Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels
The generation of induced pluripotent stem (iPS) cells is an important tool for regenerative medicine. However, the main restriction is the risk of tumor development. In this study we found that during the early stages of somatic cell reprogramming toward a pluripotent state, specific gene expressio...
Saved in:
| Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 34; p. 13793 |
|---|---|
| Main Authors: | , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
21.08.2012
|
| Subjects: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The generation of induced pluripotent stem (iPS) cells is an important tool for regenerative medicine. However, the main restriction is the risk of tumor development. In this study we found that during the early stages of somatic cell reprogramming toward a pluripotent state, specific gene expression patterns are altered. Therefore, we developed a method to generate partial-iPS (PiPS) cells by transferring four reprogramming factors (OCT4, SOX2, KLF4, and c-MYC) to human fibroblasts for 4 d. PiPS cells did not form tumors in vivo and clearly displayed the potential to differentiate into endothelial cells (ECs) in response to defined media and culture conditions. To clarify the mechanism of PiPS cell differentiation into ECs, SET translocation (myeloid leukemia-associated) (SET) similar protein (SETSIP) was indentified to be induced during somatic cell reprogramming. Importantly, when PiPS cells were treated with VEGF, SETSIP was translocated to the cell nucleus, directly bound to the VE-cadherin promoter, increasing vascular endothelial-cadherin (VE-cadherin) expression levels and EC differentiation. Functionally, PiPS-ECs improved neovascularization and blood flow recovery in a hindlimb ischemic model. Furthermore, PiPS-ECs displayed good attachment, stabilization, patency, and typical vascular structure when seeded on decellularized vessel scaffolds. These findings indicate that reprogramming of fibroblasts into ECs via SETSIP and VEGF has a potential clinical application. |
|---|---|
| AbstractList | The generation of induced pluripotent stem (iPS) cells is an important tool for regenerative medicine. However, the main restriction is the risk of tumor development. In this study we found that during the early stages of somatic cell reprogramming toward a pluripotent state, specific gene expression patterns are altered. Therefore, we developed a method to generate partial-iPS (PiPS) cells by transferring four reprogramming factors (OCT4, SOX2, KLF4, and c-MYC) to human fibroblasts for 4 d. PiPS cells did not form tumors in vivo and clearly displayed the potential to differentiate into endothelial cells (ECs) in response to defined media and culture conditions. To clarify the mechanism of PiPS cell differentiation into ECs, SET translocation (myeloid leukemia-associated) (SET) similar protein (SETSIP) was indentified to be induced during somatic cell reprogramming. Importantly, when PiPS cells were treated with VEGF, SETSIP was translocated to the cell nucleus, directly bound to the VE-cadherin promoter, increasing vascular endothelial-cadherin (VE-cadherin) expression levels and EC differentiation. Functionally, PiPS-ECs improved neovascularization and blood flow recovery in a hindlimb ischemic model. Furthermore, PiPS-ECs displayed good attachment, stabilization, patency, and typical vascular structure when seeded on decellularized vessel scaffolds. These findings indicate that reprogramming of fibroblasts into ECs via SETSIP and VEGF has a potential clinical application.The generation of induced pluripotent stem (iPS) cells is an important tool for regenerative medicine. However, the main restriction is the risk of tumor development. In this study we found that during the early stages of somatic cell reprogramming toward a pluripotent state, specific gene expression patterns are altered. Therefore, we developed a method to generate partial-iPS (PiPS) cells by transferring four reprogramming factors (OCT4, SOX2, KLF4, and c-MYC) to human fibroblasts for 4 d. PiPS cells did not form tumors in vivo and clearly displayed the potential to differentiate into endothelial cells (ECs) in response to defined media and culture conditions. To clarify the mechanism of PiPS cell differentiation into ECs, SET translocation (myeloid leukemia-associated) (SET) similar protein (SETSIP) was indentified to be induced during somatic cell reprogramming. Importantly, when PiPS cells were treated with VEGF, SETSIP was translocated to the cell nucleus, directly bound to the VE-cadherin promoter, increasing vascular endothelial-cadherin (VE-cadherin) expression levels and EC differentiation. Functionally, PiPS-ECs improved neovascularization and blood flow recovery in a hindlimb ischemic model. Furthermore, PiPS-ECs displayed good attachment, stabilization, patency, and typical vascular structure when seeded on decellularized vessel scaffolds. These findings indicate that reprogramming of fibroblasts into ECs via SETSIP and VEGF has a potential clinical application. The generation of induced pluripotent stem (iPS) cells is an important tool for regenerative medicine. However, the main restriction is the risk of tumor development. In this study we found that during the early stages of somatic cell reprogramming toward a pluripotent state, specific gene expression patterns are altered. Therefore, we developed a method to generate partial-iPS (PiPS) cells by transferring four reprogramming factors (OCT4, SOX2, KLF4, and c-MYC) to human fibroblasts for 4 d. PiPS cells did not form tumors in vivo and clearly displayed the potential to differentiate into endothelial cells (ECs) in response to defined media and culture conditions. To clarify the mechanism of PiPS cell differentiation into ECs, SET translocation (myeloid leukemia-associated) (SET) similar protein (SETSIP) was indentified to be induced during somatic cell reprogramming. Importantly, when PiPS cells were treated with VEGF, SETSIP was translocated to the cell nucleus, directly bound to the VE-cadherin promoter, increasing vascular endothelial-cadherin (VE-cadherin) expression levels and EC differentiation. Functionally, PiPS-ECs improved neovascularization and blood flow recovery in a hindlimb ischemic model. Furthermore, PiPS-ECs displayed good attachment, stabilization, patency, and typical vascular structure when seeded on decellularized vessel scaffolds. These findings indicate that reprogramming of fibroblasts into ECs via SETSIP and VEGF has a potential clinical application. |
| Author | Karamariti, Eirini Margariti, Andriana Han, Jing-Dong J Zampetaki, Anna Baban, Dilair Ragoussis, Jiannis Zeng, Lingfang Tsai, Tsung-neng Huang, Yi Xu, Qingbo Hu, Yanhua Winkler, Bernhard |
| Author_xml | – sequence: 1 givenname: Andriana surname: Margariti fullname: Margariti, Andriana organization: Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom – sequence: 2 givenname: Bernhard surname: Winkler fullname: Winkler, Bernhard – sequence: 3 givenname: Eirini surname: Karamariti fullname: Karamariti, Eirini – sequence: 4 givenname: Anna surname: Zampetaki fullname: Zampetaki, Anna – sequence: 5 givenname: Tsung-neng surname: Tsai fullname: Tsai, Tsung-neng – sequence: 6 givenname: Dilair surname: Baban fullname: Baban, Dilair – sequence: 7 givenname: Jiannis surname: Ragoussis fullname: Ragoussis, Jiannis – sequence: 8 givenname: Yi surname: Huang fullname: Huang, Yi – sequence: 9 givenname: Jing-Dong J surname: Han fullname: Han, Jing-Dong J – sequence: 10 givenname: Lingfang surname: Zeng fullname: Zeng, Lingfang – sequence: 11 givenname: Yanhua surname: Hu fullname: Hu, Yanhua – sequence: 12 givenname: Qingbo surname: Xu fullname: Xu, Qingbo |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22869753$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkE1LxDAQhoOsuB969iY5eumapulHjrJ-woIXPZekndZImqyZVNBf4M-2iyt4mZkXHh54Z0lmzjsg5Dxl65SV2dXOKVynnOU5L1Imj8himmlSCMlm_-45WSK-McZkXrETMue8KmSZZwvyfWMCNJEG2AXfBzUMxvXUd7QzOnhtFUakxkVPwbU-voI1ytIGrEXaqJ3SFva0cr3xPThAg1NoJ98_3nypaLybPDQaxBESmHgHEKClH4AIFk_Jcacswtlhr8jL3e3z5iHZPt0_bq63SZPzPCa8LVkndZXrVDPVaa5AtB3rilIDF43kKsugElkjmJSs5QJKUfIiF7xtMqk5X5HLX-_U930EjPVgcN9HOfAj1inLRMWqNNujFwd01AO09S6YQYXP-u97_AeXlndv |
| CitedBy_id | crossref_primary_10_1089_ten_teb_2013_0668 crossref_primary_10_1161_CIRCRESAHA_116_308263 crossref_primary_10_1038_s41467_018_03079_1 crossref_primary_10_1038_s41598_018_20966_1 crossref_primary_10_1126_scitranslmed_aaa1805 crossref_primary_10_1161_CIRCRESAHA_111_300415 crossref_primary_10_1161_ATVBAHA_113_301595 crossref_primary_10_1161_CIRCRESAHA_118_313058 crossref_primary_10_1002_jat_3470 crossref_primary_10_1016_j_semnephrol_2014_06_012 crossref_primary_10_1161_ATVBAHA_114_303809 crossref_primary_10_1177_2041731416628329 crossref_primary_10_1161_CIRCRESAHA_111_247213 crossref_primary_10_7554_eLife_86655 crossref_primary_10_1038_s41551_025_01420_w crossref_primary_10_1186_s13287_015_0260_5 crossref_primary_10_1073_pnas_1218052109 crossref_primary_10_1161_ATVBAHA_117_310079 crossref_primary_10_1161_CIRCULATIONAHA_116_025722 crossref_primary_10_1038_s41467_020_17468_y crossref_primary_10_3892_mmr_2015_3845 crossref_primary_10_1002_adma_202108757 crossref_primary_10_3389_fcvm_2024_1285685 crossref_primary_10_1016_j_yjmcc_2018_11_016 crossref_primary_10_1038_s41598_020_77568_z crossref_primary_10_1063_5_0039628 crossref_primary_10_3390_ijms19113361 crossref_primary_10_1089_ars_2023_0406 crossref_primary_10_1016_j_jconrel_2015_05_283 crossref_primary_10_1371_journal_pone_0086118 crossref_primary_10_3390_cells10102558 crossref_primary_10_1002_btpr_2961 crossref_primary_10_1016_j_isci_2024_110080 crossref_primary_10_1111_cas_14504 crossref_primary_10_2337_db19_1068 crossref_primary_10_3390_ijms23126633 crossref_primary_10_1161_CIRCRESAHA_113_301053 crossref_primary_10_3389_fcell_2017_00070 crossref_primary_10_1016_j_cell_2012_09_032 crossref_primary_10_1038_s41598_018_19931_9 crossref_primary_10_1186_s13287_023_03521_2 crossref_primary_10_3390_cells8101189 crossref_primary_10_1016_j_gde_2013_07_007 crossref_primary_10_1016_j_ijcard_2015_06_038 crossref_primary_10_1016_j_arr_2017_09_002 crossref_primary_10_1038_ncomms13963 crossref_primary_10_1002_stem_2820 crossref_primary_10_1002_mrd_22797 crossref_primary_10_1242_jcs_230276 crossref_primary_10_7603_s40730_016_0038_0 crossref_primary_10_1016_j_actbio_2022_03_014 crossref_primary_10_1096_fj_201800712R crossref_primary_10_1016_j_mce_2014_05_025 crossref_primary_10_1016_j_ymthe_2025_08_013 crossref_primary_10_1007_s12015_022_10390_4 crossref_primary_10_1016_j_kint_2017_02_033 crossref_primary_10_3390_v9080221 crossref_primary_10_1172_JCI93868 crossref_primary_10_1016_j_freeradbiomed_2021_02_005 crossref_primary_10_2217_rme_2017_0022 crossref_primary_10_1016_j_ajpath_2020_10_001 crossref_primary_10_1093_cvr_cvt061 crossref_primary_10_7603_s40730_016_0045_1 crossref_primary_10_1016_j_addr_2018_12_014 crossref_primary_10_1016_j_ijcard_2017_01_125 crossref_primary_10_1016_j_scr_2014_04_009 crossref_primary_10_1016_j_cjca_2014_08_022 crossref_primary_10_1007_s11883_013_0372_2 crossref_primary_10_1177_2041731420953413 crossref_primary_10_1002_smll_201700703 crossref_primary_10_1016_j_biomaterials_2018_05_026 crossref_primary_10_1038_s41598_017_05665_7 crossref_primary_10_1186_s13036_019_0144_9 crossref_primary_10_1089_ars_2020_8199 crossref_primary_10_1002_adhm_202304432 crossref_primary_10_1002_biot_201300560 crossref_primary_10_1002_stem_2607 crossref_primary_10_1155_2014_369246 crossref_primary_10_1186_s13287_022_03185_4 crossref_primary_10_1038_nbt_3247 crossref_primary_10_1038_ncomms15089 crossref_primary_10_1002_wsbm_1246 crossref_primary_10_1089_scd_2014_0132 crossref_primary_10_1089_ten_teb_2023_0044 crossref_primary_10_1038_cr_2014_32 crossref_primary_10_1161_CIRCRESAHA_113_301078 crossref_primary_10_1016_j_brainres_2020_146646 crossref_primary_10_1002_stem_2594 crossref_primary_10_1161_ATVBAHA_118_311919 crossref_primary_10_1016_j_biopha_2020_110813 crossref_primary_10_1073_pnas_1413234112 crossref_primary_10_1146_annurev_bioeng_071813_105108 crossref_primary_10_1186_s13287_016_0368_2 crossref_primary_10_1073_pnas_1310675110 crossref_primary_10_1016_j_gde_2016_06_014 crossref_primary_10_1007_s40778_019_00160_3 crossref_primary_10_1007_s00018_015_1936_9 crossref_primary_10_1016_j_semcdb_2021_09_003 crossref_primary_10_4252_wjsc_v11_i12_1104 crossref_primary_10_1016_j_exphem_2020_08_003 crossref_primary_10_3390_jcm8111782 crossref_primary_10_1038_ncomms11455 crossref_primary_10_7554_eLife_86655_3 crossref_primary_10_1088_1758_5090_ac04f7 crossref_primary_10_3389_fbioe_2019_00370 crossref_primary_10_1038_s41467_018_05059_x crossref_primary_10_1038_nm_3147 crossref_primary_10_1155_2015_580406 crossref_primary_10_1002_adhm_201300620 crossref_primary_10_1161_ATVBAHA_117_309962 crossref_primary_10_1016_j_tice_2016_07_005 crossref_primary_10_1016_j_gde_2015_06_001 crossref_primary_10_1007_s11936_014_0327_0 crossref_primary_10_1007_s10067_021_05684_w crossref_primary_10_1128_MCB_00599_13 crossref_primary_10_3390_jfb14010021 crossref_primary_10_1016_j_semcdb_2022_10_003 crossref_primary_10_1093_burnst_tkaa022 crossref_primary_10_1038_nrm3619 crossref_primary_10_1161_CIRCRESAHA_116_309833 crossref_primary_10_1002_stem_1930 crossref_primary_10_1002_bit_26860 crossref_primary_10_1016_j_jff_2025_106951 crossref_primary_10_3389_fcvm_2018_00109 crossref_primary_10_1007_s11626_016_0106_1 crossref_primary_10_1038_cr_2012_131 crossref_primary_10_3389_fcell_2020_563316 crossref_primary_10_1016_j_jacc_2016_01_083 crossref_primary_10_1155_2014_756240 crossref_primary_10_1007_s00018_014_1598_z crossref_primary_10_1089_cell_2014_0089 crossref_primary_10_1016_j_ceb_2015_10_008 crossref_primary_10_1155_2016_7530942 crossref_primary_10_1002_advs_201800006 crossref_primary_10_1074_jbc_M112_412783 crossref_primary_10_1161_CIRCULATIONAHA_113_007394 crossref_primary_10_1161_CIRCULATIONAHA_114_012540 crossref_primary_10_1517_14712598_2016_1118460 crossref_primary_10_1007_s13238_017_0373_y crossref_primary_10_1089_cell_2023_0123 crossref_primary_10_1007_s11886_018_0999_2 crossref_primary_10_1161_CIRCRESAHA_113_301443 crossref_primary_10_1002_med_21922 crossref_primary_10_1186_s13287_018_1088_6 crossref_primary_10_7717_peerj_9746 crossref_primary_10_1007_s11883_024_01216_4 crossref_primary_10_1186_s13287_016_0357_5 crossref_primary_10_1161_CIRCULATIONAHA_113_007727 crossref_primary_10_3390_ijms222413449 crossref_primary_10_3390_cells9071731 crossref_primary_10_1161_CIRCULATIONAHA_118_035741 crossref_primary_10_3390_ijms24043793 crossref_primary_10_1038_s41598_019_52294_3 crossref_primary_10_1161_ATVBAHA_112_301167 crossref_primary_10_1161_ATVBAHA_114_303423 crossref_primary_10_1177_1074248414527641 crossref_primary_10_1002_wdev_206 crossref_primary_10_5966_sctm_2016_0095 crossref_primary_10_1016_j_biomaterials_2013_05_050 crossref_primary_10_3389_frtra_2023_1147595 crossref_primary_10_1002_term_2807 crossref_primary_10_1016_j_yjmcc_2023_04_006 crossref_primary_10_1038_nprot_2015_059 crossref_primary_10_1002_stem_1797 crossref_primary_10_1089_ten_tea_2017_0444 crossref_primary_10_1109_TBME_2014_2314261 crossref_primary_10_1155_2018_1247857 crossref_primary_10_1016_j_scr_2016_02_025 crossref_primary_10_1016_j_yjmcc_2013_04_022 crossref_primary_10_1016_j_bioactmat_2020_12_021 crossref_primary_10_1161_ATVBAHA_119_312265 crossref_primary_10_1371_journal_pone_0183000 crossref_primary_10_1002_jbm_b_34295 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1205526109 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 22869753 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: British Heart Foundation grantid: RG/09/004/27647 – fundername: Wellcome Trust grantid: 075491/Z/04 – fundername: Wellcome Trust grantid: 090532 |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 |
| ID | FETCH-LOGICAL-c525t-2d70f9b85b1b0afb2ae4df0f67be24c92a33e843c40990d24e74726542dc39b22 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 202 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000308085200069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Fri Sep 05 08:51:24 EDT 2025 Sat May 31 02:07:13 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 34 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c525t-2d70f9b85b1b0afb2ae4df0f67be24c92a33e843c40990d24e74726542dc39b22 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.pnas.org/content/pnas/109/34/13793.full.pdf |
| PMID | 22869753 |
| PQID | 1034808132 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1034808132 pubmed_primary_22869753 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-08-21 |
| PublicationDateYYYYMMDD | 2012-08-21 |
| PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-21 day: 21 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2012 |
| References | 23449543 - Circ Res. 2013 Mar 1;112(5):748-50. doi: 10.1161/CIRCRESAHA.113.301053. |
| References_xml | – reference: 23449543 - Circ Res. 2013 Mar 1;112(5):748-50. doi: 10.1161/CIRCRESAHA.113.301053. |
| SSID | ssj0009580 |
| Score | 2.5126152 |
| Snippet | The generation of induced pluripotent stem (iPS) cells is an important tool for regenerative medicine. However, the main restriction is the risk of tumor... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 13793 |
| SubjectTerms | Animals Antigens, CD - genetics Aorta - pathology Cadherins - genetics Cell Differentiation Cells, Cultured Cellular Reprogramming Endothelial Cells - cytology Fibroblasts - cytology Fibroblasts - metabolism Humans Induced Pluripotent Stem Cells - cytology Kruppel-Like Factor 4 Mice Mice, SCID Models, Genetic Neovascularization, Pathologic Promoter Regions, Genetic Stem Cells - cytology Stress, Mechanical Tissue Engineering - methods |
| Title | Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22869753 https://www.proquest.com/docview/1034808132 |
| Volume | 109 |
| WOSCitedRecordID | wos000308085200069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZK6YELFEop0CIjcYCDIRk7D59QVRVx6YoDSHtb-YlWWpKlWfgN_GxmEi_lUgmJS6RItpWMxzOfx-NvGDsKCBLIbwpXSSlUzKSoXW6E8pWHwgRbWNsXm6hGo3o81lcp4NaltMqlTewNtW8dxchxdUtFVSIknM_vBVWNotPVVEJjha1KhDKk1dW4fkW6Ww9sBDoXpdLZktqnkmfzxnSnOWRFAWWfjfg_fNn7mYuN937hZ7aeECb_OajEJvsQmi22mdZwx48T0fTJF_Y02DtOxJZ9ltYd-jHeRh5xD91axNWLjk-bRctD4-mm1gyVlVOov-MOnaydBWptmttpe0s2c9rhi-eUyvPSPt3zxHH4op9kERIFYvD8kZjLZ902u7n4ff3rUqTKDMIVUCwE-CqL2taFzW1mogUTlI9ZLCsbQDkNRspQK-kUnbt5UAF3LUC1sbyT2gJ8ZR-btgnfGJeqLDRZDoRGCM1y7Y2NOqBlwEFjHnbZ4VLaE9R8-kfThPahm_yT9y7bGaZsMh8oOiYAdUlXhvfe0HufrSEKAgoUQ_6drUZc9-EH--QeUSx_D3qVwufo6s8zLqTZCw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+reprogramming+of+fibroblasts+into+endothelial+cells+capable+of+angiogenesis+and+reendothelialization+in+tissue-engineered+vessels&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Margariti%2C+Andriana&rft.au=Winkler%2C+Bernhard&rft.au=Karamariti%2C+Eirini&rft.au=Zampetaki%2C+Anna&rft.date=2012-08-21&rft.eissn=1091-6490&rft.volume=109&rft.issue=34&rft.spage=13793&rft_id=info:doi/10.1073%2Fpnas.1205526109&rft_id=info%3Apmid%2F22869753&rft_id=info%3Apmid%2F22869753&rft.externalDocID=22869753 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |