary_10_1109_ACCESS_2024_3440633 crossref_primary_10_3390_e20030203 crossref_primary_10_1109_TAES_2023_3263153 crossref_primary_10_1007_s10589_025_00668_x crossref_primary_10_1016_j_ins_2019_06_044 crossref_primary_10_1109_TMI_2023_3295657 crossref_primary_10_1109_TSP_2023_3307886 crossref_primary_10_1109_JBHI_2014_2328315 crossref_primary_10_1016_j_sigpro_2013_02_016 crossref_primary_10_1016_j_dsp_2023_104043 crossref_primary_10_3390_electronics8050550 crossref_primary_10_1109_ACCESS_2020_2988485 crossref_primary_10_1109_TITS_2020_3001687 crossref_primary_10_1002_gamm_201310004 crossref_primary_10_1186_1687_6180_2014_128 crossref_primary_10_1137_21M1462052 crossref_primary_10_1016_j_sigpro_2011_10_014 crossref_primary_10_1049_iet_spr_2018_5115 crossref_primary_10_1109_TVT_2023_3347290 crossref_primary_10_1016_j_neuron_2018_05_015 crossref_primary_10_1016_j_bspc_2021_102523 crossref_primary_10_3934_math_2025297 crossref_primary_10_1073_pnas_1620045114 crossref_primary_10_1007_s00034_014_9858_6 crossref_primary_10_1109_TIT_2022_3203972 crossref_primary_10_1109_TWC_2023_3244487 crossref_primary_10_1109_ACCESS_2021_3074930 crossref_primary_10_1109_ACCESS_2019_2902122 crossref_primary_10_1109_LSP_2014_2374838 crossref_primary_10_1109_TMM_2016_2629758 crossref_primary_10_1002_qre_3223 crossref_primary_10_1016_j_patcog_2024_110946 crossref_primary_10_1137_120875806 crossref_primary_10_1016_j_sigpro_2022_108610 crossref_primary_10_1007_s10107_020_01579_x crossref_primary_10_1016_j_chemolab_2015_11_002 crossref_primary_10_1134_S0362119719030150 crossref_primary_10_1002_nla_1875 crossref_primary_10_1016_j_camwa_2014_04_017 crossref_primary_10_1109_TSP_2016_2628348 crossref_primary_10_1137_18M1181389 crossref_primary_10_1016_j_sigpro_2014_01_031 crossref_primary_10_1109_LSP_2016_2570862 crossref_primary_10_1021_acs_jpca_4c06712 crossref_primary_10_1109_MSP_2013_2297439 crossref_primary_10_1109_ACCESS_2019_2927440 crossref_primary_10_1007_s10115_021_01628_7 crossref_primary_10_1016_j_sigpro_2011_02_003 crossref_primary_10_1109_TIT_2013_2291876 crossref_primary_10_1016_j_apm_2025_116278 crossref_primary_10_1109_LWC_2025_3578960 crossref_primary_10_1155_2021_6629243 crossref_primary_10_1137_140955963 crossref_primary_10_3389_fnins_2020_00261 crossref_primary_10_1109_TIM_2021_3104394 crossref_primary_10_1109_ACCESS_2021_3063382 crossref_primary_10_1109_ACCESS_2019_2931371 crossref_primary_10_1109_LSP_2016_2577383 crossref_primary_10_1007_s10208_016_9317_9 crossref_primary_10_1109_LSP_2024_3453655 crossref_primary_10_1016_j_cpc_2018_05_016 crossref_primary_10_1016_j_dsp_2024_104646 crossref_primary_10_1137_20M1336059 crossref_primary_10_1137_110843587 crossref_primary_10_1007_s10898_021_01043_w crossref_primary_10_1109_LSP_2015_2453205 crossref_primary_10_1109_TKDE_2015_2445757 crossref_primary_10_1109_TNNLS_2021_3069399 crossref_primary_10_1016_j_ifacol_2021_08_403 crossref_primary_10_1109_TSP_2010_2089625 crossref_primary_10_1016_j_procs_2020_08_058 crossref_primary_10_1109_TSP_2024_3510680 crossref_primary_10_3390_s22197463 crossref_primary_10_1109_TITS_2020_2984175 crossref_primary_10_1109_TITS_2022_3215613 crossref_primary_10_1016_j_chemolab_2013_12_009 crossref_primary_10_1109_TNNLS_2013_2271507 crossref_primary_10_1137_16M1107528 crossref_primary_10_1002_nla_2262 crossref_primary_10_1016_j_cam_2016_12_007 crossref_primary_10_1109_TIP_2012_2206036 crossref_primary_10_1016_j_jsv_2020_115586 crossref_primary_10_1137_130938207 crossref_primary_10_1016_j_laa_2019_11_005 crossref_primary_10_1109_ACCESS_2017_2698142 crossref_primary_10_1162_neco_a_01598 crossref_primary_10_1137_130943133 crossref_primary_10_1002_widm_1 crossref_primary_10_1016_j_neuroimage_2014_03_043 crossref_primary_10_1007_s00778_023_00790_4 crossref_primary_10_1016_j_sigpro_2017_04_001 crossref_primary_10_1109_TII_2025_3552709 crossref_primary_10_1007_s10492_013_0026_2 crossref_primary_10_1109_TITS_2023_3289193 crossref_primary_10_1109_TSP_2020_2982321 crossref_primary_10_1007_s10092_021_00450_5 crossref_primary_10_1002_lom3_10541 crossref_primary_10_1016_j_sigpro_2011_03_006 crossref_primary_10_1016_j_laa_2021_07_002 crossref_primary_10_1007_s00034_020_01385_y crossref_primary_10_1109_LSP_2019_2943060 crossref_primary_10_1109_TKDE_2022_3230874 crossref_primary_10_1109_LSP_2022_3203298 crossref_primary_10_1109_TCSS_2024_3462552 crossref_primary_10_1186_s13634_022_00928_6 crossref_primary_10_1109_JSTSP_2021_3061274 crossref_primary_10_1109_TIM_2023_3251399 crossref_primary_10_1109_JPROC_2015_2455028 |
| Cites_doi | 10.1007/BF01444970 10.1002/cem.1244 10.1016/j.sigpro.2007.07.024 10.1007/s11336-008-9056-1 10.1016/0024-3795(83)80041-X 10.1016/0024-3795(85)90070-9 10.1007/BF02310791 10.1016/j.laa.2006.08.010 10.1016/0165-1684(96)00079-5 10.1016/0024-3795(77)90069-6 10.1137/S0895479898346995 10.1137/050644677 10.1109/5.58320 10.1016/j.csda.2004.11.013 10.1109/78.824675 10.1007/BF02294495 10.1016/j.sigpro.2005.10.007 10.1016/S0169-7439(98)00011-2 10.1016/j.laa.2006.02.002 10.1007/BF02289464 10.1016/j.jpaa.2007.09.014 10.1016/j.laa.2009.01.014/ 10.1112/S0024610706022630 10.1137/06066518X 10.1016/S0169-7439(97)00033-6 10.1137/040608830 10.1016/S0024-3795(99)00057-9 10.1007/978-1-4757-2181-2 10.1090/S0002-9947-06-03893-1 10.1002/cem.839 10.1137/060661569 10.2307/1390831 10.1145/355984.355990 10.1137/06065577 10.1007/s11336-004-1266-6 10.1137/S0895479896305696 10.1002/1099-128X(200005/06)14:3<285::AID-CEM584>3.0.CO;2-1 10.1016/j.sigpro.2005.12.015 10.1007/s11336-007-9022-3 10.1016/j.sigpro.2005.12.014 10.1007/978-3-662-03338-8 10.1016/0024-3795(86)90291-0 10.1002/cem.1180080207 10.1016/B978-0-12-514250-2.50012-3 10.1007/BF02296342 10.1007/BF01231903 10.1016/S0169-7439(97)00032-4 10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N 10.1016/0167-9473(94)90132-5 10.1006/jabr.1995.6650 |
