Predicting turning point, duration and attack rate of COVID-19 outbreaks in major Western countries

•A segmented Poisson model incorporating the power law and the exponential law was proposed to study the COVID-19 outbreaks.•Turning point, final size, duration and the attack rate were estimated.•The data of daily new cases of the six Western countries in the Group of Seven was analyzed. In this pa...

Full description

Saved in:
Bibliographic Details
Published in:Chaos, solitons and fractals Vol. 135; p. 109829
Main Authors: Zhang, Xiaolei, Ma, Renjun, Wang, Lin
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01.06.2020
Subjects:
ISSN:0960-0779, 1873-2887, 0960-0779
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A segmented Poisson model incorporating the power law and the exponential law was proposed to study the COVID-19 outbreaks.•Turning point, final size, duration and the attack rate were estimated.•The data of daily new cases of the six Western countries in the Group of Seven was analyzed. In this paper, we employed a segmented Poisson model to analyze the available daily new cases data of the COVID-19 outbreaks in the six Western countries of the Group of Seven, namely, Canada, France, Germany, Italy, UK and USA. We incorporated the governments’ interventions (stay-at-home advises/orders, lockdowns, quarantines and social distancing) against COVID-19 into consideration. Our analysis allowed us to make a statistical prediction on the turning point (the time that the daily new cases peak), the duration (the period that the outbreak lasts) and the attack rate (the percentage of the total population that will be infected over the course of the outbreak) for these countries.
AbstractList • A segmented Poisson model incorporating the power law and the exponential law was proposed to study the COVID-19 outbreaks. • Turning point, final size, duration and the attack rate were estimated. • The data of daily new cases of the six Western countries in the Group of Seven was analyzed. In this paper, we employed a segmented Poisson model to analyze the available daily new cases data of the COVID-19 outbreaks in the six Western countries of the Group of Seven, namely, Canada, France, Germany, Italy, UK and USA. We incorporated the governments’ interventions (stay-at-home advises/orders, lockdowns, quarantines and social distancing) against COVID-19 into consideration. Our analysis allowed us to make a statistical prediction on the turning point (the time that the daily new cases peak), the duration (the period that the outbreak lasts) and the attack rate (the percentage of the total population that will be infected over the course of the outbreak) for these countries.
In this paper, we employed a segmented Poisson model to analyze the available daily new cases data of the COVID-19 outbreaks in the six Western countries of the Group of Seven, namely, Canada, France, Germany, Italy, UK and USA. We incorporated the governments' interventions (stay-at-home advises/orders, lockdowns, quarantines and social distancing) against COVID-19 into consideration. Our analysis allowed us to make a statistical prediction on the turning point (the time that the daily new cases peak), the duration (the period that the outbreak lasts) and the attack rate (the percentage of the total population that will be infected over the course of the outbreak) for these countries.In this paper, we employed a segmented Poisson model to analyze the available daily new cases data of the COVID-19 outbreaks in the six Western countries of the Group of Seven, namely, Canada, France, Germany, Italy, UK and USA. We incorporated the governments' interventions (stay-at-home advises/orders, lockdowns, quarantines and social distancing) against COVID-19 into consideration. Our analysis allowed us to make a statistical prediction on the turning point (the time that the daily new cases peak), the duration (the period that the outbreak lasts) and the attack rate (the percentage of the total population that will be infected over the course of the outbreak) for these countries.
In this paper, we employed a segmented Poisson model to analyze the available daily new cases data of the COVID-19 outbreaks in the six Western countries of the Group of Seven, namely, Canada, France, Germany, Italy, UK and USA. We incorporated the governments' interventions (stay-at-home advises/orders, lockdowns, quarantines and social distancing) against COVID-19 into consideration. Our analysis allowed us to make a statistical prediction on the turning point (the time that the daily new cases peak), the duration (the period that the outbreak lasts) and the attack rate (the percentage of the total population that will be infected over the course of the outbreak) for these countries.
•A segmented Poisson model incorporating the power law and the exponential law was proposed to study the COVID-19 outbreaks.•Turning point, final size, duration and the attack rate were estimated.•The data of daily new cases of the six Western countries in the Group of Seven was analyzed. In this paper, we employed a segmented Poisson model to analyze the available daily new cases data of the COVID-19 outbreaks in the six Western countries of the Group of Seven, namely, Canada, France, Germany, Italy, UK and USA. We incorporated the governments’ interventions (stay-at-home advises/orders, lockdowns, quarantines and social distancing) against COVID-19 into consideration. Our analysis allowed us to make a statistical prediction on the turning point (the time that the daily new cases peak), the duration (the period that the outbreak lasts) and the attack rate (the percentage of the total population that will be infected over the course of the outbreak) for these countries.
ArticleNumber 109829
Author Ma, Renjun
Zhang, Xiaolei
Wang, Lin
Author_xml – sequence: 1
  givenname: Xiaolei
  surname: Zhang
  fullname: Zhang, Xiaolei
  organization: Pan-Asia Business School, Yunnan Normal University, Kunming, PR China
– sequence: 2
  givenname: Renjun
  orcidid: 0000-0001-5243-5426
  surname: Ma
  fullname: Ma, Renjun
  organization: Department of Mathematics and Statistics, University of New Brunswick, Fredericton, E3B 5A3, Canada
– sequence: 3
  givenname: Lin
  orcidid: 0000-0002-7215-8750
  surname: Wang
  fullname: Wang, Lin
  email: lwang2@unb.ca
  organization: Department of Mathematics and Statistics, University of New Brunswick, Fredericton, E3B 5A3, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32313405$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtr3DAQFiWl2aT9BYWiYw_1Vg_bsg4tlO0rEEgPfRzFWB4n2nilrSQH-u-rzSYhySGngZnvwXzfETnwwSMhrzlbcsbb9-ulvYCQloKJ3UZ3Qj8jC94pWYmuUwdkwXTLKqaUPiRHKa0ZY5y14gU5lEJyWbNmQeyPiIOz2flzmufod3MbnM_v6DBHyC54Cn6gkDPYS1o2SMNIV2e_Tz5XXNMw5z4iXCbqPN3AOkT6B1PG6KkNs8_RYXpJno8wJXx1M4_Jr69ffq6-V6dn305Wn04r24gmV0PXt-OgB2w63kspW95pqLEWbc9l14AcBGjBOdZSQ4_Ygq6tRVQIY62Ay2Pyca-7nfsNDhaLPUxmG90G4j8TwJmHF-8uzHm4Moq3qml1EXh7IxDD37m8YTYuWZwm8BjmZITUktVcK1Wgb-573ZncJlsAeg-wMaQUcTTW5es8i7WbDGdm16JZm-sWza5Fs2-xcOUj7q3806wPexaWjK8cRpOsQ29LvxFtNkNwT_L_A1sluK4
CitedBy_id crossref_primary_10_1038_s41598_021_94661_z
crossref_primary_10_3389_fmed_2020_556366
crossref_primary_10_1007_s40745_020_00314_9
crossref_primary_10_1021_acs_jchemed_2c00051
crossref_primary_10_1007_s00148_020_00799_x
crossref_primary_10_1016_j_chaos_2020_110023
crossref_primary_10_3390_ijerph18147592
crossref_primary_10_3390_su13063099
crossref_primary_10_3390_su132413599
crossref_primary_10_1007_s11356_022_24912_7
crossref_primary_10_1007_s10389_021_01567_1
crossref_primary_10_1007_s11831_021_09634_2
crossref_primary_10_1007_s11071_021_06920_3
crossref_primary_10_1016_j_chaos_2020_110182
crossref_primary_10_1088_1742_6596_1882_1_012033
crossref_primary_10_3390_math10050824
crossref_primary_10_1016_j_chaos_2020_109948
crossref_primary_10_46481_jnsps_2022_843
crossref_primary_10_1186_s12889_024_20968_x
crossref_primary_10_2196_47099
crossref_primary_10_1016_j_chaos_2020_110027
crossref_primary_10_1002_cjs_11723
crossref_primary_10_3390_sym14102149
crossref_primary_10_1111_risa_14014
crossref_primary_10_1051_shsconf_202111401021
crossref_primary_10_12677_AAM_2023_1210412
crossref_primary_10_3390_ai3020025
crossref_primary_10_1371_journal_pone_0243189
crossref_primary_10_1007_s11192_020_03706_z
crossref_primary_10_1016_j_eswa_2024_124977
crossref_primary_10_1016_j_neucom_2021_06_024
crossref_primary_10_3390_ijerph18116066
crossref_primary_10_1038_s41598_020_79039_x
crossref_primary_10_1007_s11356_020_11188_y
crossref_primary_10_1016_j_sciaf_2022_e01408
crossref_primary_10_1111_rsp3_12372
crossref_primary_10_1080_02664763_2021_1976119
crossref_primary_10_1186_s12889_021_10682_3
crossref_primary_10_1016_j_isatra_2021_02_016
crossref_primary_10_1007_s42979_022_01632_w
crossref_primary_10_1007_s00779_020_01494_0
crossref_primary_10_1371_journal_pone_0241951
crossref_primary_10_3389_fphy_2020_591876
crossref_primary_10_3390_asi3040044
crossref_primary_10_1016_j_chaos_2020_110616
crossref_primary_10_1007_s11042_022_13492_w
crossref_primary_10_1016_j_chaos_2020_110240
crossref_primary_10_1038_s41598_021_99368_9
crossref_primary_10_1016_j_chaos_2021_111451
crossref_primary_10_1016_j_chaos_2020_110241
crossref_primary_10_1016_j_ssci_2023_106292
crossref_primary_10_1002_hsr2_484
crossref_primary_10_1007_s00477_022_02255_6
crossref_primary_10_1371_journal_pcbi_1008837
crossref_primary_10_3390_pharmacy10060167
crossref_primary_10_1016_j_ymeth_2021_08_005
crossref_primary_10_1016_j_matpr_2021_07_266
crossref_primary_10_1016_j_chaos_2020_109969
crossref_primary_10_1109_MCI_2020_3019873
crossref_primary_10_1016_j_ijid_2022_03_002
crossref_primary_10_1136_bmjgh_2020_002647
crossref_primary_10_1088_1742_5468_acf8bb
crossref_primary_10_1155_2022_4168619
crossref_primary_10_1007_s00354_021_00135_1
crossref_primary_10_1088_1402_4896_ac7fc1
crossref_primary_10_1038_s41598_021_99088_0
crossref_primary_10_1016_j_chaos_2021_110697
crossref_primary_10_1016_j_compbiomed_2022_105915
crossref_primary_10_3390_ijerph182312627
crossref_primary_10_3389_feduc_2025_1559007
crossref_primary_10_3390_math9182180
crossref_primary_10_1007_s41403_020_00165_z
crossref_primary_10_3390_educsci12090625
crossref_primary_10_1108_IJHG_03_2022_0032
crossref_primary_10_1016_j_chaos_2020_109853
crossref_primary_10_1038_s41598_022_12591_w
crossref_primary_10_1140_epjp_s13360_020_00663_7
crossref_primary_10_1007_s40808_021_01136_1
crossref_primary_10_3389_fphy_2020_564061
crossref_primary_10_1080_27658449_2021_2020399
crossref_primary_10_1186_s13690_022_00936_w
crossref_primary_10_1155_2021_2644506
crossref_primary_10_3390_biology11020190
crossref_primary_10_1109_TEM_2021_3076603
Cites_doi 10.1016/j.chaos.2020.109761
10.2139/ssrn.3562044
10.1126/science.abb6105
10.1016/S0140-6736(20)30260-9
10.3390/jcm9020523
10.1038/s41421-020-0148-0
ContentType Journal Article
Copyright 2020 Elsevier Ltd
2020 Elsevier Ltd. All rights reserved.
2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: 2020 Elsevier Ltd. All rights reserved.
– notice: 2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.chaos.2020.109829
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1873-2887
0960-0779
EndPage 109829
ExternalDocumentID PMC7167569
32313405
10_1016_j_chaos_2020_109829
S0960077920302290
Genre Journal Article
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
NPM
SSH
7X8
5PM
ID FETCH-LOGICAL-c525t-d8b6fd9de581b3336189a4e426b1385a3d2a9211e439abee6a94ccee7eaf47a13
ISICitedReferencesCount 107
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538179300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-0779
IngestDate Tue Sep 30 16:38:45 EDT 2025
Wed Oct 01 09:30:16 EDT 2025
Mon Jul 21 05:58:26 EDT 2025
Sat Nov 29 07:07:53 EST 2025
Tue Nov 18 21:32:38 EST 2025
Fri Feb 23 02:47:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19 pandemic
Attack rate
Poisson regression
Turning point
Language English
License 2020 Elsevier Ltd. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c525t-d8b6fd9de581b3336189a4e426b1385a3d2a9211e439abee6a94ccee7eaf47a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7215-8750
0000-0001-5243-5426
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7167569
PMID 32313405
PQID 2393041977
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7167569
proquest_miscellaneous_2393041977
pubmed_primary_32313405
crossref_citationtrail_10_1016_j_chaos_2020_109829
crossref_primary_10_1016_j_chaos_2020_109829
elsevier_sciencedirect_doi_10_1016_j_chaos_2020_109829
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chaos, solitons and fractals
PublicationTitleAlternate Chaos Solitons Fractals
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tang, Tang, Bragazzi (bib0007) 2020; 50
He D., Gao D., Zhuang Z., Cao P., Lou Y., Yang L. The attack rate of the COVID-19 in a year (march 27). 2020. Available at SSRN
Li, Feng (bib0006) 2020
Tian, Liu, Li (bib0008) 2020
Wang, Wang, Dong (bib0009) 2020; 6
Wu, Leung, Leung (bib0010) 2020; 395
Jung, Akhmetzhanov, Hayashi (bib0005) 2020; 9
WHO director-general’s opening remarks.
.
Fanelli, Piazza (bib0003) 2020; 134
doi
Tian (10.1016/j.chaos.2020.109829_bib0008) 2020
Jung (10.1016/j.chaos.2020.109829_bib0005) 2020; 9
Wu (10.1016/j.chaos.2020.109829_bib0010) 2020; 395
10.1016/j.chaos.2020.109829_bib0004
Tang (10.1016/j.chaos.2020.109829_bib0007) 2020; 50
10.1016/j.chaos.2020.109829_bib0011
10.1016/j.chaos.2020.109829_bib0001
10.1016/j.chaos.2020.109829_bib0012
10.1016/j.chaos.2020.109829_bib0002
Fanelli (10.1016/j.chaos.2020.109829_bib0003) 2020; 134
Wang (10.1016/j.chaos.2020.109829_bib0009) 2020; 6
Li (10.1016/j.chaos.2020.109829_sbref0003) 2020
References_xml – reference: He D., Gao D., Zhuang Z., Cao P., Lou Y., Yang L. The attack rate of the COVID-19 in a year (march 27). 2020. Available at SSRN:
– volume: 395
  start-page: 689
  year: 2020
  end-page: 697
  ident: bib0010
  article-title: Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study
  publication-title: Lancet
– reference: WHO director-general’s opening remarks.
– reference: . doi:
– year: 2020
  ident: bib0008
  article-title: An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China
  publication-title: Science
– volume: 6
  start-page: 10
  year: 2020
  ident: bib0009
  article-title: Phase-adjusted estimation of the number of Coronavirus Disease 2019 cases in Wuhan, China
  publication-title: Cell Discov
– volume: 50
  start-page: 1
  year: 2020
  end-page: 16
  ident: bib0007
  article-title: Analysis of COVID-19 epidemic traced data and stochastic discrete transmission dynamic model (in Chinese)
  publication-title: Sci Sin Math
– volume: 134
  start-page: 109761
  year: 2020
  ident: bib0003
  article-title: Analysis and forecast of COVID-19 spreading in China, Italy and France
  publication-title: Chaos, Solitons & Fractals
– year: 2020
  ident: bib0006
  article-title: Trend and forecasting of the COVID-19 outbreak in China
  publication-title: J Infect
– reference: .
– volume: 9
  start-page: 523
  year: 2020
  ident: bib0005
  article-title: Real-time estimation of the risk of death from novel coronavirus (COVID-19) infection: inference using exported cases
  publication-title: J Clin Med
– volume: 134
  start-page: 109761
  year: 2020
  ident: 10.1016/j.chaos.2020.109829_bib0003
  article-title: Analysis and forecast of COVID-19 spreading in China, Italy and France
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2020.109761
– volume: 50
  start-page: 1
  year: 2020
  ident: 10.1016/j.chaos.2020.109829_bib0007
  article-title: Analysis of COVID-19 epidemic traced data and stochastic discrete transmission dynamic model (in Chinese)
  publication-title: Sci Sin Math
– ident: 10.1016/j.chaos.2020.109829_bib0004
  doi: 10.2139/ssrn.3562044
– ident: 10.1016/j.chaos.2020.109829_bib0002
– year: 2020
  ident: 10.1016/j.chaos.2020.109829_sbref0003
  article-title: Trend and forecasting of the COVID-19 outbreak in China
  publication-title: J Infect
– year: 2020
  ident: 10.1016/j.chaos.2020.109829_bib0008
  article-title: An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China
  publication-title: Science
  doi: 10.1126/science.abb6105
– ident: 10.1016/j.chaos.2020.109829_bib0001
– ident: 10.1016/j.chaos.2020.109829_bib0011
– ident: 10.1016/j.chaos.2020.109829_bib0012
– volume: 395
  start-page: 689
  issue: 10225
  year: 2020
  ident: 10.1016/j.chaos.2020.109829_bib0010
  article-title: Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30260-9
– volume: 9
  start-page: 523
  issue: 2
  year: 2020
  ident: 10.1016/j.chaos.2020.109829_bib0005
  article-title: Real-time estimation of the risk of death from novel coronavirus (COVID-19) infection: inference using exported cases
  publication-title: J Clin Med
  doi: 10.3390/jcm9020523
– volume: 6
  start-page: 10
  year: 2020
  ident: 10.1016/j.chaos.2020.109829_bib0009
  article-title: Phase-adjusted estimation of the number of Coronavirus Disease 2019 cases in Wuhan, China
  publication-title: Cell Discov
  doi: 10.1038/s41421-020-0148-0
SSID ssj0001062
Score 2.6265435
Snippet •A segmented Poisson model incorporating the power law and the exponential law was proposed to study the COVID-19 outbreaks.•Turning point, final size,...
In this paper, we employed a segmented Poisson model to analyze the available daily new cases data of the COVID-19 outbreaks in the six Western countries of...
• A segmented Poisson model incorporating the power law and the exponential law was proposed to study the COVID-19 outbreaks. • Turning point, final size,...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109829
SubjectTerms Attack rate
COVID-19 pandemic
Poisson regression
Turning point
Title Predicting turning point, duration and attack rate of COVID-19 outbreaks in major Western countries
URI https://dx.doi.org/10.1016/j.chaos.2020.109829
https://www.ncbi.nlm.nih.gov/pubmed/32313405
https://www.proquest.com/docview/2393041977
https://pubmed.ncbi.nlm.nih.gov/PMC7167569
Volume 135
WOSCitedRecordID wos000538179300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2021
  customDbUrl:
  eissn: 1873-2887
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001062
  issn: 0960-0779
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lKULlgGh5hUe1SBxAqaPY69ceKyiiCEoPheZm1uu16jS1o8Su-vOZfaYlagUHLlZkr9eOv8_jmdnZbxF6W4RBwaIg9kjMuBdyHnp5IqjHxyQUEEEDsQu12ERydJROJvS41_tl58JczpK6Tq-u6Py_Qg37AGw5dfYf4Hadwg74DaDDFmCH7V8Bf7yQYy96_YdOpz3mTaXlBYrOAK4kWtuW8fOh1IpQRRnffx5-9Hw6bLoW4mR2riplL9i0WQxPtZ7CUK0ssbB1h1bg4IzpWr2lrKWTpTey91JOv2Iz57K7zPSkYs1MVKtUuEa5nnaOp6em6VcjC26yEsF4VT1l04sx7Ev0QjHO0pLomq30xzTV2Y41M64zCtMRl39gJPsfrbeGxz6_UCAScFJJOI5W3zRXaWgPbaDNIIlo2keb-4cHky_uaw0hsRppsvdrlalUDeDa9bfQfdvjbY7MeqDyZ73tNQfm5BF6aCIPvK8Zs416ot5BD7452d7lDto2ln6J3xk58vePEV8RChtCYUWoPWzphAFwrOmEJZ1wU2JLJ-zohKsaKzphQyfs6PQE_fh0cPLhs2eW5vB4FEStV6R5XBa0EBGEPYSQ2E8pCwW4e7lP0oiRImA08H0B_i7LhYgZBTsgRCJYGSbMJ09Rv25q8RxhTkswFyyIcuaHIg9TFlDOcppzRsZ5Hg5QYJ9zxo1uvVw-ZZbZAsVppnDKJE6ZxmmA9txJcy3bcnfz2AKYGc9Te5QZMPLuE99YuDOwy3KwjdWi6aARAUMX-hBeDdAzDb-7E0uhAUpuEMM1kJrvN4_U1ZnSfk98iPBj-uLWPl-irdX7-Ar120UnXqN7_LKtlotdtJFM0l3zDvwGF6LGZQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+turning+point%2C+duration+and+attack+rate+of+COVID-19+outbreaks+in+major+Western+countries&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Zhang%2C+Xiaolei&rft.au=Ma%2C+Renjun&rft.au=Wang%2C+Lin&rft.date=2020-06-01&rft.issn=0960-0779&rft.volume=135&rft.spage=109829&rft_id=info:doi/10.1016%2Fj.chaos.2020.109829&rft_id=info%3Apmid%2F32313405&rft.externalDocID=32313405
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon