Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli

The site-specific incorporation of unnatural amino acids (UAAs) into proteins in living cells relies on an engineered tRNA/aminoacyl-tRNA synthetase (tRNA/aaRS) pair, orthogonal to the host cell, to deliver the UAA of choice in response to a unique nonsense or frameshift codon. Here we report the ge...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 37; p. 14841
Main Authors: Chatterjee, Abhishek, Xiao, Han, Schultz, Peter G
Format: Journal Article
Language:English
Published: United States 11.09.2012
Subjects:
ISSN:1091-6490, 1091-6490
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The site-specific incorporation of unnatural amino acids (UAAs) into proteins in living cells relies on an engineered tRNA/aminoacyl-tRNA synthetase (tRNA/aaRS) pair, orthogonal to the host cell, to deliver the UAA of choice in response to a unique nonsense or frameshift codon. Here we report the generation of mutually orthogonal prolyl-tRNA/prolyl-tRNA synthase (ProRS) pairs derived from an archaebacterial ancestor for use in Escherichia coli. By reprogramming the anticodon-binding pocket of Pyrococcus horikoshii ProRS (PhProRS), we were able to identify synthetase variants that recognize engineered Archaeoglobus fulgidus prolyl-tRNAs (Af-tRNA(Pro)) with three different anticodons: CUA, AGGG, and CUAG. Several of these evolved PhProRSs show specificity toward a particular anticodon variant of Af-tRNA(Pro), whereas others are promiscuous. Further evolution of the Af-tRNA(Pro) led to a variant exhibiting significantly improved amber suppression efficiency. Availability of a prolyl-tRNA/aaRS pair should enable site-specific incorporation of proline analogs and other N-modified UAAs into proteins in E. coli. The evolution of mutually orthogonal prolyl-tRNA/ProRS pairs demonstrates the plasticity of the tRNA-aaRS interface and should facilitate the incorporation of multiple, distinct UAAs into proteins.
AbstractList The site-specific incorporation of unnatural amino acids (UAAs) into proteins in living cells relies on an engineered tRNA/aminoacyl-tRNA synthetase (tRNA/aaRS) pair, orthogonal to the host cell, to deliver the UAA of choice in response to a unique nonsense or frameshift codon. Here we report the generation of mutually orthogonal prolyl-tRNA/prolyl-tRNA synthase (ProRS) pairs derived from an archaebacterial ancestor for use in Escherichia coli. By reprogramming the anticodon-binding pocket of Pyrococcus horikoshii ProRS (PhProRS), we were able to identify synthetase variants that recognize engineered Archaeoglobus fulgidus prolyl-tRNAs (Af-tRNA(Pro)) with three different anticodons: CUA, AGGG, and CUAG. Several of these evolved PhProRSs show specificity toward a particular anticodon variant of Af-tRNA(Pro), whereas others are promiscuous. Further evolution of the Af-tRNA(Pro) led to a variant exhibiting significantly improved amber suppression efficiency. Availability of a prolyl-tRNA/aaRS pair should enable site-specific incorporation of proline analogs and other N-modified UAAs into proteins in E. coli. The evolution of mutually orthogonal prolyl-tRNA/ProRS pairs demonstrates the plasticity of the tRNA-aaRS interface and should facilitate the incorporation of multiple, distinct UAAs into proteins.
The site-specific incorporation of unnatural amino acids (UAAs) into proteins in living cells relies on an engineered tRNA/aminoacyl-tRNA synthetase (tRNA/aaRS) pair, orthogonal to the host cell, to deliver the UAA of choice in response to a unique nonsense or frameshift codon. Here we report the generation of mutually orthogonal prolyl-tRNA/prolyl-tRNA synthase (ProRS) pairs derived from an archaebacterial ancestor for use in Escherichia coli. By reprogramming the anticodon-binding pocket of Pyrococcus horikoshii ProRS (PhProRS), we were able to identify synthetase variants that recognize engineered Archaeoglobus fulgidus prolyl-tRNAs (Af-tRNA(Pro)) with three different anticodons: CUA, AGGG, and CUAG. Several of these evolved PhProRSs show specificity toward a particular anticodon variant of Af-tRNA(Pro), whereas others are promiscuous. Further evolution of the Af-tRNA(Pro) led to a variant exhibiting significantly improved amber suppression efficiency. Availability of a prolyl-tRNA/aaRS pair should enable site-specific incorporation of proline analogs and other N-modified UAAs into proteins in E. coli. The evolution of mutually orthogonal prolyl-tRNA/ProRS pairs demonstrates the plasticity of the tRNA-aaRS interface and should facilitate the incorporation of multiple, distinct UAAs into proteins.The site-specific incorporation of unnatural amino acids (UAAs) into proteins in living cells relies on an engineered tRNA/aminoacyl-tRNA synthetase (tRNA/aaRS) pair, orthogonal to the host cell, to deliver the UAA of choice in response to a unique nonsense or frameshift codon. Here we report the generation of mutually orthogonal prolyl-tRNA/prolyl-tRNA synthase (ProRS) pairs derived from an archaebacterial ancestor for use in Escherichia coli. By reprogramming the anticodon-binding pocket of Pyrococcus horikoshii ProRS (PhProRS), we were able to identify synthetase variants that recognize engineered Archaeoglobus fulgidus prolyl-tRNAs (Af-tRNA(Pro)) with three different anticodons: CUA, AGGG, and CUAG. Several of these evolved PhProRSs show specificity toward a particular anticodon variant of Af-tRNA(Pro), whereas others are promiscuous. Further evolution of the Af-tRNA(Pro) led to a variant exhibiting significantly improved amber suppression efficiency. Availability of a prolyl-tRNA/aaRS pair should enable site-specific incorporation of proline analogs and other N-modified UAAs into proteins in E. coli. The evolution of mutually orthogonal prolyl-tRNA/ProRS pairs demonstrates the plasticity of the tRNA-aaRS interface and should facilitate the incorporation of multiple, distinct UAAs into proteins.
Author Chatterjee, Abhishek
Schultz, Peter G
Xiao, Han
Author_xml – sequence: 1
  givenname: Abhishek
  surname: Chatterjee
  fullname: Chatterjee, Abhishek
  organization: Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
– sequence: 2
  givenname: Han
  surname: Xiao
  fullname: Xiao, Han
– sequence: 3
  givenname: Peter G
  surname: Schultz
  fullname: Schultz, Peter G
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22927411$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLAzEUhYNU7EPX7iRLF06bx7yyLKU-oCiIrsttkulEMsk4yQj9Af5vR63g5txz4OPAPVM0ct5phC4pmVNS8EXrIMwpoyzNUkrECZoMSpM8FWT0z4_RNIQ3QojISnKGxowJVqSUTtDn-sPbPhrvsK9w09toWqtvBhd7sPaAfRdrv_cOLG47bw82ic-PSxwOLtY6QtCLn9yC6QKufId75yD23cBDY5zHII36roO9djqYgI3D6yBr3RlZG8DSW3OOTiuwQV8c7wy93q5fVvfJ5unuYbXcJDJjWUy4glJRxTSXqYJcCKUZKwrFeCXyXGSKVHlVcZVLQnY835UVgyIrCNEguaAFm6Hr397hlfdeh7htTJDaWnDa92FLCRc8TYsyG9CrI9rvGq22bWca6A7bv-nYFzKodXk
CitedBy_id crossref_primary_10_1016_j_chempr_2020_07_013
crossref_primary_10_3389_fmicb_2018_01688
crossref_primary_10_1038_s41467_019_11427_y
crossref_primary_10_1002_cbic_202400366
crossref_primary_10_1016_j_jmb_2021_167346
crossref_primary_10_1021_jacs_0c02263
crossref_primary_10_1016_j_cbpa_2013_04_017
crossref_primary_10_1002_cbic_202300565
crossref_primary_10_3389_fbioe_2020_569191
crossref_primary_10_1038_s41557_023_01232_y
crossref_primary_10_1016_j_bmc_2020_115662
crossref_primary_10_1146_annurev_biochem_060713_035737
crossref_primary_10_1016_j_sbi_2013_06_009
crossref_primary_10_1038_s41467_024_44901_3
crossref_primary_10_1007_s00253_015_6557_6
crossref_primary_10_1371_journal_pone_0158579
crossref_primary_10_1002_ange_201301094
crossref_primary_10_1002_cbic_201402104
crossref_primary_10_1093_nar_gkz1011
crossref_primary_10_1002_anie_202316428
crossref_primary_10_1002_cbic_201900583
crossref_primary_10_1002_chem_202403718
crossref_primary_10_3389_fbioe_2020_00863
crossref_primary_10_3389_fgene_2024_1436860
crossref_primary_10_1021_acs_chemrev_3c00878
crossref_primary_10_1038_s41598_019_39484_9
crossref_primary_10_1146_annurev_biophys_070323_024308
crossref_primary_10_1021_acs_accounts_4c00320
crossref_primary_10_1016_j_copbio_2013_02_027
crossref_primary_10_1021_acscentsci_1c01465
crossref_primary_10_3389_fmolb_2022_851646
crossref_primary_10_1021_acscentsci_3c01557
crossref_primary_10_1038_s41557_018_0115_7
crossref_primary_10_1038_nature24031
crossref_primary_10_1038_s41467_023_41491_4
crossref_primary_10_3390_ijms20010092
crossref_primary_10_1002_ange_202316428
crossref_primary_10_1007_s00253_019_09690_6
crossref_primary_10_1038_srep33447
crossref_primary_10_3389_fchem_2014_00034
crossref_primary_10_1002_pro_4559
crossref_primary_10_1074_jbc_M116_761015
crossref_primary_10_1002_cbic_201402159
crossref_primary_10_1073_pnas_1302094110
crossref_primary_10_3390_genes9110537
crossref_primary_10_1016_j_jmb_2015_09_003
crossref_primary_10_1002_anie_201301094
crossref_primary_10_3389_fgene_2024_1373250
crossref_primary_10_1021_acs_chemrev_4c00730
crossref_primary_10_1038_s41557_020_0472_x
crossref_primary_10_1002_cbic_201402033
crossref_primary_10_1016_j_biortech_2025_132691
crossref_primary_10_1016_j_tim_2023_09_002
crossref_primary_10_1038_s41557_018_0052_5
crossref_primary_10_1038_s41589_024_01782_3
crossref_primary_10_3390_biom9070255
crossref_primary_10_1038_nchembio_2312
crossref_primary_10_1038_nchembio_2554
crossref_primary_10_3389_fgene_2024_1420331
crossref_primary_10_1016_j_bbagen_2017_03_003
crossref_primary_10_1038_nchembio_1823
crossref_primary_10_1038_s41576_020_00307_7
crossref_primary_10_3389_fmolb_2014_00027
crossref_primary_10_1016_j_biotechadv_2021_107767
crossref_primary_10_1016_j_chempr_2021_09_014
crossref_primary_10_1002_bit_26239
crossref_primary_10_1038_s41587_024_02385_y
crossref_primary_10_1038_s41587_020_0479_2
crossref_primary_10_1038_s41592_022_01706_w
crossref_primary_10_1146_annurev_chembioeng_061312_103351
crossref_primary_10_3390_ijms23020938
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1212454109
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 22927411
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c525t-3da8d1d2e3c4da699de2277d23f96695d0f6ff3d6c00b36b8f2a75700eac39172
IEDL.DBID 7X8
ISICitedReferencesCount 93
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309208000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Fri Sep 05 11:26:42 EDT 2025
Mon Jul 21 06:05:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-3da8d1d2e3c4da699de2277d23f96695d0f6ff3d6c00b36b8f2a75700eac39172
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/109/37/14841.full.pdf
PMID 22927411
PQID 1039344785
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1039344785
pubmed_primary_22927411
PublicationCentury 2000
PublicationDate 2012-09-11
PublicationDateYYYYMMDD 2012-09-11
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
References 14627803 - Nucleic Acids Res. 2003 Dec 1;31(23):6700-9
8381183 - J Med Chem. 1993 Feb 5;36(3):363-9
19852970 - J Mol Biol. 2010 Jan 15;395(2):361-74
11564556 - Chem Biol. 2001 Sep;8(9):883-90
17360621 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3141-6
14510473 - Nucleic Acids Res Suppl. 2003;(3):247-8
11880038 - Chem Biol. 2002 Feb;9(2):237-44
7401103 - J Med Chem. 1980 Jul;23(7):758-63
12244330 - Nat Biotechnol. 2002 Oct;20(10):1044-8
11273699 - J Mol Biol. 2001 Mar 30;307(3):755-69
9493271 - Structure. 1998 Jan 15;6(1):101-8
21404373 - Angew Chem Int Ed Engl. 2011 Mar 21;50(13):2896-902
20340150 - Angew Chem Int Ed Engl. 2010 Apr 19;49(18):3211-4
18988020 - Methods Mol Biol. 2009;498:91-103
11313494 - Science. 2001 Apr 20;292(5516):498-500
10970866 - EMBO J. 2000 Sep 1;19(17):4745-58
12911301 - Biochemistry. 2003 Aug 19;42(32):9598-608
20154731 - Nature. 2010 Mar 18;464(7287):441-4
20121121 - J Am Chem Soc. 2010 Feb 24;132(7):2142-4
19856359 - Angew Chem Int Ed Engl. 2009;48(48):9148-51
19398201 - Bioorg Med Chem Lett. 2009 Jul 15;19(14):3845-7
11342535 - J Biol Chem. 2001 Jun 8;276(23):20286-91
12754495 - Nat Struct Biol. 2003 Jun;10(6):425-32
18636716 - Acc Chem Res. 2008 Oct;41(10):1331-42
9294168 - Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10092-7
20571084 - Nucleic Acids Res. 2010 Oct;38(19):6813-30
12578991 - Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1673-8
20307192 - Annu Rev Biochem. 2010;79:413-44
15138302 - Proc Natl Acad Sci U S A. 2004 May 18;101(20):7566-71
18646869 - Acc Chem Res. 2008 Oct;41(10):1241-51
20347317 - Bioorg Med Chem. 2010 Apr 15;18(8):2976-85
References_xml – reference: 20347317 - Bioorg Med Chem. 2010 Apr 15;18(8):2976-85
– reference: 12911301 - Biochemistry. 2003 Aug 19;42(32):9598-608
– reference: 9493271 - Structure. 1998 Jan 15;6(1):101-8
– reference: 11564556 - Chem Biol. 2001 Sep;8(9):883-90
– reference: 19852970 - J Mol Biol. 2010 Jan 15;395(2):361-74
– reference: 17360621 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3141-6
– reference: 20154731 - Nature. 2010 Mar 18;464(7287):441-4
– reference: 12754495 - Nat Struct Biol. 2003 Jun;10(6):425-32
– reference: 19856359 - Angew Chem Int Ed Engl. 2009;48(48):9148-51
– reference: 8381183 - J Med Chem. 1993 Feb 5;36(3):363-9
– reference: 18988020 - Methods Mol Biol. 2009;498:91-103
– reference: 12244330 - Nat Biotechnol. 2002 Oct;20(10):1044-8
– reference: 21404373 - Angew Chem Int Ed Engl. 2011 Mar 21;50(13):2896-902
– reference: 20121121 - J Am Chem Soc. 2010 Feb 24;132(7):2142-4
– reference: 7401103 - J Med Chem. 1980 Jul;23(7):758-63
– reference: 18646869 - Acc Chem Res. 2008 Oct;41(10):1241-51
– reference: 10970866 - EMBO J. 2000 Sep 1;19(17):4745-58
– reference: 11880038 - Chem Biol. 2002 Feb;9(2):237-44
– reference: 20571084 - Nucleic Acids Res. 2010 Oct;38(19):6813-30
– reference: 14627803 - Nucleic Acids Res. 2003 Dec 1;31(23):6700-9
– reference: 9294168 - Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10092-7
– reference: 11273699 - J Mol Biol. 2001 Mar 30;307(3):755-69
– reference: 15138302 - Proc Natl Acad Sci U S A. 2004 May 18;101(20):7566-71
– reference: 18636716 - Acc Chem Res. 2008 Oct;41(10):1331-42
– reference: 14510473 - Nucleic Acids Res Suppl. 2003;(3):247-8
– reference: 19398201 - Bioorg Med Chem Lett. 2009 Jul 15;19(14):3845-7
– reference: 20340150 - Angew Chem Int Ed Engl. 2010 Apr 19;49(18):3211-4
– reference: 20307192 - Annu Rev Biochem. 2010;79:413-44
– reference: 12578991 - Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1673-8
– reference: 11342535 - J Biol Chem. 2001 Jun 8;276(23):20286-91
– reference: 11313494 - Science. 2001 Apr 20;292(5516):498-500
SSID ssj0009580
Score 2.4058812
Snippet The site-specific incorporation of unnatural amino acids (UAAs) into proteins in living cells relies on an engineered tRNA/aminoacyl-tRNA synthetase...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 14841
SubjectTerms Amino Acids - metabolism
Amino Acyl-tRNA Synthetases - genetics
Archaeoglobus fulgidus - genetics
Cloning, Molecular
Escherichia coli
Evolution, Molecular
Gene Library
Mutagenesis, Site-Directed - methods
Plasmids - genetics
Protein Engineering - methods
Pyrococcus horikoshii - genetics
RNA, Transfer - genetics
RNA, Transfer - metabolism
Title Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli
URI https://www.ncbi.nlm.nih.gov/pubmed/22927411
https://www.proquest.com/docview/1039344785
Volume 109
WOSCitedRecordID wos000309208000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UevCi1md9sYIHBZcmu3ntSURavFiKKPRWNvuQQE2qqYX-AP-3M0mKXgRBAiEJbFg238x-uzP5hpAL5eJUS2HBxJ1gQWo5ky4JmQtdwLVGRTZXFZuIB4NkNJLDZsOtbNIqlz6xctSm0LhH3sWQJarTJeHN9I1h1SiMrjYlNFZJSwCVwZSueJT8EN1NajUC6bMokN5S2icW3WmuSlRW4EEYVNmIv_HLap7pb_23h9tks2GY9LaGRJus2HyHtBsbLullIzR9tUs-e_MGeLRwdJlaeA1X-FPJZEExplO8IFen0JfJYsJmj4NbWi5yoI0zmP-61f0UY0IU2C8FNqwqIQ-qXrO8oEpnBl8HTgtcalbSLKe9EnGSYY41BRRme-S533u6u2dNWQamQx7OmDAqMb7hVujAqEhKYzmPY8OFg7WTDI3nIueEibTnpSJKE8dVjDL64OMFrA75PlnLi9weEmqlBcoBz6IADt-koeOpi4GipBIauw45Xw71GGCPsQyV2-KjHH8Pdocc1N9rPK31OcacSxTl8Y_-0PqYbAAF4pgB4vsnpOXA6O0pWdfzWVa-n1V4gvNg-PAFLMjX_Q
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+multiple%2C+mutually+orthogonal+prolyl-tRNA+synthetase%2FtRNA+pairs+for+unnatural+amino+acid+mutagenesis+in+Escherichia+coli&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Chatterjee%2C+Abhishek&rft.au=Xiao%2C+Han&rft.au=Schultz%2C+Peter+G&rft.date=2012-09-11&rft.eissn=1091-6490&rft.volume=109&rft.issue=37&rft.spage=14841&rft_id=info:doi/10.1073%2Fpnas.1212454109&rft_id=info%3Apmid%2F22927411&rft_id=info%3Apmid%2F22927411&rft.externalDocID=22927411
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon