Tumor-Associated Macrophages: Recent Insights and Therapies
Macrophages, which have functions of engulfing and digesting foreign substances, can clear away harmful matter, including cellular debris and tumor cells. Based on the condition of the internal environment, circulating monocytes give rise to mature macrophages, and when they are recruited into the t...
Uloženo v:
| Vydáno v: | Frontiers in oncology Ročník 10; s. 188 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
Frontiers Media S.A
25.02.2020
|
| Témata: | |
| ISSN: | 2234-943X, 2234-943X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Macrophages, which have functions of engulfing and digesting foreign substances, can clear away harmful matter, including cellular debris and tumor cells. Based on the condition of the internal environment, circulating monocytes give rise to mature macrophages, and when they are recruited into the tumor microenvironment and in suitable conditions, they are converted into tumor-associated macrophages (TAMs). Generally, macrophages grow into two main groups called classically activated macrophages (M1) and alternatively activated macrophages (M2). M2 and a small fraction of M1 cells, also known as TAMs, not only lack the function of phagocytizing tumor cells but also help these tumor cells escape from being killed and help them spread to other tissues and organs. In this review, we introduce several mechanisms by which macrophages play a role in the immune regulation of tumor cells, including both killing factors and promoting effects. Furthermore, the targeted therapy for treating tumors based on macrophages is also referred to in our review. We confirm that further studies of macrophage-focused therapeutic strategies and their use in clinical practice are needed to verify their superior efficacy and potential in cancer treatment. |
|---|---|
| AbstractList | Macrophages, which have functions of engulfing and digesting foreign substances, can clear away harmful matter, including cellular debris and tumor cells. Based on the condition of the internal environment, circulating monocytes give rise to mature macrophages, and when they are recruited into the tumor microenvironment and in suitable conditions, they are converted into tumor-associated macrophages (TAMs). Generally, macrophages grow into two main groups called classically activated macrophages (M1) and alternatively activated macrophages (M2). M2 and a small fraction of M1 cells, also known as TAMs, not only lack the function of phagocytizing tumor cells but also help these tumor cells escape from being killed and help them spread to other tissues and organs. In this review, we introduce several mechanisms by which macrophages play a role in the immune regulation of tumor cells, including both killing factors and promoting effects. Furthermore, the targeted therapy for treating tumors based on macrophages is also referred to in our review. We confirm that further studies of macrophage-focused therapeutic strategies and their use in clinical practice are needed to verify their superior efficacy and potential in cancer treatment. Macrophages, which have functions of engulfing and digesting foreign substances, can clear away harmful matter, including cellular debris and tumor cells. Based on the condition of the internal environment, circulating monocytes give rise to mature macrophages, and when they are recruited into the tumor microenvironment and in suitable conditions, they are converted into tumor-associated macrophages (TAMs). Generally, macrophages grow into two main groups called classically activated macrophages (M1) and alternatively activated macrophages (M2). M2 and a small fraction of M1 cells, also known as TAMs, not only lack the function of phagocytizing tumor cells but also help these tumor cells escape from being killed and help them spread to other tissues and organs. In this review, we introduce several mechanisms by which macrophages play a role in the immune regulation of tumor cells, including both killing factors and promoting effects. Furthermore, the targeted therapy for treating tumors based on macrophages is also referred to in our review. We confirm that further studies of macrophage-focused therapeutic strategies and their use in clinical practice are needed to verify their superior efficacy and potential in cancer treatment.Macrophages, which have functions of engulfing and digesting foreign substances, can clear away harmful matter, including cellular debris and tumor cells. Based on the condition of the internal environment, circulating monocytes give rise to mature macrophages, and when they are recruited into the tumor microenvironment and in suitable conditions, they are converted into tumor-associated macrophages (TAMs). Generally, macrophages grow into two main groups called classically activated macrophages (M1) and alternatively activated macrophages (M2). M2 and a small fraction of M1 cells, also known as TAMs, not only lack the function of phagocytizing tumor cells but also help these tumor cells escape from being killed and help them spread to other tissues and organs. In this review, we introduce several mechanisms by which macrophages play a role in the immune regulation of tumor cells, including both killing factors and promoting effects. Furthermore, the targeted therapy for treating tumors based on macrophages is also referred to in our review. We confirm that further studies of macrophage-focused therapeutic strategies and their use in clinical practice are needed to verify their superior efficacy and potential in cancer treatment. |
| Author | Tang, Ziwei Zhou, Xikun Zhou, Jiawei Gao, Siyang Li, Chunyu Feng, Yiting |
| AuthorAffiliation | 2 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China College of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University , Chengdu , China 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China |
| AuthorAffiliation_xml | – name: 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China – name: 2 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China College of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University , Chengdu , China |
| Author_xml | – sequence: 1 givenname: Jiawei surname: Zhou fullname: Zhou, Jiawei – sequence: 2 givenname: Ziwei surname: Tang fullname: Tang, Ziwei – sequence: 3 givenname: Siyang surname: Gao fullname: Gao, Siyang – sequence: 4 givenname: Chunyu surname: Li fullname: Li, Chunyu – sequence: 5 givenname: Yiting surname: Feng fullname: Feng, Yiting – sequence: 6 givenname: Xikun surname: Zhou fullname: Zhou, Xikun |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32161718$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kUtrGzEUhUVIyXudXZhlN-PoYc1ILRRCyMOQUggOZCf0uLIVxiNXGgf676uJk5AUqo3E1bnfke45RLt97AGhU4InjAl57mNvJxRTPMGYCLGDDihl01pO2ePuh_M-Osn5CZfVcEww20P7jJKGtEQcoO_zzSqm-iLnaIMewFU_tU1xvdQLyN-qe7DQD9Wsz2GxHHKle1fNl5D0OkA-Rl-87jKcvO5H6OH6an55W9_9upldXtzVllM-1K5tbOtN6wW3ljpKDIFGS0P9VDiiORArnJTYeI2ZMbIBwayURhDHWdGyIzTbcl3UT2qdwkqnPyrqoF4KMS2UTkOwHSjJpBwNHDUw9Q03YL3Uxd4LYNS6wvqxZa03ZgVu_F3S3Sfo55s-LNUiPqsWc8oaWgBfXwEp_t5AHtQqZAtdp3uIm6woa5uWCkFYkZ599Ho3eZt-EZxvBWXiOSfw7xKC1RixGiNWY8TqJeLSwf_psGHQQ4jjY0P3376_1bGsmQ |
| CitedBy_id | crossref_primary_10_1038_s41598_023_43495_y crossref_primary_10_3389_fimmu_2021_618081 crossref_primary_10_1016_j_bcp_2020_114354 crossref_primary_10_1007_s00280_021_04386_z crossref_primary_10_3389_fimmu_2025_1522699 crossref_primary_10_1007_s10330_021_0539_9 crossref_primary_10_3390_ijms21165918 crossref_primary_10_1186_s13062_022_00345_7 crossref_primary_10_3390_cells11213499 crossref_primary_10_1158_2326_6066_CIR_22_0759 crossref_primary_10_1002_aisy_202100134 crossref_primary_10_3389_fonc_2021_668349 crossref_primary_10_1038_s41416_025_02972_z crossref_primary_10_3389_fonc_2021_771488 crossref_primary_10_3389_fimmu_2022_955841 crossref_primary_10_3389_fonc_2022_772615 crossref_primary_10_1016_j_apsb_2020_08_010 crossref_primary_10_3389_froh_2021_642238 crossref_primary_10_3390_cancers13194880 crossref_primary_10_3389_fgene_2022_1010440 crossref_primary_10_3389_fimmu_2024_1519671 crossref_primary_10_1186_s40164_024_00490_x crossref_primary_10_1007_s00018_022_04514_9 crossref_primary_10_1158_2326_6066_CIR_23_0121 crossref_primary_10_1016_j_heliyon_2023_e22062 crossref_primary_10_1016_j_canlet_2020_11_005 crossref_primary_10_3389_fimmu_2022_836223 crossref_primary_10_3390_medicines10060036 crossref_primary_10_1038_s41416_022_01887_3 crossref_primary_10_3390_ijms24119521 crossref_primary_10_1038_s41598_022_16766_3 crossref_primary_10_1016_j_lfs_2021_119800 crossref_primary_10_7554_eLife_62420 crossref_primary_10_1007_s00432_022_04399_y crossref_primary_10_1016_j_cellsig_2024_111546 crossref_primary_10_1080_21655979_2021_1974654 crossref_primary_10_3390_v13040654 crossref_primary_10_3389_fimmu_2023_1193235 crossref_primary_10_3390_cancers14010194 crossref_primary_10_3389_fimmu_2021_773570 crossref_primary_10_3389_fimmu_2022_1009701 crossref_primary_10_3390_pharmaceutics13101670 crossref_primary_10_3389_fimmu_2023_1111494 crossref_primary_10_3389_fgene_2021_658862 crossref_primary_10_3390_cancers14092220 crossref_primary_10_1186_s13045_022_01247_x crossref_primary_10_1002_advs_202303523 crossref_primary_10_3389_fcell_2021_639815 crossref_primary_10_3390_biomedicines10061252 crossref_primary_10_3389_fonc_2021_638856 crossref_primary_10_1371_journal_pone_0247233 crossref_primary_10_1097_GOX_0000000000005821 crossref_primary_10_3389_fimmu_2024_1498431 crossref_primary_10_3389_fmed_2021_737859 crossref_primary_10_3390_ijms21186659 crossref_primary_10_3390_pharmaceutics13091340 crossref_primary_10_1002_ame2_12334 crossref_primary_10_1002_jsp2_70061 crossref_primary_10_1080_21645515_2025_2512656 crossref_primary_10_3390_ijms21197307 crossref_primary_10_3390_cancers15194744 crossref_primary_10_3390_molecules28052159 crossref_primary_10_3390_cells9041062 crossref_primary_10_3390_ijms241914993 crossref_primary_10_1002_btm2_10285 crossref_primary_10_1186_s12935_022_02769_7 crossref_primary_10_3390_cancers13081921 crossref_primary_10_1016_j_ejphar_2022_175087 crossref_primary_10_3390_cancers17050880 crossref_primary_10_2217_nnm_2023_0276 crossref_primary_10_1016_j_lrr_2021_100268 crossref_primary_10_1080_08830185_2020_1845670 crossref_primary_10_1016_j_prp_2024_155378 crossref_primary_10_1186_s12943_025_02413_8 crossref_primary_10_1016_j_heliyon_2024_e29901 crossref_primary_10_1039_D2RA07863E crossref_primary_10_1016_j_lfs_2024_123089 crossref_primary_10_1007_s12015_024_10806_3 crossref_primary_10_1007_s12026_022_09277_w crossref_primary_10_1038_s41392_022_01102_y crossref_primary_10_3389_fimmu_2021_670324 crossref_primary_10_1080_1744666X_2022_2044796 crossref_primary_10_1007_s11302_024_10054_7 crossref_primary_10_1002_anbr_202000029 crossref_primary_10_1186_s12885_025_13438_z crossref_primary_10_1007_s13105_022_00898_1 crossref_primary_10_3389_fonc_2021_693517 crossref_primary_10_2147_IJN_S434917 crossref_primary_10_1016_j_intimp_2023_110052 crossref_primary_10_1002_advs_202307920 crossref_primary_10_1186_s12967_022_03813_w crossref_primary_10_1186_s40246_025_00806_w crossref_primary_10_3748_wjg_v29_i40_5593 crossref_primary_10_1097_CM9_0000000000003195 crossref_primary_10_1021_acs_biomac_4c01816 crossref_primary_10_1097_MD_0000000000042009 crossref_primary_10_3390_cancers14040985 crossref_primary_10_1186_s12943_022_01682_x crossref_primary_10_1111_odi_15265 crossref_primary_10_1002_glia_24369 crossref_primary_10_3390_molecules27061943 crossref_primary_10_3390_biomedicines10081977 crossref_primary_10_1093_asj_sjae145 crossref_primary_10_1016_j_critrevonc_2024_104437 crossref_primary_10_1016_j_jconrel_2023_08_045 crossref_primary_10_1080_2162402X_2022_2127284 crossref_primary_10_1186_s12964_023_01384_x crossref_primary_10_1007_s00210_023_02676_2 crossref_primary_10_1111_cas_15848 crossref_primary_10_1111_jcmm_15751 crossref_primary_10_1002_advs_202413367 crossref_primary_10_1002_iid3_70242 crossref_primary_10_3389_fimmu_2021_693709 crossref_primary_10_1016_j_bioactmat_2022_07_014 crossref_primary_10_1038_s41577_025_01132_x crossref_primary_10_1042_CS20220531 crossref_primary_10_1016_j_biomaterials_2024_122688 crossref_primary_10_1016_j_advms_2024_02_006 crossref_primary_10_1186_s12929_022_00859_2 crossref_primary_10_1007_s11596_023_2763_0 crossref_primary_10_3390_biomedicines11020308 crossref_primary_10_1016_j_biopha_2021_112588 crossref_primary_10_3390_ijms22136965 crossref_primary_10_3389_fimmu_2025_1623436 crossref_primary_10_3390_cancers13225625 crossref_primary_10_1097_BS9_0000000000000109 crossref_primary_10_1002_ijc_34711 crossref_primary_10_1111_cup_14155 crossref_primary_10_3390_v15010218 crossref_primary_10_3389_fonc_2022_965277 crossref_primary_10_1016_j_canlet_2023_216149 crossref_primary_10_1080_1744666X_2024_2326626 crossref_primary_10_1186_s13045_024_01559_0 crossref_primary_10_1186_s13018_024_04950_2 crossref_primary_10_1186_s12943_023_01723_z crossref_primary_10_1002_jbm_a_37886 crossref_primary_10_1021_acsptsci_5c00227 crossref_primary_10_1002_smll_202006484 crossref_primary_10_1016_j_semcdb_2023_05_010 crossref_primary_10_1007_s10565_025_10012_y crossref_primary_10_3389_fcimb_2025_1608195 crossref_primary_10_3390_diseases10030035 crossref_primary_10_1016_j_tox_2021_152994 crossref_primary_10_3390_ijms25147907 crossref_primary_10_1089_ten_tea_2020_0095 crossref_primary_10_1016_j_intimp_2021_108374 crossref_primary_10_2217_imt_2021_0277 crossref_primary_10_3389_fimmu_2021_778078 crossref_primary_10_1089_dna_2023_0071 crossref_primary_10_1080_10715762_2023_2193308 crossref_primary_10_1042_BST20221083 crossref_primary_10_3389_fimmu_2025_1545928 crossref_primary_10_3390_ijms251910781 crossref_primary_10_3390_ijms22105078 crossref_primary_10_3389_fonc_2020_01770 crossref_primary_10_3390_ijms22105196 crossref_primary_10_1007_s10600_024_04289_4 crossref_primary_10_3389_fonc_2020_554521 crossref_primary_10_1007_s00761_020_00895_3 crossref_primary_10_3390_genes13010086 crossref_primary_10_3390_v15102011 crossref_primary_10_1186_s40001_024_01897_2 crossref_primary_10_1002_path_5810 crossref_primary_10_3390_cancers14010250 crossref_primary_10_3390_cancers14163871 crossref_primary_10_1097_PPO_0000000000000543 crossref_primary_10_1002_jbmr_4773 crossref_primary_10_1016_j_cellsig_2023_111011 crossref_primary_10_1186_s40364_024_00637_2 crossref_primary_10_1039_D1NR06769A crossref_primary_10_1016_j_apsb_2025_05_006 crossref_primary_10_1186_s13059_022_02677_z crossref_primary_10_1182_blood_2023022861 crossref_primary_10_1016_j_ejphar_2023_176076 crossref_primary_10_1155_2021_4405491 crossref_primary_10_3390_cancers14184344 crossref_primary_10_1002_adhm_202101066 crossref_primary_10_3390_ijms23094680 crossref_primary_10_3390_biomedicines9101387 crossref_primary_10_1016_j_addr_2021_114003 crossref_primary_10_1016_j_intimp_2022_108889 crossref_primary_10_1016_j_mtbio_2024_101410 crossref_primary_10_1248_bpb_b25_00112 crossref_primary_10_3390_ijms232415802 crossref_primary_10_1158_2159_8290_CD_22_0196 crossref_primary_10_3390_cancers13010043 crossref_primary_10_1016_j_nano_2021_102492 crossref_primary_10_1016_j_heliyon_2023_e21153 crossref_primary_10_3389_fmed_2024_1481609 crossref_primary_10_3389_fcell_2020_00672 crossref_primary_10_1002_ardp_202300569 crossref_primary_10_3390_cancers14122909 crossref_primary_10_1016_j_jconrel_2021_05_033 crossref_primary_10_1007_s12079_021_00648_w crossref_primary_10_1007_s00432_024_05777_4 crossref_primary_10_1080_17435889_2024_2393076 crossref_primary_10_1097_PGP_0000000000000809 crossref_primary_10_3389_fimmu_2023_1258786 crossref_primary_10_1016_j_cej_2024_149901 crossref_primary_10_1186_s12929_022_00866_3 crossref_primary_10_1002_smll_202205904 crossref_primary_10_3390_jcm11205986 crossref_primary_10_1007_s11033_022_07865_5 crossref_primary_10_1186_s12885_022_10461_2 crossref_primary_10_3390_ijms22083836 crossref_primary_10_1055_s_0040_1721799 crossref_primary_10_1111_cas_14911 crossref_primary_10_1038_s41420_021_00700_z crossref_primary_10_3389_fgene_2022_864383 crossref_primary_10_3390_cancers13092040 crossref_primary_10_1080_14737140_2020_1822743 crossref_primary_10_1186_s12935_022_02815_4 crossref_primary_10_1038_s41392_025_02325_5 crossref_primary_10_3390_pharmaceutics12121186 crossref_primary_10_3390_life13051097 crossref_primary_10_3390_biomedicines9080935 crossref_primary_10_1128_MCB_00536_20 crossref_primary_10_1155_2022_3610038 crossref_primary_10_1007_s12672_024_01190_y crossref_primary_10_1186_s12929_022_00855_6 crossref_primary_10_3390_cancers15215294 crossref_primary_10_1186_s12935_023_02943_5 crossref_primary_10_1089_dna_2024_0211 crossref_primary_10_3389_fonc_2020_589601 crossref_primary_10_3389_fonc_2022_1034842 crossref_primary_10_3390_cancers12113401 crossref_primary_10_3389_fmolb_2024_1404319 crossref_primary_10_1016_j_semcancer_2022_01_006 crossref_primary_10_3390_ijms241310763 crossref_primary_10_1002_cnr2_2066 crossref_primary_10_1016_j_nantod_2021_101209 crossref_primary_10_1016_j_ijbiomac_2022_03_057 crossref_primary_10_1016_j_intimp_2022_109139 crossref_primary_10_1097_MD_0000000000036045 crossref_primary_10_1002_cbin_12094 crossref_primary_10_1007_s13205_022_03217_z crossref_primary_10_1186_s12964_021_00768_1 crossref_primary_10_37349_etat_2025_1002308 crossref_primary_10_3389_fimmu_2023_1178776 crossref_primary_10_3390_cancers16223787 crossref_primary_10_1155_2022_6512300 crossref_primary_10_1186_s12967_024_04856_x crossref_primary_10_1002_adhm_202304436 crossref_primary_10_4251_wjgo_v15_i4_596 crossref_primary_10_3389_fimmu_2022_907182 crossref_primary_10_3389_fphar_2022_868695 crossref_primary_10_1111_1440_1681_13760 crossref_primary_10_1007_s00281_023_00988_2 crossref_primary_10_3390_ijms24054593 crossref_primary_10_1002_jev2_12379 crossref_primary_10_3389_fendo_2023_1276225 crossref_primary_10_1038_s41420_024_02092_2 crossref_primary_10_3390_cancers13164225 crossref_primary_10_1186_s13578_022_00824_4 crossref_primary_10_3390_cancers14143331 crossref_primary_10_1007_s10238_024_01417_w crossref_primary_10_1016_j_nantod_2022_101621 crossref_primary_10_1186_s12943_022_01655_0 crossref_primary_10_1007_s00066_024_02289_5 crossref_primary_10_1016_j_imbio_2023_152780 crossref_primary_10_3389_fcimb_2023_1141034 crossref_primary_10_1111_cbdd_14330 crossref_primary_10_3390_biom10050666 crossref_primary_10_3390_vaccines12121341 crossref_primary_10_1016_j_chemphyslip_2022_105194 crossref_primary_10_1002_cac2_12591 crossref_primary_10_1038_s41420_023_01594_9 crossref_primary_10_3390_ijms22083805 crossref_primary_10_1016_j_ctrv_2021_102219 crossref_primary_10_3390_v16050717 crossref_primary_10_1002_JLB_3RU1120_773R crossref_primary_10_2147_IJGM_S478000 crossref_primary_10_1016_j_heliyon_2024_e30337 crossref_primary_10_3389_fimmu_2022_985863 crossref_primary_10_3390_cancers14112811 crossref_primary_10_3390_life13020422 crossref_primary_10_3389_fonc_2021_628138 crossref_primary_10_7717_peerj_18090 crossref_primary_10_3390_cancers13205159 crossref_primary_10_1016_j_tranon_2022_101355 crossref_primary_10_1016_j_jphotochem_2023_114955 crossref_primary_10_3390_cancers14225654 crossref_primary_10_1007_s40995_022_01381_8 crossref_primary_10_2147_IJN_S421173 crossref_primary_10_3390_cancers16244156 crossref_primary_10_1186_s13045_022_01304_5 crossref_primary_10_1186_s41181_022_00163_2 crossref_primary_10_3390_cells11233890 crossref_primary_10_1016_j_clgc_2024_01_005 crossref_primary_10_1084_jem_20230420 crossref_primary_10_3389_fphys_2023_1128984 crossref_primary_10_1007_s00262_024_03879_z crossref_primary_10_1002_cbf_3978 crossref_primary_10_1016_j_lfs_2024_122896 crossref_primary_10_3389_fbioe_2022_959324 crossref_primary_10_3390_ijms241411233 crossref_primary_10_1016_j_bbcan_2022_188839 crossref_primary_10_3390_life14010089 crossref_primary_10_1016_j_intimp_2025_115301 crossref_primary_10_3390_vaccines9060668 crossref_primary_10_1002_cac2_12458 crossref_primary_10_1002_cac2_12579 crossref_primary_10_3389_fimmu_2021_643771 crossref_primary_10_1016_j_matdes_2020_109388 crossref_primary_10_1002_mog2_70028 crossref_primary_10_1021_acs_jmedchem_4c00706 crossref_primary_10_3389_frai_2021_685298 crossref_primary_10_3390_cancers14112711 crossref_primary_10_1186_s12943_023_01735_9 crossref_primary_10_3390_cancers13205174 crossref_primary_10_1016_j_ygeno_2022_110428 crossref_primary_10_1002_adbi_202200060 crossref_primary_10_1007_s10238_022_00906_0 crossref_primary_10_1016_j_omtn_2023_102053 crossref_primary_10_1016_j_lfs_2022_120466 crossref_primary_10_1007_s44258_023_00011_1 crossref_primary_10_4155_fmc_2021_0332 crossref_primary_10_1002_cjp2_309 crossref_primary_10_1002_2211_5463_13445 crossref_primary_10_1038_s41419_021_04486_x crossref_primary_10_3350_cmh_2021_0308 crossref_primary_10_3389_fimmu_2023_1242911 crossref_primary_10_1016_j_cell_2023_05_044 crossref_primary_10_3390_ijms25063414 crossref_primary_10_1007_s00261_025_05153_x crossref_primary_10_1109_TUFFC_2021_3078094 crossref_primary_10_1155_jimr_6573891 crossref_primary_10_1002_adma_202203915 crossref_primary_10_1111_febs_70192 crossref_primary_10_3390_ijms24021367 crossref_primary_10_3390_cancers13143450 crossref_primary_10_1109_TNB_2022_3216684 crossref_primary_10_3389_fimmu_2022_768753 crossref_primary_10_1016_j_ymthe_2022_09_019 crossref_primary_10_3389_fonc_2022_860767 crossref_primary_10_3892_ol_2024_14385 crossref_primary_10_1186_s12935_024_03512_0 crossref_primary_10_1111_febs_15558 crossref_primary_10_1016_j_ymthe_2023_11_003 crossref_primary_10_3389_fonc_2021_589022 crossref_primary_10_1177_17588359241312501 crossref_primary_10_1210_endocr_bqab235 crossref_primary_10_3390_cancers14061578 crossref_primary_10_1038_s41392_023_01683_2 crossref_primary_10_3389_fimmu_2022_859785 crossref_primary_10_1007_s12094_024_03667_2 crossref_primary_10_1002_jcp_30643 crossref_primary_10_1186_s12874_023_02006_3 crossref_primary_10_3390_cancers13133298 crossref_primary_10_1093_jleuko_qiad081 crossref_primary_10_1097_MD_0000000000037092 crossref_primary_10_1016_j_prp_2025_155928 crossref_primary_10_1016_j_semcancer_2021_08_001 crossref_primary_10_3390_cells10040927 crossref_primary_10_1155_2022_3822773 crossref_primary_10_3389_fonc_2023_1100585 crossref_primary_10_3390_ijms22031323 crossref_primary_10_3389_fcvm_2022_777822 crossref_primary_10_3389_fimmu_2021_680055 crossref_primary_10_1245_s10434_024_16135_6 crossref_primary_10_1016_j_apsb_2021_10_019 crossref_primary_10_1016_j_biopha_2023_114343 crossref_primary_10_1080_15583724_2024_2323943 crossref_primary_10_1002_advs_202205915 crossref_primary_10_1016_j_gene_2025_149467 crossref_primary_10_3390_cells12121606 crossref_primary_10_1039_D4LC01043D crossref_primary_10_1186_s12935_021_02381_1 crossref_primary_10_1038_s41568_021_00376_8 crossref_primary_10_3389_fonc_2022_1011191 crossref_primary_10_1007_s11060_023_04536_8 crossref_primary_10_3389_fimmu_2025_1524781 crossref_primary_10_3390_biomedicines10092142 crossref_primary_10_1038_s41375_024_02391_8 crossref_primary_10_7717_peerj_14691 crossref_primary_10_1016_j_biopha_2023_115546 crossref_primary_10_3389_fimmu_2021_748820 crossref_primary_10_32604_oncologie_2022_022116 crossref_primary_10_1186_s40364_023_00537_x crossref_primary_10_3390_cancers13194844 crossref_primary_10_3390_cancers13246188 crossref_primary_10_3390_jcm12103430 crossref_primary_10_53941_ijctm_2025_1000017 crossref_primary_10_3389_fgene_2022_882794 crossref_primary_10_1016_j_tranon_2025_102287 crossref_primary_10_3390_cancers14194828 crossref_primary_10_3389_fonc_2021_739297 crossref_primary_10_1016_j_surg_2025_109318 crossref_primary_10_3390_ijms22137204 crossref_primary_10_1016_j_tranon_2023_101710 crossref_primary_10_1016_j_biopha_2023_115414 crossref_primary_10_1134_S0006297922040071 crossref_primary_10_1016_j_heliyon_2024_e25266 crossref_primary_10_3389_fimmu_2024_1366260 crossref_primary_10_1002_advs_202205818 crossref_primary_10_3389_fonc_2021_779706 crossref_primary_10_3389_fimmu_2024_1399130 crossref_primary_10_1007_s12672_025_03123_9 crossref_primary_10_21303_2504_5679_2022_002644 crossref_primary_10_3390_ijms26146574 crossref_primary_10_3389_fcell_2022_1038841 crossref_primary_10_1007_s12094_023_03075_y crossref_primary_10_3389_fbioe_2022_883034 crossref_primary_10_3390_cells10071568 crossref_primary_10_2217_fon_2020_1218 crossref_primary_10_3389_fimmu_2023_1166487 crossref_primary_10_3390_ijms21103457 crossref_primary_10_1080_2162402X_2024_2423983 crossref_primary_10_3389_fimmu_2023_1172913 |
| Cites_doi | 10.18632/oncotarget.14474 10.1038/nri3671 10.1084/jem.184.5.1927 10.1158/1078-0432.CCR-06-0067 10.1016/j.it.2018.11.004 10.3389/fimmu.2015.00328 10.1038/s41590-017-0004-z 10.1056/NEJMoa1200690 10.1016/j.bcp.2011.11.013 10.1016/j.biopha.2018.09.067 10.1186/s12943-019-1022-2 10.1158/0008-5472.CAN-10-2238 10.1038/npjbcancer.2015.25 10.7554/eLife.18173 10.4049/jimmunol.1300057 10.1126/sciimmunol.aax8189 10.1126/science.1238856 10.1016/j.canlet.2015.05.009 10.1158/1078-0432.CCR-05-0537 10.1002/jcb.24456 10.1016/j.coi.2012.01.010 10.1073/pnas.0603406103 10.1038/labinvest.2013.69 10.1016/j.immuni.2014.06.008 10.1002/adma.201904364 10.1093/carcin/bgr208 10.1038/s41467-017-00569-6 10.3389/fimmu.2015.00263 10.1016/j.it.2011.11.001 10.1056/NEJMoa1807315 10.1097/PPO.0000000000000059 10.1158/0008-5472.CAN-13-1816 10.4049/jimmunol.178.8.5245 10.1002/eji.201344304 10.1158/1541-7786.MCR-11-0271 10.1007/s13277-013-0837-5 10.1007/s12026-011-8262-6 10.1126/science.aaf1328 10.1038/nature22396 10.1371/journal.pone.0137345 10.1016/j.cytogfr.2009.11.007 10.1016/j.cub.2017.06.005 10.1080/2162402X.2014.995559 10.1146/annurev-cellbio-101512-122326 10.1158/0008-5472.CAN-13-3723 10.1158/1538-7445.AM2019-2805 10.1016/j.tips.2016.04.006 10.1038/ni.2705 10.1084/jem.20121999 10.1093/annonc/mdx190 10.1016/j.cell.2018.05.060 10.4049/jimmunol.174.4.2004 10.1016/j.semcancer.2008.03.004 10.1146/annurev-physiol-022516-034339 10.1038/nrc3171 10.1002/JLB.4RI0818-311R 10.1016/j.ctrv.2018.08.010 10.1016/j.jhep.2014.10.029 10.1158/0008-5472.CAN-17-2158 10.1182/blood.V99.10.3500 10.1155/2014/768758 10.1146/annurev-immunol-032414-112220 10.1080/19420862.2015.1007813 10.1038/s41586-019-1456-0 10.1084/jem.194.6.781 10.1186/1476-4598-13-210 10.1016/j.jtho.2019.03.029 10.1038/sj.onc.1207084 10.1084/jem.164.6.1862 10.1038/nri1733 10.1111/imm.12173 10.1158/1078-0432.CCR-12-3439 10.1016/j.jconrel.2015.06.029 10.1038/s41591-019-0356-z 10.1016/j.imbio.2012.05.024 10.1038/nrd.2018.169 10.1136/gutjnl-2015-309193 10.1007/s00262-008-0482-9 10.1016/j.lungcan.2016.05.007 10.1038/nrd.2016.111 10.18632/oncotarget.5955 10.1158/0008-5472.CAN-18-0124 10.1038/s41419-018-0465-5 10.1016/j.semcdb.2015.05.004 10.1016/j.immuni.2019.03.020 10.1073/pnas.1710877114 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 Zhou, Tang, Gao, Li, Feng and Zhou. Copyright © 2020 Zhou, Tang, Gao, Li, Feng and Zhou. 2020 Zhou, Tang, Gao, Li, Feng and Zhou |
| Copyright_xml | – notice: Copyright © 2020 Zhou, Tang, Gao, Li, Feng and Zhou. – notice: Copyright © 2020 Zhou, Tang, Gao, Li, Feng and Zhou. 2020 Zhou, Tang, Gao, Li, Feng and Zhou |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.3389/fonc.2020.00188 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2234-943X |
| ExternalDocumentID | oai_doaj_org_article_939921b1d2be4f65becf9ac7ff8e32cd PMC7052362 32161718 10_3389_fonc_2020_00188 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: National Major Scientific and Technological Special Project for Significant New Drugs Development grantid: 2018ZX09201018-013 – fundername: National Key Research Program of China grantid: 2017YFC0840100; 2017YFC0840107 – fundername: Sichuan University Training Program of Innovation and Entrepreneurship for Undergraduates grantid: C2018101921 – fundername: Excellent Young Scientist Foundation of Sichuan University grantid: 2017SCU04A16 – fundername: Innovative Spark Foundation of Sichuan University grantid: 2018SCUH0032 |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EJD EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM ACXDI IAO IEA IHR IHW IPNFZ NPM RIG 7X8 5PM |
| ID | FETCH-LOGICAL-c525t-d76c7fb7f85cc2d21b1e6a9b2f48d1a5e1c8d990bfa03bb96e83c99b81d53b1e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 463 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524721100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2234-943X |
| IngestDate | Fri Oct 03 12:45:30 EDT 2025 Thu Aug 21 18:42:36 EDT 2025 Thu Sep 04 16:11:24 EDT 2025 Thu Jan 02 23:00:13 EST 2025 Sat Nov 29 01:49:17 EST 2025 Tue Nov 18 22:15:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | macrophages tumors immunity immunity therapy tumor-associated macrophages |
| Language | English |
| License | Copyright © 2020 Zhou, Tang, Gao, Li, Feng and Zhou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c525t-d76c7fb7f85cc2d21b1e6a9b2f48d1a5e1c8d990bfa03bb96e83c99b81d53b1e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Bernd Kaina, Johannes Gutenberg University Mainz, Germany Reviewed by: Sabine Grösch, Goethe University Frankfurt, Germany; Debora Decote-Ricardo, Universidade Federal Rural Do Rio de Janeiro, Brazil This article was submitted to Molecular and Cellular Oncology, a section of the journal Frontiers in Oncology These authors have contributed equally to this work |
| OpenAccessLink | https://doaj.org/article/939921b1d2be4f65becf9ac7ff8e32cd |
| PMID | 32161718 |
| PQID | 2376728813 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_939921b1d2be4f65becf9ac7ff8e32cd pubmedcentral_primary_oai_pubmedcentral_nih_gov_7052362 proquest_miscellaneous_2376728813 pubmed_primary_32161718 crossref_primary_10_3389_fonc_2020_00188 crossref_citationtrail_10_3389_fonc_2020_00188 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-25 |
| PublicationDateYYYYMMDD | 2020-02-25 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in oncology |
| PublicationTitleAlternate | Front Oncol |
| PublicationYear | 2020 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Zheng (B51) 2018; 9 Logtenberg (B77) 2019; 25 Byrne (B53) 2013; 190 Okazawa (B86) 2005; 174 Sanmamed (B32) 2017; 28 Qiu (B22) 2018; 70 Borghese (B62) 2013; 114 Haniffa (B1) 2015; 41 Chao (B74) 2011; 71 Myers (B24) 2019; 18 Ring (B79) 2017; 114 Ramesh (B83) 2019; 31 Olingy (B6) 2019; 106 Leu (B30) 2003; 22 Di Caro (B26) 2016; 65 Liu (B38) 2013; 93 Arnold (B10) 2014; 141 Azizi (B21) 2018; 174 Luke (B8) 2013; 14 Pucci (B59) 2016; 352 Barkal (B47) 2019; 572 Colombo (B58) 2014; 30 Crocker (B15) 1986; 164 Yona (B2) 2015; 6 Wang (B56) 2017; 8 Martínez-Pomares (B16) 1996; 184 Milane (B48) 2015; 219 Banerjee (B81) 2015; 4 Tang (B60) 2012; 83 Horrigan (B75) 2017; 6 Jenkins (B12) 2013; 210 Ouyang (B36) 2019; 50 Banerjee (B37) 2011; 32 Gordon (B43) 2017; 545 Tsagozis (B61) 2008; 57 Sato (B40) 2011; 51 Fleetwood (B9) 2007; 178 Sica (B11) 2008; 18 Alvey (B78) 2017; 27 Weiskopf (B72) 2013; 341 Yeung (B50) 2015; 62 Holla (B55) 2014; 13 Moran (B57) 2019; 40 Murray (B13) 2017; 79 Yadav (B29) 2011; 9 Oldenborg (B71) 2002; 99 Martinez-Pomares (B17) 2012; 33 Chávez-Galán (B14) 2015; 6 Halaby (B68) 2019; 4 Varol (B7) 2015; 33 Travers (B82) 2019; 79 Topalian (B69) 2012; 366 Sun (B84) 2017; 8 Overdijk (B80) 2015; 7 Chao (B45) 2012; 24 Chao (B70) 2011; 12 Puellmann (B18) 2006; 103 Binenbaum (B52) 2018; 78 Morrison (B20) 2016; 15 Cassetta (B66) 2018; 17 Gordon (B3) 2005; 5 Ogden (B54) 2001; 194 Su (B67) 2005; 11 Gao (B28) 2018; 108 Murray (B25) 2014; 41 Ginhoux (B5) 2014; 14 Valeta-Magara (B35) 2019; 79 Boussiotis (B41) 2014; 20 Sung (B39) 2013; 19 Yu (B42) 2015; 6 Liu (B73) 2015; 10 Deng (B34) 2013; 34 Salaroglio (B27) 2019; 14 Syn (B49) 2016; 37 Williams (B31) 2016; 2 Pienta (B85) 2006; 12 Tymoszuk (B64) 2014; 44 Kaminski (B19) 2013; 218 Barkal (B46) 2018; 19 Santoni (B4) 2014; 2014 Shao (B33) 2015; 364 Mok (B63) 2014; 74 Advani (B76) 2018; 379 Zhu (B65) 2014; 74 Katsuya (B44) 2016; 99 Mantovani (B23) 2010; 21 |
| References_xml | – volume: 8 start-page: 18486 year: 2017 ident: B56 article-title: Targeting macrophage anti-tumor activity to suppress melanoma progression publication-title: Oncotarget. doi: 10.18632/oncotarget.14474 – volume: 14 start-page: 392 year: 2014 ident: B5 article-title: Monocytes and macrophages: developmental pathways and tissue homeostasis publication-title: Nat Rev Immunol. doi: 10.1038/nri3671 – volume: 184 start-page: 1927 year: 1996 ident: B16 article-title: Fc chimeric protein containing the cysteine-rich domain of the murine mannose receptor binds to macrophages from splenic marginal zone and lymph node subcapsular sinus and to germinal centers publication-title: J Exp Med. doi: 10.1084/jem.184.5.1927 – volume: 12 start-page: 1665 year: 2006 ident: B85 article-title: Mechanisms underlying the development of androgen-independent prostate cancer publication-title: Clin Cancer Res. doi: 10.1158/1078-0432.CCR-06-0067 – volume: 40 start-page: 35 year: 2019 ident: B57 article-title: Subcapsular sinus macrophages: the seat of innate and adaptive memory in murine lymph nodes publication-title: Trends Immunol. doi: 10.1016/j.it.2018.11.004 – volume: 6 start-page: 328 year: 2015 ident: B2 article-title: From the reticuloendothelial to mononuclear phagocyte system - the unaccounted years publication-title: Front Immunol. doi: 10.3389/fimmu.2015.00328 – volume: 19 start-page: 76 year: 2018 ident: B46 article-title: Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy publication-title: Nat Immunol. doi: 10.1038/s41590-017-0004-z – volume: 366 start-page: 2443 year: 2012 ident: B69 article-title: Safety, activity, and immune correlates of anti–PD-1 antibody in cancer publication-title: N Engl J Med. doi: 10.1056/NEJMoa1200690 – volume: 83 start-page: 335 year: 2012 ident: B60 article-title: CCL2 increases MMP-9 expression and cell motility in human chondrosarcoma cells via the Ras/Raf/MEK/ERK/NF-κB signaling pathway publication-title: Biochem Pharmacol. doi: 10.1016/j.bcp.2011.11.013 – volume: 108 start-page: 618 year: 2018 ident: B28 article-title: PMA treated THP-1-derived-IL-6 promotes EMT of SW48 through STAT3/ERK-dependent activation of Wnt/β-catenin signaling pathway publication-title: Biomed Pharmacother. doi: 10.1016/j.biopha.2018.09.067 – volume: 18 start-page: 94 year: 2019 ident: B24 article-title: Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment publication-title: Cancer. doi: 10.1186/s12943-019-1022-2 – volume: 71 start-page: 1374 year: 2011 ident: B74 article-title: Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-2238 – volume: 2 start-page: 15025 year: 2016 ident: B31 article-title: Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy publication-title: NPJ Breast Cancer. doi: 10.1038/npjbcancer.2015.25 – volume: 6 start-page: e18173 year: 2017 ident: B75 article-title: Replication study: the CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors publication-title: Elife. doi: 10.7554/eLife.18173 – volume: 190 start-page: 5207 year: 2013 ident: B53 article-title: Bruton's tyrosine kinase is required for apoptotic cell uptake via regulating the phosphorylation and localization of calreticulin publication-title: J Immunol. doi: 10.4049/jimmunol.1300057 – volume: 4 start-page: eaax8189 year: 2019 ident: B68 article-title: GCN2 drives macrophage and MDSC function and immunosuppression in the tumor microenvironment publication-title: Sci Immunol. doi: 10.1126/sciimmunol.aax8189 – volume: 341 start-page: 88 year: 2013 ident: B72 article-title: Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies publication-title: Science. doi: 10.1126/science.1238856 – volume: 364 start-page: 165 year: 2015 ident: B33 article-title: Interleukin-8 upregulates integrin beta3 expression and promotes estrogen receptor-negative breast cancer cell invasion by activating the PI3K/Akt/NF-kappaB pathway publication-title: Cancer Lett. doi: 10.1016/j.canlet.2015.05.009 – volume: 11 start-page: 8273 year: 2005 ident: B67 article-title: Differential expression of CXCR4 is associated with the metastatic potential of human non-small cell lung cancer cells publication-title: Clin Cancer Res. doi: 10.1158/1078-0432.CCR-05-0537 – volume: 114 start-page: 1135 year: 2013 ident: B62 article-title: Gefitinib inhibits the cross-talk between mesenchymal stem cells and prostate cancer cells leading to tumor cell proliferation and inhibition of docetaxel activity publication-title: J Cell Biochem. doi: 10.1002/jcb.24456 – volume: 24 start-page: 225 year: 2012 ident: B45 article-title: The CD47-SIRPalpha pathway in cancer immune evasion and potential therapeutic implications publication-title: Curr Opin Immunol. doi: 10.1016/j.coi.2012.01.010 – volume: 103 start-page: 14441 year: 2006 ident: B18 article-title: A variable immunoreceptor in a subpopulation of human neutrophils publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.0603406103 – volume: 93 start-page: 844 year: 2013 ident: B38 article-title: M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway publication-title: Lab Invest. doi: 10.1038/labinvest.2013.69 – volume: 41 start-page: 14 year: 2014 ident: B25 article-title: Macrophage activation and polarization: nomenclature and experimental guidelines publication-title: Immunity. doi: 10.1016/j.immuni.2014.06.008 – volume: 31 start-page: e1904364 year: 2019 ident: B83 article-title: CSF1R- and SHP2-inhibitor-loaded nanoparticles enhance cytotoxic activity and phagocytosis in tumor-associated macrophages publication-title: Adv Mater. doi: 10.1002/adma.201904364 – volume: 32 start-page: 1789 year: 2011 ident: B37 article-title: TLR signaling-mediated differential histone modification at IL-10 and IL-12 promoter region leads to functional impairments in tumor-associated macrophages publication-title: Carcinogenesis. doi: 10.1093/carcin/bgr208 – volume: 8 start-page: 477 year: 2017 ident: B84 article-title: Engineered proteins with sensing and activating modules for automated reprogramming of cellular functions publication-title: Nat Commun. doi: 10.1038/s41467-017-00569-6 – volume: 6 start-page: 263 year: 2015 ident: B14 article-title: Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages publication-title: Front Immunol. doi: 10.3389/fimmu.2015.00263 – volume: 33 start-page: 66 year: 2012 ident: B17 article-title: CD169+ macrophages at the crossroads of antigen presentation publication-title: Trends Immunol. doi: 10.1016/j.it.2011.11.001 – volume: 379 start-page: 1711 year: 2018 ident: B76 article-title: cd47 blockade by hu5f9-g4 and rituximab in non-hodgkin's lymphoma publication-title: N Engl J Med. doi: 10.1056/NEJMoa1807315 – volume: 20 start-page: 265 year: 2014 ident: B41 article-title: Biochemical signaling of PD-1 on T cells and its functional implications publication-title: Cancer J. doi: 10.1097/PPO.0000000000000059 – volume: 74 start-page: 153 year: 2014 ident: B63 article-title: Inhibition of CSF-1 receptor improves the antitumor efficacy of adoptive cell transfer immunotherapy publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-1816 – volume: 178 start-page: 5245 year: 2007 ident: B9 article-title: Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation publication-title: J Immunol. doi: 10.4049/jimmunol.178.8.5245 – volume: 44 start-page: 2247 year: 2014 ident: B64 article-title: In situ proliferation contributes to accumulation of tumor-associated macrophages in spontaneous mammary tumors publication-title: Eur J Immunol. doi: 10.1002/eji.201344304 – volume: 9 start-page: 1658 year: 2011 ident: B29 article-title: IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway publication-title: Mol Cancer Res. doi: 10.1158/1541-7786.MCR-11-0271 – volume: 34 start-page: 2791 year: 2013 ident: B34 article-title: STAT3 is associated with lymph node metastasis in gastric cancer publication-title: Tumour Biol. doi: 10.1007/s13277-013-0837-5 – volume: 51 start-page: 170 year: 2011 ident: B40 article-title: Interleukin 10 in the tumor microenvironment: a target for anticancer immunotherapy publication-title: Immunol Res. doi: 10.1007/s12026-011-8262-6 – volume: 352 start-page: 242 year: 2016 ident: B59 article-title: SCS macrophages suppress melanoma by restricting tumor-derived vesicle–B cell interactions publication-title: Science. doi: 10.1126/science.aaf1328 – volume: 545 start-page: 495 year: 2017 ident: B43 article-title: PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity publication-title: Nature. doi: 10.1038/nature22396 – volume: 10 start-page: 1 year: 2015 ident: B73 article-title: Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential publication-title: PLoS ONE. doi: 10.1371/journal.pone.0137345 – volume: 21 start-page: 27 year: 2010 ident: B23 article-title: The chemokine system in cancer biology and therapy publication-title: Cytokine Growth Factor Rev. doi: 10.1016/j.cytogfr.2009.11.007 – volume: 27 start-page: 2065 year: 2017 ident: B78 article-title: SIRPA-inhibited, marrow-derived macrophages engorge, accumulate, and differentiate in antibody-targeted regression of solid tumors publication-title: Curr Biol. doi: 10.1016/j.cub.2017.06.005 – volume: 4 start-page: e995559 year: 2015 ident: B81 article-title: The combination of a novel immunomodulator with a regulatory T cell suppressing antibody (DTA-1) regress advanced stage B16F10 solid tumor by repolarizing tumor associated macrophages in situ publication-title: Oncoimmunology. doi: 10.1080/2162402X.2014.995559 – volume: 30 start-page: 255 year: 2014 ident: B58 article-title: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles publication-title: Annu Rev Cell Dev Biol. doi: 10.1146/annurev-cellbio-101512-122326 – volume: 74 start-page: 5057 year: 2014 ident: B65 article-title: CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-3723 – volume: 79 start-page: 3445 year: 2019 ident: B82 article-title: DFMO and 5-azacytidine increase M1 macrophages in the tumor microenvironment of murine ovarian cancer publication-title: Cancer Res. doi: 10.1158/1538-7445.AM2019-2805 – volume: 37 start-page: 606 year: 2016 ident: B49 article-title: Exosome-mediated metastasis: from epithelial-mesenchymal transition to escape from immunosurveillance publication-title: Trends Pharmacol Sci. doi: 10.1016/j.tips.2016.04.006 – volume: 14 start-page: 986 year: 2013 ident: B8 article-title: Tissue-resident macrophages publication-title: Nat Immunol. doi: 10.1038/ni.2705 – volume: 210 start-page: 2477 year: 2013 ident: B12 article-title: IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1 publication-title: J Exp Med. doi: 10.1084/jem.20121999 – volume: 28 start-page: 1988 year: 2017 ident: B32 article-title: Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients publication-title: Ann Oncol. doi: 10.1093/annonc/mdx190 – volume: 174 start-page: 1293 year: 2018 ident: B21 article-title: Single-cell map of diverse immune phenotypes in the breast tumor microenvironment publication-title: Cell. doi: 10.1016/j.cell.2018.05.060 – volume: 174 start-page: 2004 year: 2005 ident: B86 article-title: Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system publication-title: J Immunol. doi: 10.4049/jimmunol.174.4.2004 – volume: 18 start-page: 349 year: 2008 ident: B11 article-title: Macrophage polarization in tumour progression publication-title: Semin Cancer Biol. doi: 10.1016/j.semcancer.2008.03.004 – volume: 79 start-page: 541 year: 2017 ident: B13 article-title: Macrophage polarization publication-title: Annu Rev Physiol. doi: 10.1146/annurev-physiol-022516-034339 – volume: 12 start-page: 58 year: 2011 ident: B70 article-title: Programmed cell removal: a new obstacle in the road to developing cancer publication-title: Nat Rev Cancer. doi: 10.1038/nrc3171 – volume: 106 start-page: 309 year: 2019 ident: B6 article-title: Monocyte heterogeneity and functions in cancer publication-title: J Leukoc Biol. doi: 10.1002/JLB.4RI0818-311R – volume: 70 start-page: 178 year: 2018 ident: B22 article-title: Tumor-associated macrophages in breast cancer: innocent bystander or important player? publication-title: Cancer Treat Rev. doi: 10.1016/j.ctrv.2018.08.010 – volume: 62 start-page: 607 year: 2015 ident: B50 article-title: Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma publication-title: J Immunol. doi: 10.1016/j.jhep.2014.10.029 – volume: 79 start-page: 3360 year: 2019 ident: B35 article-title: Inflammatory breast cancer promotes development of M2 tumor-associated macrophages and cancer mesenchymal cells through a complex cytokine network publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-2158 – volume: 99 start-page: 3500 year: 2002 ident: B71 article-title: Lethal autoimmune hemolytic anemia in CD47-deficient nonobese diabetic (NOD) mice publication-title: Blood. doi: 10.1182/blood.V99.10.3500 – volume: 2014 start-page: 768758 year: 2014 ident: B4 article-title: CXC and CC chemokines as angiogenic modulators in nonhaematological tumors publication-title: Bio Med Res Int. doi: 10.1155/2014/768758 – volume: 33 start-page: 643 year: 2015 ident: B7 article-title: Macrophages: development and tissue specialization publication-title: Annu Rev Immunol. doi: 10.1146/annurev-immunol-032414-112220 – volume: 7 start-page: 311 year: 2015 ident: B80 article-title: Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma publication-title: MAbs. doi: 10.1080/19420862.2015.1007813 – volume: 572 start-page: 392 year: 2019 ident: B47 article-title: CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy publication-title: Nature. doi: 10.1038/s41586-019-1456-0 – volume: 194 start-page: 781 year: 2001 ident: B54 article-title: C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells publication-title: J Exp Med. doi: 10.1084/jem.194.6.781 – volume: 13 start-page: 210 year: 2014 ident: B55 article-title: Mycobacterium bovis BCG promotes tumor cell survival from tumor necrosis factor-alpha-induced apoptosis publication-title: Mol Cancer. doi: 10.1186/1476-4598-13-210 – volume: 14 start-page: 1458 year: 2019 ident: B27 article-title: Potential diagnostic and prognostic role of micro-environment in malignant pleural mesothelioma publication-title: J Thorac Oncol. doi: 10.1016/j.jtho.2019.03.029 – volume: 22 start-page: 7809 year: 2003 ident: B30 article-title: Interleukin-6 acts as an antiapoptotic factor in human esophageal carcinoma cells through the activation of both STAT3 and mitogen-activated protein kinase pathways publication-title: Oncogene. doi: 10.1038/sj.onc.1207084 – volume: 164 start-page: 1862 year: 1986 ident: B15 article-title: Properties and distribution of a lectin-like hemagglutinin differentially expressed by murine stromal tissue macrophages publication-title: J Exp Med. doi: 10.1084/jem.164.6.1862 – volume: 5 start-page: 953 year: 2005 ident: B3 article-title: Monocyte and macrophage heterogeneity publication-title: Nat Rev Immunol. doi: 10.1038/nri1733 – volume: 141 start-page: 96 year: 2014 ident: B10 article-title: A critical role for suppressor of cytokine signalling 3 in promoting M1 macrophage activation and function in vitro and in vivo publication-title: Immunology. doi: 10.1111/imm.12173 – volume: 19 start-page: 4092 year: 2013 ident: B39 article-title: IL-10 promotes tumor aggressiveness via upregulation of CIP2A transcription in lung adenocarcinoma publication-title: Clin Cancer Res. doi: 10.1158/1078-0432.CCR-12-3439 – volume: 219 start-page: 278 year: 2015 ident: B48 article-title: Exosome mediated communication within the tumor microenvironment publication-title: J Control Release. doi: 10.1016/j.jconrel.2015.06.029 – volume: 25 start-page: 612 year: 2019 ident: B77 article-title: Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPα axis and a target for cancer immunotherapy publication-title: Nat Med. doi: 10.1038/s41591-019-0356-z – volume: 218 start-page: 418 year: 2013 ident: B19 article-title: On the horizon: flexible immune recognition outside lymphocytes publication-title: Immunobiology. doi: 10.1016/j.imbio.2012.05.024 – volume: 17 start-page: 887 year: 2018 ident: B66 article-title: Targeting macrophages: therapeutic approaches in cancer publication-title: Nat Rev Drug Discov. doi: 10.1038/nrd.2018.169 – volume: 65 start-page: 1710 year: 2016 ident: B26 article-title: Dual prognostic significance of tumour-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy publication-title: Gut. doi: 10.1136/gutjnl-2015-309193 – volume: 57 start-page: 1451 year: 2008 ident: B61 article-title: Zoledronic acid modulates antitumoral responses of prostate cancer-tumor associated macrophages publication-title: Cancer Immunol Immunother. doi: 10.1007/s00262-008-0482-9 – volume: 99 start-page: 4 year: 2016 ident: B44 article-title: Expression of programmed death 1 (PD-1) and its ligand (PD-L1) in thymic epithelial tumors: impact on treatment efficacy and alteration in expression after chemotherapy publication-title: Lung Cancer. doi: 10.1016/j.lungcan.2016.05.007 – volume: 15 start-page: 373 year: 2016 ident: B20 article-title: Immuno-oncologists eye up macrophage targets publication-title: Nat Rev Drug Discov. doi: 10.1038/nrd.2016.111 – volume: 6 start-page: 42067 year: 2015 ident: B42 article-title: PD-1 blockade attenuates immunosuppressive myeloid cells due to inhibition of CD47/SIRPalpha axis in HPV negative head and neck squamous cell carcinoma publication-title: Oncotarget. doi: 10.18632/oncotarget.5955 – volume: 78 start-page: 5287 year: 2018 ident: B52 article-title: Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-18-0124 – volume: 9 start-page: 434 year: 2018 ident: B51 article-title: Tumor-associated macrophages-derived exosomes promote the migration of gastric cancer cells by transfer of functional Apolipoprotein E publication-title: Cell Death Dis. doi: 10.1038/s41419-018-0465-5 – volume: 41 start-page: 59 year: 2015 ident: B1 article-title: Human mononuclear phagocyte system reunited publication-title: Semin Cell Dev Biol. doi: 10.1016/j.semcdb.2015.05.004 – volume: 50 start-page: 871 year: 2019 ident: B36 article-title: IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation publication-title: Immunity. doi: 10.1016/j.immuni.2019.03.020 – volume: 114 start-page: E10578 year: 2017 ident: B79 article-title: Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.1710877114 |
| SSID | ssj0000650103 |
| Score | 2.6609993 |
| SecondaryResourceType | review_article |
| Snippet | Macrophages, which have functions of engulfing and digesting foreign substances, can clear away harmful matter, including cellular debris and tumor cells.... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 188 |
| SubjectTerms | immunity immunity therapy macrophages Oncology tumor-associated macrophages tumors |
| Title | Tumor-Associated Macrophages: Recent Insights and Therapies |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32161718 https://www.proquest.com/docview/2376728813 https://pubmed.ncbi.nlm.nih.gov/PMC7052362 https://doaj.org/article/939921b1d2be4f65becf9ac7ff8e32cd |
| Volume | 10 |
| WOSCitedRecordID | wos000524721100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2234-943X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000650103 issn: 2234-943X databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2234-943X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000650103 issn: 2234-943X databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFH4aFZq4IGAbFEYVpB12yWicOHbgNBAVOxRx6KTerPiXQIIUNS1H_nbec9KunTZx4ZJD4sQv34vt78X29wC-EUV1pcxizb2JsSX2YyT1DFs8Dn95zvo6tSHZhLi5keNxcbuS6ovWhDXywA1wpwUppyY6sUy7zOcc6_RFaYT30qXMWOp9kfWsBFNNH8wpgUGj5YNRWHHqJxUpFjJayZWEPCt_hqGg1v8vivn3SsmVoWewA9stZ4x-NrbuwgdX7cHHYTsr_gnOR_PHyTReIO1sNCwpM9cd9hX1WYTMEJ8b_apqCsTrqKxsNArbrjBK_gy_B1ejy-u4TYoQG874LLYix5fXwktuDLMEjcvLQjOfSZuU3CVGWhxitC_7qdZF7mRqikIjL-Uplk2_QKeaVO4AIiNclmReW8q1gYBqkVthjEUm65AY-C78WGCkTKsYTokrHhRGDgSqIlAVgaoCqF34vrzhqRHL-H_RCwJ9WYxUrsMJ9L1qfa_e8n0XThYuU9gqaKqjrNxkXita6yOYlEnahf3GhcuqUkYxXYImiDXnrtmyfqW6vwvK24J-oufs8D2MP4ItgiNsj-dfoTObzt0xbJrn2X097cGGGMte-KjxOHy5egXDhf9C |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor-Associated+Macrophages%3A+Recent+Insights+and+Therapies&rft.jtitle=Frontiers+in+oncology&rft.au=Zhou%2C+Jiawei&rft.au=Tang%2C+Ziwei&rft.au=Gao%2C+Siyang&rft.au=Li%2C+Chunyu&rft.date=2020-02-25&rft.issn=2234-943X&rft.eissn=2234-943X&rft.volume=10&rft.spage=188&rft_id=info:doi/10.3389%2Ffonc.2020.00188&rft_id=info%3Apmid%2F32161718&rft.externalDocID=32161718 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-943X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-943X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-943X&client=summon |