| ContentType | Journal Article |
| Copyright | Copyright © 2009 John Wiley & Sons, Ltd. 2009 INIST-CNRS Copyright John Wiley and Sons, Limited Jul/Aug 2009 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright © 2009 John Wiley & Sons, Ltd. – notice: 2009 INIST-CNRS – notice: Copyright John Wiley and Sons, Limited Jul/Aug 2009 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | BSCLL AAYXX CITATION IQODW 7SC 7U5 8FD JQ2 L7M L~C L~D 1XC VOOES |
| DOI | 10.1002/cem.1236 |
| DatabaseName | Istex CrossRef Pascal-Francis Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database Technology Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Computer Science Environmental Sciences |
| EISSN | 1099-128X |
| EndPage | 405 |
| ExternalDocumentID | oai:HAL:hal-00410057v1 1831360671 21820016 10_1002_cem_1236 CEM1236 ark_67375_WNG_V2W2DZ9C_S |
| Genre | article Feature |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH5 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ UB1 W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX CITATION O8X IQODW 7SC 7U5 8FD JQ2 L7M L~C L~D 1XC VOOES |
| ID | FETCH-LOGICAL-c5266-72d93bc243358816f40ba74c9855da5005c61ea070c1e3f844b45c10fbee298e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 338 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000269365200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0886-9383 1099-128X |
| IngestDate | Tue Oct 14 20:53:13 EDT 2025 Fri Jul 11 15:23:28 EDT 2025 Mon Nov 10 02:54:55 EST 2025 Mon Jul 21 09:15:37 EDT 2025 Tue Nov 18 22:19:53 EST 2025 Sat Nov 29 07:15:41 EST 2025 Tue Nov 11 03:12:45 EST 2025 Sun Sep 21 06:20:02 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7-8 |
| Keywords | canonical decomposition degeneracy Computer simulation Classification PARAFAC Decomposition three-way array Algorithm Chemometrics tensor rank computational complexity Performance measure Levenberg-Marquardt Parafac Tensor rank Canonical Decomposition Three-way Array Candecomp greedy algorithm Indeterminacy compression dimension reduction |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5266-72d93bc243358816f40ba74c9855da5005c61ea070c1e3f844b45c10fbee298e3 |
| Notes | ArticleID:CEM1236 istex:08365BFD62B0C2E3E6D66C483068E166F00BC322 ark:/67375/WNG-V2W2DZ9C-S SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ORCID | 0000-0001-9436-9228 |
| OpenAccessLink | https://hal.science/hal-00410057 |
| PQID | 221220041 |
| PQPubID | 37374 |
| PageCount | 13 |
| ParticipantIDs | hal_primary_oai_HAL_hal_00410057v1 proquest_miscellaneous_901688214 proquest_journals_221220041 pascalfrancis_primary_21820016 crossref_primary_10_1002_cem_1236 crossref_citationtrail_10_1002_cem_1236 wiley_primary_10_1002_cem_1236_CEM1236 istex_primary_ark_67375_WNG_V2W2DZ9C_S |
| PublicationCentury | 2000 |
| PublicationDate | July ‐ August 2009 |
| PublicationDateYYYYMMDD | 2009-07-01 |
| PublicationDate_xml | – month: 07 year: 2009 text: July ‐ August 2009 |
| PublicationDecade | 2000 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis – name: Chichester |
| PublicationTitle | Journal of chemometrics |
| PublicationTitleAlternate | J. Chemometrics |
| PublicationYear | 2009 |
| Publisher | John Wiley & Sons, Ltd Wiley Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley – name: Wiley Subscription Services, Inc |
| References | ten Berge JMF. Partial uniqueness in CANDECOMP/PARAFAC. Jour. Chemometrics 2004; 18: 12-16. Stegeman A, Sidiropoulos ND. On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition. Linear Algebra Appl. 2007; 420: 540-552. Brambilla MC, Ottaviani G. On the Alexander-Hirschowitz theorem. J. Pure Appl. Algebra 2008; 212: 1229-1251. Hitchcock FL. Multiple invariants and generalized rank of a p-way matrix or tensor. J. Math. Phys. 1927; 7 (1): 39-79. Stegeman A. Degeneracy in Candecomp/Parafac and Indscal explained for several three-sliced arrays with a two-valued typical rank. Psychometrika 2007; 72 (4): 601-619. Strassen V. Rank and optimal computation of generic tensors. Linear Algebra Appl. 1983; 52: 645-685. Mitchell BC, Burdick DS. Slowly converging Parafac sequences: Swamps and two-factor degeneracies. J. Chemom. 1994; 8: 155-168. Rao CR, Mitra S. Generalized Inverse of Matrices and Its Applications. New York: Wiley, 1971. Tucker LR. Some mathematical notes for three-mode factor analysis. Psychometrika 1966; 31: 279-311. Tomasi G, Bro R. A comparison of algorithms for fitting the Parafac model. Comp. Stat. Data Anal. 2006; 50: 1700-1734. Golub GH, Van Loan CF. Matrix Computations. Hopkins Univ. Press: Baltimore, 1989. Cox D, Little J, O'Shea D. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer Verlag: New York, 1992; 2nd edition in 1996. de Almeida ALF, Favier G, Mota JCM. PARAFAC-based unified tensor modeling for wireless communication systems with application to blind multiuser equalization. Signal Processing 2007; 87 (2): 337-351. ten Berge JMF. The typical rank of tall three-way arrays. Psychometrika 2000; 65 (5): 525-532. Comon P, Golub G, Lim L-H, Mourrain B. Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 2008; 30 (3): 1254-1279. Comon P, Mourrain B. Decomposition of quantics in sums of powers of linear forms. Signal Processing, Elsevier 1996; 53 (2): 93-107; Special Issue on High-Order Statistics. Terracini A. Sulla rappresentazione delle forme quaternarie mediante somme di potenze di forme lineari. Atti della R. Acc. delle Scienze di Torino 1916; 51: 107-117. Chiantini L, Ciliberto C. On the concept of k-sectant order of a variety. J. London Math. Soc. 2006; 73 (2): 436-454. Stegeman A. Low-rank approximation of generic p× q× 2 arrays and diverging components in the Candecomp/Parafac model. SIAM J. Matrix Anal. Appl. 2008; 30 (3): 988-1007. Paatero P. Construction and analysis of degenerate Parafac models. J. Chemom. 2000; 14: 285-299. DeLathauwer L, de Moor B, Vandewalle J. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 2000; 21 (4): 1253-1278. Chan TF. An improved algorithm for computing the singular value decomposition. ACM Trans. Math. Soft. 1982; 8 (1): 72-83. Lasker E. Kanonische formen. Math. Annal. 1904; 58: 434-440. Smilde A, Bro R, Geladi P. Multi-Way Analysis. Wiley: Chichester, 2004. Cayley A. On the theory of linear transformation. Cambridge Math. J. 1845; 4: 193-209. Comon P, ten Berge JMF, DeLathauwer L, Castaing J. Generic and typical ranks of multi-way arrays. Linear Algebra Appl., 2009, DOI: 10.1016/j.laa.2009.01.014 DeLathauwer L, Castaing J. Tensor-based techniques for the blind separation of DS-CDMA signals. Signal Processing 2007; 87 (2): 322-336. Rao CR. Linear Statistical Inference and its Applications. Probability and Statistics. Wiley: New York, 1965. Kruskal JB. Three-way arrays: Rank and uniqueness of trilinear decompositions. Linear Algebra Appl. 1977; 18: 95-138. ten Berge JMF. Kruskal's polynomial for 2×2×2 arrays and a generalization to 2×n×n arrays. Psychometrika 1991; 56: 631-636. Carroll JD, Chang JJ. Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart-Young decomposition. Psychometrika 1970; 35 (3): 283-319. Krijnen WP, Dijkstra TK, Stegeman A. On the non-existence of optimal solutions and the occurrence of degeneracy in the Candecomp/Parafac model. Psychometrika 2008; 73 (3): 431-439. Mella M. Singularities of linear systems and the Waring problem. Trans. Am. Math. Soc. 2006; 358 (12): 5523-5538. Harshman RA. Foundations of the Parafac procedure: Models and conditions for an explanatory multimodal factor analysis. UCLA Working Papers in Phonetics 1970; 16: 1-84. http://www.publish.uwo.ca/harshman. Comon P, Golub GH. Tracking of a few extreme singular values and vectors in signal processing. Proceedings of the IEEE 1990; 78 (8): 1327-1343 (published from Stanford report 78NA-89-01, February 1989). Bürgisser P, Clausen M, Shokrollahi MA. Algebraic Complexity Theory, vol. 315. Springer: Berlin, 1997. ten Berge JMF, Stegeman A. Symmetry transformations for square sliced three way arrays, with applications to their typical rank. Linear Algebra Appl. 2006; 418: 215-224. De Silva V, Lim L-H. Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 2008; 30 (3): 1084-1127. Lim L-H, Comon P. Nonnegative approximations of nonnegative tensors. J. Chemom., 2009 , this issue. Sidiropoulos ND, Bro R. On the uniqueness of multilinear decomposition of N-way arrays. J. Chemom. 2000; 14: 229-239. ten Berge JMF, Kiers HAL. Simplicity of core arrays in three-way principal component analysis and the typical rank of p× q× 2 arrays. Linear Algebra Appl. 1999; 294: 169-179. Alexander J, Hirschowitz A. La methode d'Horace eclatee: application a l'interpolation en degre quatre. Invent. Math. 1992; 107 (3): 585-602. Paatero P. The multilinear engine: a table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. J. Comput. Graph. Stat. 1999; 8 (4): 854-888. DeLathauwer L, de Moor B, Vandewalle J. On the best rank-1 and rank-(R1,R2,/,/ldots/,RN) approximation of high-order tensors. SIAM J. Matrix Anal. Appl. 2000; 21 (4): 1324-1342. Kroonenberg P. Three Mode Principal Component Analysis. SWO Press: Leiden, 1983. Ehrenborg R. Canonical forms of two by two matrices. Jour. of Algebra 1999; 213: 195-224. Lickteig T. Typical tensorial rank. Linear Algebra Appl. 1985; 69: 95-120. DeLathauwer L. A link between canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM J. Matrix Anal. 2006; 28 (3): 642-666. Bro R. Parafac, tutorial and applications. Chemom. Intel. Lab. Syst. 1997; 38: 149-171. Stegeman A. Degeneracy in Candecomp/Parafac explained for p× p× 2 arrays of rank p+1 or higher. Psychometrika 2006; 71 (3): 483-501. Rayens WS, Mitchell BC. Two-factor degeneracies and a stabilization of Parafac. Chemom. Intell. Lab. Syst. 1997; 38: 173-181. Harshman RA, Lundy ME. Parafac: Parallel factor analysis. Computational Statistics and Data Analysis 1994; 39-72. Sidiropoulos ND, Giannakis GB, Bro R. Blind PARAFAC receivers for DS-CDMA systems. Trans. Sig. Proc. 2000; 48 (3): 810-823. Comon P, Rajih M. Blind identification of under-determined mixtures based on the characteristic function. Signal Processing 2006; 86 (9): 2271-2281. Nion D, DeLathauwer L. An enhanced line search scheme for complex-valued tensor decompositions. application in DS-CDMA. Signal Processing 2008; 88 (3): 749-755. Bini D. Border rank of m× n×(mn-q) tensors. Linear Algebra Appl. 1986; 79: 45-51. Rajih M, Comon P, Harshman R. Enhanced line search: a novel method to accelerate PARAFAC. SIAM J. Matrix Anal. Appl. 2008; 30 (3): 1148-1171. Bro R, Andersson CA. Improving the speed of multiway algorithms. part ii: Compression. Chemom. Intell. Lab. Syst. 1998; 42 (1-1): 105-113. 