Tumor-Associated Macrophages: Recent Insights and Therapies

Macrophages, which have functions of engulfing and digesting foreign substances, can clear away harmful matter, including cellular debris and tumor cells. Based on the condition of the internal environment, circulating monocytes give rise to mature macrophages, and when they are recruited into the t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in oncology Ročník 10; s. 188
Hlavní autoři: Zhou, Jiawei, Tang, Ziwei, Gao, Siyang, Li, Chunyu, Feng, Yiting, Zhou, Xikun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Frontiers Media S.A 25.02.2020
Témata:
ISSN:2234-943X, 2234-943X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Macrophages, which have functions of engulfing and digesting foreign substances, can clear away harmful matter, including cellular debris and tumor cells. Based on the condition of the internal environment, circulating monocytes give rise to mature macrophages, and when they are recruited into the tumor microenvironment and in suitable conditions, they are converted into tumor-associated macrophages (TAMs). Generally, macrophages grow into two main groups called classically activated macrophages (M1) and alternatively activated macrophages (M2). M2 and a small fraction of M1 cells, also known as TAMs, not only lack the function of phagocytizing tumor cells but also help these tumor cells escape from being killed and help them spread to other tissues and organs. In this review, we introduce several mechanisms by which macrophages play a role in the immune regulation of tumor cells, including both killing factors and promoting effects. Furthermore, the targeted therapy for treating tumors based on macrophages is also referred to in our review. We confirm that further studies of macrophage-focused therapeutic strategies and their use in clinical practice are needed to verify their superior efficacy and potential in cancer treatment.
AbstractList Macrophages, which have functions of engulfing and digesting foreign substances, can clear away harmful matter, including cellular debris and tumor cells. Based on the condition of the internal environment, circulating monocytes give rise to mature macrophages, and when they are recruited into the tumor microenvironment and in suitable conditions, they are converted into tumor-associated macrophages (TAMs). Generally, macrophages grow into two main groups called classically activated macrophages (M1) and alternatively activated macrophages (M2). M2 and a small fraction of M1 cells, also known as TAMs, not only lack the function of phagocytizing tumor cells but also help these tumor cells escape from being killed and help them spread to other tissues and organs. In this review, we introduce several mechanisms by which macrophages play a role in the immune regulation of tumor cells, including both killing factors and promoting effects. Furthermore, the targeted therapy for treating tumors based on macrophages is also referred to in our review. We confirm that further studies of macrophage-focused therapeutic strategies and their use in clinical practice are needed to verify their superior efficacy and potential in cancer treatment.
Macrophages, which have functions of engulfing and digesting foreign substances, can clear away harmful matter, including cellular debris and tumor cells. Based on the condition of the internal environment, circulating monocytes give rise to mature macrophages, and when they are recruited into the tumor microenvironment and in suitable conditions, they are converted into tumor-associated macrophages (TAMs). Generally, macrophages grow into two main groups called classically activated macrophages (M1) and alternatively activated macrophages (M2). M2 and a small fraction of M1 cells, also known as TAMs, not only lack the function of phagocytizing tumor cells but also help these tumor cells escape from being killed and help them spread to other tissues and organs. In this review, we introduce several mechanisms by which macrophages play a role in the immune regulation of tumor cells, including both killing factors and promoting effects. Furthermore, the targeted therapy for treating tumors based on macrophages is also referred to in our review. We confirm that further studies of macrophage-focused therapeutic strategies and their use in clinical practice are needed to verify their superior efficacy and potential in cancer treatment.Macrophages, which have functions of engulfing and digesting foreign substances, can clear away harmful matter, including cellular debris and tumor cells. Based on the condition of the internal environment, circulating monocytes give rise to mature macrophages, and when they are recruited into the tumor microenvironment and in suitable conditions, they are converted into tumor-associated macrophages (TAMs). Generally, macrophages grow into two main groups called classically activated macrophages (M1) and alternatively activated macrophages (M2). M2 and a small fraction of M1 cells, also known as TAMs, not only lack the function of phagocytizing tumor cells but also help these tumor cells escape from being killed and help them spread to other tissues and organs. In this review, we introduce several mechanisms by which macrophages play a role in the immune regulation of tumor cells, including both killing factors and promoting effects. Furthermore, the targeted therapy for treating tumors based on macrophages is also referred to in our review. We confirm that further studies of macrophage-focused therapeutic strategies and their use in clinical practice are needed to verify their superior efficacy and potential in cancer treatment.
Author Tang, Ziwei
Zhou, Xikun
Zhou, Jiawei
Gao, Siyang
Li, Chunyu
Feng, Yiting
AuthorAffiliation 2 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China College of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University , Chengdu , China
1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
AuthorAffiliation_xml – name: 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
– name: 2 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China College of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University , Chengdu , China
Author_xml – sequence: 1
  givenname: Jiawei
  surname: Zhou
  fullname: Zhou, Jiawei
– sequence: 2
  givenname: Ziwei
  surname: Tang
  fullname: Tang, Ziwei
– sequence: 3
  givenname: Siyang
  surname: Gao
  fullname: Gao, Siyang
– sequence: 4
  givenname: Chunyu
  surname: Li
  fullname: Li, Chunyu
– sequence: 5
  givenname: Yiting
  surname: Feng
  fullname: Feng, Yiting
– sequence: 6
  givenname: Xikun
  surname: Zhou
  fullname: Zhou, Xikun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32161718$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtrGzEUhUVIyXudXZhlN-PoYc1ILRRCyMOQUggOZCf0uLIVxiNXGgf676uJk5AUqo3E1bnfke45RLt97AGhU4InjAl57mNvJxRTPMGYCLGDDihl01pO2ePuh_M-Osn5CZfVcEww20P7jJKGtEQcoO_zzSqm-iLnaIMewFU_tU1xvdQLyN-qe7DQD9Wsz2GxHHKle1fNl5D0OkA-Rl-87jKcvO5H6OH6an55W9_9upldXtzVllM-1K5tbOtN6wW3ljpKDIFGS0P9VDiiORArnJTYeI2ZMbIBwayURhDHWdGyIzTbcl3UT2qdwkqnPyrqoF4KMS2UTkOwHSjJpBwNHDUw9Q03YL3Uxd4LYNS6wvqxZa03ZgVu_F3S3Sfo55s-LNUiPqsWc8oaWgBfXwEp_t5AHtQqZAtdp3uIm6woa5uWCkFYkZ599Ho3eZt-EZxvBWXiOSfw7xKC1RixGiNWY8TqJeLSwf_psGHQQ4jjY0P3376_1bGsmQ
CitedBy_id crossref_primary_10_1038_s41598_023_43495_y
crossref_primary_10_3389_fimmu_2021_618081
crossref_primary_10_1016_j_bcp_2020_114354
crossref_primary_10_1007_s00280_021_04386_z
crossref_primary_10_3389_fimmu_2025_1522699
crossref_primary_10_1007_s10330_021_0539_9
crossref_primary_10_3390_ijms21165918
crossref_primary_10_1186_s13062_022_00345_7
crossref_primary_10_3390_cells11213499
crossref_primary_10_1158_2326_6066_CIR_22_0759
crossref_primary_10_1002_aisy_202100134
crossref_primary_10_3389_fonc_2021_668349
crossref_primary_10_1038_s41416_025_02972_z
crossref_primary_10_3389_fonc_2021_771488
crossref_primary_10_3389_fimmu_2022_955841
crossref_primary_10_3389_fonc_2022_772615
crossref_primary_10_1016_j_apsb_2020_08_010
crossref_primary_10_3389_froh_2021_642238
crossref_primary_10_3390_cancers13194880
crossref_primary_10_3389_fgene_2022_1010440
crossref_primary_10_3389_fimmu_2024_1519671
crossref_primary_10_1186_s40164_024_00490_x
crossref_primary_10_1007_s00018_022_04514_9
crossref_primary_10_1158_2326_6066_CIR_23_0121
crossref_primary_10_1016_j_heliyon_2023_e22062
crossref_primary_10_1016_j_canlet_2020_11_005
crossref_primary_10_3389_fimmu_2022_836223
crossref_primary_10_3390_medicines10060036
crossref_primary_10_1038_s41416_022_01887_3
crossref_primary_10_3390_ijms24119521
crossref_primary_10_1038_s41598_022_16766_3
crossref_primary_10_1016_j_lfs_2021_119800
crossref_primary_10_7554_eLife_62420
crossref_primary_10_1007_s00432_022_04399_y
crossref_primary_10_1016_j_cellsig_2024_111546
crossref_primary_10_1080_21655979_2021_1974654
crossref_primary_10_3390_v13040654
crossref_primary_10_3389_fimmu_2023_1193235
crossref_primary_10_3390_cancers14010194
crossref_primary_10_3389_fimmu_2021_773570
crossref_primary_10_3389_fimmu_2022_1009701
crossref_primary_10_3390_pharmaceutics13101670
crossref_primary_10_3389_fimmu_2023_1111494
crossref_primary_10_3389_fgene_2021_658862
crossref_primary_10_3390_cancers14092220
crossref_primary_10_1186_s13045_022_01247_x
crossref_primary_10_1002_advs_202303523
crossref_primary_10_3389_fcell_2021_639815
crossref_primary_10_3390_biomedicines10061252
crossref_primary_10_3389_fonc_2021_638856
crossref_primary_10_1371_journal_pone_0247233
crossref_primary_10_1097_GOX_0000000000005821
crossref_primary_10_3389_fimmu_2024_1498431
crossref_primary_10_3389_fmed_2021_737859
crossref_primary_10_3390_ijms21186659
crossref_primary_10_3390_pharmaceutics13091340
crossref_primary_10_1002_ame2_12334
crossref_primary_10_1002_jsp2_70061
crossref_primary_10_1080_21645515_2025_2512656
crossref_primary_10_3390_ijms21197307
crossref_primary_10_3390_cancers15194744
crossref_primary_10_3390_molecules28052159
crossref_primary_10_3390_cells9041062
crossref_primary_10_3390_ijms241914993
crossref_primary_10_1002_btm2_10285
crossref_primary_10_1186_s12935_022_02769_7
crossref_primary_10_3390_cancers13081921
crossref_primary_10_1016_j_ejphar_2022_175087
crossref_primary_10_3390_cancers17050880
crossref_primary_10_2217_nnm_2023_0276
crossref_primary_10_1016_j_lrr_2021_100268
crossref_primary_10_1080_08830185_2020_1845670
crossref_primary_10_1016_j_prp_2024_155378
crossref_primary_10_1186_s12943_025_02413_8
crossref_primary_10_1016_j_heliyon_2024_e29901
crossref_primary_10_1039_D2RA07863E
crossref_primary_10_1016_j_lfs_2024_123089
crossref_primary_10_1007_s12015_024_10806_3
crossref_primary_10_1007_s12026_022_09277_w
crossref_primary_10_1038_s41392_022_01102_y
crossref_primary_10_3389_fimmu_2021_670324
crossref_primary_10_1080_1744666X_2022_2044796
crossref_primary_10_1007_s11302_024_10054_7
crossref_primary_10_1002_anbr_202000029
crossref_primary_10_1186_s12885_025_13438_z
crossref_primary_10_1007_s13105_022_00898_1
crossref_primary_10_3389_fonc_2021_693517
crossref_primary_10_2147_IJN_S434917
crossref_primary_10_1016_j_intimp_2023_110052
crossref_primary_10_1002_advs_202307920
crossref_primary_10_1186_s12967_022_03813_w
crossref_primary_10_1186_s40246_025_00806_w
crossref_primary_10_3748_wjg_v29_i40_5593
crossref_primary_10_1097_CM9_0000000000003195
crossref_primary_10_1021_acs_biomac_4c01816
crossref_primary_10_1097_MD_0000000000042009
crossref_primary_10_3390_cancers14040985
crossref_primary_10_1186_s12943_022_01682_x
crossref_primary_10_1111_odi_15265
crossref_primary_10_1002_glia_24369
crossref_primary_10_3390_molecules27061943
crossref_primary_10_3390_biomedicines10081977
crossref_primary_10_1093_asj_sjae145
crossref_primary_10_1016_j_critrevonc_2024_104437
crossref_primary_10_1016_j_jconrel_2023_08_045
crossref_primary_10_1080_2162402X_2022_2127284
crossref_primary_10_1186_s12964_023_01384_x
crossref_primary_10_1007_s00210_023_02676_2
crossref_primary_10_1111_cas_15848
crossref_primary_10_1111_jcmm_15751
crossref_primary_10_1002_advs_202413367
crossref_primary_10_1002_iid3_70242
crossref_primary_10_3389_fimmu_2021_693709
crossref_primary_10_1016_j_bioactmat_2022_07_014
crossref_primary_10_1038_s41577_025_01132_x
crossref_primary_10_1042_CS20220531
crossref_primary_10_1016_j_biomaterials_2024_122688
crossref_primary_10_1016_j_advms_2024_02_006
crossref_primary_10_1186_s12929_022_00859_2
crossref_primary_10_1007_s11596_023_2763_0
crossref_primary_10_3390_biomedicines11020308
crossref_primary_10_1016_j_biopha_2021_112588
crossref_primary_10_3390_ijms22136965
crossref_primary_10_3389_fimmu_2025_1623436
crossref_primary_10_3390_cancers13225625
crossref_primary_10_1097_BS9_0000000000000109
crossref_primary_10_1002_ijc_34711
crossref_primary_10_1111_cup_14155
crossref_primary_10_3390_v15010218
crossref_primary_10_3389_fonc_2022_965277
crossref_primary_10_1016_j_canlet_2023_216149
crossref_primary_10_1080_1744666X_2024_2326626
crossref_primary_10_1186_s13045_024_01559_0
crossref_primary_10_1186_s13018_024_04950_2
crossref_primary_10_1186_s12943_023_01723_z
crossref_primary_10_1002_jbm_a_37886
crossref_primary_10_1021_acsptsci_5c00227
crossref_primary_10_1002_smll_202006484
crossref_primary_10_1016_j_semcdb_2023_05_010
crossref_primary_10_1007_s10565_025_10012_y
crossref_primary_10_3389_fcimb_2025_1608195
crossref_primary_10_3390_diseases10030035
crossref_primary_10_1016_j_tox_2021_152994
crossref_primary_10_3390_ijms25147907
