CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future
A series of recent discoveries harnessing the adaptive immune system of prokaryotes to perform targeted genome editing is having a transformative influence across the biological sciences. The discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas)...
Uloženo v:
| Vydáno v: | Frontiers in oncology Ročník 10; s. 1387 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
Frontiers Media S.A
07.08.2020
|
| Témata: | |
| ISSN: | 2234-943X, 2234-943X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A series of recent discoveries harnessing the adaptive immune system of prokaryotes to perform targeted genome editing is having a transformative influence across the biological sciences. The discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) proteins has expanded the applications of genetic research in thousands of laboratories across the globe and is redefining our approach to gene therapy. Traditional gene therapy has raised some concerns, as its reliance on viral vector delivery of therapeutic transgenes can cause both insertional oncogenesis and immunogenic toxicity. While viral vectors remain a key delivery vehicle, CRISPR technology provides a relatively simple and efficient alternative for site-specific gene editing, obliviating some concerns raised by traditional gene therapy. Although it has apparent advantages, CRISPR/Cas9 brings its own set of limitations which must be addressed for safe and efficient clinical translation. This review focuses on the evolution of gene therapy and the role of CRISPR in shifting the gene therapy paradigm. We review the emerging data of recent gene therapy trials and consider the best strategy to move forward with this powerful but still relatively new technology. |
|---|---|
| AbstractList | A series of recent discoveries harnessing the adaptive immune system of prokaryotes to perform targeted genome editing is having a transformative influence across the biological sciences. The discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) proteins has expanded the applications of genetic research in thousands of laboratories across the globe and is redefining our approach to gene therapy. Traditional gene therapy has raised some concerns, as its reliance on viral vector delivery of therapeutic transgenes can cause both insertional oncogenesis and immunogenic toxicity. While viral vectors remain a key delivery vehicle, CRISPR technology provides a relatively simple and efficient alternative for site-specific gene editing, obliviating some concerns raised by traditional gene therapy. Although it has apparent advantages, CRISPR/Cas9 brings its own set of limitations which must be addressed for safe and efficient clinical translation. This review focuses on the evolution of gene therapy and the role of CRISPR in shifting the gene therapy paradigm. We review the emerging data of recent gene therapy trials and consider the best strategy to move forward with this powerful but still relatively new technology. A series of recent discoveries harnessing the adaptive immune system of prokaryotes to perform targeted genome editing is having a transformative influence across the biological sciences. The discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) proteins has expanded the applications of genetic research in thousands of laboratories across the globe and is redefining our approach to gene therapy. Traditional gene therapy has raised some concerns, as its reliance on viral vector delivery of therapeutic transgenes can cause both insertional oncogenesis and immunogenic toxicity. While viral vectors remain a key delivery vehicle, CRISPR technology provides a relatively simple and efficient alternative for site-specific gene editing, obliviating some concerns raised by traditional gene therapy. Although it has apparent advantages, CRISPR/Cas9 brings its own set of limitations which must be addressed for safe and efficient clinical translation. This review focuses on the evolution of gene therapy and the role of CRISPR in shifting the gene therapy paradigm. We review the emerging data of recent gene therapy trials and consider the best strategy to move forward with this powerful but still relatively new technology.A series of recent discoveries harnessing the adaptive immune system of prokaryotes to perform targeted genome editing is having a transformative influence across the biological sciences. The discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) proteins has expanded the applications of genetic research in thousands of laboratories across the globe and is redefining our approach to gene therapy. Traditional gene therapy has raised some concerns, as its reliance on viral vector delivery of therapeutic transgenes can cause both insertional oncogenesis and immunogenic toxicity. While viral vectors remain a key delivery vehicle, CRISPR technology provides a relatively simple and efficient alternative for site-specific gene editing, obliviating some concerns raised by traditional gene therapy. Although it has apparent advantages, CRISPR/Cas9 brings its own set of limitations which must be addressed for safe and efficient clinical translation. This review focuses on the evolution of gene therapy and the role of CRISPR in shifting the gene therapy paradigm. We review the emerging data of recent gene therapy trials and consider the best strategy to move forward with this powerful but still relatively new technology. |
| Author | Sen, Triparna Uddin, Fathema Rudin, Charles M. |
| AuthorAffiliation | 1 Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center , New York, NY , United States 2 Weill Cornell Medicine, Cornell University , New York, NY , United States |
| AuthorAffiliation_xml | – name: 2 Weill Cornell Medicine, Cornell University , New York, NY , United States – name: 1 Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center , New York, NY , United States |
| Author_xml | – sequence: 1 givenname: Fathema surname: Uddin fullname: Uddin, Fathema – sequence: 2 givenname: Charles M. surname: Rudin fullname: Rudin, Charles M. – sequence: 3 givenname: Triparna surname: Sen fullname: Sen, Triparna |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32850447$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc9rFDEUx4NUbK09e5M5euhu8zszHoSy2LqwUKkVvIVs8tJNmZmMyYzQ_95sd1tbwVySl_f9fl7C9y066GMPCL0neM5Y3Zz52Ns5xRTPMWG1eoWOKGV81nD28-DZ-RCd5HyHy5ICE8zeoENGa4E5V0foanG9_P7turqEHqqbDSQz3H-qzoehDdaMIfb5tFqFLoyPheldtez-tisfUzVuoLqYxinBO_TamzbDyX4_Rj8uvtwsvs5WV5fLxflqZgUV40xJ3DhquMVCMMka7z04yplUa-IdcUY0RJoGKHWESYyJE1LWSoFx3Fow7Bgtd1wXzZ0eUuhMutfRBP1wEdOtNmkMtgUtHWCggI1QwAmxpm4Ky3nrwVsB68L6vGMN07oDZ6Efk2lfQF92-rDRt_G3VpwqSWUBfNwDUvw1QR51F7KFtjU9xCnr8jFVc45pU6Qfns96GvKYSBGc7QQ2xZwT-CcJwXobu97Grrex64fYi0P847D7uMpjQ_tf3x-HJ7Jb |
| CitedBy_id | crossref_primary_10_1016_j_cell_2023_03_035 crossref_primary_10_1016_j_ijbiomac_2023_124582 crossref_primary_10_1097_GCO_0000000000001022 crossref_primary_10_7759_cureus_79372 crossref_primary_10_1016_j_ejphar_2024_177067 crossref_primary_10_1016_j_blre_2024_101185 crossref_primary_10_1089_crispr_2023_0078 crossref_primary_10_1007_s10142_024_01404_0 crossref_primary_10_1016_j_foohum_2025_100679 crossref_primary_10_1155_2022_1015996 crossref_primary_10_1007_s12672_022_00509_x crossref_primary_10_1016_j_biochi_2021_12_012 crossref_primary_10_1080_14712598_2024_2405568 crossref_primary_10_3390_cells14120903 crossref_primary_10_1016_j_ejcb_2023_151299 crossref_primary_10_1016_j_biomaterials_2022_121876 crossref_primary_10_3390_brainsci11081081 crossref_primary_10_1016_j_mattod_2025_06_034 crossref_primary_10_2174_0113816128267417231127070901 crossref_primary_10_3389_fncel_2020_631802 crossref_primary_10_3389_fphar_2023_1245809 crossref_primary_10_1186_s12985_024_02286_1 crossref_primary_10_1016_j_omtn_2025_102691 crossref_primary_10_1073_pnas_2212255120 crossref_primary_10_3389_fpubh_2024_1382996 crossref_primary_10_3233_JND_221528 crossref_primary_10_3390_ijms24054341 crossref_primary_10_1016_j_foohum_2023_10_014 crossref_primary_10_3390_pathogens12010056 crossref_primary_10_1016_j_heliyon_2024_e34692 crossref_primary_10_1371_journal_pone_0289863 crossref_primary_10_3389_fgene_2024_1434002 crossref_primary_10_3390_ani13010087 crossref_primary_10_1186_s13014_022_02184_2 crossref_primary_10_1016_j_compbiomed_2022_106348 crossref_primary_10_3390_ijms26083645 crossref_primary_10_3390_nano13111782 crossref_primary_10_3390_biomedicines13071590 crossref_primary_10_1016_j_cels_2025_101299 crossref_primary_10_1080_1061186X_2025_2544786 crossref_primary_10_1038_s44318_024_00158_6 crossref_primary_10_1038_s41467_024_54463_z crossref_primary_10_1111_fare_13097 crossref_primary_10_1016_j_drudis_2025_104453 crossref_primary_10_1038_s41591_022_02184_5 crossref_primary_10_1002_anie_202217089 crossref_primary_10_1097_ICO_0000000000002857 crossref_primary_10_3390_molecules27031114 crossref_primary_10_7759_cureus_35774 crossref_primary_10_1039_D2BM01005D crossref_primary_10_3389_fchem_2023_1259435 crossref_primary_10_1016_j_jtha_2023_12_005 crossref_primary_10_3390_v16101641 crossref_primary_10_1007_s13346_024_01754_z crossref_primary_10_1016_S1773_035X_23_00024_2 crossref_primary_10_1038_s41587_023_01679_x crossref_primary_10_1093_nar_gkaf887 crossref_primary_10_1038_s41598_023_45964_w crossref_primary_10_1016_j_hpj_2024_02_012 crossref_primary_10_3390_neuroglia6010009 crossref_primary_10_1007_s12010_023_04708_2 crossref_primary_10_1007_s12032_022_01930_6 crossref_primary_10_1016_j_ijbiomac_2024_131802 crossref_primary_10_1038_s41417_023_00597_z crossref_primary_10_1089_crispr_2023_0048 crossref_primary_10_1016_j_biopha_2024_116275 crossref_primary_10_1007_s10142_024_01455_3 crossref_primary_10_3390_biomedicines12010238 crossref_primary_10_3390_ijms252212346 crossref_primary_10_3989_scimar_05327_066 crossref_primary_10_1017_pcm_2023_4 crossref_primary_10_3389_fgene_2021_733048 crossref_primary_10_1093_cei_uxae004 crossref_primary_10_1038_s42003_024_06848_5 crossref_primary_10_3389_fcvm_2021_783072 crossref_primary_10_3389_fimmu_2021_747357 crossref_primary_10_1038_s41598_022_11808_2 crossref_primary_10_1242_dmm_052300 crossref_primary_10_1016_j_ymthe_2023_02_009 crossref_primary_10_1038_s41467_024_49343_5 crossref_primary_10_1016_j_tins_2023_02_005 crossref_primary_10_3390_biologics4020010 crossref_primary_10_3389_fgeed_2022_937879 crossref_primary_10_3892_ijo_2025_5729 crossref_primary_10_35118_apjmbb_2025_033_3_07 crossref_primary_10_3390_cells14020131 crossref_primary_10_1007_s12602_025_10561_y crossref_primary_10_1016_j_microc_2024_112638 crossref_primary_10_3390_ijms22062937 crossref_primary_10_1007_s13402_025_01056_7 crossref_primary_10_1016_j_actbio_2024_10_030 crossref_primary_10_1016_j_trac_2023_117215 crossref_primary_10_1590_0001_3765202320220629 crossref_primary_10_58803_jlar_v4i2_66 crossref_primary_10_1080_17410541_2025_2515002 crossref_primary_10_3389_fgeed_2024_1342193 crossref_primary_10_3390_biom14050511 crossref_primary_10_1007_s00203_025_04360_w crossref_primary_10_1093_humrep_dead167 crossref_primary_10_7759_cureus_49000 crossref_primary_10_1186_s12859_022_04753_4 crossref_primary_10_3390_cells11172665 crossref_primary_10_1186_s12951_024_02901_x crossref_primary_10_1016_j_omtn_2025_102666 crossref_primary_10_3390_ijms26146950 crossref_primary_10_3390_genes12050723 crossref_primary_10_3390_ijms242317121 crossref_primary_10_1002_adtp_202500077 crossref_primary_10_1186_s43141_021_00225_z crossref_primary_10_3390_microorganisms13030599 crossref_primary_10_1016_j_jdrv_2025_05_001 crossref_primary_10_1016_j_engmic_2023_100123 crossref_primary_10_1016_S0929_693X_23_00225_7 crossref_primary_10_3389_fgeed_2022_892769 crossref_primary_10_2147_IJN_S453566 crossref_primary_10_1016_j_jddst_2024_105338 crossref_primary_10_1093_nar_gkae148 crossref_primary_10_3389_fmicb_2022_964848 crossref_primary_10_3390_biomedicines10102445 crossref_primary_10_3389_feduc_2023_1154609 crossref_primary_10_1007_s11357_024_01144_w crossref_primary_10_3390_audiolres13060083 crossref_primary_10_1126_scitranslmed_adq2005 crossref_primary_10_3390_cancers14122855 crossref_primary_10_3389_fimmu_2022_966084 crossref_primary_10_1016_j_omto_2023_100733 crossref_primary_10_1002_smtd_202401733 crossref_primary_10_1093_lifemedi_lnac054 crossref_primary_10_1016_j_ijbiomac_2025_142987 crossref_primary_10_1016_j_ymgme_2022_08_008 crossref_primary_10_3389_fgeed_2023_1272687 crossref_primary_10_1016_j_omtn_2024_102274 crossref_primary_10_1002_jgm_3726 crossref_primary_10_1016_j_jddst_2024_105546 crossref_primary_10_3390_metabo11120857 crossref_primary_10_3390_ijms222010985 crossref_primary_10_1186_s13287_024_04023_5 crossref_primary_10_2174_0115665232305409240918040639 crossref_primary_10_2174_0115733947290474240315062214 crossref_primary_10_1080_14712598_2022_2154601 crossref_primary_10_1126_sciimmunol_adi0042 crossref_primary_10_1016_j_biopha_2022_113324 crossref_primary_10_1016_j_ymthe_2022_04_020 crossref_primary_10_3389_fimmu_2025_1633845 crossref_primary_10_1038_s41596_022_00721_7 crossref_primary_10_3390_ijms242316933 crossref_primary_10_1080_21655979_2022_2162667 crossref_primary_10_1016_j_retram_2025_103531 crossref_primary_10_3390_jcdd12080281 crossref_primary_10_3389_fchem_2022_957572 crossref_primary_10_3390_biomedicines11123333 crossref_primary_10_3390_ijms241713202 crossref_primary_10_1016_j_pbi_2024_102669 crossref_primary_10_1016_j_coi_2025_102611 crossref_primary_10_1016_j_lfs_2023_122003 crossref_primary_10_1080_17435889_2024_2440307 crossref_primary_10_1016_j_bbrep_2025_102037 crossref_primary_10_1016_j_chembiol_2024_05_005 crossref_primary_10_3390_bioengineering11020179 crossref_primary_10_1038_s41568_022_00441_w crossref_primary_10_3390_biom12111621 crossref_primary_10_1093_jambio_lxad137 crossref_primary_10_1093_lifemedi_lnad042 crossref_primary_10_1016_j_prp_2024_155509 crossref_primary_10_1002_cmdc_202300359 crossref_primary_10_1016_j_cis_2024_103232 crossref_primary_10_1111_febs_16771 crossref_primary_10_3389_fmicb_2021_784949 crossref_primary_10_3390_ijms25095023 crossref_primary_10_1016_j_jddst_2025_107131 crossref_primary_10_1007_s11274_024_04103_x crossref_primary_10_1007_s12288_025_02105_9 crossref_primary_10_1007_s40259_024_00647_4 crossref_primary_10_1097_MS9_0000000000003170 crossref_primary_10_1111_imr_13305 crossref_primary_10_25259_ijmr_1716_22 crossref_primary_10_3390_biomedicines11082227 crossref_primary_10_1007_s12291_024_01242_8 crossref_primary_10_3390_antiox14070781 crossref_primary_10_1007_s42823_023_00655_4 crossref_primary_10_1016_j_medp_2024_100027 crossref_primary_10_4103_jpbs_jpbs_583_25 crossref_primary_10_3389_fbioe_2022_833833 crossref_primary_10_1007_s12033_021_00411_x crossref_primary_10_1007_s12033_021_00418_4 crossref_primary_10_1088_2632_959X_add7f5 crossref_primary_10_1016_j_omtn_2025_102634 crossref_primary_10_1016_j_virol_2024_110160 crossref_primary_10_1007_s00018_020_03725_2 crossref_primary_10_3390_ijms22094590 crossref_primary_10_1016_j_xphs_2024_05_018 crossref_primary_10_1186_s12943_022_01550_8 crossref_primary_10_1002_bit_28603 crossref_primary_10_1093_bjd_ljad321 crossref_primary_10_1016_j_beha_2025_101631 crossref_primary_10_1089_crispr_2022_0084 crossref_primary_10_1016_j_arr_2023_102114 crossref_primary_10_1080_07391102_2023_2227720 crossref_primary_10_3389_fbioe_2022_895713 crossref_primary_10_1016_j_talanta_2022_123780 crossref_primary_10_1016_j_virol_2024_110033 crossref_primary_10_1016_j_drudis_2021_08_013 crossref_primary_10_1016_j_omtn_2023_102035 crossref_primary_10_1016_j_neuron_2023_04_021 crossref_primary_10_1016_j_mattod_2023_04_011 crossref_primary_10_1186_s12985_025_02783_x crossref_primary_10_1016_j_drudis_2022_103375 crossref_primary_10_1016_j_jse_2022_07_004 crossref_primary_10_1186_s12929_021_00772_0 crossref_primary_10_31083_j_fbl2901041 crossref_primary_10_1186_s40779_020_00292_2 crossref_primary_10_3390_genes13040656 crossref_primary_10_1016_j_cobme_2023_100469 crossref_primary_10_3390_cells10050969 crossref_primary_10_1186_s11658_022_00348_2 crossref_primary_10_1186_s40364_024_00701_x crossref_primary_10_1016_j_omtn_2025_102640 crossref_primary_10_1038_s41582_022_00751_5 crossref_primary_10_1002_anr3_12210 crossref_primary_10_1016_j_bioelechem_2022_108268 crossref_primary_10_1038_s41574_022_00716_0 crossref_primary_10_1371_journal_pone_0325330 crossref_primary_10_1186_s12951_024_02648_5 crossref_primary_10_1016_j_jconrel_2021_01_014 crossref_primary_10_1080_17460441_2023_2200245 crossref_primary_10_1038_s41585_021_00543_4 crossref_primary_10_1016_j_crmeth_2021_100125 crossref_primary_10_1089_crispr_2021_0148 crossref_primary_10_1093_hmg_ddac208 crossref_primary_10_1016_j_drudis_2021_11_005 crossref_primary_10_1093_procel_pwad013 crossref_primary_10_3390_biom13050788 crossref_primary_10_7759_cureus_67078 crossref_primary_10_1016_j_thromres_2024_04_031 crossref_primary_10_3390_life11111255 crossref_primary_10_3390_ph17070887 crossref_primary_10_1007_s12032_023_02201_8 crossref_primary_10_1002_ange_202217089 crossref_primary_10_1007_s13562_022_00811_3 crossref_primary_10_1016_j_arr_2025_102851 crossref_primary_10_1080_21645515_2025_2488074 crossref_primary_10_1016_j_dscb_2025_100202 crossref_primary_10_1038_s41434_023_00386_1 crossref_primary_10_1016_j_nexres_2025_100276 crossref_primary_10_1111_bcp_15343 crossref_primary_10_1242_dmm_050623 crossref_primary_10_3390_biology13030187 crossref_primary_10_1080_14712598_2022_2049229 crossref_primary_10_1007_s12033_022_00550_9 crossref_primary_10_1016_j_ajpath_2025_02_008 crossref_primary_10_1016_j_ijpharm_2024_123864 crossref_primary_10_1038_s41467_025_59653_x crossref_primary_10_1007_s43441_025_00807_w crossref_primary_10_1007_s13346_023_01320_z crossref_primary_10_1016_j_fgb_2025_104006 crossref_primary_10_1016_j_synbio_2025_03_011 crossref_primary_10_1002_term_3349 crossref_primary_10_3390_pharmaceutics17070903 crossref_primary_10_1016_j_lfs_2025_123756 crossref_primary_10_1016_j_nantod_2025_102740 crossref_primary_10_3390_ph14050417 crossref_primary_10_1016_j_bbagrm_2024_195063 crossref_primary_10_1039_D4NA01004C crossref_primary_10_3390_cimb47040268 crossref_primary_10_1016_j_trac_2022_116539 crossref_primary_10_1016_j_forsciint_2022_111274 crossref_primary_10_2147_VMRR_S366533 crossref_primary_10_1002_mds_28819 crossref_primary_10_1093_stmcls_sxac074 crossref_primary_10_1039_D4BM00286E crossref_primary_10_1080_03036758_2024_2347968 crossref_primary_10_1007_s13205_021_02928_z crossref_primary_10_3389_fonc_2022_960340 crossref_primary_10_1134_S0006297924604672 crossref_primary_10_1016_j_omtn_2022_08_002 crossref_primary_10_3390_cells10020342 crossref_primary_10_7759_cureus_69835 crossref_primary_10_4254_wjh_v17_i6_106573 crossref_primary_10_1186_s11658_023_00464_7 crossref_primary_10_1208_s12249_024_03010_6 crossref_primary_10_1016_j_ijbiomac_2022_11_018 crossref_primary_10_1016_j_xpro_2025_103982 crossref_primary_10_1111_nyas_14936 crossref_primary_10_1007_s40883_024_00338_0 crossref_primary_10_1002_nano_202400015 crossref_primary_10_1016_j_biopha_2021_111917 crossref_primary_10_1002_adma_202504509 crossref_primary_10_2174_0113816128298080240328053845 crossref_primary_10_1007_s12033_024_01125_6 crossref_primary_10_1016_j_bioadv_2025_214471 crossref_primary_10_2174_0113892029361490250310041259 crossref_primary_10_15252_embr_202153902 crossref_primary_10_1039_D3NR06642H crossref_primary_10_1007_s10238_025_01771_3 crossref_primary_10_1016_j_jddst_2022_103737 crossref_primary_10_3389_fbioe_2023_1138596 crossref_primary_10_3390_jcm12227185 crossref_primary_10_3390_pharmaceutics15041178 crossref_primary_10_1002_adbi_202300679 crossref_primary_10_1089_ars_2022_0180 crossref_primary_10_1186_s40164_024_00570_y crossref_primary_10_1016_j_jconrel_2024_11_008 |
| Cites_doi | 10.1093/bib/bbx001 10.1038/s42003-019-0745-3 10.1186/s13073-015-0215-6 10.1101/2020.04.05.20053355 10.1038/s41551-019-0431-2 10.1038/nature16526 10.1093/jlb/lsz010 10.1016/j.cell.2013.08.021 10.1038/nbt.2647 10.1038/s41591-018-0050-6 10.1016/j.omtn.2018.12.003 10.1016/j.meegid.2020.104384 10.1126/science.270.5235.475 10.1101/gr.171322.113 10.1016/bs.mcb.2016.03.004 10.1056/NEJM199008303230904 10.1038/s41578-019-0145-9 10.1038/s41591-018-0327-9 10.1038/s41586-019-1711-4 10.1146/annurev-physiol-021909-135833 10.1038/nature09886 10.1038/s41591-018-0326-x 10.1097/COH.0b013e328324bbec 10.1038/nature23305 10.1038/s41589-020-0490-4 10.1126/sciadv.aay6812 10.2174/1566523217666171121165935 10.1038/mt.2010.228 10.1016/j.ymgme.2003.08.016 10.1126/science.aay9569 10.1038/s41576-018-0059-1 10.3389/fonc.2019.00297 10.1038/mtna.2015.37 10.1073/pnas.1104144108 10.1182/blood-2011-03-325258 10.1111/nyas.13024 10.1146/annurev-genet-051710-150955 10.3109/10409238.2012.658112 10.1038/nmeth.2857 10.1007/s12539-018-0298-z 10.1016/j.celrep.2016.01.019 10.1126/science.aba8853 10.1016/j.cell.2020.04.020 10.1155/2014/612823 10.1038/nbt.4192 10.1111/j.1365-2958.1993.tb01721.x 10.1038/nature26155 10.1038/s41587-020-0513-4 10.1021/jacs.8b13144 10.1038/nature13769 10.1042/BCJ20170793 10.1186/2052-8426-2-27 10.1126/science.1088547 10.1038/nmeth.4681 10.1038/gt.2009.148 10.1080/10717544.2018.1474964 10.7554/eLife.32724 10.3390/v3060677 10.1016/j.jmb.2015.10.014 10.1089/hum.2015.084 10.3390/ijms20153623 10.1099/mic.0.28048-0 10.1038/s41591-018-0049-z 10.1126/science.288.5466.669 10.1148/radiol.2020200432 10.1126/science.1225829 10.1126/science.1079512 10.1038/srep19675 10.1007/978-1-4939-1862-1_10 10.1038/ncomms12642 10.1038/nbt.3481 10.1089/hum.2016.107 10.1007/978-1-59745-194-9_6 10.1016/j.cell.2018.02.033 10.1038/nbt.2808 10.1016/j.biocel.2018.04.011 10.1038/s41551-019-0505-1 10.1038/s41467-018-05477-x 10.1016/j.jmb.2018.06.037 10.1073/pnas.1906843116 10.1038/s41467-019-09006-2 10.1038/sj.gt.3302243 10.7554/eLife.04766.010 10.1126/science.1159689 10.1038/nbt.3190 10.1038/s41392-019-0044-y 10.1038/mt.2016.5 10.12688/f1000research.11243.1 10.1016/j.ijantimicag.2020.105955 10.1038/nature24268 10.1188/16.ONF.694-696 10.1046/j.1365-2958.2000.01838.x 10.1002/jgm.3107 10.1038/s41467-020-15021-5 10.1172/JCI81163 10.1126/science.aas9129 10.7860/JCDR/2015/10443.5394 10.1016/j.neuron.2017.10.004 10.1126/science.aad5227 10.1073/pnas.1407473111 10.1016/j.gendis.2017.04.001 10.1038/s41591-018-0137-0 10.1038/nmeth.2812 10.1126/science.1231143 10.1126/sciadv.aau0766 10.1186/s13059-017-1318-8 10.1016/j.molcel.2016.02.020 10.1038/nbt.4066 10.1126/sciadv.aaz0051 10.1089/10430349950016852 10.1038/nbt.3404 10.1002/stem.2935 10.1126/science.270.5235.470 10.1021/acs.accounts.9b00106 10.1093/bioinformatics/btaa041 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 Uddin, Rudin and Sen. Copyright © 2020 Uddin, Rudin and Sen. 2020 Uddin, Rudin and Sen |
| Copyright_xml | – notice: Copyright © 2020 Uddin, Rudin and Sen. – notice: Copyright © 2020 Uddin, Rudin and Sen. 2020 Uddin, Rudin and Sen |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.3389/fonc.2020.01387 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2234-943X |
| ExternalDocumentID | oai_doaj_org_article_6de0e2e0a57e411ca89668dfcfefc5eb PMC7427626 32850447 10_3389_fonc_2020_01387 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: NCI NIH HHS grantid: R01 CA197936 – fundername: NCI NIH HHS grantid: U24 CA213274 |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EJD EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM ACXDI IPNFZ NPM RIG 7X8 5PM |
| ID | FETCH-LOGICAL-c525t-7609d2a4c0553639fffed24367b1fd1da5916a9e22d136001d566877ead4ccea3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 363 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000563457500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2234-943X |
| IngestDate | Fri Oct 03 12:44:21 EDT 2025 Thu Aug 21 14:12:15 EDT 2025 Fri Sep 05 13:18:39 EDT 2025 Mon Jul 21 05:51:30 EDT 2025 Sat Nov 29 01:49:25 EST 2025 Tue Nov 18 20:27:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | clinical trial gene therapy homology-directed repair (HDR) CRISPR/Cas9 ethics non-homologous end joining (NHEJ) |
| Language | English |
| License | Copyright © 2020 Uddin, Rudin and Sen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c525t-7609d2a4c0553639fffed24367b1fd1da5916a9e22d136001d566877ead4ccea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Lead Contact This article was submitted to Cancer Genetics, a section of the journal Frontiers in Oncology Edited by: Israel Gomy, Dana–Farber Cancer Institute, United States Reviewed by: Nan Wu, Peking Union Medical College Hospital (CAMS), China; Tanja Kunej, University of Ljubljana, Slovenia; Martin Roffe, A.C. Camargo Cancer Center, Brazil |
| OpenAccessLink | https://doaj.org/article/6de0e2e0a57e411ca89668dfcfefc5eb |
| PMID | 32850447 |
| PQID | 2437844029 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6de0e2e0a57e411ca89668dfcfefc5eb pubmedcentral_primary_oai_pubmedcentral_nih_gov_7427626 proquest_miscellaneous_2437844029 pubmed_primary_32850447 crossref_primary_10_3389_fonc_2020_01387 crossref_citationtrail_10_3389_fonc_2020_01387 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-07 |
| PublicationDateYYYYMMDD | 2020-08-07 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in oncology |
| PublicationTitleAlternate | Front Oncol |
| PublicationYear | 2020 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | B20 O' Connell (B64) 2014; 516 Hacein-Bey-Abina (B12) 2003; 302 Ma (B112) 2014; 548 Jinek (B28) 2012; 337 Chandrasegaran (B22) 2016; 428 Basak (B104) 2016; 1368 Broughton (B118) 2020; 38 Mojica (B24) 2000; 36 Kleinstiver (B33) 2015; 33 Lee (B89) 2020; 3 Cavazzana-Calvo (B10) 2000; 288 Hiranniramol (B60) 2020; 36 Lino (B61) 2018; 25 Zhai (B114) 2020; 55 Vakulskas (B39) 2018; 24 Humbert (B1) 2012; 47 Luan (B51) 2019; 141 Ablain (B100) 2016; 135 Heigwer (B57) 2014; 11 Moreno (B76) 2019; 3 Hu (B68) 2014; 2014 Tong (B102) 2019; 4 Haapaniemi (B70) 2018; 24 Tan (B50) 2019; 116 Hu (B43) 2018; 556 Bolotin (B25) 2005; 151 Lomova (B85) 2019; 37 Brouns (B26) 2008; 321 Lin (B82) 2014; 3 Walton (B47) 2020; 368 Prakash (B3) 2016; 24 Cong (B30) 2015; 1239 Wyvekens (B42) 2015; 26 Kim (B63) 2020; 4 Rosenberg (B4) 1990; 323 Casini (B38) 2018; 36 Pankowicz (B99) 2016; 7 Strutt (B65) 2018; 7 Sadelain (B17) 2004; 11 Robert (B79) 2015; 7 Xu (B74) 2019; 431 Amer (B2) 2014; 2 Lee (B15) 2017; 4 Nayak (B18) 2010; 17 Maetzig (B13) 2011; 3 Abbott (B119) 2020; 181 Lau (B62) 2017; 6 Konermann (B66) 2018; 173 Nunes (B9) 1999; 10 Chatterjee (B52) 2018; 4 Semenova (B53) 2011; 108 Cohen (B109) 2019 Xin (B88) 2019; 4 Ye (B108) 2014; 111 B106 Blaese (B5) 1995; 270 Deltcheva (B27) 2011; 471 Wilbie (B93) 2019; 52 Moses (B73) 2019; 14 Greely (B110) 2019; 6 Ran (B32) 2013; 154 Zhang (B98) 2020; 6 Goswami (B16) 2019; 9 Fang (B116) 2020 Kulcsár (B37) 2017; 18 Liu (B54) 2016; 6 Richardson (B80) 2016; 34 Hammer (B14) 2016; 43 Anzalone (B91) 2019; 576 Kleinstiver (B35) 2016; 529 Lee (B46) 2018; 9 Ihry (B69) 2018; 24 B115 Shen (B41) 2014; 11 Herzog (B11) 2010; 18 Eid (B87) 2018; 475 Alkhatib (B111) 2009; 4 Nishiyama (B83) 2017; 96 Komarova (B101) 2010; 72 Yu (B96) 2016; 27 Charlesworth (B75) 2019; 25 Yan (B58) 2017; 15 Hui (B94) 2008 Bruegmann (B55) 2019; 20 Fu (B56) 2014; 32 Cullot (B72) 2019; 10 Larochelle (B67) 2018; 15 Chen (B45) 2017; 550 Ling (B86) 2020; 6 Gutschner (B84) 2016; 14 Raper (B8) 2003; 80 Zhang (B31) 2015; 4 Akinsheye (B103) 2011; 118 Nishimasu (B44) 2018; 361 Li (B77) 2018; 99 Maeder (B107) 2019; 25 Kim (B95) 2014; 24 Kosicki (B71) 2018; 36 Kulcsár (B48) 2020; 11 Basak (B105) 2015; 125 Heyer (B81) 2010; 44 Sironi (B113) 2020; 84 Xu (B92) 2019; 21 Anders (B34) 2016; 61 Rees (B90) 2018; 19 Wikramaratna (B117) 2020 Sibbald (B7) 2001; 164 Bibikova (B21) 2003; 300 Cong (B29) 2013; 339 Baylis (B97) 2017; 17 Hsu (B40) 2013; 31 Bordignon (B6) 1995; 270 Ramamoorth (B19) 2015; 9 Bratovič (B49) 2020; 16 Slaymaker (B36) 2016; 351 Mojica (B23) 1993; 9 Maruyama (B78) 2015; 33 Cui (B59) 2018; 10 |
| References_xml | – volume: 15 start-page: 1 year: 2017 ident: B58 article-title: Benchmarking CRISPR on-target sgRNA and design publication-title: Brief Bioinform. doi: 10.1093/bib/bbx001 – volume: 3 start-page: 19 year: 2020 ident: B89 article-title: Cytosine base editor 4 but not adenine base editor generates off-target mutations in mouse embryos publication-title: Commun Biol. doi: 10.1038/s42003-019-0745-3 – volume: 7 start-page: 93 year: 2015 ident: B79 article-title: Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing publication-title: Genome Med. doi: 10.1186/s13073-015-0215-6 – year: 2020 ident: B117 article-title: Estimating false-negative detection rate of SARS-CoV-2 by RT-PCR publication-title: BMJ doi: 10.1101/2020.04.05.20053355 – volume: 3 start-page: 806 year: 2019 ident: B76 article-title: Immune-orthogonal orthologues of AAV capsids and of Cas9 circumvent the immune response to the administration of gene therapy publication-title: Nat Biomed Eng. doi: 10.1038/s41551-019-0431-2 – volume: 529 start-page: 490 year: 2016 ident: B35 article-title: High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects publication-title: Nature. doi: 10.1038/nature16526 – volume: 6 start-page: 111 year: 2019 ident: B110 article-title: CRISPR'd babies: human germline genome editing in the 'He Jiankui affair' publication-title: J Law Biosci. doi: 10.1093/jlb/lsz010 – volume: 154 start-page: 1380 year: 2013 ident: B32 article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity publication-title: Cell. doi: 10.1016/j.cell.2013.08.021 – volume: 31 start-page: 827 year: 2013 ident: B40 article-title: DNA targeting specificity of RNA-guided Cas9 nucleases publication-title: Nat Biotechnol. doi: 10.1038/nbt.2647 – volume: 24 start-page: 939 year: 2018 ident: B69 article-title: p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells publication-title: Nat Med. doi: 10.1038/s41591-018-0050-6 – volume: 14 start-page: 287 year: 2019 ident: B73 article-title: Activating PTEN tumor suppressor expression with the CRISPR/dCas9 system publication-title: Nucleic Acids. doi: 10.1016/j.omtn.2018.12.003 – ident: B106 – volume: 84 start-page: 104384 year: 2020 ident: B113 article-title: SARS-CoV-2 and COVID-19: a genetic, epidemiological, and evolutionary perspective publication-title: Infect Genet Evolut. doi: 10.1016/j.meegid.2020.104384 – volume: 270 start-page: 475 year: 1995 ident: B5 article-title: T lymphocyte-directed gene therapy for ADASCID: Initial trial results after 4 years publication-title: Science doi: 10.1126/science.270.5235.475 – volume: 24 start-page: 1012 year: 2014 ident: B95 article-title: Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins publication-title: Genome Res. doi: 10.1101/gr.171322.113 – volume: 135 start-page: 189 year: 2016 ident: B100 article-title: Tissue-specific gene targeting using CRISPR/Cas9 publication-title: Methods Cell Biol. doi: 10.1016/bs.mcb.2016.03.004 – volume: 323 start-page: 570 year: 1990 ident: B4 article-title: Gene transfer into humans–immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction publication-title: N Engl J Med. doi: 10.1056/NEJM199008303230904 – volume: 4 start-page: 726 year: 2019 ident: B102 article-title: Engineered materials for in vivo delivery of genome-editing machinery publication-title: Nat Rev Mater. doi: 10.1038/s41578-019-0145-9 – volume: 25 start-page: 229 year: 2019 ident: B107 article-title: Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10 publication-title: Nat Med. doi: 10.1038/s41591-018-0327-9 – volume: 576 start-page: 149 year: 2019 ident: B91 article-title: Search-and-replace genome editing without double-strand breaks or donor DNA publication-title: Nature doi: 10.1038/s41586-019-1711-4 – volume: 72 start-page: 463 year: 2010 ident: B101 article-title: Regulation of endothelial permeability via paracellular and transcellular transport pathways publication-title: Annu Rev Physiol. doi: 10.1146/annurev-physiol-021909-135833 – ident: B115 – volume: 471 start-page: 602 year: 2011 ident: B27 article-title: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III publication-title: Nature doi: 10.1038/nature09886 – volume: 25 start-page: 249 year: 2019 ident: B75 article-title: Identification of preexisting adaptive immunity to Cas9 proteins in humans publication-title: Nat Med. doi: 10.1038/s41591-018-0326-x – volume: 4 start-page: 96 year: 2009 ident: B111 article-title: The biology of CCR5 and CXCR4 publication-title: Curr Opin HIV AIDS. doi: 10.1097/COH.0b013e328324bbec – volume: 548 start-page: 413 year: 2014 ident: B112 article-title: Correction of a pathogenic gene mutation in human embryos publication-title: Nature doi: 10.1038/nature23305 – volume: 16 start-page: 587 year: 2020 ident: B49 article-title: Bridge helix arginines play a critical role in Cas9 sensitivity to mismatches publication-title: Nat Chem Biol. doi: 10.1038/s41589-020-0490-4 – volume: 6 start-page: eaay6812 year: 2020 ident: B98 article-title: Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system publication-title: Sci Adv. doi: 10.1126/sciadv.aay6812 – volume: 17 start-page: 309 year: 2017 ident: B97 article-title: First-in-human phase 1 CRISPR gene editing cancer trials: are we ready? publication-title: Curr Gene Ther. doi: 10.2174/1566523217666171121165935 – volume: 18 start-page: 1891 year: 2010 ident: B11 article-title: Gene therapy for SCID-X1: round 2 publication-title: Mol Ther. doi: 10.1038/mt.2010.228 – volume: 80 start-page: 148 year: 2003 ident: B8 article-title: Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer publication-title: Mol Genet Metab. doi: 10.1016/j.ymgme.2003.08.016 – year: 2019 ident: B109 article-title: Did CRISPR help—or harm—the first-ever gene-edited babies? publication-title: Science doi: 10.1126/science.aay9569 – volume: 19 start-page: 770 year: 2018 ident: B90 article-title: Base editing: precision chemistry on the genome and transcriptome of living cells publication-title: Nat Rev Genet. doi: 10.1038/s41576-018-0059-1 – volume: 9 start-page: 297 year: 2019 ident: B16 article-title: Gene therapy leaves a vicious cycle publication-title: Front Oncol. doi: 10.3389/fonc.2019.00297 – volume: 4 start-page: e264 year: 2015 ident: B31 article-title: Off-target effects in CRISPR/Cas9-mediated genome engineering publication-title: Mol Ther Nucleic Acids. doi: 10.1038/mtna.2015.37 – volume: 108 start-page: 10098 year: 2011 ident: B53 article-title: Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1104144108 – volume: 118 start-page: 19 year: 2011 ident: B103 article-title: Fetal hemoglobin in sickle cell anemia publication-title: Blood. doi: 10.1182/blood-2011-03-325258 – volume: 1368 start-page: 25 year: 2016 ident: B104 article-title: Regulation of the fetal hemoglobin silencing factor BCL11A publication-title: Ann NY Acad Sci doi: 10.1111/nyas.13024 – volume: 44 start-page: 113 year: 2010 ident: B81 article-title: Regulation of homologous recombination in eukaryotes publication-title: Annu Rev Genet. doi: 10.1146/annurev-genet-051710-150955 – volume: 47 start-page: 264 year: 2012 ident: B1 article-title: Targeted gene therapies: tools, applications, optimization publication-title: Crit Rev Biochem Mol Biol. doi: 10.3109/10409238.2012.658112 – volume: 11 start-page: 399 year: 2014 ident: B41 article-title: Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects publication-title: Nat Methods. doi: 10.1038/nmeth.2857 – volume: 10 start-page: 455 year: 2018 ident: B59 article-title: Review of CRISPR/Cas9 sgRNA design tools publication-title: Interdiscipl Sci Comput Life Sci. doi: 10.1007/s12539-018-0298-z – volume: 14 start-page: 1555 year: 2016 ident: B84 article-title: Post-translational regulation of Cas9 during G1 enhances homology-directed repair publication-title: Cell Rep doi: 10.1016/j.celrep.2016.01.019 – volume: 368 start-page: 290 year: 2020 ident: B47 article-title: Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants publication-title: Science. doi: 10.1126/science.aba8853 – volume: 181 start-page: 865 year: 2020 ident: B119 article-title: Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza publication-title: Cell. doi: 10.1016/j.cell.2020.04.020 – volume: 2014 start-page: 612823 year: 2014 ident: B68 article-title: Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells publication-title: BioMed Res Int. doi: 10.1155/2014/612823 – volume: 164 start-page: 1612 year: 2001 ident: B7 article-title: Death but one unintended consequence of gene-therapy trial publication-title: CMAJ. – volume: 36 start-page: 765 year: 2018 ident: B71 article-title: Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements publication-title: Nat Biotechnol doi: 10.1038/nbt.4192 – volume: 9 start-page: 613 year: 1993 ident: B23 article-title: Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites publication-title: Mol Microbiol. doi: 10.1111/j.1365-2958.1993.tb01721.x – volume: 556 start-page: 57 year: 2018 ident: B43 article-title: Evolved Cas9 variants with broad PAM compatibility and high DNA specificity publication-title: Nature. doi: 10.1038/nature26155 – volume: 38 start-page: 870 year: 2020 ident: B118 article-title: CRISPR–Cas12-based detection of SARS-CoV-2 publication-title: Nat Biotechnol. doi: 10.1038/s41587-020-0513-4 – volume: 141 start-page: 6545 year: 2019 ident: B51 article-title: Combined computational–experimental approach to explore the molecular mechanism of SaCas9 with a broadened DNA targeting range publication-title: J Am Chem Soc. doi: 10.1021/jacs.8b13144 – volume: 516 start-page: 263 year: 2014 ident: B64 article-title: Programmable RNA recognition and cleavage by CRISPR/Cas9 publication-title: Nature. doi: 10.1038/nature13769 – volume: 475 start-page: 1955 year: 2018 ident: B87 article-title: CRISPR base editors: genome editing without double-stranded breaks publication-title: Biochem J. doi: 10.1042/BCJ20170793 – volume: 2 start-page: 27 year: 2014 ident: B2 article-title: Gene therapy for cancer: present status and future perspective publication-title: Mol Cell Ther. doi: 10.1186/2052-8426-2-27 – volume: 302 start-page: 415 year: 2003 ident: B12 article-title: LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1 publication-title: Science. doi: 10.1126/science.1088547 – volume: 15 start-page: 312 year: 2018 ident: B67 article-title: CRISPR–Cas goes RNA publication-title: Nat Methods doi: 10.1038/nmeth.4681 – volume: 17 start-page: 295 year: 2010 ident: B18 article-title: Progress and prospects: immune responses to viral vectors publication-title: Gene Ther. doi: 10.1038/gt.2009.148 – volume: 25 start-page: 1234 year: 2018 ident: B61 article-title: Delivering CRISPR: a review of the challenges and approaches publication-title: Drug Deliv. doi: 10.1080/10717544.2018.1474964 – volume: 7 start-page: e32724 year: 2018 ident: B65 article-title: RNA-dependent RNA targeting by CRISPR-Cas9 publication-title: Elife. doi: 10.7554/eLife.32724 – volume: 3 start-page: 677 year: 2011 ident: B13 article-title: Gammaretroviral vectors: biology, technology and application publication-title: Viruses. doi: 10.3390/v3060677 – volume: 428 start-page: 963 year: 2016 ident: B22 article-title: Origins of programmable nucleases for genome engineering publication-title: J Mol Biol. doi: 10.1016/j.jmb.2015.10.014 – volume: 26 start-page: 425 year: 2015 ident: B42 article-title: Dimeric CRISPR RNA-guided FokI-dCas9 nucleases directed by truncated gRNAs for highly specific genome editing publication-title: Hum Gene Ther. doi: 10.1089/hum.2015.084 – volume: 20 start-page: 3623 year: 2019 ident: B55 article-title: Evaluating the efficiency of gRNAs in CRISPR/Cas9 mediated genome editing in poplars publication-title: Int J Mol Sci. doi: 10.3390/ijms20153623 – volume: 151 start-page: 2551 year: 2005 ident: B25 article-title: Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin publication-title: Microbiology. doi: 10.1099/mic.0.28048-0 – volume: 24 start-page: 927 year: 2018 ident: B70 article-title: CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response publication-title: Nat Med. doi: 10.1038/s41591-018-0049-z – volume: 288 start-page: 669 year: 2000 ident: B10 article-title: Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease publication-title: Science. doi: 10.1126/science.288.5466.669 – start-page: 200432 year: 2020 ident: B116 article-title: Sensitivity of chest CT for COVID-19: comparison to RT-PCR publication-title: Radiology doi: 10.1148/radiol.2020200432 – volume: 337 start-page: 816 year: 2012 ident: B28 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science. doi: 10.1126/science.1225829 – volume: 300 start-page: 764 year: 2003 ident: B21 article-title: Enhancing gene targeting with designed zinc finger nucleases publication-title: Science. doi: 10.1126/science.1079512 – volume: 6 start-page: 19675 year: 2016 ident: B54 article-title: Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system publication-title: Sci Rep. doi: 10.1038/srep19675 – volume: 1239 start-page: 197 year: 2015 ident: B30 article-title: Genome engineering using CRISPR-Cas9 system publication-title: Methods Mol Biol. doi: 10.1007/978-1-4939-1862-1_10 – volume: 7 start-page: 12642 year: 2016 ident: B99 article-title: Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia publication-title: Nat Commun. doi: 10.1038/ncomms12642 – volume: 34 start-page: 339 year: 2016 ident: B80 article-title: Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA publication-title: Nat Biotechnol doi: 10.1038/nbt.3481 – volume: 27 start-page: 729 year: 2016 ident: B96 article-title: Gene editing of human hematopoietic stem and progenitor cells: promise and potential hurdles publication-title: Human Gene Ther. doi: 10.1089/hum.2016.107 – start-page: 91 volume-title: Electroporation Protocols Methods in Molecular Biology. year: 2008 ident: B94 article-title: Overview of drug delivery and alternative methods to electroporation bt - electroporation protocols: preclinical and clinical gene medicine doi: 10.1007/978-1-59745-194-9_6 – volume: 173 start-page: 665 year: 2018 ident: B66 article-title: Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors publication-title: Cell. doi: 10.1016/j.cell.2018.02.033 – volume: 32 start-page: 279 year: 2014 ident: B56 article-title: Improving CRISPR-Cas nuclease specificity using truncated guide RNAs publication-title: Nat Biotechnol. doi: 10.1038/nbt.2808 – volume: 99 start-page: 154 year: 2018 ident: B77 article-title: Suppressing Ku70/Ku80 expression elevates homology-directed repair efficiency in primary fibroblasts publication-title: Int J Biochem Cell Biol. doi: 10.1016/j.biocel.2018.04.011 – volume: 4 start-page: 111 year: 2020 ident: B63 article-title: High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells publication-title: Nat Biomed Eng. doi: 10.1038/s41551-019-0505-1 – volume: 9 start-page: 3048 year: 2018 ident: B46 article-title: Directed evolution of CRISPR-Cas9 to increase its specificity publication-title: Nat Commun. doi: 10.1038/s41467-018-05477-x – volume: 431 start-page: 34 year: 2019 ident: B74 article-title: A CRISPR-dCas toolbox for genetic engineering and synthetic biology publication-title: J Mol Biol. doi: 10.1016/j.jmb.2018.06.037 – volume: 116 start-page: 20969 year: 2019 ident: B50 article-title: Rationally engineered Staphylococcus aureus Cas9 nucleases with high genome-wide specificity publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.1906843116 – volume: 10 start-page: 1136 year: 2019 ident: B72 article-title: CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations publication-title: Nat Commun. doi: 10.1038/s41467-019-09006-2 – volume: 11 start-page: 569 year: 2004 ident: B17 article-title: Insertional oncogenesis in gene therapy: how much of a risk? publication-title: Gene Ther. doi: 10.1038/sj.gt.3302243 – volume: 3 start-page: e04766 year: 2014 ident: B82 article-title: Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery publication-title: eLife. doi: 10.7554/eLife.04766.010 – volume: 321 start-page: 960 year: 2008 ident: B26 article-title: Small CRISPR RNAs guide antiviral defense in prokaryotes publication-title: Science. doi: 10.1126/science.1159689 – volume: 33 start-page: 538 year: 2015 ident: B78 article-title: Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining publication-title: Nat Biotechnol. doi: 10.1038/nbt.3190 – volume: 4 start-page: 9 year: 2019 ident: B88 article-title: Off-targeting of base editors: BE3 but not ABE induces substantial off-target single nucleotide variants publication-title: Sig Transduct Target Ther. doi: 10.1038/s41392-019-0044-y – volume: 24 start-page: 465 year: 2016 ident: B3 article-title: Current progress in therapeutic gene editing for monogenic diseases publication-title: Mol Ther. doi: 10.1038/mt.2016.5 – volume: 6 start-page: 2153 year: 2017 ident: B62 article-title: In vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease publication-title: F1000Res. doi: 10.12688/f1000research.11243.1 – volume: 55 start-page: 105955 year: 2020 ident: B114 article-title: The epidemiology, diagnosis and treatment of COVID-19 publication-title: Int J Antimicrobial Agents. doi: 10.1016/j.ijantimicag.2020.105955 – volume: 550 start-page: 407 year: 2017 ident: B45 article-title: Enhanced proofreading governs CRISPR-Cas9 targeting accuracy publication-title: Nature. doi: 10.1038/nature24268 – volume: 43 start-page: 694 year: 2016 ident: B14 article-title: Informed consent: a clinical trials perspective publication-title: Oncol Nurs Forum. doi: 10.1188/16.ONF.694-696 – volume: 36 start-page: 244 year: 2000 ident: B24 article-title: Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria publication-title: Mol Microbiol. doi: 10.1046/j.1365-2958.2000.01838.x – ident: B20 – volume: 21 start-page: e3107 year: 2019 ident: B92 article-title: Delivery of CRISPR/Cas9 for therapeutic genome editing publication-title: J Gene Med. doi: 10.1002/jgm.3107 – volume: 11 start-page: 1223 year: 2020 ident: B48 article-title: Blackjack mutations improve the on-target activities of increased fidelity variants of SpCas9 with 5′G-extended sgRNAs publication-title: Nat Commun. doi: 10.1038/s41467-020-15021-5 – volume: 125 start-page: 2363 year: 2015 ident: B105 article-title: BCL11A deletions result in fetal hemoglobin persistence and neurodevelopmental alterations publication-title: J Clin Invest. doi: 10.1172/JCI81163 – volume: 361 start-page: 1259 year: 2018 ident: B44 article-title: Engineered CRISPR-Cas9 nuclease with expanded targeting space publication-title: Science. doi: 10.1126/science.aas9129 – volume: 9 start-page: Ge01 year: 2015 ident: B19 article-title: Non viral vectors in gene therapy- an overview publication-title: J Clin Diagn Res. doi: 10.7860/JCDR/2015/10443.5394 – volume: 96 start-page: 755 year: 2017 ident: B83 article-title: Virus-mediated genome editing via homology-directed repair in mitotic and postmitotic cells in mammalian brain publication-title: Neuron. doi: 10.1016/j.neuron.2017.10.004 – volume: 351 start-page: 84 year: 2016 ident: B36 article-title: Rationally engineered Cas9 nucleases with improved specificity publication-title: Science. doi: 10.1126/science.aad5227 – volume: 111 start-page: 9591 year: 2014 ident: B108 article-title: Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Delta32 mutation confers resistance to HIV infection publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.1407473111 – volume: 4 start-page: 43 year: 2017 ident: B15 article-title: Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine publication-title: Genes Dis. doi: 10.1016/j.gendis.2017.04.001 – volume: 24 start-page: 1216 year: 2018 ident: B39 article-title: A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells publication-title: Nat Med. doi: 10.1038/s41591-018-0137-0 – volume: 11 start-page: 122 year: 2014 ident: B57 article-title: E-CRISP: fast CRISPR target site identification publication-title: Nat Methods. doi: 10.1038/nmeth.2812 – volume: 339 start-page: 819 year: 2013 ident: B29 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science. doi: 10.1126/science.1231143 – volume: 4 start-page: eaau0766 year: 2018 ident: B52 article-title: Minimal PAM specificity of a highly similar SpCas9 ortholog publication-title: Sci Adv. doi: 10.1126/sciadv.aau0766 – volume: 18 start-page: 190 year: 2017 ident: B37 article-title: Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage publication-title: Genome Biol. doi: 10.1186/s13059-017-1318-8 – volume: 61 start-page: 895 year: 2016 ident: B34 article-title: Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9 publication-title: Mol Cell. doi: 10.1016/j.molcel.2016.02.020 – volume: 36 start-page: 265 year: 2018 ident: B38 article-title: A highly specific SpCas9 variant is identified by in vivo screening in yeast publication-title: Nat Biotechnol. doi: 10.1038/nbt.4066 – volume: 6 start-page: eaaz0051 year: 2020 ident: B86 article-title: Improving the efficiency of precise genome editing with site-specific Cas9-oligonucleotide conjugates publication-title: Sci Adv. doi: 10.1126/sciadv.aaz0051 – volume: 10 start-page: 2515 year: 1999 ident: B9 article-title: Gene transfer into the liver of nonhuman primates with E1-deleted recombinant adenoviral vectors: safety of readministration publication-title: Hum Gene Ther. doi: 10.1089/10430349950016852 – volume: 33 start-page: 1293 year: 2015 ident: B33 article-title: Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition publication-title: Nat Biotechnol. doi: 10.1038/nbt.3404 – volume: 37 start-page: 284 year: 2019 ident: B85 article-title: Improving gene editing outcomes in human hematopoietic stem and progenitor cells by temporal control of DNA repair publication-title: Stem Cells. doi: 10.1002/stem.2935 – volume: 270 start-page: 470 year: 1995 ident: B6 article-title: Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients publication-title: Science. doi: 10.1126/science.270.5235.470 – volume: 52 start-page: 1555 year: 2019 ident: B93 article-title: Delivery aspects of CRISPR/Cas for in vivo genome editing publication-title: Accounts Chem Res. doi: 10.1021/acs.accounts.9b00106 – volume: 36 start-page: 2684 year: 2020 ident: B60 article-title: Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btaa041 |
| SSID | ssj0000650103 |
| Score | 2.6569543 |
| SecondaryResourceType | review_article |
| Snippet | A series of recent discoveries harnessing the adaptive immune system of prokaryotes to perform targeted genome editing is having a transformative influence... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1387 |
| SubjectTerms | clinical trial CRISPR/Cas9 ethics gene therapy homology-directed repair (HDR) non-homologous end joining (NHEJ) Oncology |
| Title | CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32850447 https://www.proquest.com/docview/2437844029 https://pubmed.ncbi.nlm.nih.gov/PMC7427626 https://doaj.org/article/6de0e2e0a57e411ca89668dfcfefc5eb |
| Volume | 10 |
| WOSCitedRecordID | wos000563457500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2234-943X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000650103 issn: 2234-943X databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2234-943X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000650103 issn: 2234-943X databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BhRAXRHlugcpIHDiQNnb85FaqruihpSpF2pvl-KFWQlnUbnvkt-Nxsqssouqll0hJHGU8M7G_0Uy-AfgoTcOVd7RC7rKKp8ZXuvGpEoalVstIeatLswl1fKxnM3MyavWFNWE9PXCvuF0ZYh1ZrJ1QkVPqnc4AXYfkU0xexBZX34x6RsFUvwYLbGDQc_nkKMzspnmHjIWs3sHcnFrbhgpb__8g5r-VkqOtZ_oMng6Ykez1sm7Cg9g9h8dHQ1b8BXzfPz38cXJKkEKanPU0AV_I3ig1_ZmUH5mWJ64L5HBUSk4yciUZCZJpYRh5CT-nB2f736qhUULlBROLSsnaBOa4r4VoMuRIKcXAeCNVS1OgwYkMAp2JjAXaIMIJGcRppbIXce-ja17BRjfv4hsglDqWdccli5FLLbWp2zYFx1ObTOJqAjtLvVk_yI3NLH7ZHE2goi0q2qKibVH0BD6tHvjdE2jcPvQrGmI1DJmvy4XsD3bwB3uXP0zgw9KMNn8pmP5wXZxfX1mkXtQ8x8tmAq97s65e1TCdJ43TU2sGX5Nl_U53cV7YuBVneUORW_ch_Ft4guooBYbqHWwsLq_je3jkbxYXV5fb8FDN9HZx9Hw8-nPwFwzSBWQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR+Gene+Therapy%3A+Applications%2C+Limitations%2C+and+Implications+for+the+Future&rft.jtitle=Frontiers+in+oncology&rft.au=Uddin%2C+Fathema&rft.au=Rudin%2C+Charles+M&rft.au=Sen%2C+Triparna&rft.date=2020-08-07&rft.issn=2234-943X&rft.eissn=2234-943X&rft.volume=10&rft.spage=1387&rft_id=info:doi/10.3389%2Ffonc.2020.01387&rft_id=info%3Apmid%2F32850447&rft.externalDocID=32850447 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-943X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-943X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-943X&client=summon |