Predicting turning point, duration and attack rate of COVID-19 outbreaks in major Western countries
•A segmented Poisson model incorporating the power law and the exponential law was proposed to study the COVID-19 outbreaks.•Turning point, final size, duration and the attack rate were estimated.•The data of daily new cases of the six Western countries in the Group of Seven was analyzed. In this pa...
Saved in:
| Published in: | Chaos, solitons and fractals Vol. 135; p. 109829 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Elsevier Ltd
01.06.2020
|
| Subjects: | |
| ISSN: | 0960-0779, 1873-2887, 0960-0779 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A segmented Poisson model incorporating the power law and the exponential law was proposed to study the COVID-19 outbreaks.•Turning point, final size, duration and the attack rate were estimated.•The data of daily new cases of the six Western countries in the Group of Seven was analyzed.
In this paper, we employed a segmented Poisson model to analyze the available daily new cases data of the COVID-19 outbreaks in the six Western countries of the Group of Seven, namely, Canada, France, Germany, Italy, UK and USA. We incorporated the governments’ interventions (stay-at-home advises/orders, lockdowns, quarantines and social distancing) against COVID-19 into consideration. Our analysis allowed us to make a statistical prediction on the turning point (the time that the daily new cases peak), the duration (the period that the outbreak lasts) and the attack rate (the percentage of the total population that will be infected over the course of the outbreak) for these countries. |
|---|---|
| AbstractList | •
A segmented Poisson model incorporating the power law and the exponential law was proposed to study the COVID-19 outbreaks.
•
Turning point, final size, duration and the attack rate were estimated.
•
The data of daily new cases of the six Western countries in the Group of Seven was analyzed.
In this paper, we employed a segmented Poisson model to analyze the available daily new cases data of the COVID-19 outbreaks in the six Western countries of the Group of Seven, namely, Canada, France, Germany, Italy, UK and USA. We incorporated the governments’ interventions (stay-at-home advises/orders, lockdowns, quarantines and social distancing) against COVID-19 into consideration. Our analysis allowed us to make a statistical prediction on the turning point (the time that the daily new cases peak), the duration (the period that the outbreak lasts) and the attack rate (the percentage of the total population that will be infected over the course of the outbreak) for these countries. In this paper, we employed a segmented Poisson model to analyze the available daily new cases data of the COVID-19 outbreaks in the six Western countries of the Group of Seven, namely, Canada, France, Germany, Italy, UK and USA. We incorporated the governments' interventions (stay-at-home advises/orders, lockdowns, quarantines and social distancing) against COVID-19 into consideration. Our analysis allowed us to make a statistical prediction on the turning point (the time that the daily new cases peak), the duration (the period that the outbreak lasts) and the attack rate (the percentage of the total population that will be infected over the course of the outbreak) for these countries.In this paper, we employed a segmented Poisson model to analyze the available daily new cases data of the COVID-19 outbreaks in the six Western countries of the Group of Seven, namely, Canada, France, Germany, Italy, UK and USA. We incorporated the governments' interventions (stay-at-home advises/orders, lockdowns, quarantines and social distancing) against COVID-19 into consideration. Our analysis allowed us to make a statistical prediction on the turning point (the time that the daily new cases peak), the duration (the period that the outbreak lasts) and the attack rate (the percentage of the total population that will be infected over the course of the outbreak) for these countries. In this paper, we employed a segmented Poisson model to analyze the available daily new cases data of the COVID-19 outbreaks in the six Western countries of the Group of Seven, namely, Canada, France, Germany, Italy, UK and USA. We incorporated the governments' interventions (stay-at-home advises/orders, lockdowns, quarantines and social distancing) against COVID-19 into consideration. Our analysis allowed us to make a statistical prediction on the turning point (the time that the daily new cases peak), the duration (the period that the outbreak lasts) and the attack rate (the percentage of the total population that will be infected over the course of the outbreak) for these countries. •A segmented Poisson model incorporating the power law and the exponential law was proposed to study the COVID-19 outbreaks.•Turning point, final size, duration and the attack rate were estimated.•The data of daily new cases of the six Western countries in the Group of Seven was analyzed. In this paper, we employed a segmented Poisson model to analyze the available daily new cases data of the COVID-19 outbreaks in the six Western countries of the Group of Seven, namely, Canada, France, Germany, Italy, UK and USA. We incorporated the governments’ interventions (stay-at-home advises/orders, lockdowns, quarantines and social distancing) against COVID-19 into consideration. Our analysis allowed us to make a statistical prediction on the turning point (the time that the daily new cases peak), the duration (the period that the outbreak lasts) and the attack rate (the percentage of the total population that will be infected over the course of the outbreak) for these countries. |
| ArticleNumber | 109829 |
| Author | Ma, Renjun Zhang, Xiaolei Wang, Lin |
| Author_xml | – sequence: 1 givenname: Xiaolei surname: Zhang fullname: Zhang, Xiaolei organization: Pan-Asia Business School, Yunnan Normal University, Kunming, PR China – sequence: 2 givenname: Renjun orcidid: 0000-0001-5243-5426 surname: Ma fullname: Ma, Renjun organization: Department of Mathematics and Statistics, University of New Brunswick, Fredericton, E3B 5A3, Canada – sequence: 3 givenname: Lin orcidid: 0000-0002-7215-8750 surname: Wang fullname: Wang, Lin email: lwang2@unb.ca organization: Department of Mathematics and Statistics, University of New Brunswick, Fredericton, E3B 5A3, Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32313405$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UUtr3DAQFiWl2aT9BYWiYw_1Vg_bsg4tlO0rEEgPfRzFWB4n2nilrSQH-u-rzSYhySGngZnvwXzfETnwwSMhrzlbcsbb9-ulvYCQloKJ3UZ3Qj8jC94pWYmuUwdkwXTLKqaUPiRHKa0ZY5y14gU5lEJyWbNmQeyPiIOz2flzmufod3MbnM_v6DBHyC54Cn6gkDPYS1o2SMNIV2e_Tz5XXNMw5z4iXCbqPN3AOkT6B1PG6KkNs8_RYXpJno8wJXx1M4_Jr69ffq6-V6dn305Wn04r24gmV0PXt-OgB2w63kspW95pqLEWbc9l14AcBGjBOdZSQ4_Ygq6tRVQIY62Ay2Pyca-7nfsNDhaLPUxmG90G4j8TwJmHF-8uzHm4Moq3qml1EXh7IxDD37m8YTYuWZwm8BjmZITUktVcK1Wgb-573ZncJlsAeg-wMaQUcTTW5es8i7WbDGdm16JZm-sWza5Fs2-xcOUj7q3806wPexaWjK8cRpOsQ29LvxFtNkNwT_L_A1sluK4 |
| CitedBy_id | crossref_primary_10_1038_s41598_021_94661_z crossref_primary_10_3389_fmed_2020_556366 crossref_primary_10_1007_s40745_020_00314_9 crossref_primary_10_1021_acs_jchemed_2c00051 crossref_primary_10_1007_s00148_020_00799_x crossref_primary_10_1016_j_chaos_2020_110023 crossref_primary_10_3390_ijerph18147592 crossref_primary_10_3390_su13063099 crossref_primary_10_3390_su132413599 crossref_primary_10_1007_s11356_022_24912_7 crossref_primary_10_1007_s10389_021_01567_1 crossref_primary_10_1007_s11831_021_09634_2 crossref_primary_10_1007_s11071_021_06920_3 crossref_primary_10_1016_j_chaos_2020_110182 crossref_primary_10_1088_1742_6596_1882_1_012033 crossref_primary_10_3390_math10050824 crossref_primary_10_1016_j_chaos_2020_109948 crossref_primary_10_46481_jnsps_2022_843 crossref_primary_10_1186_s12889_024_20968_x crossref_primary_10_2196_47099 crossref_primary_10_1016_j_chaos_2020_110027 crossref_primary_10_1002_cjs_11723 crossref_primary_10_3390_sym14102149 crossref_primary_10_1111_risa_14014 crossref_primary_10_1051_shsconf_202111401021 crossref_primary_10_12677_AAM_2023_1210412 crossref_primary_10_3390_ai3020025 crossref_primary_10_1371_journal_pone_0243189 crossref_primary_10_1007_s11192_020_03706_z crossref_primary_10_1016_j_eswa_2024_124977 crossref_primary_10_1016_j_neucom_2021_06_024 crossref_primary_10_3390_ijerph18116066 crossref_primary_10_1038_s41598_020_79039_x crossref_primary_10_1007_s11356_020_11188_y crossref_primary_10_1016_j_sciaf_2022_e01408 crossref_primary_10_1111_rsp3_12372 crossref_primary_10_1080_02664763_2021_1976119 crossref_primary_10_1186_s12889_021_10682_3 crossref_primary_10_1016_j_isatra_2021_02_016 crossref_primary_10_1007_s42979_022_01632_w crossref_primary_10_1007_s00779_020_01494_0 crossref_primary_10_1371_journal_pone_0241951 crossref_primary_10_3389_fphy_2020_591876 crossref_primary_10_3390_asi3040044 crossref_primary_10_1016_j_chaos_2020_110616 crossref_primary_10_1007_s11042_022_13492_w crossref_primary_10_1016_j_chaos_2020_110240 crossref_primary_10_1038_s41598_021_99368_9 crossref_primary_10_1016_j_chaos_2021_111451 crossref_primary_10_1016_j_chaos_2020_110241 crossref_primary_10_1016_j_ssci_2023_106292 crossref_primary_10_1002_hsr2_484 crossref_primary_10_1007_s00477_022_02255_6 crossref_primary_10_1371_journal_pcbi_1008837 crossref_primary_10_3390_pharmacy10060167 crossref_primary_10_1016_j_ymeth_2021_08_005 crossref_primary_10_1016_j_matpr_2021_07_266 crossref_primary_10_1016_j_chaos_2020_109969 crossref_primary_10_1109_MCI_2020_3019873 crossref_primary_10_1016_j_ijid_2022_03_002 crossref_primary_10_1136_bmjgh_2020_002647 crossref_primary_10_1088_1742_5468_acf8bb crossref_primary_10_1155_2022_4168619 crossref_primary_10_1007_s00354_021_00135_1 crossref_primary_10_1088_1402_4896_ac7fc1 crossref_primary_10_1038_s41598_021_99088_0 crossref_primary_10_1016_j_chaos_2021_110697 crossref_primary_10_1016_j_compbiomed_2022_105915 crossref_primary_10_3390_ijerph182312627 crossref_primary_10_3389_feduc_2025_1559007 crossref_primary_10_3390_math9182180 crossref_primary_10_1007_s41403_020_00165_z crossref_primary_10_3390_educsci12090625 crossref_primary_10_1108_IJHG_03_2022_0032 crossref_primary_10_1016_j_chaos_2020_109853 crossref_primary_10_1038_s41598_022_12591_w crossref_primary_10_1140_epjp_s13360_020_00663_7 crossref_primary_10_1007_s40808_021_01136_1 crossref_primary_10_3389_fphy_2020_564061 crossref_primary_10_1080_27658449_2021_2020399 crossref_primary_10_1186_s13690_022_00936_w crossref_primary_10_1155_2021_2644506 crossref_primary_10_3390_biology11020190 crossref_primary_10_1109_TEM_2021_3076603 |
| Cites_doi | 10.1016/j.chaos.2020.109761 10.2139/ssrn.3562044 10.1126/science.abb6105 10.1016/S0140-6736(20)30260-9 10.3390/jcm9020523 10.1038/s41421-020-0148-0 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd 2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: 2020 Elsevier Ltd. All rights reserved. – notice: 2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd |
| DBID | AAYXX CITATION NPM 7X8 5PM |
| DOI | 10.1016/j.chaos.2020.109829 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1873-2887 0960-0779 |
| EndPage | 109829 |
| ExternalDocumentID | PMC7167569 32313405 10_1016_j_chaos_2020_109829 S0960077920302290 |
| Genre | Journal Article |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLZ HMV HVGLF HZ~ IHE J1W KOM LG9 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K WUQ XPP ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV NPM SSH 7X8 5PM |
| ID | FETCH-LOGICAL-c525t-d8b6fd9de581b3336189a4e426b1385a3d2a9211e439abee6a94ccee7eaf47a13 |
| ISICitedReferencesCount | 107 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538179300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-0779 |
| IngestDate | Tue Sep 30 16:38:45 EDT 2025 Wed Oct 01 09:30:16 EDT 2025 Mon Jul 21 05:58:26 EDT 2025 Sat Nov 29 07:07:53 EST 2025 Tue Nov 18 21:32:38 EST 2025 Fri Feb 23 02:47:29 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | COVID-19 pandemic Attack rate Poisson regression Turning point |
| Language | English |
| License | 2020 Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c525t-d8b6fd9de581b3336189a4e426b1385a3d2a9211e439abee6a94ccee7eaf47a13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-7215-8750 0000-0001-5243-5426 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7167569 |
| PMID | 32313405 |
| PQID | 2393041977 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7167569 proquest_miscellaneous_2393041977 pubmed_primary_32313405 crossref_citationtrail_10_1016_j_chaos_2020_109829 crossref_primary_10_1016_j_chaos_2020_109829 elsevier_sciencedirect_doi_10_1016_j_chaos_2020_109829 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-01 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Chaos, solitons and fractals |
| PublicationTitleAlternate | Chaos Solitons Fractals |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Tang, Tang, Bragazzi (bib0007) 2020; 50 He D., Gao D., Zhuang Z., Cao P., Lou Y., Yang L. The attack rate of the COVID-19 in a year (march 27). 2020. Available at SSRN Li, Feng (bib0006) 2020 Tian, Liu, Li (bib0008) 2020 Wang, Wang, Dong (bib0009) 2020; 6 Wu, Leung, Leung (bib0010) 2020; 395 Jung, Akhmetzhanov, Hayashi (bib0005) 2020; 9 WHO director-general’s opening remarks. . Fanelli, Piazza (bib0003) 2020; 134 doi Tian (10.1016/j.chaos.2020.109829_bib0008) 2020 Jung (10.1016/j.chaos.2020.109829_bib0005) 2020; 9 Wu (10.1016/j.chaos.2020.109829_bib0010) 2020; 395 10.1016/j.chaos.2020.109829_bib0004 Tang (10.1016/j.chaos.2020.109829_bib0007) 2020; 50 10.1016/j.chaos.2020.109829_bib0011 10.1016/j.chaos.2020.109829_bib0001 10.1016/j.chaos.2020.109829_bib0012 10.1016/j.chaos.2020.109829_bib0002 Fanelli (10.1016/j.chaos.2020.109829_bib0003) 2020; 134 Wang (10.1016/j.chaos.2020.109829_bib0009) 2020; 6 Li (10.1016/j.chaos.2020.109829_sbref0003) 2020 |
| References_xml | – reference: He D., Gao D., Zhuang Z., Cao P., Lou Y., Yang L. The attack rate of the COVID-19 in a year (march 27). 2020. Available at SSRN: – volume: 395 start-page: 689 year: 2020 end-page: 697 ident: bib0010 article-title: Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study publication-title: Lancet – reference: WHO director-general’s opening remarks. – reference: . doi: – year: 2020 ident: bib0008 article-title: An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China publication-title: Science – volume: 6 start-page: 10 year: 2020 ident: bib0009 article-title: Phase-adjusted estimation of the number of Coronavirus Disease 2019 cases in Wuhan, China publication-title: Cell Discov – volume: 50 start-page: 1 year: 2020 end-page: 16 ident: bib0007 article-title: Analysis of COVID-19 epidemic traced data and stochastic discrete transmission dynamic model (in Chinese) publication-title: Sci Sin Math – volume: 134 start-page: 109761 year: 2020 ident: bib0003 article-title: Analysis and forecast of COVID-19 spreading in China, Italy and France publication-title: Chaos, Solitons & Fractals – year: 2020 ident: bib0006 article-title: Trend and forecasting of the COVID-19 outbreak in China publication-title: J Infect – reference: . – volume: 9 start-page: 523 year: 2020 ident: bib0005 article-title: Real-time estimation of the risk of death from novel coronavirus (COVID-19) infection: inference using exported cases publication-title: J Clin Med – volume: 134 start-page: 109761 year: 2020 ident: 10.1016/j.chaos.2020.109829_bib0003 article-title: Analysis and forecast of COVID-19 spreading in China, Italy and France publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2020.109761 – volume: 50 start-page: 1 year: 2020 ident: 10.1016/j.chaos.2020.109829_bib0007 article-title: Analysis of COVID-19 epidemic traced data and stochastic discrete transmission dynamic model (in Chinese) publication-title: Sci Sin Math – ident: 10.1016/j.chaos.2020.109829_bib0004 doi: 10.2139/ssrn.3562044 – ident: 10.1016/j.chaos.2020.109829_bib0002 – year: 2020 ident: 10.1016/j.chaos.2020.109829_sbref0003 article-title: Trend and forecasting of the COVID-19 outbreak in China publication-title: J Infect – year: 2020 ident: 10.1016/j.chaos.2020.109829_bib0008 article-title: An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China publication-title: Science doi: 10.1126/science.abb6105 – ident: 10.1016/j.chaos.2020.109829_bib0001 – ident: 10.1016/j.chaos.2020.109829_bib0011 – ident: 10.1016/j.chaos.2020.109829_bib0012 – volume: 395 start-page: 689 issue: 10225 year: 2020 ident: 10.1016/j.chaos.2020.109829_bib0010 article-title: Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study publication-title: Lancet doi: 10.1016/S0140-6736(20)30260-9 – volume: 9 start-page: 523 issue: 2 year: 2020 ident: 10.1016/j.chaos.2020.109829_bib0005 article-title: Real-time estimation of the risk of death from novel coronavirus (COVID-19) infection: inference using exported cases publication-title: J Clin Med doi: 10.3390/jcm9020523 – volume: 6 start-page: 10 year: 2020 ident: 10.1016/j.chaos.2020.109829_bib0009 article-title: Phase-adjusted estimation of the number of Coronavirus Disease 2019 cases in Wuhan, China publication-title: Cell Discov doi: 10.1038/s41421-020-0148-0 |
| SSID | ssj0001062 |
| Score | 2.6265435 |
| Snippet | •A segmented Poisson model incorporating the power law and the exponential law was proposed to study the COVID-19 outbreaks.•Turning point, final size,... In this paper, we employed a segmented Poisson model to analyze the available daily new cases data of the COVID-19 outbreaks in the six Western countries of... • A segmented Poisson model incorporating the power law and the exponential law was proposed to study the COVID-19 outbreaks. • Turning point, final size,... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 109829 |
| SubjectTerms | Attack rate COVID-19 pandemic Poisson regression Turning point |
| Title | Predicting turning point, duration and attack rate of COVID-19 outbreaks in major Western countries |
| URI | https://dx.doi.org/10.1016/j.chaos.2020.109829 https://www.ncbi.nlm.nih.gov/pubmed/32313405 https://www.proquest.com/docview/2393041977 https://pubmed.ncbi.nlm.nih.gov/PMC7167569 |
| Volume | 135 |
| WOSCitedRecordID | wos000538179300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2021 customDbUrl: eissn: 1873-2887 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001062 issn: 0960-0779 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lKULlgGh5hUe1SBxAqaPY69ceKyiiCEoPheZm1uu16jS1o8Su-vOZfaYlagUHLlZkr9eOv8_jmdnZbxF6W4RBwaIg9kjMuBdyHnp5IqjHxyQUEEEDsQu12ERydJROJvS41_tl58JczpK6Tq-u6Py_Qg37AGw5dfYf4Hadwg74DaDDFmCH7V8Bf7yQYy96_YdOpz3mTaXlBYrOAK4kWtuW8fOh1IpQRRnffx5-9Hw6bLoW4mR2riplL9i0WQxPtZ7CUK0ssbB1h1bg4IzpWr2lrKWTpTey91JOv2Iz57K7zPSkYs1MVKtUuEa5nnaOp6em6VcjC26yEsF4VT1l04sx7Ev0QjHO0pLomq30xzTV2Y41M64zCtMRl39gJPsfrbeGxz6_UCAScFJJOI5W3zRXaWgPbaDNIIlo2keb-4cHky_uaw0hsRppsvdrlalUDeDa9bfQfdvjbY7MeqDyZ73tNQfm5BF6aCIPvK8Zs416ot5BD7452d7lDto2ln6J3xk58vePEV8RChtCYUWoPWzphAFwrOmEJZ1wU2JLJ-zohKsaKzphQyfs6PQE_fh0cPLhs2eW5vB4FEStV6R5XBa0EBGEPYSQ2E8pCwW4e7lP0oiRImA08H0B_i7LhYgZBTsgRCJYGSbMJ09Rv25q8RxhTkswFyyIcuaHIg9TFlDOcppzRsZ5Hg5QYJ9zxo1uvVw-ZZbZAsVppnDKJE6ZxmmA9txJcy3bcnfz2AKYGc9Te5QZMPLuE99YuDOwy3KwjdWi6aARAUMX-hBeDdAzDb-7E0uhAUpuEMM1kJrvN4_U1ZnSfk98iPBj-uLWPl-irdX7-Ar120UnXqN7_LKtlotdtJFM0l3zDvwGF6LGZQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+turning+point%2C+duration+and+attack+rate+of+COVID-19+outbreaks+in+major+Western+countries&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Zhang%2C+Xiaolei&rft.au=Ma%2C+Renjun&rft.au=Wang%2C+Lin&rft.date=2020-06-01&rft.issn=0960-0779&rft.volume=135&rft.spage=109829&rft_id=info:doi/10.1016%2Fj.chaos.2020.109829&rft_id=info%3Apmid%2F32313405&rft.externalDocID=32313405 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon |