Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels

The generation of induced pluripotent stem (iPS) cells is an important tool for regenerative medicine. However, the main restriction is the risk of tumor development. In this study we found that during the early stages of somatic cell reprogramming toward a pluripotent state, specific gene expressio...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 34; p. 13793
Main Authors: Margariti, Andriana, Winkler, Bernhard, Karamariti, Eirini, Zampetaki, Anna, Tsai, Tsung-neng, Baban, Dilair, Ragoussis, Jiannis, Huang, Yi, Han, Jing-Dong J, Zeng, Lingfang, Hu, Yanhua, Xu, Qingbo
Format: Journal Article
Language:English
Published: United States 21.08.2012
Subjects:
ISSN:1091-6490, 1091-6490
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The generation of induced pluripotent stem (iPS) cells is an important tool for regenerative medicine. However, the main restriction is the risk of tumor development. In this study we found that during the early stages of somatic cell reprogramming toward a pluripotent state, specific gene expression patterns are altered. Therefore, we developed a method to generate partial-iPS (PiPS) cells by transferring four reprogramming factors (OCT4, SOX2, KLF4, and c-MYC) to human fibroblasts for 4 d. PiPS cells did not form tumors in vivo and clearly displayed the potential to differentiate into endothelial cells (ECs) in response to defined media and culture conditions. To clarify the mechanism of PiPS cell differentiation into ECs, SET translocation (myeloid leukemia-associated) (SET) similar protein (SETSIP) was indentified to be induced during somatic cell reprogramming. Importantly, when PiPS cells were treated with VEGF, SETSIP was translocated to the cell nucleus, directly bound to the VE-cadherin promoter, increasing vascular endothelial-cadherin (VE-cadherin) expression levels and EC differentiation. Functionally, PiPS-ECs improved neovascularization and blood flow recovery in a hindlimb ischemic model. Furthermore, PiPS-ECs displayed good attachment, stabilization, patency, and typical vascular structure when seeded on decellularized vessel scaffolds. These findings indicate that reprogramming of fibroblasts into ECs via SETSIP and VEGF has a potential clinical application.
AbstractList The generation of induced pluripotent stem (iPS) cells is an important tool for regenerative medicine. However, the main restriction is the risk of tumor development. In this study we found that during the early stages of somatic cell reprogramming toward a pluripotent state, specific gene expression patterns are altered. Therefore, we developed a method to generate partial-iPS (PiPS) cells by transferring four reprogramming factors (OCT4, SOX2, KLF4, and c-MYC) to human fibroblasts for 4 d. PiPS cells did not form tumors in vivo and clearly displayed the potential to differentiate into endothelial cells (ECs) in response to defined media and culture conditions. To clarify the mechanism of PiPS cell differentiation into ECs, SET translocation (myeloid leukemia-associated) (SET) similar protein (SETSIP) was indentified to be induced during somatic cell reprogramming. Importantly, when PiPS cells were treated with VEGF, SETSIP was translocated to the cell nucleus, directly bound to the VE-cadherin promoter, increasing vascular endothelial-cadherin (VE-cadherin) expression levels and EC differentiation. Functionally, PiPS-ECs improved neovascularization and blood flow recovery in a hindlimb ischemic model. Furthermore, PiPS-ECs displayed good attachment, stabilization, patency, and typical vascular structure when seeded on decellularized vessel scaffolds. These findings indicate that reprogramming of fibroblasts into ECs via SETSIP and VEGF has a potential clinical application.The generation of induced pluripotent stem (iPS) cells is an important tool for regenerative medicine. However, the main restriction is the risk of tumor development. In this study we found that during the early stages of somatic cell reprogramming toward a pluripotent state, specific gene expression patterns are altered. Therefore, we developed a method to generate partial-iPS (PiPS) cells by transferring four reprogramming factors (OCT4, SOX2, KLF4, and c-MYC) to human fibroblasts for 4 d. PiPS cells did not form tumors in vivo and clearly displayed the potential to differentiate into endothelial cells (ECs) in response to defined media and culture conditions. To clarify the mechanism of PiPS cell differentiation into ECs, SET translocation (myeloid leukemia-associated) (SET) similar protein (SETSIP) was indentified to be induced during somatic cell reprogramming. Importantly, when PiPS cells were treated with VEGF, SETSIP was translocated to the cell nucleus, directly bound to the VE-cadherin promoter, increasing vascular endothelial-cadherin (VE-cadherin) expression levels and EC differentiation. Functionally, PiPS-ECs improved neovascularization and blood flow recovery in a hindlimb ischemic model. Furthermore, PiPS-ECs displayed good attachment, stabilization, patency, and typical vascular structure when seeded on decellularized vessel scaffolds. These findings indicate that reprogramming of fibroblasts into ECs via SETSIP and VEGF has a potential clinical application.
The generation of induced pluripotent stem (iPS) cells is an important tool for regenerative medicine. However, the main restriction is the risk of tumor development. In this study we found that during the early stages of somatic cell reprogramming toward a pluripotent state, specific gene expression patterns are altered. Therefore, we developed a method to generate partial-iPS (PiPS) cells by transferring four reprogramming factors (OCT4, SOX2, KLF4, and c-MYC) to human fibroblasts for 4 d. PiPS cells did not form tumors in vivo and clearly displayed the potential to differentiate into endothelial cells (ECs) in response to defined media and culture conditions. To clarify the mechanism of PiPS cell differentiation into ECs, SET translocation (myeloid leukemia-associated) (SET) similar protein (SETSIP) was indentified to be induced during somatic cell reprogramming. Importantly, when PiPS cells were treated with VEGF, SETSIP was translocated to the cell nucleus, directly bound to the VE-cadherin promoter, increasing vascular endothelial-cadherin (VE-cadherin) expression levels and EC differentiation. Functionally, PiPS-ECs improved neovascularization and blood flow recovery in a hindlimb ischemic model. Furthermore, PiPS-ECs displayed good attachment, stabilization, patency, and typical vascular structure when seeded on decellularized vessel scaffolds. These findings indicate that reprogramming of fibroblasts into ECs via SETSIP and VEGF has a potential clinical application.
Author Karamariti, Eirini
Margariti, Andriana
Han, Jing-Dong J
Zampetaki, Anna
Baban, Dilair
Ragoussis, Jiannis
Zeng, Lingfang
Tsai, Tsung-neng
Huang, Yi
Xu, Qingbo
Hu, Yanhua
Winkler, Bernhard
Author_xml – sequence: 1
  givenname: Andriana
  surname: Margariti
  fullname: Margariti, Andriana
  organization: Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom
– sequence: 2
  givenname: Bernhard
  surname: Winkler
  fullname: Winkler, Bernhard
– sequence: 3
  givenname: Eirini
  surname: Karamariti
  fullname: Karamariti, Eirini
– sequence: 4
  givenname: Anna
  surname: Zampetaki
  fullname: Zampetaki, Anna
– sequence: 5
  givenname: Tsung-neng
  surname: Tsai
  fullname: Tsai, Tsung-neng
– sequence: 6
  givenname: Dilair
  surname: Baban
  fullname: Baban, Dilair
– sequence: 7
  givenname: Jiannis
  surname: Ragoussis
  fullname: Ragoussis, Jiannis
– sequence: 8
  givenname: Yi
  surname: Huang
  fullname: Huang, Yi
– sequence: 9
  givenname: Jing-Dong J
  surname: Han
  fullname: Han, Jing-Dong J
– sequence: 10
  givenname: Lingfang
  surname: Zeng
  fullname: Zeng, Lingfang
– sequence: 11
  givenname: Yanhua
  surname: Hu
  fullname: Hu, Yanhua
– sequence: 12
  givenname: Qingbo
  surname: Xu
  fullname: Xu, Qingbo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22869753$$D View this record in MEDLINE/PubMed
BookMark eNpNkE1LxDAQhoOsuB969iY5eumapulHjrJ-woIXPZekndZImqyZVNBf4M-2iyt4mZkXHh54Z0lmzjsg5Dxl65SV2dXOKVynnOU5L1Imj8himmlSCMlm_-45WSK-McZkXrETMue8KmSZZwvyfWMCNJEG2AXfBzUMxvXUd7QzOnhtFUakxkVPwbU-voI1ytIGrEXaqJ3SFva0cr3xPThAg1NoJ98_3nypaLybPDQaxBESmHgHEKClH4AIFk_Jcacswtlhr8jL3e3z5iHZPt0_bq63SZPzPCa8LVkndZXrVDPVaa5AtB3rilIDF43kKsugElkjmJSs5QJKUfIiF7xtMqk5X5HLX-_U930EjPVgcN9HOfAj1inLRMWqNNujFwd01AO09S6YQYXP-u97_AeXlndv
CitedBy_id crossref_primary_10_1089_ten_teb_2013_0668
crossref_primary_10_1161_CIRCRESAHA_116_308263
crossref_primary_10_1038_s41467_018_03079_1
crossref_primary_10_1038_s41598_018_20966_1
crossref_primary_10_1126_scitranslmed_aaa1805
crossref_primary_10_1161_CIRCRESAHA_111_300415
crossref_primary_10_1161_ATVBAHA_113_301595
crossref_primary_10_1161_CIRCRESAHA_118_313058
crossref_primary_10_1002_jat_3470
crossref_primary_10_1016_j_semnephrol_2014_06_012
crossref_primary_10_1161_ATVBAHA_114_303809
crossref_primary_10_1177_2041731416628329
crossref_primary_10_1161_CIRCRESAHA_111_247213
crossref_primary_10_7554_eLife_86655
crossref_primary_10_1038_s41551_025_01420_w
crossref_primary_10_1186_s13287_015_0260_5
crossref_primary_10_1073_pnas_1218052109
crossref_primary_10_1161_ATVBAHA_117_310079
crossref_primary_10_1161_CIRCULATIONAHA_116_025722
crossref_primary_10_1038_s41467_020_17468_y
crossref_primary_10_3892_mmr_2015_3845
crossref_primary_10_1002_adma_202108757
crossref_primary_10_3389_fcvm_2024_1285685
crossref_primary_10_1016_j_yjmcc_2018_11_016
crossref_primary_10_1038_s41598_020_77568_z
crossref_primary_10_1063_5_0039628
crossref_primary_10_3390_ijms19113361
crossref_primary_10_1089_ars_2023_0406
crossref_primary_10_1016_j_jconrel_2015_05_283
crossref_primary_10_1371_journal_pone_0086118
crossref_primary_10_3390_cells10102558
crossref_primary_10_1002_btpr_2961
crossref_primary_10_1016_j_isci_2024_110080
crossref_primary_10_1111_cas_14504
crossref_primary_10_2337_db19_1068
crossref_primary_10_3390_ijms23126633
crossref_primary_10_1161_CIRCRESAHA_113_301053
crossref_primary_10_3389_fcell_2017_00070
crossref_primary_10_1016_j_cell_2012_09_032
crossref_primary_10_1038_s41598_018_19931_9
crossref_primary_10_1186_s13287_023_03521_2
crossref_primary_10_3390_cells8101189
crossref_primary_10_1016_j_gde_2013_07_007
crossref_primary_10_1016_j_ijcard_2015_06_038
crossref_primary_10_1016_j_arr_2017_09_002
crossref_primary_10_1038_ncomms13963
crossref_primary_10_1002_stem_2820
crossref_primary_10_1002_mrd_22797
crossref_primary_10_1242_jcs_230276
crossref_primary_10_7603_s40730_016_0038_0
crossref_primary_10_1016_j_actbio_2022_03_014
crossref_primary_10_1096_fj_201800712R
crossref_primary_10_1016_j_mce_2014_05_025
crossref_primary_10_1016_j_ymthe_2025_08_013
crossref_primary_10_1007_s12015_022_10390_4
crossref_primary_10_1016_j_kint_2017_02_033
crossref_primary_10_3390_v9080221
crossref_primary_10_1172_JCI93868
crossref_primary_10_1016_j_freeradbiomed_2021_02_005
crossref_primary_10_2217_rme_2017_0022
crossref_primary_10_1016_j_ajpath_2020_10_001
crossref_primary_10_1093_cvr_cvt061
crossref_primary_10_7603_s40730_016_0045_1
crossref_primary_10_1016_j_addr_2018_12_014
crossref_primary_10_1016_j_ijcard_2017_01_125
crossref_primary_10_1016_j_scr_2014_04_009
crossref_primary_10_1016_j_cjca_2014_08_022
crossref_primary_10_1007_s11883_013_0372_2
crossref_primary_10_1177_2041731420953413
crossref_primary_10_1002_smll_201700703
crossref_primary_10_1016_j_biomaterials_2018_05_026
crossref_primary_10_1038_s41598_017_05665_7
crossref_primary_10_1186_s13036_019_0144_9
crossref_primary_10_1089_ars_2020_8199
crossref_primary_10_1002_adhm_202304432
crossref_primary_10_1002_biot_201300560
crossref_primary_10_1002_stem_2607
crossref_primary_10_1155_2014_369246
crossref_primary_10_1186_s13287_022_03185_4
crossref_primary_10_1038_nbt_3247
crossref_primary_10_1038_ncomms15089
crossref_primary_10_1002_wsbm_1246
crossref_primary_10_1089_scd_2014_0132
crossref_primary_10_1089_ten_teb_2023_0044
crossref_primary_10_1038_cr_2014_32
crossref_primary_10_1161_CIRCRESAHA_113_301078
crossref_primary_10_1016_j_brainres_2020_146646
crossref_primary_10_1002_stem_2594
crossref_primary_10_1161_ATVBAHA_118_311919
crossref_primary_10_1016_j_biopha_2020_110813
crossref_primary_10_1073_pnas_1413234112
crossref_primary_10_1146_annurev_bioeng_071813_105108
crossref_primary_10_1186_s13287_016_0368_2
crossref_primary_10_1073_pnas_1310675110
crossref_primary_10_1016_j_gde_2016_06_014
crossref_primary_10_1007_s40778_019_00160_3
crossref_primary_10_1007_s00018_015_1936_9
crossref_primary_10_1016_j_semcdb_2021_09_003
crossref_primary_10_4252_wjsc_v11_i12_1104
crossref_primary_10_1016_j_exphem_2020_08_003
crossref_primary_10_3390_jcm8111782
crossref_primary_10_1038_ncomms11455
crossref_primary_10_7554_eLife_86655_3
crossref_primary_10_1088_1758_5090_ac04f7
crossref_primary_10_3389_fbioe_2019_00370
crossref_primary_10_1038_s41467_018_05059_x
crossref_primary_10_1038_nm_3147
crossref_primary_10_1155_2015_580406
crossref_primary_10_1002_adhm_201300620
crossref_primary_10_1161_ATVBAHA_117_309962
crossref_primary_10_1016_j_tice_2016_07_005
crossref_primary_10_1016_j_gde_2015_06_001
crossref_primary_10_1007_s11936_014_0327_0
crossref_primary_10_1007_s10067_021_05684_w
crossref_primary_10_1128_MCB_00599_13
crossref_primary_10_3390_jfb14010021
crossref_primary_10_1016_j_semcdb_2022_10_003
crossref_primary_10_1093_burnst_tkaa022
crossref_primary_10_1038_nrm3619
crossref_primary_10_1161_CIRCRESAHA_116_309833
crossref_primary_10_1002_stem_1930
crossref_primary_10_1002_bit_26860
crossref_primary_10_1016_j_jff_2025_106951
crossref_primary_10_3389_fcvm_2018_00109
crossref_primary_10_1007_s11626_016_0106_1
crossref_primary_10_1038_cr_2012_131
crossref_primary_10_3389_fcell_2020_563316
crossref_primary_10_1016_j_jacc_2016_01_083
crossref_primary_10_1155_2014_756240
crossref_primary_10_1007_s00018_014_1598_z
crossref_primary_10_1089_cell_2014_0089
crossref_primary_10_1016_j_ceb_2015_10_008
crossref_primary_10_1155_2016_7530942
crossref_primary_10_1002_advs_201800006
crossref_primary_10_1074_jbc_M112_412783
crossref_primary_10_1161_CIRCULATIONAHA_113_007394
crossref_primary_10_1161_CIRCULATIONAHA_114_012540
crossref_primary_10_1517_14712598_2016_1118460
crossref_primary_10_1007_s13238_017_0373_y
crossref_primary_10_1089_cell_2023_0123
crossref_primary_10_1007_s11886_018_0999_2
crossref_primary_10_1161_CIRCRESAHA_113_301443
crossref_primary_10_1002_med_21922
crossref_primary_10_1186_s13287_018_1088_6
crossref_primary_10_7717_peerj_9746
crossref_primary_10_1007_s11883_024_01216_4
crossref_primary_10_1186_s13287_016_0357_5
crossref_primary_10_1161_CIRCULATIONAHA_113_007727
crossref_primary_10_3390_ijms222413449
crossref_primary_10_3390_cells9071731
crossref_primary_10_1161_CIRCULATIONAHA_118_035741
crossref_primary_10_3390_ijms24043793
crossref_primary_10_1038_s41598_019_52294_3
crossref_primary_10_1161_ATVBAHA_112_301167
crossref_primary_10_1161_ATVBAHA_114_303423
crossref_primary_10_1177_1074248414527641
crossref_primary_10_1002_wdev_206
crossref_primary_10_5966_sctm_2016_0095
crossref_primary_10_1016_j_biomaterials_2013_05_050
crossref_primary_10_3389_frtra_2023_1147595
crossref_primary_10_1002_term_2807
crossref_primary_10_1016_j_yjmcc_2023_04_006
crossref_primary_10_1038_nprot_2015_059
crossref_primary_10_1002_stem_1797
crossref_primary_10_1089_ten_tea_2017_0444
crossref_primary_10_1109_TBME_2014_2314261
crossref_primary_10_1155_2018_1247857
crossref_primary_10_1016_j_scr_2016_02_025
crossref_primary_10_1016_j_yjmcc_2013_04_022
crossref_primary_10_1016_j_bioactmat_2020_12_021
crossref_primary_10_1161_ATVBAHA_119_312265
crossref_primary_10_1371_journal_pone_0183000
crossref_primary_10_1002_jbm_b_34295
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1205526109
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 22869753
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: British Heart Foundation
  grantid: RG/09/004/27647
– fundername: Wellcome Trust
  grantid: 075491/Z/04
– fundername: Wellcome Trust
  grantid: 090532
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c525t-2d70f9b85b1b0afb2ae4df0f67be24c92a33e843c40990d24e74726542dc39b22
IEDL.DBID 7X8
ISICitedReferencesCount 202
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000308085200069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Fri Sep 05 08:51:24 EDT 2025
Sat May 31 02:07:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-2d70f9b85b1b0afb2ae4df0f67be24c92a33e843c40990d24e74726542dc39b22
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/109/34/13793.full.pdf
PMID 22869753
PQID 1034808132
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1034808132
pubmed_primary_22869753
PublicationCentury 2000
PublicationDate 2012-08-21
PublicationDateYYYYMMDD 2012-08-21
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
References 23449543 - Circ Res. 2013 Mar 1;112(5):748-50. doi: 10.1161/CIRCRESAHA.113.301053.
References_xml – reference: 23449543 - Circ Res. 2013 Mar 1;112(5):748-50. doi: 10.1161/CIRCRESAHA.113.301053.
SSID ssj0009580
Score 2.5126152
Snippet The generation of induced pluripotent stem (iPS) cells is an important tool for regenerative medicine. However, the main restriction is the risk of tumor...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 13793
SubjectTerms Animals
Antigens, CD - genetics
Aorta - pathology
Cadherins - genetics
Cell Differentiation
Cells, Cultured
Cellular Reprogramming
Endothelial Cells - cytology
Fibroblasts - cytology
Fibroblasts - metabolism
Humans
Induced Pluripotent Stem Cells - cytology
Kruppel-Like Factor 4
Mice
Mice, SCID
Models, Genetic
Neovascularization, Pathologic
Promoter Regions, Genetic
Stem Cells - cytology
Stress, Mechanical
Tissue Engineering - methods
Title Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels
URI https://www.ncbi.nlm.nih.gov/pubmed/22869753
https://www.proquest.com/docview/1034808132
Volume 109
WOSCitedRecordID wos000308085200069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZK6YELFEop0CIjcYCDIRk7D59QVRVx6YoDSHtb-YlWWpKlWfgN_GxmEi_lUgmJS6RItpWMxzOfx-NvGDsKCBLIbwpXSSlUzKSoXW6E8pWHwgRbWNsXm6hGo3o81lcp4NaltMqlTewNtW8dxchxdUtFVSIknM_vBVWNotPVVEJjha1KhDKk1dW4fkW6Ww9sBDoXpdLZktqnkmfzxnSnOWRFAWWfjfg_fNn7mYuN937hZ7aeECb_OajEJvsQmi22mdZwx48T0fTJF_Y02DtOxJZ9ltYd-jHeRh5xD91axNWLjk-bRctD4-mm1gyVlVOov-MOnaydBWptmttpe0s2c9rhi-eUyvPSPt3zxHH4op9kERIFYvD8kZjLZ902u7n4ff3rUqTKDMIVUCwE-CqL2taFzW1mogUTlI9ZLCsbQDkNRspQK-kUnbt5UAF3LUC1sbyT2gJ8ZR-btgnfGJeqLDRZDoRGCM1y7Y2NOqBlwEFjHnbZ4VLaE9R8-kfThPahm_yT9y7bGaZsMh8oOiYAdUlXhvfe0HufrSEKAgoUQ_6drUZc9-EH--QeUSx_D3qVwufo6s8zLqTZCw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+reprogramming+of+fibroblasts+into+endothelial+cells+capable+of+angiogenesis+and+reendothelialization+in+tissue-engineered+vessels&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Margariti%2C+Andriana&rft.au=Winkler%2C+Bernhard&rft.au=Karamariti%2C+Eirini&rft.au=Zampetaki%2C+Anna&rft.date=2012-08-21&rft.eissn=1091-6490&rft.volume=109&rft.issue=34&rft.spage=13793&rft_id=info:doi/10.1073%2Fpnas.1205526109&rft_id=info%3Apmid%2F22869753&rft_id=info%3Apmid%2F22869753&rft.externalDocID=22869753
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon