Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis

The immune response is normally controlled by regulatory T cells (Tregs). However, Treg deficits are found in autoimmune diseases, and therefore the induction of functional Tregs is considered a potential therapeutic approach for autoimmune disorders. The activation of the ligand-activated transcrip...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the National Academy of Sciences - PNAS Ročník 109; číslo 28; s. 11270
Hlavní autoři: Yeste, Ada, Nadeau, Meghan, Burns, Evan J, Weiner, Howard L, Quintana, Francisco J
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 10.07.2012
Témata:
ISSN:1091-6490, 1091-6490
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The immune response is normally controlled by regulatory T cells (Tregs). However, Treg deficits are found in autoimmune diseases, and therefore the induction of functional Tregs is considered a potential therapeutic approach for autoimmune disorders. The activation of the ligand-activated transcription factor aryl hydrocarbon receptor by 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) or other ligands induces dendritic cells (DCs) that promote FoxP3(+) Treg differentiation. Here we report the use of nanoparticles (NPs) to coadminister ITE and a T-cell epitope from myelin oligodendrocyte glycoprotein (MOG)(35)(-55) to promote the generation of Tregs by DCs. NP-treated DCs displayed a tolerogenic phenotype and promoted the differentiation of Tregs in vitro. Moreover, NPs carrying ITE and MOG(35-55) expanded the FoxP3(+) Treg compartment and suppressed the development of experimental autoimmune encephalomyelitis, an experimental model of multiple sclerosis. Thus, NPs are potential new tools to induce functional Tregs in autoimmune disorders.
AbstractList The immune response is normally controlled by regulatory T cells (Tregs). However, Treg deficits are found in autoimmune diseases, and therefore the induction of functional Tregs is considered a potential therapeutic approach for autoimmune disorders. The activation of the ligand-activated transcription factor aryl hydrocarbon receptor by 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) or other ligands induces dendritic cells (DCs) that promote FoxP3(+) Treg differentiation. Here we report the use of nanoparticles (NPs) to coadminister ITE and a T-cell epitope from myelin oligodendrocyte glycoprotein (MOG)(35)(-55) to promote the generation of Tregs by DCs. NP-treated DCs displayed a tolerogenic phenotype and promoted the differentiation of Tregs in vitro. Moreover, NPs carrying ITE and MOG(35-55) expanded the FoxP3(+) Treg compartment and suppressed the development of experimental autoimmune encephalomyelitis, an experimental model of multiple sclerosis. Thus, NPs are potential new tools to induce functional Tregs in autoimmune disorders.The immune response is normally controlled by regulatory T cells (Tregs). However, Treg deficits are found in autoimmune diseases, and therefore the induction of functional Tregs is considered a potential therapeutic approach for autoimmune disorders. The activation of the ligand-activated transcription factor aryl hydrocarbon receptor by 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) or other ligands induces dendritic cells (DCs) that promote FoxP3(+) Treg differentiation. Here we report the use of nanoparticles (NPs) to coadminister ITE and a T-cell epitope from myelin oligodendrocyte glycoprotein (MOG)(35)(-55) to promote the generation of Tregs by DCs. NP-treated DCs displayed a tolerogenic phenotype and promoted the differentiation of Tregs in vitro. Moreover, NPs carrying ITE and MOG(35-55) expanded the FoxP3(+) Treg compartment and suppressed the development of experimental autoimmune encephalomyelitis, an experimental model of multiple sclerosis. Thus, NPs are potential new tools to induce functional Tregs in autoimmune disorders.
The immune response is normally controlled by regulatory T cells (Tregs). However, Treg deficits are found in autoimmune diseases, and therefore the induction of functional Tregs is considered a potential therapeutic approach for autoimmune disorders. The activation of the ligand-activated transcription factor aryl hydrocarbon receptor by 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) or other ligands induces dendritic cells (DCs) that promote FoxP3(+) Treg differentiation. Here we report the use of nanoparticles (NPs) to coadminister ITE and a T-cell epitope from myelin oligodendrocyte glycoprotein (MOG)(35)(-55) to promote the generation of Tregs by DCs. NP-treated DCs displayed a tolerogenic phenotype and promoted the differentiation of Tregs in vitro. Moreover, NPs carrying ITE and MOG(35-55) expanded the FoxP3(+) Treg compartment and suppressed the development of experimental autoimmune encephalomyelitis, an experimental model of multiple sclerosis. Thus, NPs are potential new tools to induce functional Tregs in autoimmune disorders.
Author Nadeau, Meghan
Burns, Evan J
Weiner, Howard L
Yeste, Ada
Quintana, Francisco J
Author_xml – sequence: 1
  givenname: Ada
  surname: Yeste
  fullname: Yeste, Ada
  organization: Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
– sequence: 2
  givenname: Meghan
  surname: Nadeau
  fullname: Nadeau, Meghan
– sequence: 3
  givenname: Evan J
  surname: Burns
  fullname: Burns, Evan J
– sequence: 4
  givenname: Howard L
  surname: Weiner
  fullname: Weiner, Howard L
– sequence: 5
  givenname: Francisco J
  surname: Quintana
  fullname: Quintana, Francisco J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22745170$$D View this record in MEDLINE/PubMed
BookMark eNpNUE1LxDAUDLLifujZm-TopWuSTZrtURa_YNGLnstr-6qRNKlNKu4_8GcbdQUvb94Mw8DMnEycd0jIKWdLzvTqoncQlpwLlnPOWXFAZunyLJcFm_z7p2QewitjrFBrdkSmQmipuGYz8nkPzvcwRFNbzDpsDERsaO0btOYdhx31Le12iTgKLppn_MaGAo3e4uATNzUNHVhLu6TUo0Uaxr4fMAQMFD96HEyHLoKlMEZvum50SNHV2L-A9T_Z0YRjctiCDXiyxwV5ur563Nxm24ebu83lNquVUDFTheYKtGJNC3mhdc0q3jYc13JVVVq0INeVqKpWrlSBuUqqSqYGKrWCvClasSDnv7n94N9GDLHsTKjRWnDox1ByJmQupWQ6Wc_21rFKy5R9KgLDrvxbT3wB-W14VA
CitedBy_id crossref_primary_10_1016_j_bcp_2013_07_004
crossref_primary_10_1111_cns_12342
crossref_primary_10_1007_s11892_020_01363_3
crossref_primary_10_1016_j_tibtech_2018_02_008
crossref_primary_10_1038_s41573_019_0016_5
crossref_primary_10_1016_j_nantod_2021_101307
crossref_primary_10_1016_j_neuropharm_2014_02_011
crossref_primary_10_1016_j_jddst_2021_102772
crossref_primary_10_1073_pnas_1408686111
crossref_primary_10_3390_nano12050783
crossref_primary_10_2217_imt_13_25
crossref_primary_10_1124_pr_113_007823
crossref_primary_10_1111_imm_12046
crossref_primary_10_1007_s00204_018_2366_x
crossref_primary_10_3390_ijms25179588
crossref_primary_10_1002_smll_202307366
crossref_primary_10_2217_nnm_15_132
crossref_primary_10_4049_jimmunol_1900038
crossref_primary_10_1038_s41577_023_00970_x
crossref_primary_10_1126_scitranslmed_adi7828
crossref_primary_10_1080_17425247_2021_2003327
crossref_primary_10_1586_14760584_2015_1064772
crossref_primary_10_1016_j_biomaterials_2019_119432
crossref_primary_10_3109_1547691X_2016_1159264
crossref_primary_10_1016_j_jconrel_2015_05_277
crossref_primary_10_3389_fimmu_2024_1494499
crossref_primary_10_3390_ijms22168866
crossref_primary_10_1016_j_nantod_2019_04_005
crossref_primary_10_1016_j_ymthe_2017_04_015
crossref_primary_10_1111_cei_13256
crossref_primary_10_1007_s13346_024_01632_8
crossref_primary_10_3390_biomedicines10123042
crossref_primary_10_1002_advs_202205105
crossref_primary_10_4049_jimmunol_1501789
crossref_primary_10_1111_tri_13504
crossref_primary_10_1038_s41565_020_00810_2
crossref_primary_10_1007_s11892_017_0914_z
crossref_primary_10_1186_s12974_023_02974_9
crossref_primary_10_1208_s12248_017_0089_1
crossref_primary_10_1016_j_cellimm_2020_104173
crossref_primary_10_3389_fimmu_2022_795089
crossref_primary_10_1038_s41573_025_01172_x
crossref_primary_10_3390_cells8060543
crossref_primary_10_1021_acs_chemrev_5b00109
crossref_primary_10_1111_imm_12933
crossref_primary_10_1155_2014_520763
crossref_primary_10_1016_j_jconrel_2021_01_013
crossref_primary_10_1016_j_it_2022_01_008
crossref_primary_10_1111_bph_12722
crossref_primary_10_1007_s00281_016_0587_8
crossref_primary_10_1073_pnas_2016451117
crossref_primary_10_1016_j_bioactmat_2024_03_030
crossref_primary_10_3390_ijms232314919
crossref_primary_10_3390_polym12123063
crossref_primary_10_1016_j_imlet_2021_04_012
crossref_primary_10_1016_j_jconrel_2017_09_034
crossref_primary_10_1016_j_addr_2021_113898
crossref_primary_10_1016_j_cotox_2017_01_007
crossref_primary_10_1096_fj_201601243R
crossref_primary_10_1016_j_biomaterials_2016_11_052
crossref_primary_10_1016_j_biopha_2016_12_010
crossref_primary_10_1016_j_coi_2015_05_005
crossref_primary_10_3389_fimmu_2022_807271
crossref_primary_10_1002_jbm_a_36151
crossref_primary_10_1016_j_clim_2015_03_023
crossref_primary_10_3389_fimmu_2017_00657
crossref_primary_10_1212_WNL_0000000000001066
crossref_primary_10_1007_s12016_019_08772_7
crossref_primary_10_1038_s41467_022_35263_9
crossref_primary_10_3389_fimmu_2020_00674
crossref_primary_10_1016_j_nano_2014_12_003
crossref_primary_10_1002_adtp_202100056
crossref_primary_10_1016_j_jaut_2017_12_010
crossref_primary_10_3390_app11188557
crossref_primary_10_1002_adhm_201701494
crossref_primary_10_3389_fimmu_2018_00281
crossref_primary_10_1002_adtp_201800157
crossref_primary_10_3390_jnt3040011
crossref_primary_10_1038_nm_4106
crossref_primary_10_1016_j_chom_2019_12_005
crossref_primary_10_1038_ni_2695
crossref_primary_10_1016_j_nano_2016_09_007
crossref_primary_10_2217_nnm_2020_0102
crossref_primary_10_1073_pnas_1310214110
crossref_primary_10_1016_j_imlet_2013_12_018
crossref_primary_10_1016_j_nano_2014_12_014
crossref_primary_10_1038_s41563_021_01047_7
crossref_primary_10_1038_s41577_019_0125_8
crossref_primary_10_1002_adhm_202000164
crossref_primary_10_1039_C7CS00877E
crossref_primary_10_1016_j_intimp_2023_109740
crossref_primary_10_1002_smll_201802053
crossref_primary_10_1016_j_biomaterials_2019_119491
crossref_primary_10_1016_j_ccr_2020_213697
crossref_primary_10_1093_biolre_ioaa128
crossref_primary_10_1016_j_cell_2023_03_008
crossref_primary_10_1146_annurev_bioeng_110315_020137
crossref_primary_10_1002_adhm_201700939
crossref_primary_10_1016_j_jconrel_2021_02_008
crossref_primary_10_1038_s41423_020_00585_5
crossref_primary_10_1016_j_clim_2015_02_003
crossref_primary_10_3389_fphar_2025_1643791
crossref_primary_10_1002_wnan_1263
crossref_primary_10_1002_term_2597
crossref_primary_10_1038_s41392_024_01952_8
crossref_primary_10_1002_adfm_201909083
crossref_primary_10_1016_j_coi_2021_02_003
crossref_primary_10_1016_j_jhep_2015_01_006
crossref_primary_10_1016_j_addr_2020_04_005
crossref_primary_10_1373_clinchem_2012_194423
crossref_primary_10_3390_brainsci11121583
crossref_primary_10_1016_j_jcis_2024_12_195
crossref_primary_10_1016_j_smim_2017_08_010
crossref_primary_10_1016_j_smim_2021_101535
crossref_primary_10_1002_smtd_201700347
crossref_primary_10_1007_s10753_013_9751_7
crossref_primary_10_1016_j_jconrel_2024_07_077
crossref_primary_10_3390_cells11101708
crossref_primary_10_3390_biom11091289
crossref_primary_10_1016_j_biomaterials_2017_07_029
crossref_primary_10_1371_journal_pone_0209690
crossref_primary_10_1038_nmat3775
crossref_primary_10_3389_fimmu_2020_00472
crossref_primary_10_1039_C8BM01572D
crossref_primary_10_1016_j_actbio_2021_05_045
crossref_primary_10_1016_j_smim_2021_101541
crossref_primary_10_1016_j_jconrel_2022_02_009
crossref_primary_10_3389_fbioe_2023_1242126
crossref_primary_10_1002_adhm_201500618
crossref_primary_10_1002_eji_201747059
crossref_primary_10_1007_s10787_019_00651_z
crossref_primary_10_1136_jitc_2020_002086
crossref_primary_10_3390_pharmaceutics15051449
crossref_primary_10_1016_j_biomaterials_2017_07_019
crossref_primary_10_1016_j_addr_2017_04_005
crossref_primary_10_1016_j_nano_2020_102321
crossref_primary_10_1002_adhm_201801419
crossref_primary_10_3390_vaccines5010006
crossref_primary_10_3389_fimmu_2021_674048
crossref_primary_10_1126_scitranslmed_aba0599
crossref_primary_10_1097_TP_0b013e31827a3d1d
crossref_primary_10_3390_biomedicines9010083
crossref_primary_10_3389_fbioe_2022_889291
crossref_primary_10_1097_MOT_0000000000000488
crossref_primary_10_3390_brainsci10050299
crossref_primary_10_1016_j_carbpol_2016_11_027
crossref_primary_10_4285_ctr_24_0065
crossref_primary_10_1007_s00281_013_0397_1
crossref_primary_10_1016_j_tem_2017_02_009
crossref_primary_10_1208_s12248_014_9708_2
crossref_primary_10_1007_s13346_022_01256_w
crossref_primary_10_1016_j_ddtec_2021_02_001
crossref_primary_10_1038_nnano_2014_62
crossref_primary_10_1016_j_jconrel_2021_01_019
crossref_primary_10_1016_j_immuni_2017_12_012
crossref_primary_10_1016_j_jconrel_2024_01_018
crossref_primary_10_1371_journal_pone_0088726
crossref_primary_10_1039_D0BM01171A
crossref_primary_10_1002_adhm_201600773
crossref_primary_10_1016_j_it_2015_05_007
crossref_primary_10_3390_pharmaceutics13101621
crossref_primary_10_3389_fimmu_2021_657768
crossref_primary_10_1371_journal_pone_0180321
crossref_primary_10_1111_imm_13298
crossref_primary_10_1124_pr_114_009001
crossref_primary_10_3389_fimmu_2022_864403
crossref_primary_10_3390_nano14010067
crossref_primary_10_1007_s11892_021_01376_6
crossref_primary_10_1093_ibd_izae022
crossref_primary_10_1016_j_bcp_2016_06_015
crossref_primary_10_3389_fimmu_2021_624293
crossref_primary_10_1016_j_addr_2015_10_020
crossref_primary_10_1016_j_semcancer_2019_05_014
crossref_primary_10_1007_s11481_015_9588_y
crossref_primary_10_4049_jimmunol_1800108
crossref_primary_10_2147_IJN_S440612
crossref_primary_10_1016_j_intimp_2024_111617
crossref_primary_10_1146_annurev_bioeng_071813_104814
crossref_primary_10_1016_j_cellimm_2021_104412
crossref_primary_10_1177_1721727X1201000309
crossref_primary_10_1016_j_bioadv_2022_212726
crossref_primary_10_1016_j_jconrel_2021_09_037
crossref_primary_10_1016_j_jconrel_2019_02_025
crossref_primary_10_1016_j_actbio_2013_12_036
crossref_primary_10_1146_annurev_chembioeng_080615_034446
crossref_primary_10_1186_s12974_022_02663_z
crossref_primary_10_3389_fimmu_2018_00230
crossref_primary_10_1016_j_actbio_2025_03_023
crossref_primary_10_1002_adtp_201900070
crossref_primary_10_3390_brainsci10060333
crossref_primary_10_1038_cdd_2014_125
crossref_primary_10_4049_jimmunol_1901301
crossref_primary_10_1002_jps_24273
crossref_primary_10_1016_j_addr_2019_02_009
crossref_primary_10_3389_fimmu_2024_1421346
crossref_primary_10_1016_j_tips_2017_11_007
crossref_primary_10_4049_jimmunol_1502149
crossref_primary_10_3389_fimmu_2021_681062
crossref_primary_10_7759_cureus_44302
crossref_primary_10_1016_j_addr_2023_115141
crossref_primary_10_1007_s13204_022_02698_x
crossref_primary_10_1002_adbi_201700022
crossref_primary_10_1007_s12020_019_02083_9
crossref_primary_10_1016_j_jconrel_2017_07_006
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1120611109
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 22745170
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R00 AI075285
– fundername: NIAID NIH HHS
  grantid: R01 AI093903
– fundername: NIAID NIH HHS
  grantid: K99 AI075285
– fundername: NIAID NIH HHS
  grantid: AI435801
– fundername: NIAID NIH HHS
  grantid: AI093903
– fundername: NIAID NIH HHS
  grantid: AI075285
– fundername: NIAID NIH HHS
  grantid: R56 AI093903
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c525t-59715a750dfa6977c0b1fd1e843bb72fa48b2bbf4359e6543b577cdab53a6d9f2
IEDL.DBID 7X8
ISICitedReferencesCount 259
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000306642100052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Sun Nov 09 11:22:07 EST 2025
Mon Jul 21 05:47:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-59715a750dfa6977c0b1fd1e843bb72fa48b2bbf4359e6543b577cdab53a6d9f2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/109/28/11270.full.pdf
PMID 22745170
PQID 1024644407
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1024644407
pubmed_primary_22745170
PublicationCentury 2000
PublicationDate 2012-07-10
PublicationDateYYYYMMDD 2012-07-10
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
References 2145387 - J Exp Med. 1990 Oct 1;172(4):1025-33
21350488 - Nature. 2011 Feb 24;470(7335):543-7
18157119 - Nat Biotechnol. 2008 Jan;26(1):83-90
16378435 - Langmuir. 2006 Jan 3;22(1):300-5
16715091 - Nat Med. 2006 Jun;12(6):627-35
21031576 - Ann Neurol. 2010 Nov;68(5):593-601
11910899 - Nat Rev Immunol. 2002 Feb;2(2):85-95
19635862 - J Exp Med. 2009 Aug 3;206(8):1755-67
20559327 - Nat Rev Immunol. 2010 Jul;10(7):490-500
21107346 - Nat Rev Immunol. 2010 Dec;10(12):849-59
20016504 - Nat Immunol. 2010 Jan;11(1):7-13
16341241 - Nat Med. 2006 Jan;12(1):138-43
19028871 - Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18889-94
20174617 - Immunotherapy. 2009 Jul;1(4):539-47
17898760 - Nature. 2007 Sep 27;449(7161):419-26
18514941 - Trends Biotechnol. 2008 Aug;26(8):425-33
21041655 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19961-6
18607004 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9721-6
20720200 - J Immunol. 2010 Sep 15;185(6):3190-8
14500649 - J Immunol. 2003 Oct 1;171(7):3533-41
18481290 - Ann Neurol. 2008 May;63(5):611-20
21896725 - Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15745-50
16648838 - Nature. 2006 May 11;441(7090):235-8
20381385 - Immunity. 2010 Apr 23;32(4):568-80
12910246 - Nat Biotechnol. 2003 Sep;21(9):1033-9
15501436 - Chem Biol Interact. 2004 Oct 15;149(2-3):151-64
17384649 - Nat Med. 2007 Apr;13(4):423-31
1084899 - J Immunol. 1976 Aug;117(2):480-5
22375937 - Mol Pharm. 2012 Apr 2;9(4):979-85
16903904 - Immunol Rev. 2006 Aug;212:28-50
1694533 - J Neuroimmunol. 1990 Jul;28(2):119-30
20302829 - Prog Brain Res. 2009;180:72-96
18550851 - Blood. 2008 Aug 15;112(4):1214-22
12732654 - J Exp Med. 2003 May 5;197(9):1073-81
21886804 - PLoS One. 2011;6(8):e23618
22262743 - Neurology. 2012 Feb 21;78(8):532-9
18587385 - Nat Biotechnol. 2008 Jul;26(7):799-807
17653127 - Nat Rev Immunol. 2007 Aug;7(8):650-4
17712344 - Nat Immunol. 2007 Sep;8(9):913-9
21068375 - Proc Natl Acad Sci U S A. 2010 Nov 30;107(48):20768-73
21983520 - Nat Biotechnol. 2011 Nov;29(11):1005-10
18362915 - Nature. 2008 May 1;453(7191):65-71
21858153 - PLoS One. 2011;6(8):e23522
3856321 - Science. 1985 Mar 22;227(4693):1499-502
20676095 - Nat Immunol. 2010 Sep;11(9):854-61
20676092 - Nat Immunol. 2010 Sep;11(9):846-53
20221429 - PLoS One. 2010;5(3):e9478
References_xml – reference: 21350488 - Nature. 2011 Feb 24;470(7335):543-7
– reference: 21896725 - Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15745-50
– reference: 1084899 - J Immunol. 1976 Aug;117(2):480-5
– reference: 20221429 - PLoS One. 2010;5(3):e9478
– reference: 18362915 - Nature. 2008 May 1;453(7191):65-71
– reference: 12910246 - Nat Biotechnol. 2003 Sep;21(9):1033-9
– reference: 17653127 - Nat Rev Immunol. 2007 Aug;7(8):650-4
– reference: 21886804 - PLoS One. 2011;6(8):e23618
– reference: 16378435 - Langmuir. 2006 Jan 3;22(1):300-5
– reference: 20016504 - Nat Immunol. 2010 Jan;11(1):7-13
– reference: 18550851 - Blood. 2008 Aug 15;112(4):1214-22
– reference: 16648838 - Nature. 2006 May 11;441(7090):235-8
– reference: 17712344 - Nat Immunol. 2007 Sep;8(9):913-9
– reference: 18587385 - Nat Biotechnol. 2008 Jul;26(7):799-807
– reference: 19028871 - Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18889-94
– reference: 1694533 - J Neuroimmunol. 1990 Jul;28(2):119-30
– reference: 16903904 - Immunol Rev. 2006 Aug;212:28-50
– reference: 19635862 - J Exp Med. 2009 Aug 3;206(8):1755-67
– reference: 15501436 - Chem Biol Interact. 2004 Oct 15;149(2-3):151-64
– reference: 20559327 - Nat Rev Immunol. 2010 Jul;10(7):490-500
– reference: 18514941 - Trends Biotechnol. 2008 Aug;26(8):425-33
– reference: 16715091 - Nat Med. 2006 Jun;12(6):627-35
– reference: 20174617 - Immunotherapy. 2009 Jul;1(4):539-47
– reference: 20381385 - Immunity. 2010 Apr 23;32(4):568-80
– reference: 2145387 - J Exp Med. 1990 Oct 1;172(4):1025-33
– reference: 3856321 - Science. 1985 Mar 22;227(4693):1499-502
– reference: 17384649 - Nat Med. 2007 Apr;13(4):423-31
– reference: 21858153 - PLoS One. 2011;6(8):e23522
– reference: 16341241 - Nat Med. 2006 Jan;12(1):138-43
– reference: 21041655 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19961-6
– reference: 20676092 - Nat Immunol. 2010 Sep;11(9):846-53
– reference: 18157119 - Nat Biotechnol. 2008 Jan;26(1):83-90
– reference: 18481290 - Ann Neurol. 2008 May;63(5):611-20
– reference: 22262743 - Neurology. 2012 Feb 21;78(8):532-9
– reference: 18607004 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9721-6
– reference: 20302829 - Prog Brain Res. 2009;180:72-96
– reference: 21068375 - Proc Natl Acad Sci U S A. 2010 Nov 30;107(48):20768-73
– reference: 21983520 - Nat Biotechnol. 2011 Nov;29(11):1005-10
– reference: 20676095 - Nat Immunol. 2010 Sep;11(9):854-61
– reference: 12732654 - J Exp Med. 2003 May 5;197(9):1073-81
– reference: 21107346 - Nat Rev Immunol. 2010 Dec;10(12):849-59
– reference: 21031576 - Ann Neurol. 2010 Nov;68(5):593-601
– reference: 14500649 - J Immunol. 2003 Oct 1;171(7):3533-41
– reference: 20720200 - J Immunol. 2010 Sep 15;185(6):3190-8
– reference: 17898760 - Nature. 2007 Sep 27;449(7161):419-26
– reference: 22375937 - Mol Pharm. 2012 Apr 2;9(4):979-85
– reference: 11910899 - Nat Rev Immunol. 2002 Feb;2(2):85-95
SSID ssj0009580
Score 2.5325575
Snippet The immune response is normally controlled by regulatory T cells (Tregs). However, Treg deficits are found in autoimmune diseases, and therefore the induction...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 11270
SubjectTerms Animals
Autoimmune Diseases - immunology
Cytokines - metabolism
Encephalomyelitis, Autoimmune, Experimental - immunology
Encephalomyelitis, Autoimmune, Experimental - therapy
Epitopes - chemistry
Epitopes, T-Lymphocyte - chemistry
Genes, Reporter
Humans
Immune System - physiology
Ligands
Mice
Mice, Inbred C57BL
Microscopy, Electron, Transmission - methods
Microsomes, Liver - metabolism
Multiple Sclerosis - metabolism
Myelin Sheath - immunology
Nanoparticles - chemistry
Nanotechnology - methods
T-Lymphocytes, Regulatory - cytology
Title Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis
URI https://www.ncbi.nlm.nih.gov/pubmed/22745170
https://www.proquest.com/docview/1024644407
Volume 109
WOSCitedRecordID wos000306642100052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevCirs_1RQQPegg2adM2JxFx8aDLHlT2tiRtggvdtm67wv4Df7aTtIteBMFLSyFtwyQz-SaZbwahCyGpAuPokcTnmgTaKCKML0CvhNIOxDpW2utjNBjEo5EYthtuVRtWubSJzlCnRWL3yEG7WQBrN_gfN-U7sVWj7OlqW0JjFXV8gDI2pCsaxT-S7sZNNgJBSRgIb5naJ_Kvy1xWlj4Dyxl10Yi_4Uu3zvS3_tvDbbTZIkx820yJLlrR-Q7qtjpc4cs20fTVLvoE0wo-c9OQOA4J4E9sWe6ZDddY4MLg6cIy1jEMgM3bCfcUS1wXmZ4V8DxJcDWVWYanTZldjat56WJr4Vc_qwdgOa-LiSWjaGw7Ur7JrHDfrifVHnrp3z_fPZC2MgNJOOM1AS-EcglgIzUyBASZeIqalOo48JWKmJFBrJhSBrCY0Ja9qjg0SqXivgxTYdg-WsuLXB8inCjOJPNiycMk0AD2tI48GUpG0zhVSvXQ-VLaY5j59jhD5rqYV-NveffQQTNk47JJ0TFm4GxzGnlHf3j7GG0ACnIxuNQ7QR0Deq9P0XryAQKYnbkpBdfB8OkL6Z3awA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoparticle-mediated+codelivery+of+myelin+antigen+and+a+tolerogenic+small+molecule+suppresses+experimental+autoimmune+encephalomyelitis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Yeste%2C+Ada&rft.au=Nadeau%2C+Meghan&rft.au=Burns%2C+Evan+J&rft.au=Weiner%2C+Howard+L&rft.date=2012-07-10&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=109&rft.issue=28&rft.spage=11270&rft_id=info:doi/10.1073%2Fpnas.1120611109&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon