Pyruvate Kinase M2 and Cancer: The Role of PKM2 in Promoting Tumorigenesis

Pyruvate kinase plays a pivotal role in regulating cell metabolism. The final and rate-limiting step of glycolysis is the conversion of Phosphoenolpyruvate (PEP) to Pyruvate, which is catalyzed by Pyruvate Kinase. There are four isomeric, tissue-specific forms of Pyruvate Kinase found in mammals: PK...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in oncology Jg. 10; S. 159
Hauptverfasser: Zahra, Kulsoom, Dey, Tulika, Ashish, Mishra, Surendra Pratap, Pandey, Uma
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland Frontiers Media S.A 02.03.2020
Schlagworte:
ISSN:2234-943X, 2234-943X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Pyruvate kinase plays a pivotal role in regulating cell metabolism. The final and rate-limiting step of glycolysis is the conversion of Phosphoenolpyruvate (PEP) to Pyruvate, which is catalyzed by Pyruvate Kinase. There are four isomeric, tissue-specific forms of Pyruvate Kinase found in mammals: PKL, PKR, PKM1, and PKM2. PKM1 and PKM2 are formed bya single mRNA transcript of the PKM gene by alternative splicing. The oligomers of PKM2 exist in high activity tetramer and low activity dimer forms. The dimer PKM2 regulates the rate-limiting step of glycolysis that shifts the glucose metabolism from the normal respiratory chain to lactate production in tumor cells. Besides its role as a metabolic regulator, it also acts as protein kinase, which contributes to tumorigenesis. This review is focused on the metabolic role of pyruvate kinase M2 in normal cells vs. cancerous cells and its regulation at the transcriptional level. The review also highlights the role of PKM2 as a potential diagnostic marker and as a therapeutic target in cancer treatment.
AbstractList Pyruvate kinase plays a pivotal role in regulating cell metabolism. The final and rate-limiting step of glycolysis is the conversion of Phosphoenolpyruvate (PEP) to Pyruvate, which is catalyzed by Pyruvate Kinase. There are four isomeric, tissue-specific forms of Pyruvate Kinase found in mammals: PKL, PKR, PKM1, and PKM2. PKM1 and PKM2 are formed bya single mRNA transcript of the PKM gene by alternative splicing. The oligomers of PKM2 exist in high activity tetramer and low activity dimer forms. The dimer PKM2 regulates the rate-limiting step of glycolysis that shifts the glucose metabolism from the normal respiratory chain to lactate production in tumor cells. Besides its role as a metabolic regulator, it also acts as protein kinase, which contributes to tumorigenesis. This review is focused on the metabolic role of pyruvate kinase M2 in normal cells vs. cancerous cells and its regulation at the transcriptional level. The review also highlights the role of PKM2 as a potential diagnostic marker and as a therapeutic target in cancer treatment.
Pyruvate kinase plays a pivotal role in regulating cell metabolism. The final and rate-limiting step of glycolysis is the conversion of Phosphoenolpyruvate (PEP) to Pyruvate, which is catalyzed by Pyruvate Kinase. There are four isomeric, tissue-specific forms of Pyruvate Kinase found in mammals: PKL, PKR, PKM1, and PKM2. PKM1 and PKM2 are formed bya single mRNA transcript of the PKM gene by alternative splicing. The oligomers of PKM2 exist in high activity tetramer and low activity dimer forms. The dimer PKM2 regulates the rate-limiting step of glycolysis that shifts the glucose metabolism from the normal respiratory chain to lactate production in tumor cells. Besides its role as a metabolic regulator, it also acts as protein kinase, which contributes to tumorigenesis. This review is focused on the metabolic role of pyruvate kinase M2 in normal cells vs. cancerous cells and its regulation at the transcriptional level. The review also highlights the role of PKM2 as a potential diagnostic marker and as a therapeutic target in cancer treatment.Pyruvate kinase plays a pivotal role in regulating cell metabolism. The final and rate-limiting step of glycolysis is the conversion of Phosphoenolpyruvate (PEP) to Pyruvate, which is catalyzed by Pyruvate Kinase. There are four isomeric, tissue-specific forms of Pyruvate Kinase found in mammals: PKL, PKR, PKM1, and PKM2. PKM1 and PKM2 are formed bya single mRNA transcript of the PKM gene by alternative splicing. The oligomers of PKM2 exist in high activity tetramer and low activity dimer forms. The dimer PKM2 regulates the rate-limiting step of glycolysis that shifts the glucose metabolism from the normal respiratory chain to lactate production in tumor cells. Besides its role as a metabolic regulator, it also acts as protein kinase, which contributes to tumorigenesis. This review is focused on the metabolic role of pyruvate kinase M2 in normal cells vs. cancerous cells and its regulation at the transcriptional level. The review also highlights the role of PKM2 as a potential diagnostic marker and as a therapeutic target in cancer treatment.
Author Ashish
Mishra, Surendra Pratap
Pandey, Uma
Zahra, Kulsoom
Dey, Tulika
AuthorAffiliation 2 Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University , Varanasi , India
1 Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University , Varanasi , India
3 Department of Obstetrics and Gynecology, Institute of Medical Sciences, Banaras Hindu University , Varanasi , India
AuthorAffiliation_xml – name: 1 Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University , Varanasi , India
– name: 2 Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University , Varanasi , India
– name: 3 Department of Obstetrics and Gynecology, Institute of Medical Sciences, Banaras Hindu University , Varanasi , India
Author_xml – sequence: 1
  givenname: Kulsoom
  surname: Zahra
  fullname: Zahra, Kulsoom
– sequence: 2
  givenname: Tulika
  surname: Dey
  fullname: Dey, Tulika
– sequence: 3
  surname: Ashish
  fullname: Ashish
– sequence: 4
  givenname: Surendra Pratap
  surname: Mishra
  fullname: Mishra, Surendra Pratap
– sequence: 5
  givenname: Uma
  surname: Pandey
  fullname: Pandey, Uma
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32195169$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1LHDEYh0NRqm4991Zy7GXXfEyyiQehLPW7dCkreAuZzDtrZCaxyYzgf--Mq6KCuSS87-8j8OyhrRADIPSdkhnnSh_UMbgZI4zMCKFCf0G7jPFiqgt-vfXmvYP2c74lw5GCUMK_oh3OqBZU6l10vnxI_b3tAF_4YDPgPwzbUOGFDQ7SIV7dAP4XG8CxxsuLYekDXqbYxs6HNV71bUx-DQGyz9_Qdm2bDPvP9wRdHf9eLU6nl39Pzha_LqdOMNFNuVSVKJQlUoIgljDF2JypilJOipJWvC7mJWeF1I7PgXOmJCjmBNTOUV46PkFnm9wq2ltzl3xr04OJ1punQUxrY1PnXQMGals6RbWUcqwsrQOmaQW0KGteKj1kHW2y7vqyhcpB6JJt3oW-3wR_Y9bx3syJpErLIeDnc0CK_3vInWl9dtA0NkDss2FcUckKMtCYoB9vu15LXmAMgoONwKWYc4L6VUKJGYmbkbgZiZsn4oNDfHA439nOx_GzvvnU9wie665u
CitedBy_id crossref_primary_10_3389_fimmu_2024_1522392
crossref_primary_10_1016_j_ijbiomac_2024_129635
crossref_primary_10_1038_s41419_022_05208_7
crossref_primary_10_3390_ijms232113172
crossref_primary_10_1080_14789450_2021_1996231
crossref_primary_10_3390_ijms25147986
crossref_primary_10_1007_s00262_023_03551_y
crossref_primary_10_1186_s13046_022_02252_1
crossref_primary_10_1186_s12986_024_00866_0
crossref_primary_10_3389_fphar_2021_760055
crossref_primary_10_3390_cells11101663
crossref_primary_10_1007_s00203_022_02897_8
crossref_primary_10_1093_cvr_cvad149
crossref_primary_10_1016_j_cellsig_2024_111329
crossref_primary_10_3390_cancers14235912
crossref_primary_10_1007_s10616_024_00668_5
crossref_primary_10_1038_s41598_025_05649_y
crossref_primary_10_1016_j_molstruc_2022_134390
crossref_primary_10_1515_znc_2025_0003
crossref_primary_10_3390_metabo14040229
crossref_primary_10_1016_j_pharmthera_2024_108697
crossref_primary_10_1016_j_biopha_2023_114371
crossref_primary_10_1016_j_semcancer_2025_03_006
crossref_primary_10_3390_biomedicines12010211
crossref_primary_10_3390_ijms25179463
crossref_primary_10_1111_jcmm_70088
crossref_primary_10_1002_path_6029
crossref_primary_10_1002_ctm2_70420
crossref_primary_10_1038_s41417_022_00556_0
crossref_primary_10_1016_j_prp_2025_156151
crossref_primary_10_3390_ijms242316639
crossref_primary_10_1089_ars_2022_0088
crossref_primary_10_1007_s00586_025_09014_5
crossref_primary_10_1016_j_gene_2021_145993
crossref_primary_10_3390_cancers14225691
crossref_primary_10_3390_biology10090909
crossref_primary_10_1155_2023_3375109
crossref_primary_10_3389_fncel_2022_812887
crossref_primary_10_3390_ijms25052947
crossref_primary_10_1002_1878_0261_13076
crossref_primary_10_3390_ph15030381
crossref_primary_10_1016_j_pbiomolbio_2023_05_004
crossref_primary_10_3390_diseases12050093
crossref_primary_10_3389_fphar_2023_1189799
crossref_primary_10_2147_OTT_S283417
crossref_primary_10_2147_OTT_S297140
crossref_primary_10_1098_rsob_240239
crossref_primary_10_3390_ijms25115926
crossref_primary_10_3390_cells14100713
crossref_primary_10_3390_ijms22031171
crossref_primary_10_7717_peerj_10320
crossref_primary_10_1016_j_biopha_2022_113479
crossref_primary_10_1002_cbin_12097
crossref_primary_10_1002_chem_202402534
crossref_primary_10_1007_s12288_024_01830_x
crossref_primary_10_1016_j_gendis_2025_101806
crossref_primary_10_1002_pmic_202400058
crossref_primary_10_3390_cells14060416
crossref_primary_10_1016_j_arabjc_2023_105548
crossref_primary_10_1016_j_biochi_2025_08_017
crossref_primary_10_3389_fonc_2022_1022716
crossref_primary_10_1016_j_drup_2022_100852
crossref_primary_10_1002_cbin_12094
crossref_primary_10_3892_ijo_2023_5561
crossref_primary_10_1021_acschemneuro_4c00317
crossref_primary_10_1016_j_heliyon_2025_e42238
crossref_primary_10_1186_s12943_024_02119_3
crossref_primary_10_1007_s43440_025_00768_9
crossref_primary_10_1016_j_phymed_2023_154912
crossref_primary_10_3390_ph14121278
crossref_primary_10_3390_ph15070808
crossref_primary_10_1002_jbt_23289
crossref_primary_10_3390_ph18060813
crossref_primary_10_1186_s43556_020_00012_1
crossref_primary_10_1186_s43088_025_00668_0
crossref_primary_10_1016_j_exer_2021_108823
crossref_primary_10_1158_0008_5472_CAN_20_4190
crossref_primary_10_1016_j_envpol_2023_122244
crossref_primary_10_1038_s41389_020_00295_7
crossref_primary_10_1016_j_biomaterials_2022_121523
crossref_primary_10_1186_s12885_024_12199_5
crossref_primary_10_3389_fimmu_2023_1327852
crossref_primary_10_1007_s12035_023_03901_y
crossref_primary_10_1016_j_phymed_2025_157270
crossref_primary_10_3390_ijms21134777
crossref_primary_10_3389_fonc_2021_677763
crossref_primary_10_1016_j_gene_2024_149155
crossref_primary_10_1007_s43440_023_00504_1
crossref_primary_10_1113_JP278810
crossref_primary_10_1016_j_bbcan_2020_188442
crossref_primary_10_1016_j_bcp_2023_115848
crossref_primary_10_1038_s41467_021_25894_9
crossref_primary_10_1111_nan_12850
crossref_primary_10_1007_s12013_023_01213_5
crossref_primary_10_62347_PSJY2877
crossref_primary_10_1093_hmg_ddae106
crossref_primary_10_1016_j_phrs_2025_107840
crossref_primary_10_3389_fimmu_2023_1170223
crossref_primary_10_3390_cells12020235
crossref_primary_10_1016_j_bbamcr_2021_119206
crossref_primary_10_1002_cbin_11654
crossref_primary_10_1002_cac2_12108
crossref_primary_10_3390_diagnostics11091655
crossref_primary_10_1186_s13045_022_01349_6
crossref_primary_10_2147_DDDT_S370114
crossref_primary_10_1002_2211_5463_13766
crossref_primary_10_1007_s10637_021_01144_z
crossref_primary_10_3390_biomedicines12122916
crossref_primary_10_3390_cells11182913
crossref_primary_10_3892_or_2024_8714
crossref_primary_10_1002_ptr_7534
crossref_primary_10_3390_biom11050652
crossref_primary_10_1158_0008_5472_CAN_22_3015
crossref_primary_10_3390_ijms222312865
crossref_primary_10_1007_s43152_025_00059_8
crossref_primary_10_2147_IDR_S429314
crossref_primary_10_3390_ph15070868
crossref_primary_10_1080_08941939_2023_2301081
crossref_primary_10_1186_s13062_021_00307_5
crossref_primary_10_3892_ol_2022_13593
crossref_primary_10_1007_s00432_022_04501_4
crossref_primary_10_1182_blood_2023021167
crossref_primary_10_1186_s12967_022_03851_4
crossref_primary_10_1093_rheumatology_keab814
crossref_primary_10_3390_ijms24087076
crossref_primary_10_1002_ctm2_70461
crossref_primary_10_1016_j_clim_2023_109756
crossref_primary_10_1002_ptr_7087
crossref_primary_10_1161_ATVBAHA_121_316021
crossref_primary_10_3390_brainsci13091307
crossref_primary_10_1016_j_bbabio_2024_149486
crossref_primary_10_3389_fcell_2023_1105565
crossref_primary_10_3390_diagnostics14070713
crossref_primary_10_1016_j_semcancer_2025_02_004
crossref_primary_10_12677_acm_2025_1561883
crossref_primary_10_1097_CAD_0000000000001622
crossref_primary_10_3390_ijms22168529
crossref_primary_10_1016_j_taap_2024_116905
crossref_primary_10_1002_pdi3_18
crossref_primary_10_3390_cancers13143421
crossref_primary_10_1002_slct_202402522
crossref_primary_10_1016_j_tranon_2021_101077
crossref_primary_10_3390_cells11111775
crossref_primary_10_3390_ijms24054954
crossref_primary_10_1016_j_molstruc_2021_130257
crossref_primary_10_3390_biology10090847
crossref_primary_10_1016_j_ijbiomac_2021_06_145
crossref_primary_10_2147_CMAR_S331076
crossref_primary_10_1155_2021_5514669
crossref_primary_10_3390_cells11192973
crossref_primary_10_1016_j_intimp_2020_107357
crossref_primary_10_1007_s12035_024_04624_4
crossref_primary_10_1002_cbf_3856
crossref_primary_10_1016_j_cca_2022_02_013
crossref_primary_10_1016_j_jbc_2024_107994
crossref_primary_10_1016_j_heliyon_2024_e37063
crossref_primary_10_1155_2022_7702681
crossref_primary_10_3390_biology13080584
crossref_primary_10_1016_j_biopha_2023_115009
crossref_primary_10_3892_ijo_2022_5434
crossref_primary_10_1002_mog2_70028
crossref_primary_10_1111_febs_16700
crossref_primary_10_1016_j_jare_2025_06_035
crossref_primary_10_3389_fonc_2021_626971
crossref_primary_10_1016_j_bcp_2022_115227
crossref_primary_10_1186_s10020_023_00719_1
crossref_primary_10_1016_j_bcp_2023_115528
crossref_primary_10_3390_cells9092064
crossref_primary_10_3390_cancers14194568
crossref_primary_10_1016_j_jbiosc_2023_08_005
crossref_primary_10_1111_dgd_12947
crossref_primary_10_3389_fphar_2022_1035882
crossref_primary_10_3390_biomedicines10020468
crossref_primary_10_4155_fmc_2021_0332
crossref_primary_10_1007_s00044_022_02882_2
crossref_primary_10_1038_s41392_022_01096_7
crossref_primary_10_1111_jcmm_18112
crossref_primary_10_3390_cancers14184402
crossref_primary_10_1007_s00210_023_02593_4
crossref_primary_10_3390_cancers14215468
crossref_primary_10_1186_s43141_021_00256_6
crossref_primary_10_1097_PAI_0000000000001131
crossref_primary_10_3390_ncrna11010010
crossref_primary_10_1186_s13046_025_03446_z
crossref_primary_10_1096_fj_202500229R
crossref_primary_10_1007_s12033_024_01091_z
crossref_primary_10_1016_j_ymeth_2025_05_002
crossref_primary_10_1007_s11010_024_05174_y
crossref_primary_10_1016_j_tranon_2022_101583
crossref_primary_10_1186_s12935_023_02849_2
crossref_primary_10_1016_j_bbamcr_2022_119359
crossref_primary_10_1002_cac2_12158
crossref_primary_10_3390_ijms252413640
crossref_primary_10_1158_1078_0432_CCR_21_1846
crossref_primary_10_3390_molecules27238394
crossref_primary_10_1161_CIRCRESAHA_124_325049
crossref_primary_10_1007_s12033_023_00778_z
crossref_primary_10_1007_s12265_024_10485_y
crossref_primary_10_1096_fj_202500719R
crossref_primary_10_3390_ijms26051879
crossref_primary_10_1186_s13046_022_02547_3
crossref_primary_10_2174_1570180820666230816090541
crossref_primary_10_3389_fphar_2023_1137154
crossref_primary_10_1021_acsomega_5c01251
crossref_primary_10_1002_jbt_23799
crossref_primary_10_1080_10409238_2020_1832438
crossref_primary_10_1007_s11886_021_01510_6
crossref_primary_10_3390_ijms25105482
crossref_primary_10_1016_j_biopha_2022_113993
crossref_primary_10_1182_blood_2024027207
crossref_primary_10_1038_s41598_021_86286_z
crossref_primary_10_3390_ijms24087634
crossref_primary_10_1016_j_biopha_2024_117508
crossref_primary_10_1016_j_molmet_2024_101994
crossref_primary_10_1186_s12964_022_01025_9
crossref_primary_10_1186_s13287_023_03571_6
crossref_primary_10_1016_j_bioorg_2025_109008
crossref_primary_10_3389_fonc_2024_1392085
crossref_primary_10_1161_JAHA_121_024854
crossref_primary_10_1158_1078_0432_CCR_21_0544
crossref_primary_10_1111_imm_13871
crossref_primary_10_3390_ijms221910612
crossref_primary_10_1515_znc_2024_0127
crossref_primary_10_1016_j_intimp_2024_113665
crossref_primary_10_3390_ijms232213750
crossref_primary_10_3390_molecules27165148
crossref_primary_10_1007_s10499_024_01687_x
crossref_primary_10_1016_j_molmet_2021_101389
crossref_primary_10_2174_0109298673273106231208102105
crossref_primary_10_1038_s41388_025_03353_9
crossref_primary_10_3390_cells12162043
crossref_primary_10_3390_biomedicines12081696
crossref_primary_10_32604_biocell_2024_053746
crossref_primary_10_1016_j_jpbao_2024_100047
crossref_primary_10_1002_jmv_28018
crossref_primary_10_3390_cells12212527
crossref_primary_10_1111_febs_16625
crossref_primary_10_1186_s12935_020_01456_9
crossref_primary_10_3390_biochem5010002
crossref_primary_10_3390_ijms25042129
crossref_primary_10_1007_s00204_023_03456_w
crossref_primary_10_1111_odi_14411
crossref_primary_10_3390_cancers15030982
crossref_primary_10_3390_pharmaceutics14071380
crossref_primary_10_1126_scitranslmed_abm3565
crossref_primary_10_1186_s12864_024_10659_7
crossref_primary_10_1007_s42250_024_01142_7
crossref_primary_10_1007_s00011_025_02097_2
crossref_primary_10_1038_s41421_024_00706_8
crossref_primary_10_1016_j_molimm_2021_10_017
crossref_primary_10_1002_ddr_22139
crossref_primary_10_1016_j_mcp_2024_101977
crossref_primary_10_1002_cbf_3907
crossref_primary_10_1186_s40170_025_00387_1
crossref_primary_10_1016_j_biochi_2024_01_003
crossref_primary_10_3390_ijms25189977
crossref_primary_10_3390_cancers15020411
crossref_primary_10_3892_ijo_2024_5678
crossref_primary_10_1186_s12967_023_04617_2
crossref_primary_10_3389_fphar_2023_1200538
crossref_primary_10_3390_ijms23105602
crossref_primary_10_3390_vaccines11020381
crossref_primary_10_1016_j_bbcan_2023_189062
crossref_primary_10_3389_fonc_2020_563249
crossref_primary_10_1186_s12935_020_01612_1
crossref_primary_10_1186_s13046_022_02574_0
crossref_primary_10_1038_s41388_021_02151_3
crossref_primary_10_17998_jlc_2024_12_27
crossref_primary_10_1007_s00210_022_02347_8
crossref_primary_10_1021_acsomega_5c06730
crossref_primary_10_1080_00397911_2024_2383952
crossref_primary_10_1097_MD_0000000000035571
crossref_primary_10_3389_fmed_2022_1002715
crossref_primary_10_3389_fonc_2024_1450325
crossref_primary_10_3390_cimb46110711
crossref_primary_10_3390_molecules26175414
crossref_primary_10_1002_slct_202406039
crossref_primary_10_1007_s00395_021_00904_5
crossref_primary_10_3390_ijms24043091
crossref_primary_10_1134_S0006297923140018
crossref_primary_10_3390_cancers13102309
crossref_primary_10_3390_ijtm4040052
crossref_primary_10_1016_j_bbcan_2025_189292
crossref_primary_10_1002_ctm2_1088
crossref_primary_10_3390_antiox14091143
crossref_primary_10_1097_TP_0000000000005461
crossref_primary_10_3390_cancers16213606
crossref_primary_10_1016_j_canlet_2024_216677
crossref_primary_10_1016_j_bcp_2025_117207
crossref_primary_10_3389_fimmu_2022_955476
crossref_primary_10_1186_s13073_024_01415_3
crossref_primary_10_1016_j_aquaculture_2022_739060
crossref_primary_10_3390_life15010126
crossref_primary_10_3390_ijms25168929
crossref_primary_10_1093_plphys_kiad344
crossref_primary_10_3390_cancers13153850
crossref_primary_10_3390_life12010008
crossref_primary_10_1016_j_neo_2020_12_009
crossref_primary_10_3390_ijms24097942
crossref_primary_10_1016_j_ejps_2021_106112
crossref_primary_10_3390_ijms242015266
crossref_primary_10_1016_j_clinbiochem_2023_110652
crossref_primary_10_3389_fimmu_2025_1634786
crossref_primary_10_18231_j_ijpp_2024_012
crossref_primary_10_3892_ijmm_2024_5439
crossref_primary_10_1038_s44318_024_00271_6
crossref_primary_10_1016_j_jhazmat_2024_136782
crossref_primary_10_2147_OTT_S239134
crossref_primary_10_3390_ijms252413413
crossref_primary_10_3390_genes15050635
crossref_primary_10_1002_cam4_71244
crossref_primary_10_1016_j_taap_2024_117146
crossref_primary_10_1007_s44371_025_00102_5
crossref_primary_10_1038_s42003_022_04055_8
crossref_primary_10_3390_cancers13071641
crossref_primary_10_3389_fonc_2020_00660
crossref_primary_10_3390_cells10040830
crossref_primary_10_1016_j_cellsig_2024_111586
crossref_primary_10_1186_s13023_022_02537_w
crossref_primary_10_1038_s41419_021_03782_w
crossref_primary_10_3389_fimmu_2022_901555
crossref_primary_10_3390_biomedicines10020255
crossref_primary_10_1111_1755_0998_13397
crossref_primary_10_1186_s12935_023_03143_x
crossref_primary_10_3390_antiox14091121
crossref_primary_10_1016_j_molstruc_2024_141062
crossref_primary_10_3389_fphar_2022_1091779
crossref_primary_10_3390_ijerph182111225
crossref_primary_10_1002_cnr2_1844
crossref_primary_10_1016_j_bbrc_2024_149724
crossref_primary_10_1016_j_canlet_2025_217493
crossref_primary_10_1016_j_jare_2025_08_023
crossref_primary_10_1016_j_yexcr_2022_113427
crossref_primary_10_1111_cas_14694
crossref_primary_10_3390_cancers17162652
crossref_primary_10_3390_antiox12112012
crossref_primary_10_1002_2211_5463_13231
crossref_primary_10_3390_ijms23052702
crossref_primary_10_1002_ptr_7903
crossref_primary_10_1016_j_heliyon_2024_e35721
Cites_doi 10.1038/ncomms14041
10.1007/s00432-007-0280-3
10.1016/j.cell.2011.02.013
10.1093/neuonc/noq080
10.1038/ncb2629
10.1073/pnas.1407717111
10.1016/j.molcel.2011.04.025
10.1172/JCI69600
10.1038/nature11540
10.1016/j.gene.2018.05.038
10.1074/jbc.M114.576934
10.1038/onc.2015.397
10.1038/nrd3504
10.1038/s41598-018-31615-y
10.1016/j.bcp.2009.12.003
10.18632/oncotarget.278
10.1158/1535-7163.MCT-13-0026
10.1016/j.bbcan.2014.07.008
10.18632/oncotarget.15999
10.1016/j.semcancer.2005.04.009
10.1210/me.2010-0219
10.1038/onc.2015.6
10.1002/pmic.200300653
10.1038/ncb3015
10.1155/2013/242513
10.1126/scisignal.2003925
10.1016/j.cell.2013.09.025
10.1126/scitranslmed.aac6117
10.1016/j.chembiol.2012.07.021
10.18632/oncotarget.2749
10.1038/leu.2016.389
10.1158/1078-0432.CCR-15-0375
10.1073/pnas.0914845107
10.1016/j.cell.2011.03.054
10.1158/0008-5472.CAN-11-3024
10.1007/2789_2008_091
10.18632/oncotarget.3514
10.1038/nrc2981
10.1007/s00432-010-0860-5
10.1016/j.biocel.2007.11.009
10.1210/jc.2012-4258
10.7150/jca.12719
10.1038/bjc.2014.492
10.1016/j.bbcan.2019.02.003
10.1016/j.biocel.2010.02.005
10.1016/j.cmet.2018.05.010
10.1002/ibd.20214
10.1007/BF00193498
10.1016/j.advenzreg.2006.12.010
10.1073/pnas.1014769108
10.1186/s12943-015-0490-2
10.1038/nature10598
10.1016/j.ejmech.2017.06.064
10.1126/scisignal.2000431
10.1038/nature08697
10.1186/1476-4598-12-72
10.1080/14756366.2017.1404591
10.1111/j.1365-2354.2006.00753.x
10.1126/science.1224409
10.1074/jbc.M112.448753
10.1084/jem.20111487
10.1016/j.cell.2012.07.018
10.1038/nchembio.1060
10.1038/ncomms8882
10.1016/S0021-9258(19)42329-6
10.1038/nature06667
10.18632/oncotarget.4444
10.1016/j.cellsig.2014.03.020
10.1038/nrc2817
10.15252/embj.201591803
10.1111/j.1349-7006.2010.01562.x
10.1016/j.yexcr.2009.06.024
10.1038/onc.2011.137
10.1038/nature06734
10.1002/pro.505
10.1038/nm.4328
10.1186/s13045-017-0392-4
10.1371/journal.pone.0203745
10.18632/oncotarget.12942
10.1016/j.molcel.2014.02.015
10.1016/S0021-9258(17)30124-2
10.1126/science.1211485
10.18632/oncotarget.14346
10.1016/j.celrep.2020.01.037
10.1073/pnas.86.20.7861
10.1016/j.molcel.2012.09.028
10.1016/j.molcel.2013.09.004
10.1038/ncomms1667
10.1146/annurev-cellbio-092910-154237
ContentType Journal Article
Copyright Copyright © 2020 Zahra, Dey, Ashish, Mishra and Pandey.
Copyright © 2020 Zahra, Dey, Ashish, Mishra and Pandey. 2020 Zahra, Dey, Ashish, Mishra and Pandey
Copyright_xml – notice: Copyright © 2020 Zahra, Dey, Ashish, Mishra and Pandey.
– notice: Copyright © 2020 Zahra, Dey, Ashish, Mishra and Pandey. 2020 Zahra, Dey, Ashish, Mishra and Pandey
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fonc.2020.00159
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2234-943X
ExternalDocumentID oai_doaj_org_article_efabc819666548abace291de14bf3b89
PMC7061896
32195169
10_3389_fonc_2020_00159
Genre Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EJD
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
ACXDI
IAO
IEA
IHR
IHW
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c525t-368d548a066e50a02822728d11304b1d3f47b32469c37e33286e82c5efcc13bc3
IEDL.DBID DOA
ISICitedReferencesCount 396
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524752400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2234-943X
IngestDate Fri Oct 03 12:50:45 EDT 2025
Thu Aug 21 18:09:12 EDT 2025
Sun Aug 24 04:11:26 EDT 2025
Thu Jan 02 22:59:39 EST 2025
Sat Nov 29 01:49:17 EST 2025
Tue Nov 18 22:27:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords cancer metabolism
anaerobic glycolysis
chemotherapy
angiogenesis
pyruvate kinase M2
Language English
License Copyright © 2020 Zahra, Dey, Ashish, Mishra and Pandey.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-368d548a066e50a02822728d11304b1d3f47b32469c37e33286e82c5efcc13bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
This article was submitted to Cancer Metabolism, a section of the journal Frontiers in Oncology
Reviewed by: Douglas Auld, Novartis Institutes for BioMedical Research, United States; Thomas N. Seyfried, Boston College, United States
Edited by: Yong Teng, Augusta University, United States
OpenAccessLink https://doaj.org/article/efabc819666548abace291de14bf3b89
PMID 32195169
PQID 2381624022
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_efabc819666548abace291de14bf3b89
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7061896
proquest_miscellaneous_2381624022
pubmed_primary_32195169
crossref_primary_10_3389_fonc_2020_00159
crossref_citationtrail_10_3389_fonc_2020_00159
PublicationCentury 2000
PublicationDate 2020-03-02
PublicationDateYYYYMMDD 2020-03-02
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-02
  day: 02
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in oncology
PublicationTitleAlternate Front Oncol
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Bluemlein (B47) 2011; 2
Clower (B29) 2010; 107
Mazurek (B6) 2011; 43
Brinck (B62) 1994; 424
Reitzer (B44) 1979; 254
Spoden (B86) 2009; 315
Vander Heiden (B79) 2010; 79
Lv (B21) 2013; 52
Iqbal (B32) 2013; 12
Anastasiou (B18) 2012; 8
Zhang (B20) 2015; 34
Liu (B8) 2015; 6
Luan (B10) 2015; 6
Wu (B1) 2016; 7
Xiangyun (B40) 2017; 8
Qi (B91) 2017; 23
Witney (B5) 2015; 7
Kung (B89) 2012; 19
Yang (B35) 2012; 48
Gui (B11) 2013; 6
Parnell (B90) 2013; 12
Sun (B16) 2011; 108
Choi (B36) 2007; 1
Kefas (B74) 2010; 12
Gupta (B23) 2010; 19
Christofk (B3) 2008; 452
Wong (B4) 2013; 2013
Luo (B42) 2011; 145
Wei (B54) 2017; 8
Keller (B13) 2012; 338
Tennant (B72) 2010; 10
De (B53) 2015; 21
Breitkreutz (B34) 2007; 133
Lunt (B45) 2011; 27
Hasan (B41) 2018; 13
Yang (B15) 2016; 35
Li (B59) 2014; 1846
Han (B19) 2015; 6
Xu (B30) 2015; 34
Yang (B51) 2011; 480
David (B26) 2010; 463
Mazurek (B9) 2008
Hensley (B87) 2013; 123
Lee (B52) 2008; 40
Israelsen (B7) 2013; 155
Li (B49) 2018; 668
Hanahan (B25) 2011; 144
Yang (B58) 2014; 26
Iansante (B39) 2015; 6
Panchabhai (B71) 2017; 31
Ning (B80) 2017; 138
Tamada (B84) 2012; 72
Windmueller (B88) 1974; 249
Christofk (B12) 2008; 452
Lv (B37) 2011; 42
Schneider (B66) 2002; 22
Chinopoulos (B43) 2018; 27
Feng (B48) 2013; 98
Guo (B76) 2011; 137
Yang (B22) 2012; 14
Papadaki (B70) 2014; 111
Guo (B31) 2017; 8
Gao (B38) 2013; 288
Yang (B50) 2012; 150
Anastasiou (B24) 2011; 334
Zhao (B81) 2018; 8
Hitosugi (B28) 2009; 2
Ning (B82) 2018; 33
Lin (B85) 2015; 6
Chaneton (B27) 2012; 491
Amin (B57) 2019; 1871
Hamabe (B56) 2014; 111
Chen (B77) 2011; 30
Keller (B14) 2014; 53
Li (B60) 2014; 289
Cairns (B46) 2011; 11
Mazurek (B65) 2005; 15
Weinberger (B68) 2007; 16
Azoitei (B61) 2016; 15
Chung-Faye (B69) 2007; 13
Shi (B75) 2010; 101
Goldberg (B83) 2012; 209
Varghese (B78) 2010; 24
Kato (B17) 1989; 86
Mcallister (B55) 2014; 16
Ahmed (B67) 2007; 28
Gu (B2) 2017; 10
Ding (B64) 2004; 4
Panasyuk (B33) 2012; 3
Eigenbrodt (B63) 1992; 3
Vander Heiden (B73) 2011; 10
References_xml – volume: 8
  start-page: 14041
  year: 2017
  ident: B54
  article-title: Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23
  publication-title: Nature Commun
  doi: 10.1038/ncomms14041
– volume: 133
  start-page: 793
  year: 2007
  ident: B34
  article-title: Protein kinase C family: on the crossroads of cell signaling in skin and tumor epithelium
  publication-title: J Cancer Res Clin Oncol.
  doi: 10.1007/s00432-007-0280-3
– volume: 144
  start-page: 646
  year: 2011
  ident: B25
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell.
  doi: 10.1016/j.cell.2011.02.013
– volume: 12
  start-page: 1102
  year: 2010
  ident: B74
  article-title: Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells
  publication-title: Neurooncology.
  doi: 10.1093/neuonc/noq080
– volume: 14
  start-page: 1295
  year: 2012
  ident: B22
  article-title: ERK1/2dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2629
– volume: 111
  start-page: 15526
  year: 2014
  ident: B56
  article-title: Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial-mesenchymal transition
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.1407717111
– volume: 42
  start-page: 719
  year: 2011
  ident: B37
  article-title: Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2011.04.025
– volume: 123
  start-page: 3678
  year: 2013
  ident: B87
  article-title: Glutamine and cancer: cell biology, physiology, and clinical opportunities
  publication-title: J Clin Investig.
  doi: 10.1172/JCI69600
– volume: 491
  start-page: 458
  year: 2012
  ident: B27
  article-title: Serine is a natural ligand and allosteric activator of pyruvate kinase M2
  publication-title: Nature.
  doi: 10.1038/nature11540
– volume: 668
  start-page: 48
  year: 2018
  ident: B49
  article-title: PKM2, a potential target for regulating cancer
  publication-title: Gene.
  doi: 10.1016/j.gene.2018.05.038
– volume: 22
  start-page: 311
  year: 2002
  ident: B66
  article-title: Tumor M2-pyruvate kinase in lung cancer patients: immunohistochemical detection and disease monitoring
  publication-title: Anticancer Res.
– volume: 289
  start-page: 25812
  year: 2014
  ident: B60
  article-title: Pyruvate kinase M2 in blood circulation facilitates tumor growth by promoting angiogenesis
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M114.576934
– volume: 35
  start-page: 3387
  year: 2016
  ident: B15
  article-title: Cytosolic PKM2 stabilizes mutant EGFR protein expression through regulating HSP90-EGFR association
  publication-title: Oncogene.
  doi: 10.1038/onc.2015.397
– volume: 10
  start-page: 671
  year: 2011
  ident: B73
  article-title: Targeting cancer metabolism: a therapeutic window opens
  publication-title: Nat Rev Drug Discov.
  doi: 10.1038/nrd3504
– volume: 8
  start-page: 14517
  year: 2018
  ident: B81
  article-title: Shikonin inhibits tumor growth in mice by suppressing pyruvate kinase M2-mediated aerobic glycolysis
  publication-title: Sci Rep.
  doi: 10.1038/s41598-018-31615-y
– volume: 79
  start-page: 1118
  year: 2010
  ident: B79
  article-title: Identification of small molecule inhibitors of pyruvate kinase M2
  publication-title: Biochem Pharmacol.
  doi: 10.1016/j.bcp.2009.12.003
– volume: 2
  start-page: 393
  year: 2011
  ident: B47
  article-title: No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.278
– volume: 12
  start-page: 1453
  year: 2013
  ident: B90
  article-title: Pharmacologic activation of PKM2 slows lung tumor xenograft growth
  publication-title: Mol Cancer Ther.
  doi: 10.1158/1535-7163.MCT-13-0026
– volume: 1846
  start-page: 285
  year: 2014
  ident: B59
  article-title: The multifaceted regulation and functions of PKM2 in tumor progression
  publication-title: Biochim Biophys Acta Rev Cancer
  doi: 10.1016/j.bbcan.2014.07.008
– volume: 8
  start-page: 28226
  year: 2017
  ident: B31
  article-title: MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in cervical cancer
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.15999
– volume: 15
  start-page: 300
  year: 2005
  ident: B65
  article-title: Pyruvate kinase type M2 and its role in tumor growth and spreading
  publication-title: Semin Cancer Biol.
  doi: 10.1016/j.semcancer.2005.04.009
– volume: 24
  start-page: 2356
  year: 2010
  ident: B78
  article-title: Prolactin inhibits activity of pyruvate kinase M2 to stimulate cell proliferation
  publication-title: Mol Endocrinol.
  doi: 10.1210/me.2010-0219
– volume: 34
  start-page: 5482
  year: 2015
  ident: B30
  article-title: Regulatory circuit of PKM2/NF-κB/miR-148a/152-modulated tumor angiogenesis and cancer progression
  publication-title: Oncogene.
  doi: 10.1038/onc.2015.6
– volume: 4
  start-page: 982
  year: 2004
  ident: B64
  article-title: Proteome analysis of hepatocellular carcinoma cell strains, MHCC97-H and MHCC97-L, with different metastasis potentials
  publication-title: Proteomics.
  doi: 10.1002/pmic.200300653
– volume: 16
  start-page: 717
  year: 2014
  ident: B55
  article-title: The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb3015
– volume: 2013
  start-page: 242513
  year: 2013
  ident: B4
  article-title: PKM2, a central point of regulation in cancer metabolism
  publication-title: Int J Cell Biol.
  doi: 10.1155/2013/242513
– volume: 6
  start-page: pe7
  year: 2013
  ident: B11
  article-title: Allosteric regulation of PKM2 allows cellular adaptation to different physiological states
  publication-title: Sci Signal.
  doi: 10.1126/scisignal.2003925
– volume: 155
  start-page: 397
  year: 2013
  ident: B7
  article-title: PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells
  publication-title: Cell.
  doi: 10.1016/j.cell.2013.09.025
– volume: 7
  start-page: 310ra169
  year: 2015
  ident: B5
  article-title: PET imaging of tumor glycolysis downstream of hexokinase through noninvasive measurement of pyruvate kinase M2
  publication-title: Sci Transl Med.
  doi: 10.1126/scitranslmed.aac6117
– volume: 19
  start-page: 1187
  year: 2012
  ident: B89
  article-title: Small molecule activation of PKM2 in cancer cells induces serine auxotrophy
  publication-title: Chem Biol.
  doi: 10.1016/j.chembiol.2012.07.021
– volume: 6
  start-page: 846
  year: 2015
  ident: B8
  article-title: PKM2 promotes metastasis by recruiting myeloid-derived suppressor cells and indicates poor prognosis for hepatocellular carcinoma
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.2749
– volume: 31
  start-page: 991
  year: 2017
  ident: B71
  article-title: PKM2 and other key regulators of Warburg effect positively correlate with CD147 (EMMPRIN) gene expression and predict survival in multiple myeloma
  publication-title: Leukemia.
  doi: 10.1038/leu.2016.389
– volume: 21
  start-page: 5110
  year: 2015
  ident: B53
  article-title: Reversal of Warburg effect and reactivation of oxidative phosphorylation by differential inhibition of EGFR signaling pathways in non-small cell lung cancer
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-15-0375
– volume: 107
  start-page: 1894
  year: 2010
  ident: B29
  article-title: The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.0914845107
– volume: 145
  start-page: 732
  year: 2011
  ident: B42
  article-title: Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1
  publication-title: Cell.
  doi: 10.1016/j.cell.2011.03.054
– volume: 72
  start-page: 1438
  year: 2012
  ident: B84
  article-title: Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-3024
– start-page: 99
  volume-title: Oncogenes Meet Metabolism
  year: 2008
  ident: B9
  article-title: Pyruvate kinase type M2: a key regulator within the tumour metabolome and a tool for metabolic profiling of tumours
  doi: 10.1007/2789_2008_091
– volume: 6
  start-page: 13006
  year: 2015
  ident: B10
  article-title: PKM2 promotes glucose metabolism and cell growth in gliomas through a mechanism involving a let-7a/c-Myc/hnRNPA1 feedback loop
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.3514
– volume: 11
  start-page: 85
  year: 2011
  ident: B46
  article-title: Regulation of cancer cell metabolism
  publication-title: Nat Rev Cancer.
  doi: 10.1038/nrc2981
– volume: 137
  start-page: 65
  year: 2011
  ident: B76
  article-title: Efficacy of RNAi targeting of pyruvate kinase M2 combined with cisplatin in a lung cancer model
  publication-title: J Cancer Res Clin Oncol.
  doi: 10.1007/s00432-010-0860-5
– volume: 40
  start-page: 1043
  year: 2008
  ident: B52
  article-title: Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription
  publication-title: Int J Biochem Cell Bio.
  doi: 10.1016/j.biocel.2007.11.009
– volume: 98
  start-page: E1524
  year: 2013
  ident: B48
  article-title: Aberrant overexpression of pyruvate kinase M2 is associated with aggressive tumor features and the BRAF mutation in papillary thyroid cancer
  publication-title: J Clin Endocrinol Metab.
  doi: 10.1210/jc.2012-4258
– volume: 6
  start-page: 1130
  year: 2015
  ident: B85
  article-title: High expression of pyruvate kinase M2 is associated with chemosensitivity to epirubicin and 5-fluorouracil in breast cancer
  publication-title: J Cancer.
  doi: 10.7150/jca.12719
– volume: 111
  start-page: 1757
  year: 2014
  ident: B70
  article-title: PKM2 as a biomarker for chemosensitivity to front-line platinum-based chemotherapy in patients with metastatic non-small-cell lung cancer
  publication-title: Br J Cancer.
  doi: 10.1038/bjc.2014.492
– volume: 1871
  start-page: 331
  year: 2019
  ident: B57
  article-title: Pyruvate kinase M2: a multifarious enzyme in non-canonical localization to promote cancer progression
  publication-title: Biochim Biophys Rev Cancer.
  doi: 10.1016/j.bbcan.2019.02.003
– volume: 43
  start-page: 969
  year: 2011
  ident: B6
  article-title: Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells
  publication-title: Int J Biochem Cell Biol.
  doi: 10.1016/j.biocel.2010.02.005
– volume: 27
  start-page: 1165
  year: 2018
  ident: B43
  article-title: OXPHOS defects due to mtDNA mutations: glutamine to the rescue!
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2018.05.010
– volume: 13
  start-page: 1374
  year: 2007
  ident: B69
  article-title: Fecal M2-pyruvate kinase (M2-PK): a novel marker of intestinal inflammation
  publication-title: Inflamm Bowel Dis.
  doi: 10.1002/ibd.20214
– volume: 424
  start-page: 177
  year: 1994
  ident: B62
  article-title: L-and M 2-pyruvate kinase expression in renal cell carcinomas and their metastases
  publication-title: Virchows Archiv.
  doi: 10.1007/BF00193498
– volume: 1
  start-page: 104
  year: 2007
  ident: B36
  article-title: On/Off-regulation of phospholipase C-γ1-mediated signal transduction
  publication-title: Adv Enzyme Regul.
  doi: 10.1016/j.advenzreg.2006.12.010
– volume: 108
  start-page: 4129
  year: 2011
  ident: B16
  article-title: Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.1014769108
– volume: 15
  start-page: 3
  year: 2016
  ident: B61
  article-title: PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation
  publication-title: Mol Cancer.
  doi: 10.1186/s12943-015-0490-2
– volume: 480
  start-page: 118
  year: 2011
  ident: B51
  article-title: Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation
  publication-title: Nature.
  doi: 10.1038/nature10598
– volume: 138
  start-page: 343
  year: 2017
  ident: B80
  article-title: Discovery of novel naphthoquinone derivatives as inhibitors of the tumor cell specific M2 isoform of pyruvate kinase
  publication-title: Eur J Med Chem.
  doi: 10.1016/j.ejmech.2017.06.064
– volume: 2
  start-page: ra73
  year: 2009
  ident: B28
  article-title: Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2000431
– volume: 463
  start-page: 364
  year: 2010
  ident: B26
  article-title: HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer
  publication-title: Nature.
  doi: 10.1038/nature08697
– volume: 12
  start-page: 72
  year: 2013
  ident: B32
  article-title: Insulin enhances metabolic capacities of cancer cells by dual regulation of glycolytic enzyme pyruvate kinase M2
  publication-title: Mol Cancer.
  doi: 10.1186/1476-4598-12-72
– volume: 33
  start-page: 126
  year: 2018
  ident: B82
  article-title: Synthesis and antitumor activity of novel 2, 3-didithiocarbamate substituted naphthoquinones as inhibitors of pyruvate kinase M2 isoform
  publication-title: J Enzyme Inhib Med Chem.
  doi: 10.1080/14756366.2017.1404591
– volume: 16
  start-page: 333
  year: 2007
  ident: B68
  article-title: The pyruvate kinase isoenzyme M2 (Tu M2-PK) as a tumour marker for renal cell carcinoma
  publication-title: Eur J Cancer Care.
  doi: 10.1111/j.1365-2354.2006.00753.x
– volume: 338
  start-page: 1069
  year: 2012
  ident: B13
  article-title: SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions
  publication-title: Science.
  doi: 10.1126/science.1224409
– volume: 288
  start-page: 15971
  year: 2013
  ident: B38
  article-title: Reciprocal regulation of protein kinase and pyruvate kinase activities of pyruvate kinase M2 by growth signals
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M112.448753
– volume: 209
  start-page: 217
  year: 2012
  ident: B83
  article-title: Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression
  publication-title: J Exp Med.
  doi: 10.1084/jem.20111487
– volume: 150
  start-page: 685
  year: 2012
  ident: B50
  article-title: PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis
  publication-title: Cell.
  doi: 10.1016/j.cell.2012.07.018
– volume: 8
  start-page: 839
  year: 2012
  ident: B18
  article-title: Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis
  publication-title: Nat Chem Biol.
  doi: 10.1038/nchembio.1060
– volume: 6
  start-page: 7882
  year: 2015
  ident: B39
  article-title: PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation
  publication-title: Nat Commun.
  doi: 10.1038/ncomms8882
– volume: 249
  start-page: 5070
  year: 1974
  ident: B88
  article-title: Uptake and metabolism of plasma glutamine by the small intestine
  publication-title: J Biol Chem.
  doi: 10.1016/S0021-9258(19)42329-6
– volume: 452
  start-page: 181
  year: 2008
  ident: B3
  article-title: Pyruvate kinase M2 is a phosphotyrosine-binding protein
  publication-title: Nature.
  doi: 10.1038/nature06667
– volume: 6
  start-page: 26119
  year: 2015
  ident: B19
  article-title: NF-κB/RelA-PKM2 mediates inhibition of glycolysis by fenofibrate in glioblastoma cells
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.4444
– volume: 26
  start-page: 1853
  year: 2014
  ident: B58
  article-title: Pyruvate kinase M2 facilitates colon cancer cell migration via the modulation of STAT3 signalling
  publication-title: Cell Signal.
  doi: 10.1016/j.cellsig.2014.03.020
– volume: 10
  start-page: 267
  year: 2010
  ident: B72
  article-title: Targeting metabolic transformation for cancer therapy
  publication-title: Nat Rev Cancer.
  doi: 10.1038/nrc2817
– volume: 3
  start-page: 91
  year: 1992
  ident: B63
  article-title: Double role for pyruvate kinase type M2 in the expansion of phosphometabolite pools found in tumor cells
  publication-title: Crit Rev Oncogenesis.
– volume: 34
  start-page: 2671
  year: 2015
  ident: B20
  article-title: Suppression of miR-199a maturation by HuR is crucial for hypoxia-induced glycolytic switch in hepatocellular carcinoma
  publication-title: EMBO J.
  doi: 10.15252/embj.201591803
– volume: 101
  start-page: 1447
  year: 2010
  ident: B75
  article-title: Silencing of pkm2 increases the efficacy of docetaxel in human lung cancer xenografts in mice
  publication-title: Cancer Sci.
  doi: 10.1111/j.1349-7006.2010.01562.x
– volume: 315
  start-page: 2765
  year: 2009
  ident: B86
  article-title: Pyruvate kinase isoenzyme M2 is a glycolytic sensor differentially regulating cell proliferation, cell size and apoptotic cell death dependent on glucose supply
  publication-title: Exp Cell Res.
  doi: 10.1016/j.yexcr.2009.06.024
– volume: 30
  start-page: 4290
  year: 2011
  ident: B77
  article-title: Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2
  publication-title: Oncogene.
  doi: 10.1038/onc.2011.137
– volume: 452
  start-page: 230
  year: 2008
  ident: B12
  article-title: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
  publication-title: Nature.
  doi: 10.1038/nature06734
– volume: 19
  start-page: 2031
  year: 2010
  ident: B23
  article-title: Human pyruvate kinase M2: a multifunctional protein
  publication-title: Protein Sci.
  doi: 10.1002/pro.505
– volume: 23
  start-page: 753
  year: 2017
  ident: B91
  article-title: Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction
  publication-title: Nat Med.
  doi: 10.1038/nm.4328
– volume: 10
  start-page: 17
  year: 2017
  ident: B2
  article-title: NEK2 promotes aerobic glycolysis in multiple myeloma through regulating splicing of pyruvate kinase
  publication-title: J Hematol Oncol.
  doi: 10.1186/s13045-017-0392-4
– volume: 13
  start-page: e0203745
  year: 2018
  ident: B41
  article-title: PKM2 and HIF-1α regulation in prostate cancer cell lines
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0203745
– volume: 7
  start-page: 78069
  year: 2016
  ident: B1
  article-title: Overexpression of PKM2 promotes mitochondrial fusion through attenuated p53 stability
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.12942
– volume: 53
  start-page: 700
  year: 2014
  ident: B14
  article-title: SAICAR induces protein kinase activity of PKM2 that is necessary for sustained proliferative signaling of cancer cells
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2014.02.015
– volume: 254
  start-page: 2669
  year: 1979
  ident: B44
  article-title: Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells
  publication-title: J Biol Chem.
  doi: 10.1016/S0021-9258(17)30124-2
– volume: 334
  start-page: 1278
  year: 2011
  ident: B24
  article-title: Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses
  publication-title: Science.
  doi: 10.1126/science.1211485
– volume: 8
  start-page: 6984
  year: 2017
  ident: B40
  article-title: Desuccinylation of pyruvate kinase M2 by SIRT5 contributes to antioxidant response and tumor growth
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.14346
– volume: 28
  start-page: 83
  year: 2007
  ident: B67
  article-title: M2-PK as a novel marker in ovarian cancer. A prospective cohort study
  publication-title: Eur J Gynaecol Oncol.
  doi: 10.1016/j.celrep.2020.01.037
– volume: 86
  start-page: 7861
  year: 1989
  ident: B17
  article-title: Cytosolic thyroid hormone-binding protein is a monomer of pyruvate kinase
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.86.20.7861
– volume: 48
  start-page: 771
  year: 2012
  ident: B35
  article-title: EGFR-induced and PKCεmonoubiquitylation-dependent NF-κB activation upregulates PKM2 expression and promotes tumorigenesis
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2012.09.028
– volume: 52
  start-page: 340
  year: 2013
  ident: B21
  article-title: Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2013.09.004
– volume: 3
  start-page: 672
  year: 2012
  ident: B33
  article-title: PPARγ contributes to PKM2 and HK2 expression in fatty liver
  publication-title: Nat Commun.
  doi: 10.1038/ncomms1667
– volume: 27
  start-page: 441
  year: 2011
  ident: B45
  article-title: Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
  publication-title: Ann Rev Cell Dev Biol.
  doi: 10.1146/annurev-cellbio-092910-154237
SSID ssj0000650103
Score 2.6499825
SecondaryResourceType review_article
Snippet Pyruvate kinase plays a pivotal role in regulating cell metabolism. The final and rate-limiting step of glycolysis is the conversion of Phosphoenolpyruvate...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 159
SubjectTerms anaerobic glycolysis
angiogenesis
cancer metabolism
chemotherapy
Oncology
pyruvate kinase M2
Title Pyruvate Kinase M2 and Cancer: The Role of PKM2 in Promoting Tumorigenesis
URI https://www.ncbi.nlm.nih.gov/pubmed/32195169
https://www.proquest.com/docview/2381624022
https://pubmed.ncbi.nlm.nih.gov/PMC7061896
https://doaj.org/article/efabc819666548abace291de14bf3b89
Volume 10
WOSCitedRecordID wos000524752400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BhRAXxJvwqIzEgUvoxk5shxtUrRBlqxUqaG-W7TglUnHQPipx4bcz46SrXQTiwiWHxFGsbyaeb-TxNwAvhUevcKrMZdkKTFCEz632Msdko5UTZ5uQTnh_-ahOT_V8Xs-2Wn1RTdggDzwAdxBa6zyGLUltcrV11gdeF00oStcKp9PRPWQ9W8nUsAZX1MBg0PLBLKw-aPtIioWcKrkKUibdCkNJrf9PFPP3Ssmt0HN8B26PnJG9HeZ6F66FeA9uTsdd8fvwYfZjsb5E0shOuohRiU05s7Fhh2TRxRuGrsA-9ReB9S2bneDDLrLZUIYXz9nZ-ht1x6I1r1s-gM_HR2eH7_OxR0LuK16tciF1Q7ggcwjVxKaqUMV1U2BsKl3RiLZUDkmTrL1QQQiuZdDcV6H1vhDOi4ewF_sYHgMLUpY-FFaJpimlnlhRVz74ymupMFHRGby-gsz4UUCc-lhcGEwkCGNDGBvC2CSMM3i1eeH7oJ3x96HvyAabYSR6nW6gK5jRFcy_XCGDF1cWNPiT0M6HjaFfLw3xEkn7SDyDR4NFN58SuGbTZmEGasfWO3PZfRK7r0mIWyEZ0rV88j8m_xRuERypvI0_g73VYh2eww1_ueqWi324ruZ6P_k4Xqc_j34BspIAoA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pyruvate+Kinase+M2+and+Cancer%3A+The+Role+of+PKM2+in+Promoting+Tumorigenesis&rft.jtitle=Frontiers+in+oncology&rft.au=Kulsoom+Zahra&rft.au=Tulika+Dey&rft.au=Ashish&rft.au=Surendra+Pratap+Mishra&rft.date=2020-03-02&rft.pub=Frontiers+Media+S.A&rft.eissn=2234-943X&rft.volume=10&rft_id=info:doi/10.3389%2Ffonc.2020.00159&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_efabc819666548abace291de14bf3b89
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-943X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-943X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-943X&client=summon