crossref_primary_10_1089_ten_tea_2020_0095
crossref_primary_10_1016_j_intimp_2021_108374
crossref_primary_10_2217_imt_2021_0277
crossref_primary_10_3389_fimmu_2021_778078
crossref_primary_10_1089_dna_2023_0071
crossref_primary_10_1080_10715762_2023_2193308
crossref_primary_10_1042_BST20221083
crossref_primary_10_3389_fimmu_2025_1545928
crossref_primary_10_3390_ijms251910781
crossref_primary_10_3390_ijms22105078
crossref_primary_10_3389_fonc_2020_01770
crossref_primary_10_3390_ijms22105196
crossref_primary_10_1007_s10600_024_04289_4
crossref_primary_10_3389_fonc_2020_554521
crossref_primary_10_1007_s00761_020_00895_3
crossref_primary_10_3390_genes13010086
crossref_primary_10_3390_v15102011
crossref_primary_10_1186_s40001_024_01897_2
crossref_primary_10_1002_path_5810
crossref_primary_10_3390_cancers14010250
crossref_primary_10_3390_cancers14163871
crossref_primary_10_1097_PPO_0000000000000543
crossref_primary_10_1002_jbmr_4773
crossref_primary_10_1016_j_cellsig_2023_111011
crossref_primary_10_1186_s40364_024_00637_2
crossref_primary_10_1039_D1NR06769A
crossref_primary_10_1016_j_apsb_2025_05_006
crossref_primary_10_1186_s13059_022_02677_z
crossref_primary_10_1182_blood_2023022861
crossref_primary_10_1016_j_ejphar_2023_176076
crossref_primary_10_1155_2021_4405491
crossref_primary_10_3390_cancers14184344
crossref_primary_10_1002_adhm_202101066
crossref_primary_10_3390_ijms23094680
crossref_primary_10_3390_biomedicines9101387
crossref_primary_10_1016_j_addr_2021_114003
crossref_primary_10_1016_j_intimp_2022_108889
crossref_primary_10_1016_j_mtbio_2024_101410
crossref_primary_10_1248_bpb_b25_00112
crossref_primary_10_3390_ijms232415802
crossref_primary_10_1158_2159_8290_CD_22_0196
crossref_primary_10_3390_cancers13010043
crossref_primary_10_1016_j_nano_2021_102492
crossref_primary_10_1016_j_heliyon_2023_e21153
crossref_primary_10_3389_fmed_2024_1481609
crossref_primary_10_3389_fcell_2020_00672
crossref_primary_10_1002_ardp_202300569
crossref_primary_10_3390_cancers14122909
crossref_primary_10_1016_j_jconrel_2021_05_033
crossref_primary_10_1007_s12079_021_00648_w
crossref_primary_10_1007_s00432_024_05777_4
crossref_primary_10_1080_17435889_2024_2393076
crossref_primary_10_1097_PGP_0000000000000809
crossref_primary_10_3389_fimmu_2023_1258786
crossref_primary_10_1016_j_cej_2024_149901
crossref_primary_10_1186_s12929_022_00866_3
crossref_primary_10_1002_smll_202205904
crossref_primary_10_3390_jcm11205986
crossref_primary_10_1007_s11033_022_07865_5
crossref_primary_10_1186_s12885_022_10461_2
crossref_primary_10_3390_ijms22083836
crossref_primary_10_1055_s_0040_1721799
crossref_primary_10_1111_cas_14911
crossref_primary_10_1038_s41420_021_00700_z
crossref_primary_10_3389_fgene_2022_864383
crossref_primary_10_3390_cancers13092040
crossref_primary_10_1080_14737140_2020_1822743
crossref_primary_10_1186_s12935_022_02815_4
crossref_primary_10_1038_s41392_025_02325_5
crossref_primary_10_3390_pharmaceutics12121186
crossref_primary_10_3390_life13051097
crossref_primary_10_3390_biomedicines9080935
crossref_primary_10_1128_MCB_00536_20
crossref_primary_10_1155_2022_3610038
crossref_primary_10_1007_s12672_024_01190_y
crossref_primary_10_1186_s12929_022_00855_6
crossref_primary_10_3390_cancers15215294
crossref_primary_10_1186_s12935_023_02943_5
crossref_primary_10_1089_dna_2024_0211
crossref_primary_10_3389_fonc_2020_589601
crossref_primary_10_3389_fonc_2022_1034842
crossref_primary_10_3390_cancers12113401
crossref_primary_10_3389_fmolb_2024_1404319
crossref_primary_10_1016_j_semcancer_2022_01_006
crossref_primary_10_3390_ijms241310763
crossref_primary_10_1002_cnr2_2066
crossref_primary_10_1016_j_nantod_2021_101209
crossref_primary_10_1016_j_ijbiomac_2022_03_057
crossref_primary_10_1016_j_intimp_2022_109139
crossref_primary_10_1097_MD_0000000000036045
crossref_primary_10_1002_cbin_12094
crossref_primary_10_1007_s13205_022_03217_z
crossref_primary_10_1186_s12964_021_00768_1
crossref_primary_10_37349_etat_2025_1002308
crossref_primary_10_3389_fimmu_2023_1178776
crossref_primary_10_3390_cancers16223787
crossref_primary_10_1155_2022_6512300
crossref_primary_10_1186_s12967_024_04856_x
crossref_primary_10_1002_adhm_202304436
crossref_primary_10_4251_wjgo_v15_i4_596
crossref_primary_10_3389_fimmu_2022_907182
crossref_primary_10_3389_fphar_2022_868695
crossref_primary_10_1111_1440_1681_13760
crossref_primary_10_1007_s00281_023_00988_2
crossref_primary_10_3390_ijms24054593
crossref_primary_10_1002_jev2_12379
crossref_primary_10_3389_fendo_2023_1276225
crossref_primary_10_1038_s41420_024_02092_2
crossref_primary_10_3390_cancers13164225
crossref_primary_10_1186_s13578_022_00824_4
crossref_primary_10_3390_cancers14143331
crossref_primary_10_1007_s10238_024_01417_w
crossref_primary_10_1016_j_nantod_2022_101621
crossref_primary_10_1186_s12943_022_01655_0
crossref_primary_10_1007_s00066_024_02289_5
crossref_primary_10_1016_j_imbio_2023_152780
crossref_primary_10_3389_fcimb_2023_1141034
crossref_primary_10_1111_cbdd_14330
crossref_primary_10_3390_biom10050666
crossref_primary_10_3390_vaccines12121341
crossref_primary_10_1016_j_chemphyslip_2022_105194
crossref_primary_10_1002_cac2_12591
crossref_primary_10_1038_s41420_023_01594_9
crossref_primary_10_3390_ijms22083805
crossref_primary_10_1016_j_ctrv_2021_102219
crossref_primary_10_3390_v16050717
crossref_primary_10_1002_JLB_3RU1120_773R
crossref_primary_10_2147_IJGM_S478000
crossref_primary_10_1016_j_heliyon_2024_e30337
crossref_primary_10_3389_fimmu_2022_985863
crossref_primary_10_3390_cancers14112811
crossref_primary_10_3390_life13020422
crossref_primary_10_3389_fonc_2021_628138
crossref_primary_10_7717_peerj_18090
crossref_primary_10_3390_cancers13205159
crossref_primary_10_1016_j_tranon_2022_101355
crossref_primary_10_1016_j_jphotochem_2023_114955
crossref_primary_10_3390_cancers14225654
crossref_primary_10_1007_s40995_022_01381_8
crossref_primary_10_2147_IJN_S421173
crossref_primary_10_3390_cancers16244156
crossref_primary_10_1186_s13045_022_01304_5
crossref_primary_10_1186_s41181_022_00163_2
crossref_primary_10_3390_cells11233890
crossref_primary_10_1016_j_clgc_2024_01_005
crossref_primary_10_1084_jem_20230420
crossref_primary_10_3389_fphys_2023_1128984
crossref_primary_10_1007_s00262_024_03879_z
crossref_primary_10_1002_cbf_3978
crossref_primary_10_1016_j_lfs_2024_122896
crossref_primary_10_3389_fbioe_2022_959324
crossref_primary_10_3390_ijms241411233
crossref_primary_10_1016_j_bbcan_2022_188839
crossref_primary_10_3390_life14010089
crossref_primary_10_1016_j_intimp_2025_115301
crossref_primary_10_3390_vaccines9060668
crossref_primary_10_1002_cac2_12458
crossref_primary_10_1002_cac2_12579
crossref_primary_10_3389_fimmu_2021_643771
crossref_primary_10_1016_j_matdes_2020_109388
crossref_primary_10_1002_mog2_70028
crossref_primary_10_1021_acs_jmedchem_4c00706
crossref_primary_10_3389_frai_2021_685298
crossref_primary_10_3390_cancers14112711
crossref_primary_10_1186_s12943_023_01735_9
crossref_primary_10_3390_cancers13205174
crossref_primary_10_1016_j_ygeno_2022_110428
crossref_primary_10_1002_adbi_202200060
crossref_primary_10_1007_s10238_022_00906_0
crossref_primary_10_1016_j_omtn_2023_102053
crossref_primary_10_1016_j_lfs_2022_120466
crossref_primary_10_1007_s44258_023_00011_1
crossref_primary_10_4155_fmc_2021_0332
crossref_primary_10_1002_cjp2_309
crossref_primary_10_1002_2211_5463_13445
crossref_primary_10_1038_s41419_021_04486_x
crossref_primary_10_3350_cmh_2021_0308
crossref_primary_10_3389_fimmu_2023_1242911
crossref_primary_10_1016_j_cell_2023_05_044
crossref_primary_10_3390_ijms25063414
crossref_primary_10_1007_s00261_025_05153_x
crossref_primary_10_1109_TUFFC_2021_3078094
crossref_primary_10_1155_jimr_6573891
crossref_primary_10_1002_adma_202203915
crossref_primary_10_1111_febs_70192
crossref_primary_10_3390_ijms24021367
crossref_primary_10_3390_cancers13143450
crossref_primary_10_1109_TNB_2022_3216684
crossref_primary_10_3389_fimmu_2022_768753
crossref_primary_10_1016_j_ymthe_2022_09_019
crossref_primary_10_3389_fonc_2022_860767
crossref_primary_10_3892_ol_2024_14385
crossref_primary_10_1186_s12935_024_03512_0
crossref_primary_10_1111_febs_15558
crossref_primary_10_1016_j_ymthe_2023_11_003
crossref_primary_10_3389_fonc_2021_589022
crossref_primary_10_1177_17588359241312501
crossref_primary_10_1210_endocr_bqab235
crossref_primary_10_3390_cancers14061578
crossref_primary_10_1038_s41392_023_01683_2
crossref_primary_10_3389_fimmu_2022_859785
crossref_primary_10_1007_s12094_024_03667_2
crossref_primary_10_1002_jcp_30643
crossref_primary_10_1186_s12874_023_02006_3
crossref_primary_10_3390_cancers13133298
crossref_primary_10_1093_jleuko_qiad081
crossref_primary_10_1097_MD_0000000000037092
crossref_primary_10_1016_j_prp_2025_155928
crossref_primary_10_1016_j_semcancer_2021_08_001
crossref_primary_10_3390_cells10040927
crossref_primary_10_1155_2022_3822773
crossref_primary_10_3389_fonc_2023_1100585
crossref_primary_10_3390_ijms22031323
crossref_primary_10_3389_fcvm_2022_777822
crossref_primary_10_3389_fimmu_2021_680055
crossref_primary_10_1245_s10434_024_16135_6
crossref_primary_10_1016_j_apsb_2021_10_019
crossref_primary_10_1016_j_biopha_2023_114343
crossref_primary_10_1080_15583724_2024_2323943
crossref_primary_10_1002_advs_202205915
crossref_primary_10_1016_j_gene_2025_149467
crossref_primary_10_3390_cells12121606
crossref_primary_10_1039_D4LC01043D
crossref_primary_10_1186_s12935_021_02381_1
crossref_primary_10_1038_s41568_021_00376_8
crossref_primary_10_3389_fonc_2022_1011191
crossref_primary_10_1007_s11060_023_04536_8
crossref_primary_10_3389_fimmu_2025_1524781
crossref_primary_10_3390_biomedicines10092142
crossref_primary_10_1038_s41375_024_02391_8
crossref_primary_10_7717_peerj_14691
crossref_primary_10_1016_j_biopha_2023_115546
crossref_primary_10_3389_fimmu_2021_748820
crossref_primary_10_32604_oncologie_2022_022116
crossref_primary_10_1186_s40364_023_00537_x
crossref_primary_10_3390_cancers13194844
crossref_primary_10_3390_cancers13246188
crossref_primary_10_3390_jcm12103430
crossref_primary_10_53941_ijctm_2025_1000017
crossref_primary_10_3389_fgene_2022_882794
crossref_primary_10_1016_j_tranon_2025_102287
crossref_primary_10_3390_cancers14194828
crossref_primary_10_3389_fonc_2021_739297
crossref_primary_10_1016_j_surg_2025_109318
crossref_primary_10_3390_ijms22137204
crossref_primary_10_1016_j_tranon_2023_101710
crossref_primary_10_1016_j_biopha_2023_115414
crossref_primary_10_1134_S0006297922040071
crossref_primary_10_1016_j_heliyon_2024_e25266
crossref_primary_10_3389_fimmu_2024_1366260
crossref_primary_10_1002_advs_202205818
crossref_primary_10_3389_fonc_2021_779706
crossref_primary_10_3389_fimmu_2024_1399130
crossref_primary_10_1007_s12672_025_03123_9
crossref_primary_10_21303_2504_5679_2022_002644
crossref_primary_10_3390_ijms26146574
crossref_primary_10_3389_fcell_2022_1038841
crossref_primary_10_1007_s12094_023_03075_y
crossref_primary_10_3389_fbioe_2022_883034
crossref_primary_10_3390_cells10071568
crossref_primary_10_2217_fon_2020_1218
crossref_primary_10_3389_fimmu_2023_1166487
crossref_primary_10_3390_ijms21103457
crossref_primary_10_1080_2162402X_2024_2423983
crossref_primary_10_3389_fimmu_2023_1172913
Cites_doi 10.18632/oncotarget.14474
10.1038/nri3671
10.1084/jem.184.5.1927
10.1158/1078-0432.CCR-06-0067
10.1016/j.it.2018.11.004
10.3389/fimmu.2015.00328
10.1038/s41590-017-0004-z
10.1056/NEJMoa1200690
10.1016/j.bcp.2011.11.013
10.1016/j.biopha.2018.09.067
10.1186/s12943-019-1022-2
10.1158/0008-5472.CAN-10-2238
10.1038/npjbcancer.2015.25
10.7554/eLife.18173
10.4049/jimmunol.1300057
10.1126/sciimmunol.aax8189
10.1126/science.1238856
10.1016/j.canlet.2015.05.009
10.1158/1078-0432.CCR-05-0537
10.1002/jcb.24456
10.1016/j.coi.2012.01.010
10.1073/pnas.0603406103
10.1038/labinvest.2013.69
10.1016/j.immuni.2014.06.008
10.1002/adma.201904364
10.1093/carcin/bgr208
10.1038/s41467-017-00569-6
10.3389/fimmu.2015.00263
10.1016/j.it.2011.11.001
10.1056/NEJMoa1807315
10.1097/PPO.0000000000000059
10.1158/0008-5472.CAN-13-1816
10.4049/jimmunol.178.8.5245
10.1002/eji.201344304
10.1158/1541-7786.MCR-11-0271
10.1007/s13277-013-0837-5
10.1007/s12026-011-8262-6
10.1126/science.aaf1328
10.1038/nature22396
10.1371/journal.pone.0137345
10.1016/j.cytogfr.2009.11.007
10.1016/j.cub.2017.06.005
10.1080/2162402X.2014.995559
10.1146/annurev-cellbio-101512-122326
10.1158/0008-5472.CAN-13-3723
10.1158/1538-7445.AM2019-2805
10.1016/j.tips.2016.04.006
10.1038/ni.2705
10.1084/jem.20121999
10.1093/annonc/mdx190
10.1016/j.cell.2018.05.060
10.4049/jimmunol.174.4.2004
10.1016/j.semcancer.2008.03.004
10.1146/annurev-physiol-022516-034339
10.1038/nrc3171
10.1002/JLB.4RI0818-311R
10.1016/j.ctrv.2018.08.010
10.1016/j.jhep.2014.10.029
10.1158/0008-5472.CAN-17-2158
10.1182/blood.V99.10.3500
10.1155/2014/768758
10.1146/annurev-immunol-032414-112220
10.1080/19420862.2015.1007813
10.1038/s41586-019-1456-0
10.1084/jem.194.6.781
10.1186/1476-4598-13-210
10.1016/j.jtho.2019.03.029
10.1038/sj.onc.1207084
10.1084/jem.164.6.1862
10.1038/nri1733
10.1111/imm.12173
10.1158/1078-0432.CCR-12-3439
10.1016/j.jconrel.2015.06.029
10.1038/s41591-019-0356-z
10.1016/j.imbio.2012.05.024
10.1038/nrd.2018.169
10.1136/gutjnl-2015-309193
10.1007/s00262-008-0482-9
10.1016/j.lungcan.2016.05.007
10.1038/nrd.2016.111
10.18632/oncotarget.5955
10.1158/0008-5472.CAN-18-0124
10.1038/s41419-018-0465-5
10.1016/j.semcdb.2015.05.004
10.1016/j.immuni.2019.03.020
10.1073/pnas.1710877114
ContentType Journal Article
Copyright Copyright © 2020 Zhou, Tang, Gao, Li, Feng and Zhou.
Copyright © 2020 Zhou, Tang, Gao, Li, Feng and Zhou. 2020 Zhou, Tang, Gao, Li, Feng and Zhou
Copyright_xml – notice: Copyright © 2020 Zhou, Tang, Gao, Li, Feng and Zhou.
– notice: Copyright © 2020 Zhou, Tang, Gao, Li, Feng and Zhou. 2020 Zhou, Tang, Gao, Li, Feng and Zhou
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fonc.2020.00188
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Open Access资源_DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2234-943X
ExternalDocumentID oai_doaj_org_article_939921b1d2be4f65becf9ac7ff8e32cd
PMC7052362
32161718
10_3389_fonc_2020_00188
Genre Journal Article
Review
GrantInformation_xml – fundername: National Major Scientific and Technological Special Project for Significant New Drugs Development
  grantid: 2018ZX09201018-013
– fundername: National Key Research Program of China
  grantid: 2017YFC0840100; 2017YFC0840107
– fundername: Sichuan University Training Program of Innovation and Entrepreneurship for Undergraduates
  grantid: C2018101921
– fundername: Excellent Young Scientist Foundation of Sichuan University
  grantid: 2017SCU04A16
– fundername: Innovative Spark Foundation of Sichuan University
  grantid: 2018SCUH0032
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EJD
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
ACXDI
IAO
IEA
IHR
IHW
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c525t-d76c7fb7f85cc2d21b1e6a9b2f48d1a5e1c8d990bfa03bb96e83c99b81d53b1e3
IEDL.DBID DOA
ISICitedReferencesCount 463
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524721100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2234-943X
IngestDate Fri Oct 03 12:45:30 EDT 2025
Thu Aug 21 18:42:36 EDT 2025
Thu Sep 04 16:11:24 EDT 2025
Thu Jan 02 23:00:13 EST 2025
Sat Nov 29 01:49:17 EST 2025
Tue Nov 18 22:15:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords macrophages
tumors
immunity
immunity therapy
tumor-associated macrophages
Language English
License Copyright © 2020 Zhou, Tang, Gao, Li, Feng and Zhou.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-d76c7fb7f85cc2d21b1e6a9b2f48d1a5e1c8d990bfa03bb96e83c99b81d53b1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Bernd Kaina, Johannes Gutenberg University Mainz, Germany
Reviewed by: Sabine Grösch, Goethe University Frankfurt, Germany; Debora Decote-Ricardo, Universidade Federal Rural Do Rio de Janeiro, Brazil
This article was submitted to Molecular and Cellular Oncology, a section of the journal Frontiers in Oncology
These authors have contributed equally to this work
OpenAccessLink https://doaj.org/article/939921b1d2be4f65becf9ac7ff8e32cd
PMID 32161718
PQID 2376728813
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_939921b1d2be4f65becf9ac7ff8e32cd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7052362
proquest_miscellaneous_2376728813
pubmed_primary_32161718
crossref_primary_10_3389_fonc_2020_00188
crossref_citationtrail_10_3389_fonc_2020_00188
PublicationCentury 2000
PublicationDate 2020-02-25
PublicationDateYYYYMMDD 2020-02-25
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-25
  day: 25
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in oncology
PublicationTitleAlternate Front Oncol
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Zheng (B51) 2018; 9
Logtenberg (B77) 2019; 25
Byrne (B53) 2013; 190
Okazawa (B86) 2005; 174
Sanmamed (B32) 2017; 28
Qiu (B22) 2018; 70
Borghese (B62) 2013; 114
Haniffa (B1) 2015; 41
Chao (B74) 2011; 71
Myers (B24) 2019; 18
Ring (B79) 2017; 114
Ramesh (B83) 2019; 31
Olingy (B6) 2019; 106
Leu (B30) 2003; 22
Di Caro (B26) 2016; 65
Liu (B38) 2013; 93
Arnold (B10) 2014; 141
Azizi (B21) 2018; 174
Luke (B8) 2013; 14
Pucci (B59) 2016; 352
Barkal (B47) 2019; 572
Colombo (B58) 2014; 30
Crocker (B15) 1986; 164
Yona (B2) 2015; 6
Wang (B56) 2017; 8
Martínez-Pomares (B16) 1996; 184
Milane (B48) 2015; 219
Banerjee (B81) 2015; 4
Tang (B60) 2012; 83
Horrigan (B75) 2017; 6
Jenkins (B12) 2013; 210
Ouyang (B36) 2019; 50
Banerjee (B37) 2011; 32
Gordon (B43) 2017; 545
Tsagozis (B61) 2008; 57
Sato (B40) 2011; 51
Fleetwood (B9) 2007; 178
Sica (B11) 2008; 18
Alvey (B78) 2017; 27
Weiskopf (B72) 2013; 341
Yeung (B50) 2015; 62
Holla (B55) 2014; 13
Moran (B57) 2019; 40
Murray (B13) 2017; 79
Yadav (B29) 2011; 9
Oldenborg (B71) 2002; 99
Martinez-Pomares (B17) 2012; 33
Chávez-Galán (B14) 2015; 6
Halaby (B68) 2019; 4
Varol (B7) 2015; 33
Travers (B82) 2019; 79
Topalian (B69) 2012; 366
Sun (B84) 2017; 8
Overdijk (B80) 2015; 7
Chao (B45) 2012; 24
Chao (B70) 2011; 12
Puellmann (B18) 2006; 103
Binenbaum (B52) 2018; 78
Morrison (B20) 2016; 15
Cassetta (B66) 2018; 17
Gordon (B3) 2005; 5
Ogden (B54) 2001; 194
Su (B67) 2005; 11
Gao (B28) 2018; 108
Murray (B25) 2014; 41
Ginhoux (B5) 2014; 14
Valeta-Magara (B35) 2019; 79
Boussiotis (B41) 2014; 20
Sung (B39) 2013; 19
Yu (B42) 2015; 6
Liu (B73) 2015; 10
Deng (B34) 2013; 34
Salaroglio (B27) 2019; 14
Syn (B49) 2016; 37
Williams (B31) 2016; 2
Pienta (B85) 2006; 12
Tymoszuk (B64) 2014; 44
Kaminski (B19) 2013; 218
Barkal (B46) 2018; 19
Santoni (B4) 2014; 2014
Shao (B33) 2015; 364
Mok (B63) 2014; 74
Advani (B76) 2018; 379
Zhu (B65) 2014; 74
Katsuya (B44) 2016; 99
Mantovani (B23) 2010; 21
References_xml – volume: 8
  start-page: 18486
  year: 2017
  ident: B56
  article-title: Targeting macrophage anti-tumor activity to suppress melanoma progression
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.14474
– volume: 14
  start-page: 392
  year: 2014
  ident: B5
  article-title: Monocytes and macrophages: developmental pathways and tissue homeostasis
  publication-title: Nat Rev Immunol.
  doi: 10.1038/nri3671
– volume: 184
  start-page: 1927
  year: 1996
  ident: B16
  article-title: Fc chimeric protein containing the cysteine-rich domain of the murine mannose receptor binds to macrophages from splenic marginal zone and lymph node subcapsular sinus and to germinal centers
  publication-title: J Exp Med.
  doi: 10.1084/jem.184.5.1927
– volume: 12
  start-page: 1665
  year: 2006
  ident: B85
  article-title: Mechanisms underlying the development of androgen-independent prostate cancer
  publication-title: Clin Cancer Res.
  doi: 10.1158/1078-0432.CCR-06-0067
– volume: 40
  start-page: 35
  year: 2019
  ident: B57
  article-title: Subcapsular sinus macrophages: the seat of innate and adaptive memory in murine lymph nodes
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2018.11.004
– volume: 6
  start-page: 328
  year: 2015
  ident: B2
  article-title: From the reticuloendothelial to mononuclear phagocyte system - the unaccounted years
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2015.00328
– volume: 19
  start-page: 76
  year: 2018
  ident: B46
  article-title: Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy
  publication-title: Nat Immunol.
  doi: 10.1038/s41590-017-0004-z
– volume: 366
  start-page: 2443
  year: 2012
  ident: B69
  article-title: Safety, activity, and immune correlates of anti–PD-1 antibody in cancer
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1200690
– volume: 83
  start-page: 335
  year: 2012
  ident: B60
  article-title: CCL2 increases MMP-9 expression and cell motility in human chondrosarcoma cells via the Ras/Raf/MEK/ERK/NF-κB signaling pathway
  publication-title: Biochem Pharmacol.
  doi: 10.1016/j.bcp.2011.11.013
– volume: 108
  start-page: 618
  year: 2018
  ident: B28
  article-title: PMA treated THP-1-derived-IL-6 promotes EMT of SW48 through STAT3/ERK-dependent activation of Wnt/β-catenin signaling pathway
  publication-title: Biomed Pharmacother.
  doi: 10.1016/j.biopha.2018.09.067
– volume: 18
  start-page: 94
  year: 2019
  ident: B24
  article-title: Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment
  publication-title: Cancer.
  doi: 10.1186/s12943-019-1022-2
– volume: 71
  start-page: 1374
  year: 2011
  ident: B74
  article-title: Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-2238
– volume: 2
  start-page: 15025
  year: 2016
  ident: B31
  article-title: Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy
  publication-title: NPJ Breast Cancer.
  doi: 10.1038/npjbcancer.2015.25
– volume: 6
  start-page: e18173
  year: 2017
  ident: B75
  article-title: Replication study: the CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors
  publication-title: Elife.
  doi: 10.7554/eLife.18173
– volume: 190
  start-page: 5207
  year: 2013
  ident: B53
  article-title: Bruton's tyrosine kinase is required for apoptotic cell uptake via regulating the phosphorylation and localization of calreticulin
  publication-title: J Immunol.
  doi: 10.4049/jimmunol.1300057
– volume: 4
  start-page: eaax8189
  year: 2019
  ident: B68
  article-title: GCN2 drives macrophage and MDSC function and immunosuppression in the tumor microenvironment
  publication-title: Sci Immunol.
  doi: 10.1126/sciimmunol.aax8189
– volume: 341
  start-page: 88
  year: 2013
  ident: B72
  article-title: Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies
  publication-title: Science.
  doi: 10.1126/science.1238856
– volume: 364
  start-page: 165
  year: 2015
  ident: B33
  article-title: Interleukin-8 upregulates integrin beta3 expression and promotes estrogen receptor-negative breast cancer cell invasion by activating the PI3K/Akt/NF-kappaB pathway
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2015.05.009
– volume: 11
  start-page: 8273
  year: 2005
  ident: B67
  article-title: Differential expression of CXCR4 is associated with the metastatic potential of human non-small cell lung cancer cells
  publication-title: Clin Cancer Res.
  doi: 10.1158/1078-0432.CCR-05-0537
– volume: 114
  start-page: 1135
  year: 2013
  ident: B62
  article-title: Gefitinib inhibits the cross-talk between mesenchymal stem cells and prostate cancer cells leading to tumor cell proliferation and inhibition of docetaxel activity
  publication-title: J Cell Biochem.
  doi: 10.1002/jcb.24456
– volume: 24
  start-page: 225
  year: 2012
  ident: B45
  article-title: The CD47-SIRPalpha pathway in cancer immune evasion and potential therapeutic implications
  publication-title: Curr Opin Immunol.
  doi: 10.1016/j.coi.2012.01.010
– volume: 103
  start-page: 14441
  year: 2006
  ident: B18
  article-title: A variable immunoreceptor in a subpopulation of human neutrophils
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.0603406103
– volume: 93
  start-page: 844
  year: 2013
  ident: B38
  article-title: M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway
  publication-title: Lab Invest.
  doi: 10.1038/labinvest.2013.69
– volume: 41
  start-page: 14
  year: 2014
  ident: B25
  article-title: Macrophage activation and polarization: nomenclature and experimental guidelines
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2014.06.008
– volume: 31
  start-page: e1904364
  year: 2019
  ident: B83
  article-title: CSF1R- and SHP2-inhibitor-loaded nanoparticles enhance cytotoxic activity and phagocytosis in tumor-associated macrophages
  publication-title: Adv Mater.
  doi: 10.1002/adma.201904364
– volume: 32
  start-page: 1789
  year: 2011
  ident: B37
  article-title: TLR signaling-mediated differential histone modification at IL-10 and IL-12 promoter region leads to functional impairments in tumor-associated macrophages
  publication-title: Carcinogenesis.
  doi: 10.1093/carcin/bgr208
– volume: 8
  start-page: 477
  year: 2017
  ident: B84
  article-title: Engineered proteins with sensing and activating modules for automated reprogramming of cellular functions
  publication-title: Nat Commun.
  doi: 10.1038/s41467-017-00569-6
– volume: 6
  start-page: 263
  year: 2015
  ident: B14
  article-title: Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2015.00263
– volume: 33
  start-page: 66
  year: 2012
  ident: B17
  article-title: CD169+ macrophages at the crossroads of antigen presentation
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2011.11.001
– volume: 379
  start-page: 1711
  year: 2018
  ident: B76
  article-title: cd47 blockade by hu5f9-g4 and rituximab in non-hodgkin's lymphoma
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1807315
– volume: 20
  start-page: 265
  year: 2014
  ident: B41
  article-title: Biochemical signaling of PD-1 on T cells and its functional implications
  publication-title: Cancer J.
  doi: 10.1097/PPO.0000000000000059
– volume: 74
  start-page: 153
  year: 2014
  ident: B63
  article-title: Inhibition of CSF-1 receptor improves the antitumor efficacy of adoptive cell transfer immunotherapy
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-1816
– volume: 178
  start-page: 5245
  year: 2007
  ident: B9
  article-title: Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation
  publication-title: J Immunol.
  doi: 10.4049/jimmunol.178.8.5245
– volume: 44
  start-page: 2247
  year: 2014
  ident: B64
  article-title: In situ proliferation contributes to accumulation of tumor-associated macrophages in spontaneous mammary tumors
  publication-title: Eur J Immunol.
  doi: 10.1002/eji.201344304
– volume: 9
  start-page: 1658
  year: 2011
  ident: B29
  article-title: IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway
  publication-title: Mol Cancer Res.
  doi: 10.1158/1541-7786.MCR-11-0271
– volume: 34
  start-page: 2791
  year: 2013
  ident: B34
  article-title: STAT3 is associated with lymph node metastasis in gastric cancer
  publication-title: Tumour Biol.
  doi: 10.1007/s13277-013-0837-5
– volume: 51
  start-page: 170
  year: 2011
  ident: B40
  article-title: Interleukin 10 in the tumor microenvironment: a target for anticancer immunotherapy
  publication-title: Immunol Res.
  doi: 10.1007/s12026-011-8262-6
– volume: 352
  start-page: 242
  year: 2016
  ident: B59
  article-title: SCS macrophages suppress melanoma by restricting tumor-derived vesicle–B cell interactions
  publication-title: Science.
  doi: 10.1126/science.aaf1328
– volume: 545
  start-page: 495
  year: 2017
  ident: B43
  article-title: PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity
  publication-title: Nature.
  doi: 10.1038/nature22396
– volume: 10
  start-page: 1
  year: 2015
  ident: B73
  article-title: Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0137345
– volume: 21
  start-page: 27
  year: 2010
  ident: B23
  article-title: The chemokine system in cancer biology and therapy
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/j.cytogfr.2009.11.007
– volume: 27
  start-page: 2065
  year: 2017
  ident: B78
  article-title: SIRPA-inhibited, marrow-derived macrophages engorge, accumulate, and differentiate in antibody-targeted regression of solid tumors
  publication-title: Curr Biol.
  doi: 10.1016/j.cub.2017.06.005
– volume: 4
  start-page: e995559
  year: 2015
  ident: B81
  article-title: The combination of a novel immunomodulator with a regulatory T cell suppressing antibody (DTA-1) regress advanced stage B16F10 solid tumor by repolarizing tumor associated macrophages in situ
  publication-title: Oncoimmunology.
  doi: 10.1080/2162402X.2014.995559
– volume: 30
  start-page: 255
  year: 2014
  ident: B58
  article-title: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles
  publication-title: Annu Rev Cell Dev Biol.
  doi: 10.1146/annurev-cellbio-101512-122326
– volume: 74
  start-page: 5057
  year: 2014
  ident: B65
  article-title: CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-3723
– volume: 79
  start-page: 3445
  year: 2019
  ident: B82
  article-title: DFMO and 5-azacytidine increase M1 macrophages in the tumor microenvironment of murine ovarian cancer
  publication-title: Cancer Res.
  doi: 10.1158/1538-7445.AM2019-2805
– volume: 37
  start-page: 606
  year: 2016
  ident: B49
  article-title: Exosome-mediated metastasis: from epithelial-mesenchymal transition to escape from immunosurveillance
  publication-title: Trends Pharmacol Sci.
  doi: 10.1016/j.tips.2016.04.006
– volume: 14
  start-page: 986
  year: 2013
  ident: B8
  article-title: Tissue-resident macrophages
  publication-title: Nat Immunol.
  doi: 10.1038/ni.2705
– volume: 210
  start-page: 2477
  year: 2013
  ident: B12
  article-title: IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1
  publication-title: J Exp Med.
  doi: 10.1084/jem.20121999
– volume: 28
  start-page: 1988
  year: 2017
  ident: B32
  article-title: Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients
  publication-title: Ann Oncol.
  doi: 10.1093/annonc/mdx190
– volume: 174
  start-page: 1293
  year: 2018
  ident: B21
  article-title: Single-cell map of diverse immune phenotypes in the breast tumor microenvironment
  publication-title: Cell.
  doi: 10.1016/j.cell.2018.05.060
– volume: 174
  start-page: 2004
  year: 2005
  ident: B86
  article-title: Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system
  publication-title: J Immunol.
  doi: 10.4049/jimmunol.174.4.2004
– volume: 18
  start-page: 349
  year: 2008
  ident: B11
  article-title: Macrophage polarization in tumour progression
  publication-title: Semin Cancer Biol.
  doi: 10.1016/j.semcancer.2008.03.004
– volume: 79
  start-page: 541
  year: 2017
  ident: B13
  article-title: Macrophage polarization
  publication-title: Annu Rev Physiol.
  doi: 10.1146/annurev-physiol-022516-034339
– volume: 12
  start-page: 58
  year: 2011
  ident: B70
  article-title: Programmed cell removal: a new obstacle in the road to developing cancer
  publication-title: Nat Rev Cancer.
  doi: 10.1038/nrc3171
– volume: 106
  start-page: 309
  year: 2019
  ident: B6
  article-title: Monocyte heterogeneity and functions in cancer
  publication-title: J Leukoc Biol.
  doi: 10.1002/JLB.4RI0818-311R
– volume: 70
  start-page: 178
  year: 2018
  ident: B22
  article-title: Tumor-associated macrophages in breast cancer: innocent bystander or important player?
  publication-title: Cancer Treat Rev.
  doi: 10.1016/j.ctrv.2018.08.010
– volume: 62
  start-page: 607
  year: 2015
  ident: B50
  article-title: Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma
  publication-title: J Immunol.
  doi: 10.1016/j.jhep.2014.10.029
– volume: 79
  start-page: 3360
  year: 2019
  ident: B35
  article-title: Inflammatory breast cancer promotes development of M2 tumor-associated macrophages and cancer mesenchymal cells through a complex cytokine network
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-2158
– volume: 99
  start-page: 3500
  year: 2002
  ident: B71
  article-title: Lethal autoimmune hemolytic anemia in CD47-deficient nonobese diabetic (NOD) mice
  publication-title: Blood.
  doi: 10.1182/blood.V99.10.3500
– volume: 2014
  start-page: 768758
  year: 2014
  ident: B4
  article-title: CXC and CC chemokines as angiogenic modulators in nonhaematological tumors
  publication-title: Bio Med Res Int.
  doi: 10.1155/2014/768758
– volume: 33
  start-page: 643
  year: 2015
  ident: B7
  article-title: Macrophages: development and tissue specialization
  publication-title: Annu Rev Immunol.
  doi: 10.1146/annurev-immunol-032414-112220
– volume: 7
  start-page: 311
  year: 2015
  ident: B80
  article-title: Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma
  publication-title: MAbs.
  doi: 10.1080/19420862.2015.1007813
– volume: 572
  start-page: 392
  year: 2019
  ident: B47
  article-title: CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy
  publication-title: Nature.
  doi: 10.1038/s41586-019-1456-0
– volume: 194
  start-page: 781
  year: 2001
  ident: B54
  article-title: C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells
  publication-title: J Exp Med.
  doi: 10.1084/jem.194.6.781
– volume: 13
  start-page: 210
  year: 2014
  ident: B55
  article-title: Mycobacterium bovis BCG promotes tumor cell survival from tumor necrosis factor-alpha-induced apoptosis
  publication-title: Mol Cancer.
  doi: 10.1186/1476-4598-13-210
– volume: 14
  start-page: 1458
  year: 2019
  ident: B27
  article-title: Potential diagnostic and prognostic role of micro-environment in malignant pleural mesothelioma
  publication-title: J Thorac Oncol.
  doi: 10.1016/j.jtho.2019.03.029
– volume: 22
  start-page: 7809
  year: 2003
  ident: B30
  article-title: Interleukin-6 acts as an antiapoptotic factor in human esophageal carcinoma cells through the activation of both STAT3 and mitogen-activated protein kinase pathways
  publication-title: Oncogene.
  doi: 10.1038/sj.onc.1207084
– volume: 164
  start-page: 1862
  year: 1986
  ident: B15
  article-title: Properties and distribution of a lectin-like hemagglutinin differentially expressed by murine stromal tissue macrophages
  publication-title: J Exp Med.
  doi: 10.1084/jem.164.6.1862
– volume: 5
  start-page: 953
  year: 2005
  ident: B3
  article-title: Monocyte and macrophage heterogeneity
  publication-title: Nat Rev Immunol.
  doi: 10.1038/nri1733
– volume: 141
  start-page: 96
  year: 2014
  ident: B10
  article-title: A critical role for suppressor of cytokine signalling 3 in promoting M1 macrophage activation and function in vitro and in vivo
  publication-title: Immunology.
  doi: 10.1111/imm.12173
– volume: 19
  start-page: 4092
  year: 2013
  ident: B39
  article-title: IL-10 promotes tumor aggressiveness via upregulation of CIP2A transcription in lung adenocarcinoma
  publication-title: Clin Cancer Res.
  doi: 10.1158/1078-0432.CCR-12-3439
– volume: 219
  start-page: 278
  year: 2015
  ident: B48
  article-title: Exosome mediated communication within the tumor microenvironment
  publication-title: J Control Release.
  doi: 10.1016/j.jconrel.2015.06.029
– volume: 25
  start-page: 612
  year: 2019
  ident: B77
  article-title: Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPα axis and a target for cancer immunotherapy
  publication-title: Nat Med.
  doi: 10.1038/s41591-019-0356-z
– volume: 218
  start-page: 418
  year: 2013
  ident: B19
  article-title: On the horizon: flexible immune recognition outside lymphocytes
  publication-title: Immunobiology.
  doi: 10.1016/j.imbio.2012.05.024
– volume: 17
  start-page: 887
  year: 2018
  ident: B66
  article-title: Targeting macrophages: therapeutic approaches in cancer
  publication-title: Nat Rev Drug Discov.
  doi: 10.1038/nrd.2018.169
– volume: 65
  start-page: 1710
  year: 2016
  ident: B26
  article-title: Dual prognostic significance of tumour-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy
  publication-title: Gut.
  doi: 10.1136/gutjnl-2015-309193
– volume: 57
  start-page: 1451
  year: 2008
  ident: B61
  article-title: Zoledronic acid modulates antitumoral responses of prostate cancer-tumor associated macrophages
  publication-title: Cancer Immunol Immunother.
  doi: 10.1007/s00262-008-0482-9
– volume: 99
  start-page: 4
  year: 2016
  ident: B44
  article-title: Expression of programmed death 1 (PD-1) and its ligand (PD-L1) in thymic epithelial tumors: impact on treatment efficacy and alteration in expression after chemotherapy
  publication-title: Lung Cancer.
  doi: 10.1016/j.lungcan.2016.05.007
– volume: 15
  start-page: 373
  year: 2016
  ident: B20
  article-title: Immuno-oncologists eye up macrophage targets
  publication-title: Nat Rev Drug Discov.
  doi: 10.1038/nrd.2016.111
– volume: 6
  start-page: 42067
  year: 2015
  ident: B42
  article-title: PD-1 blockade attenuates immunosuppressive myeloid cells due to inhibition of CD47/SIRPalpha axis in HPV negative head and neck squamous cell carcinoma
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.5955
– volume: 78
  start-page: 5287
  year: 2018
  ident: B52
  article-title: Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-18-0124
– volume: 9
  start-page: 434
  year: 2018
  ident: B51
  article-title: Tumor-associated macrophages-derived exosomes promote the migration of gastric cancer cells by transfer of functional Apolipoprotein E
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-018-0465-5
– volume: 41
  start-page: 59
  year: 2015
  ident: B1
  article-title: Human mononuclear phagocyte system reunited
  publication-title: Semin Cell Dev Biol.
  doi: 10.1016/j.semcdb.2015.05.004
– volume: 50
  start-page: 871
  year: 2019
  ident: B36
  article-title: IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2019.03.020
– volume: 114
  start-page: E10578
  year: 2017
  ident: B79
  article-title: Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.1710877114
SSID ssj0000650103
Score 2.6609993
SecondaryResourceType review_article
Snippet Macrophages, which have functions of engulfing and digesting foreign substances, can clear away harmful matter, including cellular debris and tumor cells....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 188
SubjectTerms immunity
immunity therapy
macrophages
Oncology
tumor-associated macrophages
tumors
Title Tumor-Associated Macrophages: Recent Insights and Therapies
URI https://www.ncbi.nlm.nih.gov/pubmed/32161718
https://www.proquest.com/docview/2376728813
https://pubmed.ncbi.nlm.nih.gov/PMC7052362
https://doaj.org/article/939921b1d2be4f65becf9ac7ff8e32cd
Volume 10
WOSCitedRecordID wos000524721100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access资源_DOAJ
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagQogLankupVWQOHAJXdvxC060alUOW3FYpL1ZfqqVShZtdjny25lxsssuAnHpJYfEiSffJOMZe_wNIW_By40qcFWzaFyNcwy1dxLTcrQTOkqWXVOKTairKz2bmS9bpb4wJ6ynB-6BOzHInEo9jcynJksBfWbjgspZJ85CROsLXs9WMNXbYIEFDHouH4jCzEmet8hYyDCTi5Y6K7-HocLW_zcX889Mya2h52KfPB58xupTL-sBuZfaJ-ThZFgVf0o-Tlff5ot6jXSK1cRhZa5rsBXdhwo8Q3hu9bntMBDvKtfGalq2XUGU_Ix8vTifnl3WQ1GEOggmlnVUEl7eq6xFCCwiNEk641ludKROJBp0hCHGZzfm3huZNA_GePBLBYe2_DnZa-dtekkqGsYNj4aNcyPBXiaTxLjJTshEdfQyjsj7NUY2DIzhWLji1kLkgKBaBNUiqLaAOiLvNjd878ky_t30FEHfNEOW63ICdG8H3dv_6X5E3qxVZuGvwKUO16b5qrOY66OY1pSPyItehZuuOMOYjoIIake5O7LsXmlvrgvztsJJdMle3YXwh-QRwlG2x4vXZG-5WKUj8iD8WN50i2NyX830cfmo4Tj5ef4LDQn--A
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor-Associated+Macrophages%3A+Recent+Insights+and+Therapies&rft.jtitle=Frontiers+in+oncology&rft.au=Zhou%2C+Jiawei&rft.au=Tang%2C+Ziwei&rft.au=Gao%2C+Siyang&rft.au=Li%2C+Chunyu&rft.date=2020-02-25&rft.issn=2234-943X&rft.eissn=2234-943X&rft.volume=10&rft_id=info:doi/10.3389%2Ffonc.2020.00188&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fonc_2020_00188
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-943X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-943X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-943X&client=summon