2006; 71 2007; 420 1997; 315 2006; 418 2006; 73 1991; 56 2000; 48 1980; 85 1986; 79 1976 1983; 52 2007; 72 1971 2008; 30 2008; 73 1998; 42 1970; 35 1985; 69 2000; 14 2006; 28 1845; 4 1999; 294 1982; 8 1983 1927; 7 1999; 213 1989 1990; 78 2006; 50 2000; 21 2000; 65 2009 2008 1992; 107 2006 1994 2005 2004 1992 2002 2006; 358 1999; 8 1970; 16 1996; 53 1966; 31 1916; 51 1994; 8 2006; 86 2004; 18 1904; 58 1977; 18 1965 1997; 38 2008; 88 2008; 212 2007; 87 Terracini A (e_1_2_1_44_2) 1916; 51 e_1_2_1_64_2 e_1_2_1_66_2 e_1_2_1_22_2 e_1_2_1_45_2 e_1_2_1_60_2 e_1_2_1_20_2 e_1_2_1_43_2 e_1_2_1_49_2 e_1_2_1_24_2 e_1_2_1_47_2 e_1_2_1_68_2 e_1_2_1_28_2 Harshman RA (e_1_2_1_33_2) 1970; 16 Hitchcock FL (e_1_2_1_31_2) 1927; 7 e_1_2_1_54_2 e_1_2_1_4_2 Kruskal JB (e_1_2_1_13_2) 1989 e_1_2_1_56_2 e_1_2_1_2_2 e_1_2_1_12_2 e_1_2_1_50_2 e_1_2_1_71_2 e_1_2_1_52_2 e_1_2_1_16_2 e_1_2_1_37_2 e_1_2_1_14_2 e_1_2_1_58_2 e_1_2_1_8_2 e_1_2_1_18_2 e_1_2_1_39_2 Cayley A (e_1_2_1_41_2) 1845; 4 Comon P (e_1_2_1_6_2) 2002 Smilde A (e_1_2_1_10_2) 2004 e_1_2_1_40_2 e_1_2_1_65_2 e_1_2_1_67_2 e_1_2_1_23_2 e_1_2_1_61_2 e_1_2_1_21_2 e_1_2_1_42_2 e_1_2_1_27_2 e_1_2_1_48_2 Rao CR (e_1_2_1_63_2) 1971 e_1_2_1_25_2 e_1_2_1_46_2 e_1_2_1_29_2 Golub GH (e_1_2_1_69_2) 1989 e_1_2_1_70_2 e_1_2_1_30_2 e_1_2_1_53_2 e_1_2_1_7_2 e_1_2_1_55_2 Rao CR (e_1_2_1_62_2) 1965 e_1_2_1_5_2 e_1_2_1_11_2 Bini D (e_1_2_1_26_2) 1980 e_1_2_1_34_2 e_1_2_1_3_2 Kroonenberg P (e_1_2_1_35_2) 1983 e_1_2_1_32_2 e_1_2_1_51_2 e_1_2_1_15_2 e_1_2_1_38_2 e_1_2_1_36_2 e_1_2_1_19_2 e_1_2_1_57_2 e_1_2_1_17_2 e_1_2_1_59_2 e_1_2_1_9_2 |
| References_xml | – reference: Rao CR, Mitra S. Generalized Inverse of Matrices and Its Applications. New York: Wiley, 1971. – reference: Paatero P. Construction and analysis of degenerate Parafac models. J. Chemom. 2000; 14: 285-299. – reference: ten Berge JMF, Stegeman A. Symmetry transformations for square sliced three way arrays, with applications to their typical rank. Linear Algebra Appl. 2006; 418: 215-224. – reference: Carroll JD, Chang JJ. Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart-Young decomposition. Psychometrika 1970; 35 (3): 283-319. – reference: Cox D, Little J, O'Shea D. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer Verlag: New York, 1992; 2nd edition in 1996. – reference: Chiantini L, Ciliberto C. On the concept of k-sectant order of a variety. J. London Math. Soc. 2006; 73 (2): 436-454. – reference: Mella M. Singularities of linear systems and the Waring problem. Trans. Am. Math. Soc. 2006; 358 (12): 5523-5538. – reference: Kroonenberg P. Three Mode Principal Component Analysis. SWO Press: Leiden, 1983. – reference: Bro R, Andersson CA. Improving the speed of multiway algorithms. part ii: Compression. Chemom. Intell. Lab. Syst. 1998; 42 (1-1): 105-113. – reference: Rajih M, Comon P, Harshman R. Enhanced line search: a novel method to accelerate PARAFAC. SIAM J. Matrix Anal. Appl. 2008; 30 (3): 1148-1171. – reference: Comon P, ten Berge JMF, DeLathauwer L, Castaing J. Generic and typical ranks of multi-way arrays. Linear Algebra Appl., 2009, DOI: 10.1016/j.laa.2009.01.014/ – reference: Golub GH, Van Loan CF. Matrix Computations. Hopkins Univ. Press: Baltimore, 1989. – reference: Stegeman A, Sidiropoulos ND. On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition. Linear Algebra Appl. 2007; 420: 540-552. – reference: Strassen V. Rank and optimal computation of generic tensors. Linear Algebra Appl. 1983; 52: 645-685. – reference: Hitchcock FL. Multiple invariants and generalized rank of a p-way matrix or tensor. J. Math. Phys. 1927; 7 (1): 39-79. – reference: Lickteig T. Typical tensorial rank. Linear Algebra Appl. 1985; 69: 95-120. – reference: Lim L-H, Comon P. Nonnegative approximations of nonnegative tensors. J. Chemom., 2009 , this issue. – reference: Harshman RA. Foundations of the Parafac procedure: Models and conditions for an explanatory multimodal factor analysis. UCLA Working Papers in Phonetics 1970; 16: 1-84. http://www.publish.uwo.ca/harshman. – reference: Bini D. Border rank of m× n×(mn-q) tensors. Linear Algebra Appl. 1986; 79: 45-51. – reference: Sidiropoulos ND, Bro R. On the uniqueness of multilinear decomposition of N-way arrays. J. Chemom. 2000; 14: 229-239. – reference: Stegeman A. Degeneracy in Candecomp/Parafac explained for p× p× 2 arrays of rank p+1 or higher. Psychometrika 2006; 71 (3): 483-501. – reference: Tucker LR. Some mathematical notes for three-mode factor analysis. Psychometrika 1966; 31: 279-311. – reference: ten Berge JMF. Kruskal's polynomial for 2×2×2 arrays and a generalization to 2×n×n arrays. Psychometrika 1991; 56: 631-636. – reference: Chan TF. An improved algorithm for computing the singular value decomposition. ACM Trans. Math. Soft. 1982; 8 (1): 72-83. – reference: Alexander J, Hirschowitz A. La methode d'Horace eclatee: application a l'interpolation en degre quatre. Invent. Math. 1992; 107 (3): 585-602. – reference: DeLathauwer L. A link between canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM J. Matrix Anal. 2006; 28 (3): 642-666. – reference: Mitchell BC, Burdick DS. Slowly converging Parafac sequences: Swamps and two-factor degeneracies. J. Chemom. 1994; 8: 155-168. – reference: Comon P, Golub G, Lim L-H, Mourrain B. Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 2008; 30 (3): 1254-1279. – reference: Sidiropoulos ND, Giannakis GB, Bro R. Blind PARAFAC receivers for DS-CDMA systems. Trans. Sig. Proc. 2000; 48 (3): 810-823. – reference: Comon P, Golub GH. Tracking of a few extreme singular values and vectors in signal processing. Proceedings of the IEEE 1990; 78 (8): 1327-1343 (published from Stanford report 78NA-89-01, February 1989). – reference: Stegeman A. Low-rank approximation of generic p× q× 2 arrays and diverging components in the Candecomp/Parafac model. SIAM J. Matrix Anal. Appl. 2008; 30 (3): 988-1007. – reference: Terracini A. Sulla rappresentazione delle forme quaternarie mediante somme di potenze di forme lineari. Atti della R. Acc. delle Scienze di Torino 1916; 51: 107-117. – reference: DeLathauwer L, Castaing J. Tensor-based techniques for the blind separation of DS-CDMA signals. Signal Processing 2007; 87 (2): 322-336. – reference: Comon P, Mourrain B. Decomposition of quantics in sums of powers of linear forms. Signal Processing, Elsevier 1996; 53 (2): 93-107; Special Issue on High-Order Statistics. – reference: de Almeida ALF, Favier G, Mota JCM. PARAFAC-based unified tensor modeling for wireless communication systems with application to blind multiuser equalization. Signal Processing 2007; 87 (2): 337-351. – reference: Rayens WS, Mitchell BC. Two-factor degeneracies and a stabilization of Parafac. Chemom. Intell. Lab. Syst. 1997; 38: 173-181. – reference: DeLathauwer L, de Moor B, Vandewalle J. On the best rank-1 and rank-(R1,R2,/,/ldots/,RN) approximation of high-order tensors. SIAM J. Matrix Anal. Appl. 2000; 21 (4): 1324-1342. – reference: ten Berge JMF, Kiers HAL. Simplicity of core arrays in three-way principal component analysis and the typical rank of p× q× 2 arrays. Linear Algebra Appl. 1999; 294: 169-179. – reference: De Silva V, Lim L-H. Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 2008; 30 (3): 1084-1127. – reference: Stegeman A. Degeneracy in Candecomp/Parafac and Indscal explained for several three-sliced arrays with a two-valued typical rank. Psychometrika 2007; 72 (4): 601-619. – reference: Nion D, DeLathauwer L. An enhanced line search scheme for complex-valued tensor decompositions. application in DS-CDMA. Signal Processing 2008; 88 (3): 749-755. – reference: Kruskal JB. Three-way arrays: Rank and uniqueness of trilinear decompositions. Linear Algebra Appl. 1977; 18: 95-138. – reference: ten Berge JMF. Partial uniqueness in CANDECOMP/PARAFAC. Jour. Chemometrics 2004; 18: 12-16. – reference: Paatero P. The multilinear engine: a table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. J. Comput. Graph. Stat. 1999; 8 (4): 854-888. – reference: Smilde A, Bro R, Geladi P. Multi-Way Analysis. Wiley: Chichester, 2004. – reference: Bro R. Parafac, tutorial and applications. Chemom. Intel. Lab. Syst. 1997; 38: 149-171. – reference: Harshman RA, Lundy ME. Parafac: Parallel factor analysis. Computational Statistics and Data Analysis 1994; 39-72. – reference: Tomasi G, Bro R. A comparison of algorithms for fitting the Parafac model. Comp. Stat. Data Anal. 2006; 50: 1700-1734. – reference: Krijnen WP, Dijkstra TK, Stegeman A. On the non-existence of optimal solutions and the occurrence of degeneracy in the Candecomp/Parafac model. Psychometrika 2008; 73 (3): 431-439. – reference: Comon P, Rajih M. Blind identification of under-determined mixtures based on the characteristic function. Signal Processing 2006; 86 (9): 2271-2281. – reference: Brambilla MC, Ottaviani G. On the Alexander-Hirschowitz theorem. J. Pure Appl. Algebra 2008; 212: 1229-1251. – reference: Lasker E. Kanonische formen. Math. Annal. 1904; 58: 434-440. – reference: Cayley A. On the theory of linear transformation. Cambridge Math. J. 1845; 4: 193-209. – reference: Rao CR. Linear Statistical Inference and its Applications. Probability and Statistics. Wiley: New York, 1965. – reference: Bürgisser P, Clausen M, Shokrollahi MA. Algebraic Complexity Theory, vol. 315. Springer: Berlin, 1997. – reference: DeLathauwer L, de Moor B, Vandewalle J. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 2000; 21 (4): 1253-1278. – reference: Ehrenborg R. Canonical forms of two by two matrices. Jour. of Algebra 1999; 213: 195-224. – reference: ten Berge JMF. The typical rank of tall three-way arrays. Psychometrika 2000; 65 (5): 525-532. – volume: 52 start-page: 645 year: 1983 end-page: 685 article-title: Rank and optimal computation of generic tensors publication-title: Linear Algebra Appl. – volume: 53 start-page: 93 issue: 2 year: 1996 end-page: 107 article-title: Decomposition of quantics in sums of powers of linear forms publication-title: Signal Processing, Elsevier – volume: 420 start-page: 540 year: 2007 end-page: 552 article-title: On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition publication-title: Linear Algebra Appl. – volume: 212 start-page: 1229 year: 2008 end-page: 1251 article-title: On the Alexander‐Hirschowitz theorem publication-title: J. Pure Appl. Algebra – volume: 294 start-page: 169 year: 1999 end-page: 179 article-title: Simplicity of core arrays in three‐way principal component analysis and the typical rank of p× q× 2 arrays publication-title: Linear Algebra Appl. – volume: 14 start-page: 229 year: 2000 end-page: 239 article-title: On the uniqueness of multilinear decomposition of N‐way arrays publication-title: J. Chemom. – year: 1989 – volume: 21 start-page: 1324 issue: 4 year: 2000 end-page: 1342 article-title: On the best rank‐1 and rank‐(R1,R2,/,/ldots/,RN) approximation of high‐order tensors publication-title: SIAM J. Matrix Anal. Appl. – volume: 358 start-page: 5523 issue: 12 year: 2006 end-page: 5538 article-title: Singularities of linear systems and the Waring problem publication-title: Trans. Am. Math. Soc. – year: 1971 – volume: 418 start-page: 215 year: 2006 end-page: 224 article-title: Symmetry transformations for square sliced three way arrays, with applications to their typical rank publication-title: Linear Algebra Appl. – volume: 56 start-page: 631 year: 1991 end-page: 636 article-title: Kruskal's polynomial for 2×2×2 arrays and a generalization to 2×n×n arrays publication-title: Psychometrika – volume: 65 start-page: 525 issue: 5 year: 2000 end-page: 532 article-title: The typical rank of tall three‐way arrays publication-title: Psychometrika – volume: 30 start-page: 1254 issue: 3 year: 2008 end-page: 1279 article-title: Symmetric tensors and symmetric tensor rank publication-title: SIAM J. Matrix Anal. Appl. – volume: 21 start-page: 1253 issue: 4 year: 2000 end-page: 1278 article-title: A multilinear singular value decomposition publication-title: SIAM J. Matrix Anal. Appl. – volume: 30 start-page: 1084 issue: 3 year: 2008 end-page: 1127 article-title: Tensor rank and the ill‐posedness of the best low‐rank approximation problem publication-title: SIAM J. Matrix Anal. Appl. – start-page: 303 year: 1976 end-page: 324 – volume: 86 start-page: 2271 issue: 9 year: 2006 end-page: 2281 article-title: Blind identification of under‐determined mixtures based on the characteristic function publication-title: Signal Processing – volume: 30 start-page: 1148 issue: 3 year: 2008 end-page: 1171 article-title: Enhanced line search: a novel method to accelerate PARAFAC publication-title: SIAM J. Matrix Anal. Appl. – volume: 14 start-page: 285 year: 2000 end-page: 299 article-title: Construction and analysis of degenerate Parafac models publication-title: J. Chemom. – start-page: 4 year: 2005 end-page: 8 – volume: 73 start-page: 431 issue: 3 year: 2008 end-page: 439 article-title: On the non‐existence of optimal solutions and the occurrence of degeneracy in the Candecomp/Parafac model publication-title: Psychometrika – volume: 88 start-page: 749 issue: 3 year: 2008 end-page: 755 article-title: An enhanced line search scheme for complex‐valued tensor decompositions. application in DS‐CDMA publication-title: Signal Processing – volume: 72 start-page: 601 issue: 4 year: 2007 end-page: 619 article-title: Degeneracy in Candecomp/Parafac and Indscal explained for several three‐sliced arrays with a two‐valued typical rank publication-title: Psychometrika – year: 1965 – volume: 4 start-page: 193 year: 1845 end-page: 209 article-title: On the theory of linear transformation publication-title: Cambridge Math. J. – year: 2008 – year: 2004 – volume: 8 start-page: 854 issue: 4 year: 1999 end-page: 888 article-title: The multilinear engine: a table‐driven, least squares program for solving multilinear problems, including the n‐way parallel factor analysis model publication-title: J. Comput. Graph. Stat. – volume: 35 start-page: 283 issue: 3 year: 1970 end-page: 319 article-title: Analysis of individual differences in multidimensional scaling via n‐way generalization of Eckart‐Young decomposition publication-title: Psychometrika – volume: 28 start-page: 642 issue: 3 year: 2006 end-page: 666 article-title: A link between canonical decomposition in multilinear algebra and simultaneous matrix diagonalization publication-title: SIAM J. Matrix Anal. – volume: 16 start-page: 1 year: 1970 end-page: 84 article-title: Foundations of the Parafac procedure: Models and conditions for an explanatory multimodal factor analysis publication-title: UCLA Working Papers in Phonetics – volume: 38 start-page: 173 year: 1997 end-page: 181 article-title: Two‐factor degeneracies and a stabilization of Parafac publication-title: Chemom. Intell. Lab. Syst. – year: 2009 article-title: Nonnegative approximations of nonnegative tensors publication-title: J. Chemom. – volume: 38 start-page: 149 year: 1997 end-page: 171 article-title: Parafac, tutorial and applications publication-title: Chemom. Intel. Lab. Syst. – start-page: 115 year: 1989 end-page: 121 – start-page: 25 year: 2008 end-page: 29 – volume: 87 start-page: 337 issue: 2 year: 2007 end-page: 351 article-title: PARAFAC‐based unified tensor modeling for wireless communication systems with application to blind multiuser equalization publication-title: Signal Processing – volume: 8 start-page: 155 year: 1994 end-page: 168 article-title: Slowly converging Parafac sequences: Swamps and two‐factor degeneracies publication-title: J. Chemom. – volume: 315 year: 1997 – volume: 48 start-page: 810 issue: 3 year: 2000 end-page: 823 article-title: Blind PARAFAC receivers for DS‐CDMA systems publication-title: Trans. Sig. Proc. – volume: 71 start-page: 483 issue: 3 year: 2006 end-page: 501 article-title: Degeneracy in Candecomp/Parafac explained for p× p× 2 arrays of rank p+1 or higher publication-title: Psychometrika – year: 1983 – volume: 8 start-page: 72 issue: 1 year: 1982 end-page: 83 article-title: An improved algorithm for computing the singular value decomposition publication-title: ACM Trans. Math. Soft. – volume: 213 start-page: 195 year: 1999 end-page: 224 article-title: Canonical forms of two by two matrices publication-title: Jour. of Algebra – year: 2009 article-title: Generic and typical ranks of multi‐way arrays publication-title: Linear Algebra Appl. – volume: 85 start-page: 98 year: 1980 end-page: 108 – volume: 7 start-page: 39 issue: 1 year: 1927 end-page: 79 article-title: Multiple invariants and generalized rank of a p‐way matrix or tensor publication-title: J. Math. Phys. – volume: 42 start-page: 105 issue: 1–1 year: 1998 end-page: 113 article-title: Improving the speed of multiway algorithms. part ii: Compression publication-title: Chemom. Intell. Lab. Syst. – year: 1992 – volume: 107 start-page: 585 issue: 3 year: 1992 end-page: 602 article-title: La methode d'Horace eclatee: application a l'interpolation en degre quatre publication-title: Invent. Math. – volume: 73 start-page: 436 issue: 2 year: 2006 end-page: 454 article-title: On the concept of ‐sectant order of a variety publication-title: J. London Math. Soc. – start-page: 1 year: 2002 end-page: 24 – volume: 18 start-page: 12 year: 2004 end-page: 16 article-title: Partial uniqueness in CANDECOMP/PARAFAC publication-title: Jour. Chemometrics – volume: 69 start-page: 95 year: 1985 end-page: 120 article-title: Typical tensorial rank publication-title: Linear Algebra Appl. – volume: 18 start-page: 95 year: 1977 end-page: 138 article-title: Three‐way arrays: Rank and uniqueness of trilinear decompositions publication-title: Linear Algebra Appl. – volume: 87 start-page: 322 issue: 2 year: 2007 end-page: 336 article-title: Tensor‐based techniques for the blind separation of DS‐CDMA signals publication-title: Signal Processing – year: 2006 – volume: 50 start-page: 1700 year: 2006 end-page: 1734 article-title: A comparison of algorithms for fitting the Parafac model publication-title: Comp. Stat. Data Anal. – volume: 51 start-page: 107 year: 1916 end-page: 117 article-title: Sulla rappresentazione delle forme quaternarie mediante somme di potenze di forme lineari publication-title: Atti della R. Acc. delle Scienze di Torino – start-page: 39 year: 1994 end-page: 72 article-title: Parafac: Parallel factor analysis publication-title: Computational Statistics and Data Analysis – volume: 58 start-page: 434 year: 1904 end-page: 440 article-title: Kanonische formen publication-title: Math. Annal. – volume: 78 issue: 8 year: 1990 article-title: Tracking of a few extreme singular values and vectors in signal processing publication-title: Proceedings of the IEEE – volume: 30 start-page: 988 issue: 3 year: 2008 end-page: 1007 article-title: Low‐rank approximation of generic p× q× 2 arrays and diverging components in the Candecomp/Parafac model publication-title: SIAM J. Matrix Anal. Appl. – volume: 79 start-page: 45 year: 1986 end-page: 51 article-title: Border rank of m× n×(mn‐q) tensors publication-title: Linear Algebra Appl. – volume: 31 start-page: 279 year: 1966 end-page: 311 article-title: Some mathematical notes for three‐mode factor analysis publication-title: Psychometrika – ident: e_1_2_1_45_2 doi: 10.1007/BF01444970 – ident: e_1_2_1_50_2 – ident: e_1_2_1_42_2 doi: 10.1002/cem.1244 – ident: e_1_2_1_28_2 doi: 10.1016/j.sigpro.2007.07.024 – volume: 4 start-page: 193 year: 1845 ident: e_1_2_1_41_2 article-title: On the theory of linear transformation publication-title: Cambridge Math. J. – volume-title: Multi‐Way Analysis year: 2004 ident: e_1_2_1_10_2 – ident: e_1_2_1_24_2 doi: 10.1007/s11336-008-9056-1 – ident: e_1_2_1_8_2 doi: 10.1016/0024-3795(83)80041-X – ident: e_1_2_1_49_2 doi: 10.1016/0024-3795(85)90070-9 – ident: e_1_2_1_32_2 doi: 10.1007/BF02310791 – ident: e_1_2_1_47_2 – ident: e_1_2_1_56_2 doi: 10.1016/j.laa.2006.08.010 – ident: e_1_2_1_39_2 doi: 10.1016/0165-1684(96)00079-5 – volume-title: Matrix Computations year: 1989 ident: e_1_2_1_69_2 – ident: e_1_2_1_7_2 doi: 10.1016/0024-3795(77)90069-6 – ident: e_1_2_1_61_2 doi: 10.1137/S0895479898346995 – ident: e_1_2_1_25_2 doi: 10.1137/050644677 – volume: 51 start-page: 107 year: 1916 ident: e_1_2_1_44_2 article-title: Sulla rappresentazione delle forme quaternarie mediante somme di potenze di forme lineari publication-title: Atti della R. Acc. delle Scienze di Torino – start-page: 115 volume-title: Multiway Data Analysis year: 1989 ident: e_1_2_1_13_2 – ident: e_1_2_1_71_2 doi: 10.1109/5.58320 – ident: e_1_2_1_66_2 doi: 10.1016/j.csda.2004.11.013 – ident: e_1_2_1_3_2 doi: 10.1109/78.824675 – ident: e_1_2_1_19_2 doi: 10.1007/BF02294495 – ident: e_1_2_1_12_2 doi: 10.1016/j.sigpro.2005.10.007 – ident: e_1_2_1_30_2 doi: 10.1016/S0169-7439(98)00011-2 – ident: e_1_2_1_53_2 doi: 10.1016/j.laa.2006.02.002 – ident: e_1_2_1_64_2 doi: 10.1007/BF02289464 – ident: e_1_2_1_18_2 – ident: e_1_2_1_36_2 doi: 10.1016/j.jpaa.2007.09.014 – ident: e_1_2_1_48_2 doi: 10.1016/j.laa.2009.01.014/ – ident: e_1_2_1_55_2 doi: 10.1112/S0024610706022630 – ident: e_1_2_1_23_2 doi: 10.1137/06066518X – ident: e_1_2_1_16_2 doi: 10.1016/S0169-7439(97)00033-6 – ident: e_1_2_1_59_2 doi: 10.1137/040608830 – ident: e_1_2_1_67_2 – volume-title: Three Mode Principal Component Analysis year: 1983 ident: e_1_2_1_35_2 – ident: e_1_2_1_54_2 doi: 10.1016/S0024-3795(99)00057-9 – ident: e_1_2_1_38_2 doi: 10.1007/978-1-4757-2181-2 – ident: e_1_2_1_46_2 doi: 10.1090/S0002-9947-06-03893-1 – ident: e_1_2_1_51_2 doi: 10.1002/cem.839 – ident: e_1_2_1_22_2 doi: 10.1137/060661569 – ident: e_1_2_1_65_2 doi: 10.2307/1390831 – volume-title: Linear Statistical Inference and its Applications year: 1965 ident: e_1_2_1_62_2 – ident: e_1_2_1_70_2 doi: 10.1145/355984.355990 – ident: e_1_2_1_14_2 doi: 10.1137/06065577 – ident: e_1_2_1_20_2 doi: 10.1007/s11336-004-1266-6 – ident: e_1_2_1_29_2 doi: 10.1137/S0895479896305696 – ident: e_1_2_1_17_2 doi: 10.1002/1099-128X(200005/06)14:3<285::AID-CEM584>3.0.CO;2-1 – volume: 16 start-page: 1 year: 1970 ident: e_1_2_1_33_2 article-title: Foundations of the Parafac procedure: Models and conditions for an explanatory multimodal factor analysis publication-title: UCLA Working Papers in Phonetics – ident: e_1_2_1_4_2 doi: 10.1016/j.sigpro.2005.12.015 – ident: e_1_2_1_21_2 doi: 10.1007/s11336-007-9022-3 – volume-title: Generalized Inverse of Matrices and Its Applications year: 1971 ident: e_1_2_1_63_2 – ident: e_1_2_1_5_2 doi: 10.1016/j.sigpro.2005.12.014 – ident: e_1_2_1_9_2 doi: 10.1007/978-3-662-03338-8 – ident: e_1_2_1_27_2 doi: 10.1016/0024-3795(86)90291-0 – ident: e_1_2_1_60_2 – start-page: 1 volume-title: Mathematics in Signal Processing V year: 2002 ident: e_1_2_1_6_2 – ident: e_1_2_1_15_2 doi: 10.1002/cem.1180080207 – ident: e_1_2_1_2_2 doi: 10.1016/B978-0-12-514250-2.50012-3 – ident: e_1_2_1_43_2 – ident: e_1_2_1_52_2 doi: 10.1007/BF02296342 – ident: e_1_2_1_37_2 doi: 10.1007/BF01231903 – start-page: 98 volume-title: Proceedings of the 7th Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science year: 1980 ident: e_1_2_1_26_2 – volume: 7 start-page: 39 issue: 1 year: 1927 ident: e_1_2_1_31_2 article-title: Multiple invariants and generalized rank of a p‐way matrix or tensor publication-title: J. Math. Phys. – ident: e_1_2_1_57_2 – ident: e_1_2_1_11_2 doi: 10.1016/S0169-7439(97)00032-4 – ident: e_1_2_1_58_2 doi: 10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N – ident: e_1_2_1_34_2 doi: 10.1016/0167-9473(94)90132-5 – ident: e_1_2_1_68_2 – ident: e_1_2_1_40_2 doi: 10.1006/jabr.1995.6650 |
| SSID | ssj0009934 |
| Score | 2.4524066 |
| Snippet | This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple ‘bottlenecks’,... This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple 'bottlenecks',... This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple ''bottlenecks'',... |
| SourceID | hal proquest pascalfrancis crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 393 |
| SubjectTerms | Algorithms canonical decomposition Chemical Sciences Cheminformatics Chemistry Chemometrics Classification computational complexity Computer Science Computer simulation degeneracy Engineering Sciences Environmental Sciences Exact sciences and technology General and physical chemistry General. Nomenclature, chemical documentation, computer chemistry Least squares method Mathematical analysis Numerical analysis PARAFAC Signal and Image Processing Swamps tensor rank Tensors Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry three-way array |
| Title | Tensor decompositions, alternating least squares and other tales |
| URI | https://api.istex.fr/ark:/67375/WNG-V2W2DZ9C-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcem.1236 https://www.proquest.com/docview/221220041 https://www.proquest.com/docview/901688214 https://hal.science/hal-00410057 |
| Volume | 23 |
| WOSCitedRecordID | wos000269365200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-128X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009934 issn: 0886-9383 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLhJc2vJS09LKIAQXQhPHed1abbv0sKwQ9CUulu04BdFm20236s9nxnmUlUBC4hTJGSvx2DOesWe-AXgjEh1plQU-T3TqC8WFnxme-6gRreBhURYuyvdknE4m2dlZ_rmNqqRcmAYfoj9wI8lw-poEXOl65x401NjLDwQdsgQDyqlCx2uw_2V0PL6H3M3dnTKKUeLn6Ih10LMB3-n6LmxGS98pFHJA3L2jEElVI5fKprzFgv35uxXrtqHR6v8MYA1WWuOT7TWr5Qk8sNVTeDTsar49g90j9GqnM1ZYCjXv4rneM3enTueG1Tm7oGo_rL6eU-YSU1XBXBIXQyve1s_heHRwNDz02xoLvolxb_ZTXuSRNlxEUZxlYVKKQKtUmDyL44KqJcQmCa1CxWBCG5WZEFrEJgxKbS3PMxu9gOVqWtl1YGEa2cSUKNWlRbNAKRR9rYrSaGzROvDgXcdsaVoAcqqDcSEb6GQukSOSOOLBq57yqgHd-APNa5yv_jWhZB_ujSW1EYYYJdnehh68ddPZk6nZT4pkS2N5OvkoT_gp3_-WD-VXD7YX5rvv4ADu0Sz2YLNbALKV8lpy3PdJy-B3WP8WZ4zuXFRlp_NaormVoBMTCvwVtxj-OiA5PPhEz41_JdyEx83VFsUOv4Tlm9ncbsFDc3vzo55tt9LwC19iC1A |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB61u0jlhRsRCsUgBC-EJo5ziReqbZdFpCsE20N9sWzHaRElC5tuxc9nJldZCSQkniI5thLPeA7bM98APBeRDrRKPJdHOnaF4sJNDE9d1IhWcD8v8jrK9zCLp9Pk-Dj9uAZvulyYBh-iP3Ajyaj1NQk4HUhvX6GGGvvtNWGHrMNQREGcDGC4-2l8kF1h7qb1pTLKUeSmuBPrsGc9vt2NXbFG62cUCzkk8v6kGElVIZmKpr7FigP6uxtb26Hxzf-awS240bqfbKdZL7dhzZZ3YGPUVX27C29nuK-dL1huKdi8i-h6xepbdTo5LE_ZOdX7YdWPJeUuMVXmrE7jYujH2-oeHIz3ZqOJ21ZZcE2I1tmNeZ4G2nARBGGS-FEhPK1iYdIkDHOqlxCayLcKVYPxbVAkQmgRGt8rtLU8TWxwHwblvLQPgPlxYCNToFwXFh0DpVD4tcoLo7FFa8-Blx21pWkhyKkSxrlswJO5RIpIoogDT_ue3xvYjT_0eYYM618TTvZkJ5PURihilGZ76TvwouZn300tvlIsWxzKo-k7eciP-O5JOpKfHdhaYXg_oIa4R8fYgc1uBchWzivJ0fKTnsHvsP4tcoxuXVRp58tKosMV4TbGF_gr9Wr464TkaG-fng__teMT2JjM9jOZvZ9-2ITrzUUXRRI_gsHFYmkfwzVzefGlWmy1ovELWaMPQA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB61uwh44UaEQjEIwQuhieNc4oVqt0sRy6qCXuLFsh0HECVbNt2Kn8-Mc5SVQELiKZJjK_GM57A98w3AU5HoSKss8HmiU18oLvzM8NxHjWgFD4uycFG-h9N0NsuOj_O9NXjV5cI0-BD9gRtJhtPXJOD2tCi3LlBDjf3-krBD1mEo4jwWAxiOP0wOpheYu7m7VEY5Svwcd2Id9mzAt7qxK9Zo_QvFQg6JvD8pRlLVSKayqW-x4oD-7sY6OzS5_l8zuAHXWveTbTfr5Sas2eoWXBl1Vd9uw-t93NfOF6ywFGzeRXS9YO5WnU4Oq8_shOr9sPrHknKXmKoK5tK4GPrxtr4DB5Od_dGu31ZZ8E2M1tlPeZFH2nARRXGWhUkpAq1SYfIsjguqlxCbJLQKVYMJbVRmQmgRmzAotbU8z2x0FwbVvLL3gIVpZBNTolyXFh0DpVD4tSpKo7FF68CD5x21pWkhyKkSxolswJO5RIpIoogHj_uepw3sxh_6PEGG9a8JJ3t3eyqpjVDEKM32PPTgmeNn300tvlEsWxrLo9kbeciP-PhTPpIfPdhcYXg_wEHco2PswUa3AmQr57XkaPlJz-B3WP8WOUa3Lqqy82Ut0eFKcBsTCvwVtxr-OiE52nlPz_v_2vERXN4bT-T07ezdBlxt7rkokPgBDM4WS_sQLpnzs6_1YrOVjF_POA67 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor+decompositions%2C+alternating+least+squares+and+other+tales&rft.jtitle=Journal+of+chemometrics&rft.au=Comon%2C+P.&rft.au=Luciani%2C+X.&rft.au=de+Almeida%2C+A.+L.+F.&rft.date=2009-07-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0886-9383&rft.eissn=1099-128X&rft.volume=23&rft.issue=7%E2%80%908&rft.spage=393&rft.epage=405&rft_id=info:doi/10.1002%2Fcem.1236&rft.externalDBID=10.1002%252Fcem.1236&rft.externalDocID=CEM1236 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-9383&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-9383&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-9383&client=summon |