Atypical angiopoietin-like protein that regulates ANGPTL3
Angiopoietin-like proteins (ANGPTLs) play major roles in the trafficking and metabolism of lipids. Inactivation of ANGPTL3, a gene located in an intron of DOCK7, results in very low levels of LDL-cholesterol (C), HDL-C and triglyceride (TAG). We identified another ANGPTL family member, ANGPTL8, whic...
Saved in:
| Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 48; p. 19751 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
27.11.2012
|
| Subjects: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Angiopoietin-like proteins (ANGPTLs) play major roles in the trafficking and metabolism of lipids. Inactivation of ANGPTL3, a gene located in an intron of DOCK7, results in very low levels of LDL-cholesterol (C), HDL-C and triglyceride (TAG). We identified another ANGPTL family member, ANGPTL8, which is located in the corresponding intron of DOCK6. A variant in this family member (rs2278426, R59W) was associated with lower plasma LDL-C and HDL-C levels in three populations. ANGPTL8 is expressed in liver and adipose tissue, and circulates in plasma of humans. Expression of ANGPTL8 was reduced by fasting and increased by refeeding in both mice and humans. To examine the functional relationship between the two ANGPTL family members, we expressed ANGPTL3 at physiological levels alone or together with ANGPTL8 in livers of mice. Plasma TAG level did not change in mice expressing ANGPTL3 alone, whereas coexpression with ANGPTL8 resulted in hypertriglyceridemia, despite a reduction in circulating ANGPTL3. ANGPTL8 coimmunoprecipitated with the N-terminal domain of ANGPTL3 in plasma of these mice. In cultured hepatocytes, ANGPTL8 expression increased the appearance of N-terminal ANGPTL3 in the medium, suggesting ANGPTL8 may activate ANGPTL3. Consistent with this scenario, expression of ANGPTL8 in Angptl3(-/-) mice failed to promote hypertriglyceridemia. Thus, ANGPTL8, a paralog of ANGPTL3 that arose through duplication of an ancestral DOCK gene, regulates postprandial TAG and fatty acid metabolism by controlling activation of its progenitor, and perhaps other ANGPTLs. Inhibition of ANGPTL8 provides a new therapeutic strategy for reducing plasma lipoprotein levels. |
|---|---|
| AbstractList | Angiopoietin-like proteins (ANGPTLs) play major roles in the trafficking and metabolism of lipids. Inactivation of ANGPTL3, a gene located in an intron of DOCK7, results in very low levels of LDL-cholesterol (C), HDL-C and triglyceride (TAG). We identified another ANGPTL family member, ANGPTL8, which is located in the corresponding intron of DOCK6. A variant in this family member (rs2278426, R59W) was associated with lower plasma LDL-C and HDL-C levels in three populations. ANGPTL8 is expressed in liver and adipose tissue, and circulates in plasma of humans. Expression of ANGPTL8 was reduced by fasting and increased by refeeding in both mice and humans. To examine the functional relationship between the two ANGPTL family members, we expressed ANGPTL3 at physiological levels alone or together with ANGPTL8 in livers of mice. Plasma TAG level did not change in mice expressing ANGPTL3 alone, whereas coexpression with ANGPTL8 resulted in hypertriglyceridemia, despite a reduction in circulating ANGPTL3. ANGPTL8 coimmunoprecipitated with the N-terminal domain of ANGPTL3 in plasma of these mice. In cultured hepatocytes, ANGPTL8 expression increased the appearance of N-terminal ANGPTL3 in the medium, suggesting ANGPTL8 may activate ANGPTL3. Consistent with this scenario, expression of ANGPTL8 in Angptl3(-/-) mice failed to promote hypertriglyceridemia. Thus, ANGPTL8, a paralog of ANGPTL3 that arose through duplication of an ancestral DOCK gene, regulates postprandial TAG and fatty acid metabolism by controlling activation of its progenitor, and perhaps other ANGPTLs. Inhibition of ANGPTL8 provides a new therapeutic strategy for reducing plasma lipoprotein levels.Angiopoietin-like proteins (ANGPTLs) play major roles in the trafficking and metabolism of lipids. Inactivation of ANGPTL3, a gene located in an intron of DOCK7, results in very low levels of LDL-cholesterol (C), HDL-C and triglyceride (TAG). We identified another ANGPTL family member, ANGPTL8, which is located in the corresponding intron of DOCK6. A variant in this family member (rs2278426, R59W) was associated with lower plasma LDL-C and HDL-C levels in three populations. ANGPTL8 is expressed in liver and adipose tissue, and circulates in plasma of humans. Expression of ANGPTL8 was reduced by fasting and increased by refeeding in both mice and humans. To examine the functional relationship between the two ANGPTL family members, we expressed ANGPTL3 at physiological levels alone or together with ANGPTL8 in livers of mice. Plasma TAG level did not change in mice expressing ANGPTL3 alone, whereas coexpression with ANGPTL8 resulted in hypertriglyceridemia, despite a reduction in circulating ANGPTL3. ANGPTL8 coimmunoprecipitated with the N-terminal domain of ANGPTL3 in plasma of these mice. In cultured hepatocytes, ANGPTL8 expression increased the appearance of N-terminal ANGPTL3 in the medium, suggesting ANGPTL8 may activate ANGPTL3. Consistent with this scenario, expression of ANGPTL8 in Angptl3(-/-) mice failed to promote hypertriglyceridemia. Thus, ANGPTL8, a paralog of ANGPTL3 that arose through duplication of an ancestral DOCK gene, regulates postprandial TAG and fatty acid metabolism by controlling activation of its progenitor, and perhaps other ANGPTLs. Inhibition of ANGPTL8 provides a new therapeutic strategy for reducing plasma lipoprotein levels. Angiopoietin-like proteins (ANGPTLs) play major roles in the trafficking and metabolism of lipids. Inactivation of ANGPTL3, a gene located in an intron of DOCK7, results in very low levels of LDL-cholesterol (C), HDL-C and triglyceride (TAG). We identified another ANGPTL family member, ANGPTL8, which is located in the corresponding intron of DOCK6. A variant in this family member (rs2278426, R59W) was associated with lower plasma LDL-C and HDL-C levels in three populations. ANGPTL8 is expressed in liver and adipose tissue, and circulates in plasma of humans. Expression of ANGPTL8 was reduced by fasting and increased by refeeding in both mice and humans. To examine the functional relationship between the two ANGPTL family members, we expressed ANGPTL3 at physiological levels alone or together with ANGPTL8 in livers of mice. Plasma TAG level did not change in mice expressing ANGPTL3 alone, whereas coexpression with ANGPTL8 resulted in hypertriglyceridemia, despite a reduction in circulating ANGPTL3. ANGPTL8 coimmunoprecipitated with the N-terminal domain of ANGPTL3 in plasma of these mice. In cultured hepatocytes, ANGPTL8 expression increased the appearance of N-terminal ANGPTL3 in the medium, suggesting ANGPTL8 may activate ANGPTL3. Consistent with this scenario, expression of ANGPTL8 in Angptl3(-/-) mice failed to promote hypertriglyceridemia. Thus, ANGPTL8, a paralog of ANGPTL3 that arose through duplication of an ancestral DOCK gene, regulates postprandial TAG and fatty acid metabolism by controlling activation of its progenitor, and perhaps other ANGPTLs. Inhibition of ANGPTL8 provides a new therapeutic strategy for reducing plasma lipoprotein levels. |
| Author | Hobbs, Helen H Grishin, Nick V Murphy, Andrew J Boerwinkle, Eric Cohen, Jonathan C Quagliarini, Fabiana Valenzuela, David M Hyde, Rhonda Wang, Yan Kozlitina, Julia |
| Author_xml | – sequence: 1 givenname: Fabiana surname: Quagliarini fullname: Quagliarini, Fabiana organization: Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA – sequence: 2 givenname: Yan surname: Wang fullname: Wang, Yan – sequence: 3 givenname: Julia surname: Kozlitina fullname: Kozlitina, Julia – sequence: 4 givenname: Nick V surname: Grishin fullname: Grishin, Nick V – sequence: 5 givenname: Rhonda surname: Hyde fullname: Hyde, Rhonda – sequence: 6 givenname: Eric surname: Boerwinkle fullname: Boerwinkle, Eric – sequence: 7 givenname: David M surname: Valenzuela fullname: Valenzuela, David M – sequence: 8 givenname: Andrew J surname: Murphy fullname: Murphy, Andrew J – sequence: 9 givenname: Jonathan C surname: Cohen fullname: Cohen, Jonathan C – sequence: 10 givenname: Helen H surname: Hobbs fullname: Hobbs, Helen H |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23150577$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj71PwzAUxC1URD9gZkMZWVKenb7YHquKFqQIGMocOe5LMaROiJ2h_z2VKBLL3Q0_ne6mbORbT4zdcphzkNlD502Yc8ElouCgL9jkpDzNFxpG__KYTUP4BACNCq7YWGQcAaWcML2Mx85Z0yTG713btY6i82njvijp-jaS80n8MDHpaT80JlJIli-bt22RXbPL2jSBbs4-Y-_rx-3qKS1eN8-rZZFaFBjTTOtqxxVHudDaSFXLvIK6yi0qDaAqFNJqgSQl1bwShteoUBpNqMHmyooZu__tPc35HijE8uCCpaYxntohlFwIkFpkGZzQuzM6VAfalV3vDqY_ln93xQ-vo1dl |
| CitedBy_id | crossref_primary_10_1016_j_jlr_2022_100237 crossref_primary_10_3892_br_2014_284 crossref_primary_10_1161_CIRCULATIONAHA_124_072336 crossref_primary_10_1007_s11033_021_06335_8 crossref_primary_10_1016_j_molmet_2020_101138 crossref_primary_10_1155_2016_6194750 crossref_primary_10_1038_srep18502 crossref_primary_10_1073_pnas_1717420115 crossref_primary_10_3390_ijms21103682 crossref_primary_10_3389_fendo_2023_1095440 crossref_primary_10_1186_s12944_022_01631_z crossref_primary_10_1016_j_genrep_2021_101306 crossref_primary_10_1016_j_phrs_2020_104653 crossref_primary_10_3892_ijmm_2017_2914 crossref_primary_10_1007_s10930_019_09825_8 crossref_primary_10_3390_ijms232012485 crossref_primary_10_1515_hmbci_2022_0104 crossref_primary_10_1002_humu_24398 crossref_primary_10_1002_jcla_22649 crossref_primary_10_1016_j_atherosclerosis_2014_10_016 crossref_primary_10_1038_s41598_018_25237_7 crossref_primary_10_1186_s12944_018_0802_9 crossref_primary_10_3390_ijms222312945 crossref_primary_10_1016_j_ejphar_2024_177053 crossref_primary_10_2337_db19_1181 crossref_primary_10_1371_journal_pone_0193731 crossref_primary_10_1016_j_tips_2018_06_001 crossref_primary_10_1016_j_isci_2024_111292 crossref_primary_10_3389_fnins_2025_1589110 crossref_primary_10_1016_j_orcp_2016_08_004 crossref_primary_10_1016_j_neuroscience_2016_05_055 crossref_primary_10_1049_iet_syb_2019_0032 crossref_primary_10_1186_s40608_017_0149_1 crossref_primary_10_1161_ATVBAHA_124_321308 crossref_primary_10_1007_s13167_019_00180_3 crossref_primary_10_1016_j_jhep_2016_01_025 crossref_primary_10_3390_nu10111699 crossref_primary_10_1155_2017_2316986 crossref_primary_10_1007_s00125_018_4604_4 crossref_primary_10_1038_s41598_020_73388_3 crossref_primary_10_1016_j_jlr_2025_100751 crossref_primary_10_1016_j_vaccine_2021_08_077 crossref_primary_10_1038_s41598_020_63850_7 crossref_primary_10_1080_14728222_2020_1707806 crossref_primary_10_1016_j_cjca_2023_06_002 crossref_primary_10_1172_JCI120879 crossref_primary_10_1186_s12933_018_0742_8 crossref_primary_10_1016_j_ymgme_2016_04_007 crossref_primary_10_3109_1061186X_2014_928715 crossref_primary_10_1111_pedi_12412 crossref_primary_10_3390_jcm11185477 crossref_primary_10_1007_s11883_022_01071_1 crossref_primary_10_1097_MOP_0000000000000110 crossref_primary_10_3390_biomedicines9121903 crossref_primary_10_1002_ptr_8400 crossref_primary_10_1186_s12944_018_0777_6 crossref_primary_10_1007_s11695_015_2026_7 crossref_primary_10_1016_j_drudis_2016_10_007 crossref_primary_10_2217_epi_2018_0150 crossref_primary_10_1093_molbev_msy211 crossref_primary_10_1097_MOL_0b013e32835ec621 crossref_primary_10_1007_s11886_016_0745_6 crossref_primary_10_1186_s12902_020_0531_8 crossref_primary_10_1186_s12933_015_0277_1 crossref_primary_10_1097_MOL_0000000000000798 crossref_primary_10_2217_clp_13_66 crossref_primary_10_3892_br_2019_1243 crossref_primary_10_1016_j_dsx_2018_11_016 crossref_primary_10_1016_j_cca_2015_10_033 crossref_primary_10_1016_j_ejogrb_2018_04_031 crossref_primary_10_1016_j_bbrc_2020_11_053 crossref_primary_10_1016_j_jacc_2014_09_042 crossref_primary_10_1016_j_cca_2022_01_006 crossref_primary_10_3390_nu13124339 crossref_primary_10_3390_medicina61040708 crossref_primary_10_1016_j_cca_2019_12_029 crossref_primary_10_1146_annurev_nutr_120524_013857 crossref_primary_10_1530_EJE_14_0815 crossref_primary_10_26508_lsa_202101037 crossref_primary_10_1016_j_gene_2020_144707 crossref_primary_10_1155_2015_479157 crossref_primary_10_1016_j_molmed_2016_02_005 crossref_primary_10_1007_s11010_020_03725_7 crossref_primary_10_1210_jc_2017_00453 crossref_primary_10_1016_j_molmed_2019_05_010 crossref_primary_10_1210_jendso_bvaa191 crossref_primary_10_1016_j_yexmp_2017_11_003 crossref_primary_10_1017_S1751731115000658 crossref_primary_10_3390_ijms23052663 crossref_primary_10_1016_j_cca_2021_05_017 crossref_primary_10_1016_j_jlr_2022_100313 crossref_primary_10_1016_j_obmed_2023_100494 crossref_primary_10_1016_j_bbalip_2014_03_013 crossref_primary_10_1016_j_jdiacomp_2016_05_023 crossref_primary_10_1186_s12902_016_0088_8 crossref_primary_10_1080_14767058_2021_1888919 crossref_primary_10_1186_s12933_016_0346_0 crossref_primary_10_1371_journal_pone_0255147 crossref_primary_10_1194_jlr_M088807 crossref_primary_10_1016_j_trsl_2017_03_001 crossref_primary_10_1084_jem_20201203 crossref_primary_10_3390_biomedicines9070782 crossref_primary_10_1371_journal_pone_0169941 crossref_primary_10_1186_s40246_022_00383_2 crossref_primary_10_1186_s12974_024_03183_8 crossref_primary_10_2217_clp_12_92 crossref_primary_10_1016_j_clinbiochem_2023_110592 crossref_primary_10_1002_adbi_202200093 crossref_primary_10_1002_hep_30030 crossref_primary_10_3390_jcdd5030039 crossref_primary_10_3390_ijms151223640 crossref_primary_10_1016_j_cell_2013_04_008 crossref_primary_10_1016_j_peptides_2018_07_001 crossref_primary_10_1073_pnas_2420721122 crossref_primary_10_1177_0300060518791067 crossref_primary_10_14814_phy2_14171 crossref_primary_10_1093_lifemeta_loac004 crossref_primary_10_1016_j_bbalip_2024_159461 crossref_primary_10_1371_journal_pone_0173197 crossref_primary_10_1016_j_nutres_2024_01_006 crossref_primary_10_1016_j_tem_2020_11_005 crossref_primary_10_1038_s41598_019_48371_2 crossref_primary_10_1080_00365513_2017_1379608 crossref_primary_10_1371_journal_pone_0147367 crossref_primary_10_1007_s11892_015_0676_4 crossref_primary_10_5812_asjsm_120515 crossref_primary_10_1007_s00125_014_3346_1 crossref_primary_10_1016_j_molmet_2013_11_004 crossref_primary_10_1111_dom_16661 crossref_primary_10_1016_j_jlr_2024_100578 crossref_primary_10_1038_s42003_023_05665_6 crossref_primary_10_1155_2019_5096860 crossref_primary_10_1007_s11033_021_06270_8 crossref_primary_10_1016_j_canlet_2019_08_014 crossref_primary_10_1002_dmrr_2919 crossref_primary_10_33549_physiolres_933339 crossref_primary_10_7555_JBR_32_20170114 crossref_primary_10_17826_cumj_1038569 crossref_primary_10_1371_journal_pone_0133640 crossref_primary_10_1016_j_atherosclerosis_2019_11_011 crossref_primary_10_1016_j_ygeno_2017_06_006 crossref_primary_10_1016_j_atherosclerosis_2018_03_019 crossref_primary_10_1186_s12944_024_02352_1 crossref_primary_10_1080_01443615_2017_1286464 crossref_primary_10_1097_MOL_0000000000000800 crossref_primary_10_1007_s11883_023_01179_y crossref_primary_10_3389_fnmol_2018_00451 crossref_primary_10_2337_db16_0046 crossref_primary_10_1007_s12020_015_0838_9 crossref_primary_10_1016_j_tranon_2024_102250 crossref_primary_10_3389_fphys_2022_839471 crossref_primary_10_1038_s41467_017_02355_w crossref_primary_10_1194_jlr_M094128 crossref_primary_10_3390_nu8050305 crossref_primary_10_1016_j_cellsig_2023_110697 crossref_primary_10_1038_ijo_2015_206 crossref_primary_10_5713_ab_23_0057 crossref_primary_10_1155_2017_8187235 crossref_primary_10_3389_fendo_2018_00651 crossref_primary_10_1038_s41598_020_75612_6 crossref_primary_10_1186_s12944_018_0659_y crossref_primary_10_1073_pnas_2410922121 crossref_primary_10_1016_j_atherosclerosis_2020_06_014 crossref_primary_10_1534_g3_117_300088 crossref_primary_10_1080_10495398_2016_1252769 crossref_primary_10_1016_j_bbalip_2020_158791 crossref_primary_10_1155_2019_6578327 crossref_primary_10_2147_JIR_S426439 crossref_primary_10_1002_mgg3_2418 crossref_primary_10_1155_2020_2980954 crossref_primary_10_1097_MOL_0000000000000910 crossref_primary_10_1161_ATVBAHA_122_318880 crossref_primary_10_1210_clinem_dgab120 crossref_primary_10_1016_j_diabres_2016_08_017 crossref_primary_10_1016_j_gene_2018_09_041 crossref_primary_10_1016_j_jlr_2023_100495 crossref_primary_10_1016_j_compbiolchem_2016_01_009 crossref_primary_10_1155_2017_8293207 crossref_primary_10_1038_s42003_025_07536_8 crossref_primary_10_1016_j_jlr_2021_100112 crossref_primary_10_1016_j_jlr_2022_100198 crossref_primary_10_1155_2016_5090852 crossref_primary_10_1186_s12933_014_0133_8 crossref_primary_10_1093_jas_sky162 crossref_primary_10_1016_j_molmet_2017_06_014 crossref_primary_10_1155_2020_1621239 crossref_primary_10_1038_s41598_017_03538_7 crossref_primary_10_2217_fca_2021_0149 crossref_primary_10_1007_s00417_017_3676_z crossref_primary_10_1155_2019_4214650 crossref_primary_10_1371_journal_pone_0133812 crossref_primary_10_1186_s13578_021_00710_5 crossref_primary_10_1161_JAHA_113_000201 crossref_primary_10_1016_j_jlr_2024_100526 crossref_primary_10_1016_j_numecd_2022_04_006 crossref_primary_10_3390_jcm8060854 crossref_primary_10_1007_s12020_024_03909_x crossref_primary_10_1016_j_bbrc_2013_01_129 crossref_primary_10_1038_s41467_023_40183_3 crossref_primary_10_1016_j_jacl_2018_02_006 crossref_primary_10_1016_j_trsl_2016_06_012 crossref_primary_10_1016_j_heliyon_2024_e27739 crossref_primary_10_1002_jcp_30534 crossref_primary_10_1111_liv_14554 crossref_primary_10_1530_EC_21_0002 crossref_primary_10_1186_s12933_018_0736_6 crossref_primary_10_1080_09513590_2020_1725964 crossref_primary_10_1038_s41598_017_11750_8 crossref_primary_10_1371_journal_pone_0173024 crossref_primary_10_1002_oby_21038 crossref_primary_10_1016_j_cmet_2019_05_023 crossref_primary_10_1038_s41598_020_66570_0 crossref_primary_10_1098_rsob_150272 crossref_primary_10_1016_j_soard_2016_01_024 crossref_primary_10_1007_s00125_015_3590_z crossref_primary_10_1038_s41366_025_01754_0 crossref_primary_10_1186_s12933_016_0450_1 crossref_primary_10_1097_MOL_0000000000000600 crossref_primary_10_1155_2021_6699923 crossref_primary_10_1038_srep24013 crossref_primary_10_1016_j_tcm_2023_01_008 crossref_primary_10_1038_nrendo_2017_119 crossref_primary_10_3390_ijms241814244 crossref_primary_10_1016_j_mce_2015_07_031 crossref_primary_10_1002_dmrr_3643 crossref_primary_10_1016_j_tem_2024_02_016 crossref_primary_10_1186_s12944_016_0337_x crossref_primary_10_1186_s12933_018_0785_x crossref_primary_10_1093_labmed_lmac073 crossref_primary_10_1016_j_yexcr_2015_09_012 crossref_primary_10_1038_s41598_020_64170_6 crossref_primary_10_3390_metabo12100925 crossref_primary_10_1111_rda_13244 crossref_primary_10_1111_jdi_12792 crossref_primary_10_1194_jlr_RA119000423 crossref_primary_10_1155_2019_6321427 crossref_primary_10_3390_cells9081869 crossref_primary_10_3390_jcm8081214 crossref_primary_10_1016_j_bbalip_2015_11_003 crossref_primary_10_1088_1742_6596_1146_1_012003 crossref_primary_10_1097_MOL_0000000000000290 crossref_primary_10_1111_dme_12696 crossref_primary_10_1155_2016_4860595 crossref_primary_10_1038_srep36926 crossref_primary_10_3390_medicina58040472 crossref_primary_10_2337_db13_1435 crossref_primary_10_1007_s12265_021_10169_x crossref_primary_10_1016_j_chemphyslip_2017_05_002 crossref_primary_10_1210_en_2016_1894 crossref_primary_10_1016_j_cca_2024_117775 crossref_primary_10_1002_jcb_30252 crossref_primary_10_1007_s11033_022_07423_z crossref_primary_10_1038_srep05013 crossref_primary_10_1016_j_jlr_2023_100438 crossref_primary_10_1038_srep10949 crossref_primary_10_1186_s12933_015_0324_y crossref_primary_10_2174_0929867326666190621120523 crossref_primary_10_3389_fendo_2018_00169 crossref_primary_10_5339_gcsp_2015_65 crossref_primary_10_1097_MOL_0b013e3283630cf0 crossref_primary_10_2147_DMSO_S455274 crossref_primary_10_1016_j_gene_2024_148418 crossref_primary_10_1016_j_jlr_2021_100150 crossref_primary_10_3389_fendo_2019_00495 crossref_primary_10_1161_ATVBAHA_113_301397 crossref_primary_10_1007_s00011_024_01941_1 crossref_primary_10_1097_MOL_0000000000000789 crossref_primary_10_1073_pnas_1315292110 crossref_primary_10_3390_ijms22147310 crossref_primary_10_1016_j_jlr_2023_100441 crossref_primary_10_1007_s00592_016_0931_4 crossref_primary_10_1080_10495398_2020_1845711 crossref_primary_10_1194_jlr_M054882 crossref_primary_10_1007_s11883_024_01254_y crossref_primary_10_3892_etm_2020_8647 crossref_primary_10_1016_j_tem_2013_12_005 crossref_primary_10_3390_ijms22189853 crossref_primary_10_1016_j_jdiacomp_2019_107421 crossref_primary_10_1016_j_nutres_2021_06_001 crossref_primary_10_1155_2016_9391837 crossref_primary_10_3389_fcell_2021_702508 crossref_primary_10_3390_biomedicines10112754 crossref_primary_10_1073_pnas_1515374112 crossref_primary_10_1186_s12263_018_0597_3 crossref_primary_10_1093_lifemeta_loae037 crossref_primary_10_3390_ijms21218338 crossref_primary_10_1098_rsob_210106 crossref_primary_10_1016_j_plipres_2020_101067 crossref_primary_10_1074_jbc_M113_501304 crossref_primary_10_3390_jcm9020512 crossref_primary_10_3390_cancers17142364 crossref_primary_10_3390_biomedicines9081037 crossref_primary_10_1007_s42000_019_00095_8 crossref_primary_10_1093_cvr_cvy144 crossref_primary_10_1016_j_jacl_2021_08_059 crossref_primary_10_4093_dmj_2022_0198 crossref_primary_10_1194_jlr_M082099 crossref_primary_10_1007_s00125_013_3071_1 crossref_primary_10_1186_s12944_023_01993_y crossref_primary_10_1134_S0022093022030085 crossref_primary_10_1016_j_molmet_2021_101238 crossref_primary_10_1186_s13098_015_0019_2 crossref_primary_10_1007_s12020_016_0875_z crossref_primary_10_1371_journal_pone_0159276 crossref_primary_10_3390_ijms19020431 crossref_primary_10_1016_j_jacl_2017_12_011 crossref_primary_10_1016_j_mce_2024_112164 crossref_primary_10_1016_j_cell_2014_09_027 crossref_primary_10_1016_j_cell_2014_09_028 crossref_primary_10_1194_jlr_M075689 crossref_primary_10_3892_mmr_2015_3825 crossref_primary_10_1007_s00125_015_3521_z crossref_primary_10_1186_s40795_018_0262_7 crossref_primary_10_1007_s00125_018_4579_1 crossref_primary_10_3389_fcvm_2021_795370 crossref_primary_10_1016_j_jlr_2021_100068 crossref_primary_10_1097_MOL_0000000000000991 crossref_primary_10_1186_s12944_018_0681_0 crossref_primary_10_1016_j_ajhg_2014_01_009 crossref_primary_10_1161_CIRCULATIONAHA_124_069272 crossref_primary_10_3390_jcm13175229 crossref_primary_10_1093_jb_mvz005 crossref_primary_10_3389_fendo_2023_1154561 crossref_primary_10_1016_j_fsi_2023_108549 crossref_primary_10_1371_journal_pone_0131171 crossref_primary_10_3389_fendo_2020_00616 crossref_primary_10_1186_s12944_023_01905_0 crossref_primary_10_1016_j_plipres_2021_101140 crossref_primary_10_1017_erm_2014_19 crossref_primary_10_1186_s12944_016_0195_6 crossref_primary_10_1194_jlr_RA120000781 crossref_primary_10_1155_2014_323407 crossref_primary_10_1007_s00595_015_1215_2 crossref_primary_10_3390_cells12212563 crossref_primary_10_1007_s00125_014_3208_x crossref_primary_10_1007_s00125_017_4505_y crossref_primary_10_1038_srep28431 crossref_primary_10_1186_s13287_020_02078_8 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1217552109 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 23150577 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: P01 HL020948 – fundername: NHLBI NIH HHS grantid: P01 HL20948 – fundername: NHLBI NIH HHS grantid: RL1 HL092550 – fundername: NIGMS NIH HHS grantid: R01 GM094575 – fundername: Howard Hughes Medical Institute |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 ADXHL |
| ID | FETCH-LOGICAL-c525t-399bd18157499a78f76b0fb6c589008b527c925e77ef1b2a1f5857a9e590c68c2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 404 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000312313900053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Thu Sep 04 18:35:11 EDT 2025 Thu Apr 03 06:53:53 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 48 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c525t-399bd18157499a78f76b0fb6c589008b527c925e77ef1b2a1f5857a9e590c68c2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.pnas.org/content/pnas/109/48/19751.full.pdf |
| PMID | 23150577 |
| PQID | 1220792330 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1220792330 pubmed_primary_23150577 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-11-27 |
| PublicationDateYYYYMMDD | 2012-11-27 |
| PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-27 day: 27 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2012 |
| References | 10862772 - J Biol Chem. 2000 Sep 15;275(37):28488-93 19202056 - Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2706-11 19826106 - J Lipid Res. 2010 Apr;51(4):824-31 11994399 - J Clin Invest. 2002 May;109(9):1125-31 15863837 - J Lipid Res. 2005 Jul;46(7):1484-90 19075393 - J Clin Invest. 2009 Jan;119(1):70-9 12909640 - J Biol Chem. 2003 Oct 24;278(43):41804-9 17681148 - Cell Metab. 2007 Aug;6(2):129-36 17110602 - Arterioscler Thromb Vasc Biol. 2007 Feb;27(2):366-72 20942659 - N Engl J Med. 2010 Dec 2;363(23):2220-7 12730667 - Nat Biotechnol. 2003 Jun;21(6):652-9 12858575 - Cold Spring Harb Symp Quant Biol. 2002;67:491-8 16081640 - Endocrinology. 2005 Nov;146(11):4943-50 18820647 - Nat Genet. 2008 Dec;40(12):1461-5 20562862 - Nat Biotechnol. 2010 Jul;28(7):749-55 20686565 - Nature. 2010 Aug 5;466(7307):707-13 15194016 - Am J Cardiol. 2004 Jun 15;93(12):1473-80 16508209 - Exp Anim. 2006 Jan;55(1):27-34 19028676 - J Biol Chem. 2009 Jan 16;284(3):1419-24 22063269 - Biochim Biophys Acta. 2012 May;1821(5):782-9 11358865 - Genes Dev. 2001 May 15;15(10):1206-16 17609370 - Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11766-71 12671033 - J Lipid Res. 2003 Jun;44(6):1216-23 19270337 - J Biol Chem. 2009 May 8;284(19):13213-22 17322881 - Nat Genet. 2007 Apr;39(4):513-6 22569073 - Am J Physiol Endocrinol Metab. 2012 Aug 1;303(3):E334-51 11090130 - Genes Dev. 2000 Nov 15;14(22):2819-30 22809513 - Biochem Biophys Res Commun. 2012 Aug 10;424(4):786-92 21820096 - Am J Hum Genet. 2011 Aug 12;89(2):328-33 11788823 - Nat Genet. 2002 Feb;30(2):151-7 16429146 - Nat Med. 2006 Feb;12(2):240-5 12097324 - J Biol Chem. 2002 Sep 13;277(37):33742-8 19318355 - J Biol Chem. 2009 May 15;284(20):13735-45 17088546 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17450-5 11877390 - J Biol Chem. 2002 May 10;277(19):17281-90 |
| References_xml | – reference: 20686565 - Nature. 2010 Aug 5;466(7307):707-13 – reference: 12858575 - Cold Spring Harb Symp Quant Biol. 2002;67:491-8 – reference: 12909640 - J Biol Chem. 2003 Oct 24;278(43):41804-9 – reference: 20942659 - N Engl J Med. 2010 Dec 2;363(23):2220-7 – reference: 18820647 - Nat Genet. 2008 Dec;40(12):1461-5 – reference: 19028676 - J Biol Chem. 2009 Jan 16;284(3):1419-24 – reference: 17088546 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17450-5 – reference: 17681148 - Cell Metab. 2007 Aug;6(2):129-36 – reference: 16429146 - Nat Med. 2006 Feb;12(2):240-5 – reference: 17609370 - Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11766-71 – reference: 11358865 - Genes Dev. 2001 May 15;15(10):1206-16 – reference: 11994399 - J Clin Invest. 2002 May;109(9):1125-31 – reference: 12730667 - Nat Biotechnol. 2003 Jun;21(6):652-9 – reference: 16508209 - Exp Anim. 2006 Jan;55(1):27-34 – reference: 19826106 - J Lipid Res. 2010 Apr;51(4):824-31 – reference: 15863837 - J Lipid Res. 2005 Jul;46(7):1484-90 – reference: 16081640 - Endocrinology. 2005 Nov;146(11):4943-50 – reference: 19075393 - J Clin Invest. 2009 Jan;119(1):70-9 – reference: 17322881 - Nat Genet. 2007 Apr;39(4):513-6 – reference: 11788823 - Nat Genet. 2002 Feb;30(2):151-7 – reference: 19270337 - J Biol Chem. 2009 May 8;284(19):13213-22 – reference: 10862772 - J Biol Chem. 2000 Sep 15;275(37):28488-93 – reference: 22569073 - Am J Physiol Endocrinol Metab. 2012 Aug 1;303(3):E334-51 – reference: 19202056 - Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2706-11 – reference: 22063269 - Biochim Biophys Acta. 2012 May;1821(5):782-9 – reference: 15194016 - Am J Cardiol. 2004 Jun 15;93(12):1473-80 – reference: 11877390 - J Biol Chem. 2002 May 10;277(19):17281-90 – reference: 19318355 - J Biol Chem. 2009 May 15;284(20):13735-45 – reference: 22809513 - Biochem Biophys Res Commun. 2012 Aug 10;424(4):786-92 – reference: 11090130 - Genes Dev. 2000 Nov 15;14(22):2819-30 – reference: 20562862 - Nat Biotechnol. 2010 Jul;28(7):749-55 – reference: 12097324 - J Biol Chem. 2002 Sep 13;277(37):33742-8 – reference: 12671033 - J Lipid Res. 2003 Jun;44(6):1216-23 – reference: 21820096 - Am J Hum Genet. 2011 Aug 12;89(2):328-33 – reference: 17110602 - Arterioscler Thromb Vasc Biol. 2007 Feb;27(2):366-72 |
| SSID | ssj0009580 |
| Score | 2.5758169 |
| Snippet | Angiopoietin-like proteins (ANGPTLs) play major roles in the trafficking and metabolism of lipids. Inactivation of ANGPTL3, a gene located in an intron of... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 19751 |
| SubjectTerms | Amino Acid Sequence Angiopoietin-like Proteins Angiopoietins - chemistry Angiopoietins - metabolism Angiopoietins - physiology Animals Cholesterol, HDL - blood Cholesterol, LDL - blood Guanine Nucleotide Exchange Factors - genetics Hypertriglyceridemia - physiopathology Introns Liver - metabolism Mice Molecular Sequence Data Sequence Homology, Amino Acid Triglycerides - blood |
| Title | Atypical angiopoietin-like protein that regulates ANGPTL3 |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23150577 https://www.proquest.com/docview/1220792330 |
| Volume | 109 |
| WOSCitedRecordID | wos000312313900053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevCirs_1RQUPegi2SfM6ySKuHrTsYYW9LUmaaFHauq2C_96k7aInEbzkFggzk5kvmeT7ADiTFDNkCYdGpQjGSFkokTUwjSzXqUhxjFuxCZYkfDoV4-7CreqeVS5yYpOo00L7O_LLCKHQc93h8Kp8g141yndXOwmNZdDDDsr4J11syn-Q7vKWjUBEkMYiXFD7MHxZ5rLyzAqMuPoV_oIvmzoz2vjvCjfBeocwg2EbEn2wZPIt0O_2cBWcd0TTF9tADOvP0jspkPlTVpRF5v8_w9fsxQQNf0OWB_WzrIN5K1jvZg-T2_HkHu-Ax9HN5PoOdlIKUBNEauhgiEpdMSfMnXAk45ZRFVpFNeHCoQBFENMCEcOYsZFCMnLuI0wKQ0SoKddoF6zkRW72QaAo9t3QUMfUxrHFyveUqY6EdC5wNhiA04V5Zi5Uff9B5qZ4r2bfBhqAvdbGs7Ll1Jg5mOmPSuzgD7MPwZqDLcj_CETsCPSs26jmGKzqjzqr5idNDLgxGT98AXUguTI |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atypical+angiopoietin-like+protein+that+regulates+ANGPTL3&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Quagliarini%2C+Fabiana&rft.au=Wang%2C+Yan&rft.au=Kozlitina%2C+Julia&rft.au=Grishin%2C+Nick+V&rft.date=2012-11-27&rft.eissn=1091-6490&rft.volume=109&rft.issue=48&rft.spage=19751&rft_id=info:doi/10.1073%2Fpnas.1217552109&rft_id=info%3Apmid%2F23150577&rft_id=info%3Apmid%2F23150577&rft.externalDocID=23150577 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |