The Role of Astrocytes in CNS Inflammation

Astrocytes are the most abundant cell type in the central nervous system (CNS), performing complex functions in health and disease. It is now clear that multiple astrocyte subsets or activation states (plastic phenotypes driven by intrinsic and extrinsic cues) can be identified, associated to specif...

Full description

Saved in:
Bibliographic Details
Published in:Trends in immunology Vol. 41; no. 9; pp. 805 - 819
Main Authors: Giovannoni, Federico, Quintana, Francisco J.
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01.09.2020
Elsevier Limited
Subjects:
ISSN:1471-4906, 1471-4981, 1471-4981
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Astrocytes are the most abundant cell type in the central nervous system (CNS), performing complex functions in health and disease. It is now clear that multiple astrocyte subsets or activation states (plastic phenotypes driven by intrinsic and extrinsic cues) can be identified, associated to specific genomic programs and functions. The characterization of these subsets and the mechanisms that control them may provide unique insights into the pathogenesis of neurologic diseases, and identify potential targets for therapeutic intervention. In this article, we provide an overview of the role of astrocytes in CNS inflammation, highlighting recent discoveries on astrocyte subsets and the mechanisms that control them. Astrocytes display functional and phenotypic heterogeneity across and within CNS regions under homeostatic conditions.CNS insults (trauma, infection, autoimmune inflammation, protein aggregates) induce a broad array of astrocyte activation states, poorly defined in terms of phenotype, function, and role in human pathology.Astrocyte activation during acute microbial infection is essential for pathogen clearance but can contribute to long-term neurological impairments.The plasticity of astrocytes and their ability to adopt either a proinflammatory or an anti-inflammatory phenotype could be targeted for therapeutic intervention.
AbstractList Astrocytes are the most abundant cell type in the central nervous system (CNS), performing complex functions in health and disease. It is now clear that multiple astrocyte subsets or activation states (plastic phenotypes driven by intrinsic and extrinsic cues) can be identified, associated to specific genomic programs and functions. The characterization of these subsets and the mechanisms that control them may provide unique insights into the pathogenesis of neurologic diseases, and identify potential targets for therapeutic intervention. In this article, we provide an overview of the role of astrocytes in CNS inflammation, highlighting recent discoveries on astrocyte subsets and the mechanisms that control them.Astrocytes are the most abundant cell type in the central nervous system (CNS), performing complex functions in health and disease. It is now clear that multiple astrocyte subsets or activation states (plastic phenotypes driven by intrinsic and extrinsic cues) can be identified, associated to specific genomic programs and functions. The characterization of these subsets and the mechanisms that control them may provide unique insights into the pathogenesis of neurologic diseases, and identify potential targets for therapeutic intervention. In this article, we provide an overview of the role of astrocytes in CNS inflammation, highlighting recent discoveries on astrocyte subsets and the mechanisms that control them.
Astrocytes are the most abundant cell type in the central nervous system (CNS), performing complex functions in health and disease. It is now clear that multiple astrocyte subsets or activation states (plastic phenotypes driven by intrinsic and extrinsic cues) can be identified, associated to specific genomic programs and functions. The characterization of these subsets and the mechanisms that control them may provide unique insights into the pathogenesis of neurologic diseases, and identify potential targets for therapeutic intervention. In this article, we provide an overview of the role of astrocytes in CNS inflammation, highlighting recent discoveries on astrocyte subsets and the mechanisms that control them.
Astrocytes are the most abundant cell type in the central nervous system (CNS), performing complex functions in health and disease. It is now clear that multiple astrocyte subsets or activation states (plastic phenotypes driven by intrinsic and extrinsic cues) can be identified, associated to specific genomic programs and functions. The characterization of these subsets and the mechanisms that control them may provide unique insights into the pathogenesis of neurologic diseases, and identify potential targets for therapeutic intervention. In this article, we provide an overview of the role of astrocytes in CNS inflammation, highlighting recent discoveries on astrocyte subsets and the mechanisms that control them. Astrocytes display functional and phenotypic heterogeneity across and within CNS regions under homeostatic conditions.CNS insults (trauma, infection, autoimmune inflammation, protein aggregates) induce a broad array of astrocyte activation states, poorly defined in terms of phenotype, function, and role in human pathology.Astrocyte activation during acute microbial infection is essential for pathogen clearance but can contribute to long-term neurological impairments.The plasticity of astrocytes and their ability to adopt either a proinflammatory or an anti-inflammatory phenotype could be targeted for therapeutic intervention.
Author Giovannoni, Federico
Quintana, Francisco J.
AuthorAffiliation 1 Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
2 Broad Institute of MIT and Harvard, Cambridge, MA, USA
AuthorAffiliation_xml – name: 2 Broad Institute of MIT and Harvard, Cambridge, MA, USA
– name: 1 Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
Author_xml – sequence: 1
  givenname: Federico
  surname: Giovannoni
  fullname: Giovannoni, Federico
  organization: Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
– sequence: 2
  givenname: Francisco J.
  surname: Quintana
  fullname: Quintana, Francisco J.
  email: fquintana@rics.bwh.harvard.edu
  organization: Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32800705$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rXCEUhiWk5LP7rMqFbkJhbtX7oXYRCEM_AqGFJl2L13tMnHo1UScw_75OJwntLGal4PO8HN9zjPZ98IDQGcE1waT_uKhtrimmuMasxpjtoSPSMjJrBSf7r3fcH6LjlBYYk44xdoAOG8oLjbsj9OH2HqqfwUEVTHWZcgx6lSFV1lfz7zfVlTdOTZPKNvhT9MYol-Dt83mCfn35fDv_Nrv-8fVqfnk90x1t88wQJQQTjWkoU6xXwohB9IJzMooBa6XpSPkw6BEwKMpGQo0imqkOTN8YBc0JutjkPiyHCUYNPkfl5EO0k4orGZSV_794ey_vwpPklLes7UvA-XNADI9LSFlONmlwTnkIyyRp27SsNNGv0fdb6CIsoy_fW1OMNx1uWKHe_TvR6ygvNRag3wA6hpQiGKlt_ltaGdA6SbBc70supM1yvS-JmSxqEfGW-JK9Q_m0UaDs4MlClElb8BpGG0FnOQa7S-ZbsnbWW63cb1jtVv8AB6-99A
CitedBy_id crossref_primary_10_1124_pharmrev_122_000618
crossref_primary_10_1146_annurev_pathol_052920_040318
crossref_primary_10_3389_fphar_2020_618992
crossref_primary_10_1007_s12035_021_02518_3
crossref_primary_10_3390_cells13131144
crossref_primary_10_1111_cns_70598
crossref_primary_10_1002_mco2_70329
crossref_primary_10_1016_j_fbio_2025_107264
crossref_primary_10_3390_ijms23126626
crossref_primary_10_1016_j_bbii_2024_100087
crossref_primary_10_31083_j_fbl2903094
crossref_primary_10_1007_s11064_022_03671_4
crossref_primary_10_1016_j_celrep_2025_115656
crossref_primary_10_1007_s40122_024_00610_9
crossref_primary_10_1093_discim_kyaf005
crossref_primary_10_1186_s12974_025_03410_w
crossref_primary_10_3390_ijms252010989
crossref_primary_10_3390_microorganisms12081713
crossref_primary_10_1016_j_bbi_2023_09_018
crossref_primary_10_3389_fphar_2023_1288994
crossref_primary_10_3389_fphys_2021_633618
crossref_primary_10_3389_fnagi_2022_968444
crossref_primary_10_1016_j_arr_2021_101335
crossref_primary_10_1186_s13041_024_01118_1
crossref_primary_10_1093_nsr_nwad309
crossref_primary_10_1016_j_tins_2021_11_004
crossref_primary_10_3390_mi12040441
crossref_primary_10_1111_cns_14300
crossref_primary_10_1111_cns_70448
crossref_primary_10_1016_j_physbeh_2025_114913
crossref_primary_10_1016_j_neuroscience_2024_09_042
crossref_primary_10_1038_s41398_023_02665_2
crossref_primary_10_3389_fnins_2022_824191
crossref_primary_10_1111_acel_70086
crossref_primary_10_1016_j_neuroscience_2024_10_019
crossref_primary_10_14814_phy2_15239
crossref_primary_10_3390_ijms22157864
crossref_primary_10_1212_NXI_0000000000200052
crossref_primary_10_3389_fncel_2023_1076851
crossref_primary_10_1007_s12264_024_01236_9
crossref_primary_10_1080_15376516_2023_2196687
crossref_primary_10_1212_NXI_0000000000000946
crossref_primary_10_1016_j_intimp_2024_113938
crossref_primary_10_3389_fnagi_2022_1022821
crossref_primary_10_1177_13872877251320419
crossref_primary_10_1007_s11064_023_03966_0
crossref_primary_10_3389_fncel_2021_654290
crossref_primary_10_3390_cells10082019
crossref_primary_10_3390_toxics12090655
crossref_primary_10_1007_s00415_025_13231_9
crossref_primary_10_1038_s41467_025_60074_z
crossref_primary_10_1134_S0022093025020097
crossref_primary_10_20517_and_2025_25
crossref_primary_10_1186_s12951_023_02039_2
crossref_primary_10_1016_j_actbio_2022_10_022
crossref_primary_10_1002_glia_23992
crossref_primary_10_3389_fimmu_2023_1114596
crossref_primary_10_3389_fnagi_2022_827263
crossref_primary_10_1038_s41598_022_14812_8
crossref_primary_10_1007_s12035_024_04064_0
crossref_primary_10_1016_j_cellimm_2023_104778
crossref_primary_10_3390_biomedicines9091226
crossref_primary_10_3389_fnmol_2024_1431079
crossref_primary_10_1186_s12974_022_02678_6
crossref_primary_10_1186_s13578_023_01128_x
crossref_primary_10_61958_NDWM5390
crossref_primary_10_4103_NRR_NRR_D_23_01876
crossref_primary_10_4103_NRR_NRR_D_23_01756
crossref_primary_10_1016_j_arr_2024_102288
crossref_primary_10_3389_fnmol_2025_1607675
crossref_primary_10_1016_j_immuni_2025_03_006
crossref_primary_10_1186_s12974_023_02771_4
crossref_primary_10_1002_biof_1703
crossref_primary_10_1016_j_ceca_2022_102619
crossref_primary_10_1186_s12964_024_01509_w
crossref_primary_10_1016_j_nbd_2022_105698
crossref_primary_10_3389_fimmu_2022_966881
crossref_primary_10_1016_j_ejphar_2023_176231
crossref_primary_10_1016_j_bbi_2023_11_008
crossref_primary_10_1111_cns_14740
crossref_primary_10_3390_cells13191628
crossref_primary_10_4103_NRR_NRR_D_24_00204
crossref_primary_10_3390_v15010097
crossref_primary_10_1186_s12974_021_02271_3
crossref_primary_10_3390_ijms24119721
crossref_primary_10_1038_s41598_024_73259_1
crossref_primary_10_1016_j_biopha_2023_115807
crossref_primary_10_2147_JIR_S329864
crossref_primary_10_1016_j_pnpbp_2025_111375
crossref_primary_10_1016_j_brainresbull_2025_111556
crossref_primary_10_1016_j_brainresbull_2024_110964
crossref_primary_10_4103_NRR_NRR_D_23_01776
crossref_primary_10_3390_cells14030168
crossref_primary_10_1111_ggi_14729
crossref_primary_10_1016_j_wjam_2025_02_002
crossref_primary_10_1007_s12035_022_03073_1
crossref_primary_10_1097_RLU_0000000000005494
crossref_primary_10_5498_wjp_v14_i8_1208
crossref_primary_10_1007_s11064_024_04134_8
crossref_primary_10_1016_j_isci_2025_113246
crossref_primary_10_1016_j_clim_2025_110543
crossref_primary_10_1038_s41467_023_44532_0
crossref_primary_10_1038_s41420_022_00997_4
crossref_primary_10_1016_j_neuron_2023_05_031
crossref_primary_10_3390_cells13030286
crossref_primary_10_1016_j_nbd_2025_107096
crossref_primary_10_1371_journal_pone_0313556
crossref_primary_10_1038_s41419_025_07469_4
crossref_primary_10_1093_narmme_ugaf009
crossref_primary_10_3389_fimmu_2022_979414
crossref_primary_10_1002_adhm_202500498
crossref_primary_10_1002_glia_24239
crossref_primary_10_1016_j_semcdb_2022_11_001
crossref_primary_10_1016_j_brainresbull_2024_110988
crossref_primary_10_1007_s11064_025_04381_3
crossref_primary_10_1038_s41419_022_05399_z
crossref_primary_10_1016_j_brainres_2024_149268
crossref_primary_10_3390_brainsci12091119
crossref_primary_10_1113_JP284197
crossref_primary_10_4103_1673_5374_390973
crossref_primary_10_1097_MD_0000000000038898
crossref_primary_10_1007_s12264_022_00957_z
crossref_primary_10_1016_j_yexcr_2025_114595
crossref_primary_10_1186_s12974_023_02989_2
crossref_primary_10_3389_fncel_2024_1365448
crossref_primary_10_3389_fimmu_2022_903309
crossref_primary_10_1007_s00360_025_01613_4
crossref_primary_10_1007_s11064_022_03714_w
crossref_primary_10_4103_REGENMED_REGENMED_D_24_00006
crossref_primary_10_1007_s12035_025_05187_8
crossref_primary_10_1111_jnc_16002
crossref_primary_10_3390_nu15143106
crossref_primary_10_1002_alz_70104
crossref_primary_10_1016_j_phrs_2024_107507
crossref_primary_10_1016_j_lfs_2023_122393
crossref_primary_10_3389_fnmol_2022_1007889
crossref_primary_10_3390_biom13040692
crossref_primary_10_1111_jnc_16126
crossref_primary_10_3390_biomedicines8100394
crossref_primary_10_1186_s12974_022_02672_y
crossref_primary_10_1016_j_neuint_2021_105107
crossref_primary_10_1016_j_brainresbull_2024_110888
crossref_primary_10_1002_glia_24452
crossref_primary_10_3390_nano14050429
crossref_primary_10_3233_JAD_240088
crossref_primary_10_1515_revneuro_2024_0081
crossref_primary_10_1155_2024_5383099
crossref_primary_10_1186_s40779_024_00577_w
crossref_primary_10_3390_biomedicines9020157
crossref_primary_10_1038_s41467_023_37025_7
crossref_primary_10_3389_fnagi_2024_1347987
crossref_primary_10_1016_j_neuropharm_2025_110542
crossref_primary_10_3390_ijms22083875
crossref_primary_10_1007_s12031_024_02223_5
crossref_primary_10_3390_biom12040538
crossref_primary_10_7759_cureus_61522
crossref_primary_10_3390_ijms25189859
crossref_primary_10_3389_fcell_2025_1589169
crossref_primary_10_3389_fmolb_2025_1636882
crossref_primary_10_1016_j_vetmic_2024_110280
crossref_primary_10_1016_j_brainres_2024_149115
crossref_primary_10_1016_j_neuroscience_2025_03_039
crossref_primary_10_3389_fnagi_2024_1444716
crossref_primary_10_3390_ijms22136925
crossref_primary_10_1002_advs_202415224
crossref_primary_10_1016_j_bioadv_2022_212971
crossref_primary_10_1007_s12975_023_01151_7
crossref_primary_10_3390_brainsci12081010
crossref_primary_10_3389_fimmu_2025_1584577
crossref_primary_10_4103_1673_5374_380869
crossref_primary_10_1172_JCI151803
crossref_primary_10_3390_ijms251910535
crossref_primary_10_1016_j_tem_2021_09_006
crossref_primary_10_1186_s12974_023_02824_8
crossref_primary_10_1523_JNEUROSCI_1376_23_2023
crossref_primary_10_3390_cells13181554
crossref_primary_10_3390_cells10051195
crossref_primary_10_3389_fncel_2022_888232
crossref_primary_10_1038_s41467_023_40968_6
crossref_primary_10_1007_s00204_025_04002_6
crossref_primary_10_1186_s13578_022_00867_7
crossref_primary_10_3389_fimmu_2022_924642
crossref_primary_10_3389_fncel_2025_1451889
crossref_primary_10_31083_j_jin2206148
crossref_primary_10_3389_fnmol_2022_874299
crossref_primary_10_1177_15593258221130752
crossref_primary_10_1016_j_ijbiomac_2025_140289
crossref_primary_10_3390_ijms231710191
crossref_primary_10_1007_s12035_023_03320_z
crossref_primary_10_1002_glia_24539
crossref_primary_10_3389_fnmol_2022_1013033
crossref_primary_10_1016_j_neuroscience_2023_08_016
crossref_primary_10_3389_fimmu_2021_705308
crossref_primary_10_1007_s00210_024_03415_x
crossref_primary_10_3389_fnmol_2023_1249320
crossref_primary_10_3389_fimmu_2024_1458967
crossref_primary_10_1016_j_bbr_2023_114350
crossref_primary_10_3389_fimmu_2024_1432342
crossref_primary_10_3389_fnmol_2023_1263369
crossref_primary_10_3390_cimb47060417
crossref_primary_10_3389_fcell_2020_623771
crossref_primary_10_3390_encyclopedia4040110
crossref_primary_10_1186_s12964_023_01255_5
crossref_primary_10_3389_fnins_2023_1125428
crossref_primary_10_1002_ana_26296
crossref_primary_10_1186_s42234_022_00101_2
crossref_primary_10_1038_s41419_025_07732_8
crossref_primary_10_1186_s12974_024_03038_2
crossref_primary_10_3389_fnagi_2021_682633
crossref_primary_10_3390_ijms23116000
crossref_primary_10_1016_j_jhazmat_2024_136832
crossref_primary_10_1126_scitranslmed_adi7828
crossref_primary_10_1016_j_prerep_2024_100015
crossref_primary_10_1186_s12974_024_03136_1
crossref_primary_10_1016_j_exer_2025_110235
crossref_primary_10_1016_j_nbd_2022_105915
crossref_primary_10_2147_JIR_S505433
crossref_primary_10_1093_nar_gkad131
crossref_primary_10_3390_cells13020188
crossref_primary_10_1007_s12264_022_00950_6
crossref_primary_10_1007_s12640_021_00403_4
crossref_primary_10_1002_advs_202401670
crossref_primary_10_1186_s42269_023_01083_0
crossref_primary_10_1016_j_clp_2024_04_012
crossref_primary_10_3390_ijms25010027
crossref_primary_10_1016_j_mcn_2023_103848
crossref_primary_10_1073_pnas_2110998118
crossref_primary_10_3389_fphar_2022_925568
crossref_primary_10_1097_j_pain_0000000000002986
crossref_primary_10_1111_jnc_70013
crossref_primary_10_3389_fimmu_2021_676621
crossref_primary_10_3389_fphar_2024_1485919
crossref_primary_10_1007_s11064_025_04336_8
crossref_primary_10_4103_1673_5374_350210
crossref_primary_10_3389_fbioe_2023_1261255
crossref_primary_10_3389_fnins_2024_1287228
crossref_primary_10_3390_ijms23116145
crossref_primary_10_3389_fncel_2024_1504555
crossref_primary_10_1002_adfm_202102912
crossref_primary_10_1002_advs_202504406
crossref_primary_10_3389_fnagi_2025_1563142
crossref_primary_10_3390_brainsci14060558
crossref_primary_10_1016_j_pneurobio_2025_102798
crossref_primary_10_1093_jnen_nlaf042
crossref_primary_10_1111_imr_13121
crossref_primary_10_3390_life13112203
crossref_primary_10_1186_s10020_025_01328_w
crossref_primary_10_3390_cancers13174267
crossref_primary_10_1016_j_arr_2024_102618
crossref_primary_10_3389_fphar_2021_720249
crossref_primary_10_1080_13880209_2022_2074057
crossref_primary_10_3390_jpm11030192
crossref_primary_10_1038_s41467_025_60747_9
crossref_primary_10_1016_j_jep_2025_120234
crossref_primary_10_1007_s13205_025_04455_7
crossref_primary_10_3389_fnmol_2025_1621070
crossref_primary_10_1007_s10787_023_01424_5
crossref_primary_10_3390_biom11091361
crossref_primary_10_3892_ijmm_2025_5577
crossref_primary_10_1016_j_conb_2024_102940
crossref_primary_10_1016_j_bbih_2025_100948
crossref_primary_10_2174_0113816128319149240812103715
crossref_primary_10_3390_jcm13144258
crossref_primary_10_3390_ijms24032000
crossref_primary_10_1093_infdis_jiaf034
crossref_primary_10_1098_rsob_200396
crossref_primary_10_1186_s12868_025_00939_7
crossref_primary_10_3390_cells14090637
crossref_primary_10_1016_j_bbi_2024_06_008
crossref_primary_10_3389_fnins_2023_1217451
crossref_primary_10_3390_cimb47010008
crossref_primary_10_1126_scisignal_adq6422
crossref_primary_10_1016_j_ibneur_2025_03_014
crossref_primary_10_1007_s12012_022_09730_0
crossref_primary_10_1002_glia_24385
crossref_primary_10_3389_fncel_2021_805755
crossref_primary_10_3390_cells13020148
crossref_primary_10_3389_fnagi_2022_920861
crossref_primary_10_3389_fimmu_2022_841290
crossref_primary_10_1007_s00204_022_03397_w
crossref_primary_10_1016_j_pneurobio_2024_102588
crossref_primary_10_3390_bioengineering10030349
crossref_primary_10_3390_cells13060474
crossref_primary_10_1016_j_neuropharm_2023_109571
crossref_primary_10_4274_balkanmedj_galenos_2022_2022_7_100
crossref_primary_10_3390_molecules30153158
crossref_primary_10_1016_j_coi_2021_05_001
crossref_primary_10_1111_jnc_70164
crossref_primary_10_3390_ijms221910254
crossref_primary_10_1016_j_tins_2023_01_005
crossref_primary_10_1038_s41577_024_01104_7
crossref_primary_10_3390_molecules29174159
crossref_primary_10_1146_annurev_neuro_112723_035356
crossref_primary_10_1016_j_biopha_2025_118346
crossref_primary_10_3390_ijms22052256
crossref_primary_10_3928_02793695_20230417_01
crossref_primary_10_3389_fnins_2023_1157652
crossref_primary_10_1016_j_biopha_2022_114026
crossref_primary_10_1097_WNR_0000000000001900
crossref_primary_10_1038_s41420_024_01987_4
crossref_primary_10_1016_j_bbi_2024_09_016
crossref_primary_10_3390_jpm13050853
crossref_primary_10_3389_fnins_2025_1602149
crossref_primary_10_3390_ijms25115754
crossref_primary_10_3390_ijms23105404
crossref_primary_10_1016_j_cej_2023_146190
crossref_primary_10_1016_j_psyneuen_2024_107245
crossref_primary_10_3390_cells13211791
crossref_primary_10_3390_cells12182258
crossref_primary_10_3390_toxins17030144
crossref_primary_10_1002_glia_23946
crossref_primary_10_1186_s12974_022_02428_8
crossref_primary_10_1016_j_jconrel_2024_11_074
crossref_primary_10_1002_adhm_202402960
crossref_primary_10_4081_ejh_2022_3428
crossref_primary_10_1016_j_neuron_2021_04_009
crossref_primary_10_1186_s12974_023_02884_w
crossref_primary_10_1038_s41420_023_01633_5
crossref_primary_10_1186_s12974_021_02186_z
crossref_primary_10_3390_v13061078
crossref_primary_10_1016_j_pnpbp_2025_111504
crossref_primary_10_3390_ijms252413614
crossref_primary_10_1016_j_neuroimage_2025_121386
crossref_primary_10_1111_jcmm_18214
crossref_primary_10_1186_s12977_023_00616_9
crossref_primary_10_1007_s12640_025_00730_w
crossref_primary_10_1155_2022_3323201
crossref_primary_10_1134_S0026893324060086
crossref_primary_10_3389_fncel_2021_745178
crossref_primary_10_3389_fnut_2023_1191903
crossref_primary_10_1038_s41467_024_50466_y
crossref_primary_10_1186_s12974_022_02657_x
crossref_primary_10_1186_s13041_021_00868_6
crossref_primary_10_2174_1871524922666220929153215
crossref_primary_10_3390_cimb46050263
crossref_primary_10_3390_ijms26052032
crossref_primary_10_3390_ijms23084275
crossref_primary_10_1016_j_arr_2022_101775
crossref_primary_10_3389_fendo_2024_1393253
crossref_primary_10_1186_s12974_025_03438_y
crossref_primary_10_3389_fncel_2023_1205261
crossref_primary_10_4103_NRR_NRR_D_23_01690
crossref_primary_10_1002_glia_70067
crossref_primary_10_3390_biomedicines10051206
crossref_primary_10_1007_s11064_025_04530_8
crossref_primary_10_1016_j_biopha_2023_114581
crossref_primary_10_3390_biom13010012
crossref_primary_10_3390_biomedicines9050524
crossref_primary_10_3389_fncel_2021_725693
crossref_primary_10_3390_biomedicines12061310
crossref_primary_10_1016_j_neuroscience_2024_05_042
crossref_primary_10_1186_s40001_023_01122_6
crossref_primary_10_3389_fimmu_2021_684344
crossref_primary_10_1111_ejn_16242
crossref_primary_10_1007_s12035_024_04509_6
crossref_primary_10_3389_fnmol_2023_1171101
crossref_primary_10_3389_fphar_2025_1491150
crossref_primary_10_3390_ijms252111626
crossref_primary_10_1016_j_sajb_2025_03_014
crossref_primary_10_3390_ijms23126540
crossref_primary_10_3389_fncel_2024_1491952
crossref_primary_10_1007_s00018_025_05671_3
crossref_primary_10_1016_j_neuroscience_2024_04_004
crossref_primary_10_3390_cells11121885
crossref_primary_10_1111_epi_18126
crossref_primary_10_1016_j_biopha_2024_116806
crossref_primary_10_59717_j_xinn_med_2024_100076
crossref_primary_10_1038_s41573_022_00390_x
crossref_primary_10_1016_j_ajcnut_2023_05_003
crossref_primary_10_1002_bit_28470
crossref_primary_10_1007_s00415_024_12505_y
crossref_primary_10_1016_j_ceca_2023_102838
crossref_primary_10_1016_j_jneuroim_2025_578535
crossref_primary_10_3389_fnins_2025_1598011
crossref_primary_10_1134_S1819712423010117
crossref_primary_10_3390_ijms231911938
crossref_primary_10_3389_fphar_2022_924955
crossref_primary_10_3389_fncel_2023_1233762
crossref_primary_10_1016_j_addr_2024_115219
crossref_primary_10_1186_s40659_023_00463_0
crossref_primary_10_2174_011574888X305349240511125540
crossref_primary_10_1186_s13041_023_00997_0
crossref_primary_10_3389_fnmol_2024_1327472
crossref_primary_10_1016_j_biopha_2025_118157
crossref_primary_10_1038_s41598_022_26628_7
crossref_primary_10_1002_glia_70079
crossref_primary_10_1002_glia_70073
crossref_primary_10_1113_JP284976
crossref_primary_10_1126_science_abi6087
crossref_primary_10_1016_j_bbagen_2023_130506
crossref_primary_10_3390_ijms23063399
crossref_primary_10_1038_s41434_023_00409_x
crossref_primary_10_1038_s43018_024_00865_3
crossref_primary_10_3390_ijms252111638
crossref_primary_10_3390_life12091439
Cites_doi 10.1523/JNEUROSCI.3516-14.2015
10.1126/scitranslmed.aaw8546
10.1038/s41586-018-0119-x
10.1038/nature21029
10.1007/s11064-013-1123-z
10.1038/mp.2011.128
10.1002/glia.20538
10.1007/s00109-018-1709-7
10.1038/ni.2027
10.1007/s00109-018-1719-5
10.1038/nature04193
10.1038/s41593-020-0602-1
10.1126/science.aaa1934
10.1038/s41586-020-1999-0
10.1038/nrn.2018.19
10.1186/s12974-017-0978-3
10.1007/s11302-012-9300-0
10.1038/s41467-018-03940-3
10.1542/peds.2016-2838
10.1016/j.cell.2019.03.036
10.1128/JVI.01901-17
10.1016/j.chom.2015.02.010
10.1038/s41598-018-23323-4
10.1002/glia.21088
10.1016/j.cell.2017.07.023
10.1371/journal.pone.0083049
10.1016/j.neuron.2018.01.021
10.1523/JNEUROSCI.4794-04.2005
10.1038/s41590-017-0021-y
10.1002/(SICI)1098-1136(199705)20:1<79::AID-GLIA8>3.0.CO;2-0
10.1111/j.1460-9568.2007.05563.x
10.1038/nature13161
10.1038/nn.4493
10.1523/JNEUROSCI.1514-09.2009
10.1038/s41598-019-53414-9
10.1523/JNEUROSCI.0137-10.2010
10.1186/s12974-014-0158-7
10.3390/ijms21061983
10.1016/S0140-6736(16)30902-3
10.1038/nature11059
10.1126/science.aat7554
10.1038/ni.1912
10.1038/nature18283
10.1186/s12974-016-0748-7
10.1016/j.cell.2005.08.012
10.1038/s41586-018-0206-z
10.1093/brain/aww113
10.1126/science.aan4665
10.1002/glia.20952
10.1073/pnas.95.10.5795
10.1073/pnas.0910627107
10.1101/cshperspect.a029009
10.1038/s41586-018-0824-5
10.1038/s41593-018-0192-3
10.1016/j.cell.2015.12.001
10.3389/fncel.2015.00278
10.1038/nm.3868
10.1016/S0165-5728(02)00462-9
10.1038/nature12776
10.1016/j.expneurol.2011.06.001
10.1016/j.coi.2016.09.002
10.1523/JNEUROSCI.1709-08.2008
10.1242/jcs.03423
10.1038/s41593-020-0664-0
10.1172/JCI88720
10.1038/nature17623
10.1007/s00281-015-0515-3
10.1038/nri3787
10.1016/j.it.2013.04.006
10.1038/ni.2695
10.1177/1073858402239587
10.1038/nm.4106
10.1038/s41591-019-0695-9
10.4049/jimmunol.179.5.3268
10.1016/j.cell.2016.09.031
10.1007/s00109-019-01856-z
10.1038/s41586-019-1195-2
10.1523/JNEUROSCI.5480-05.2006
10.1111/j.1471-4159.2005.03368.x
10.1016/j.brainres.2014.01.013
10.1371/journal.pone.0017187
10.1186/s12974-020-01776-7
10.1038/s41591-018-0044-4
10.1016/j.neuroscience.2016.05.043
10.1016/0006-8993(95)01177-3
10.1523/JNEUROSCI.1004-06.2006
10.1038/s41586-018-0023-4
10.1016/j.cell.2019.11.016
10.1002/ana.1077
10.1016/j.virusres.2006.03.006
10.1212/NXI.0000000000000359
10.1016/S0140-6736(16)00562-6
10.1126/science.1206936
10.1073/pnas.1615413114
10.1038/s41577-019-0262-0
10.1111/j.1471-4159.2011.07210.x
10.1038/s41598-017-09621-3
10.2353/ajpath.2010.090503
10.1038/ni.3656
10.1038/nature25986
10.1038/s41593-019-0427-y
10.1038/s41586-019-1644-y
10.1007/s00401-013-1183-9
10.1096/fj.08-121434
10.1126/scisignal.aad0612
10.1523/JNEUROSCI.0365-05.2005
10.1523/JNEUROSCI.18-24-10541.1998
10.1038/nature04734
10.1172/JCI33464
10.1016/S1473-3099(15)00134-6
10.1126/sciimmunol.aau8380
10.1097/00001756-200001170-00018
10.1038/s41586-018-0177-0
10.1016/j.neuron.2019.12.014
10.1002/glia.22948
10.1002/glia.21094
10.1523/JNEUROSCI.5599-03.2004
10.1126/science.1222381
10.1084/jem.20041918
10.1038/nm.3681
10.3389/fnmol.2019.00057
10.1126/science.aav7188
10.1016/j.brainresbull.2017.03.003
10.1126/science.aab3103
10.15252/embj.2018100947
10.1126/sciimmunol.aaw2841
10.1038/ni.3422
10.1038/nature24661
10.1016/j.cell.2018.12.012
10.1038/s41467-019-11866-7
10.1016/j.neulet.2017.08.039
10.1038/srep24251
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
2020. Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
– notice: 2020. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7U9
H94
K9.
M7N
NAPCQ
7X8
5PM
DOI 10.1016/j.it.2020.07.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Immunology Abstracts
Virology and AIDS Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
AIDS and Cancer Research Abstracts


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1471-4981
EndPage 819
ExternalDocumentID PMC8284746
32800705
10_1016_j_it_2020_07_007
S1471490620301563
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GroupedDBID ---
--K
--M
-DZ
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29Q
2KS
3O-
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8FE
8FH
8P~
9M8
AAAJQ
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAMRU
AAOAW
AAQFI
AAQXK
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABEFU
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGEKW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKEYQ
BKOJK
BLXMC
BPHCQ
BVXVI
CJTIS
CS3
D0L
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IH2
IHE
J1W
KOM
L7B
LK8
LUGTX
M41
MO0
MVM
N9A
O-L
O9-
O9~
OAUVE
OK0
OMK
OZT
P-8
P-9
PC.
PQQKQ
PROAC
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSI
SSZ
T5K
WOW
X7M
XJT
XPP
Y6R
Z5R
ZCG
ZGI
~G-
~HD
AACTN
AFCTW
BNPGV
RIG
SSH
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7U9
H94
K9.
M7N
NAPCQ
7X8
5PM
ID FETCH-LOGICAL-c524t-f1a99793f327a76a9f9b969881d9b0cac2d28bbcde0ea27d12fa1c7a5ef63fae3
ISICitedReferencesCount 443
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000566832500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-4906
1471-4981
IngestDate Tue Sep 30 16:42:58 EDT 2025
Sun Nov 09 12:22:27 EST 2025
Tue Oct 07 06:38:09 EDT 2025
Thu Apr 03 06:56:12 EDT 2025
Sat Nov 29 07:03:51 EST 2025
Tue Nov 18 22:11:29 EST 2025
Sun Apr 06 06:53:01 EDT 2025
Tue Oct 14 19:24:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords inflammation
astrocyte subsets
reactive astrocytes
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c524t-f1a99793f327a76a9f9b969881d9b0cac2d28bbcde0ea27d12fa1c7a5ef63fae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8284746
PMID 32800705
PQID 2437835037
PQPubID 2031073
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8284746
proquest_miscellaneous_2434757766
proquest_journals_2437835037
pubmed_primary_32800705
crossref_citationtrail_10_1016_j_it_2020_07_007
crossref_primary_10_1016_j_it_2020_07_007
elsevier_sciencedirect_doi_10_1016_j_it_2020_07_007
elsevier_clinicalkey_doi_10_1016_j_it_2020_07_007
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Trends in immunology
PublicationTitleAlternate Trends Immunol
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Peng (bb0075) 2019; 97
Sofroniew (bb0055) 2014; 7
International Multiple Sclerosis Genetics Consortium (bb0455) 2019; 365
Wheeler (bb0495) 2020; 578
Roy Choudhury (bb0100) 2014; 1551
Klein (bb0155) 2017; 18
Mundt (bb0255) 2019; 4
Chihara (bb0340) 2018; 558
Lindqvist (bb0195) 2016; 13
Farmer (bb0050) 2016; 351
Waisman, Johann (bb0265) 2018; 96
Brambilla (bb0090) 2005; 202
Voskuhl (bb0225) 2009; 29
Bayraktar (bb0045) 2020; 23
Mills (bb0385) 2018; 556
Rothhammer, Quintana (bb0355) 2015; 37
Dodd (bb0415) 2017; 551
Ulland (bb0390) 2017; 170
Song, Dityatev (bb0655) 2018; 136
Vasek (bb0540) 2016; 534
Mascanfroni (bb0330) 2013; 14
John (bb0580) 2003; 9
Magnus (bb0295) 2005; 25
Simmons (bb0565) 2013; 34
Rothhammer (bb0430) 2018; 557
Busquets (bb0395) 2019; 97
Chakrabarti (bb0190) 2015; 17
Lanjakornsiripan (bb0035) 2018; 9
Mathys (bb0485) 2019; 570
Kato (bb0170) 2006; 441
Fernandez (bb0115) 2012; 17
Ayata (bb0500) 2018; 21
McNab (bb0175) 2015; 15
Schachtrup (bb0575) 2010; 30
John Lin (bb0030) 2017; 20
Vagaska (bb0270) 2016; 6
Anderson (bb0230) 2016; 532
Chu (bb0425) 2019; 574
Jeffries, Marriott (bb0645) 2017; 658
Chao (bb0405) 2019; 179
Zeinstra (bb0300) 2003; 135
Allen (bb0005) 2012; 486
Tsai (bb0025) 2012; 337
Garber (bb0530) 2018; 19
Mayo (bb0245) 2014; 20
Codarri (bb0510) 2011; 12
Kornberg (bb0380) 2018; 360
Burbach (bb0650) 2004; 24
Hamo (bb0290) 2007; 55
Zhou (bb0490) 2020; 26
Orellana (bb0665) 2011; 118
Rothhammer (bb0440) 2018; 8
Ceyzeriat (bb0085) 2016; 330
Rothhammer, Quintana (bb0460) 2016; 43
Hwang, Bergmann (bb0185) 2018; 92
Ben Haim (bb0125) 2015; 35
Apetoh (bb0345) 2010; 11
Baecher-Allan (bb0210) 2018; 97
Figueiredo (bb0555) 2019; 10
Franke (bb0585) 2012; 8
Ito (bb0360) 2019; 565
Rothhammer (bb0435) 2017; 4
Meylan (bb0160) 2005; 437
Chung (bb0015) 2013; 504
Giraud (bb0620) 2010; 107
Nahirnyj (bb0590) 2013; 8
Garber (bb0535) 2019; 22
Mayo (bb0350) 2016; 139
Zeinstra (bb0275) 2000; 11
Wendeln (bb0505) 2018; 556
Ramos-Garcia (bb0450) 2020; 21
Toft-Hansen (bb0220) 2011; 59
Alvarez (bb0010) 2011; 334
Basso (bb0570) 2008; 118
Magistretti, Allaman (bb0410) 2018; 19
Geiger (bb0375) 2016; 167
Hardin-Pouzet (bb0235) 1997; 20
Molofsky (bb0020) 2014; 509
Jing (bb0660) 2007; 120
Smith (bb0475) 2020; 105
França (bb0545) 2016; 388
Quintana (bb0260) 2019; 4
Constantinescu (bb0310) 2005; 95
Prajeeth (bb0315) 2017; 14
Du (bb0370) 2018; 558
Satoh (bb0305) 1995; 704
Zeisel (bb0040) 2015; 347
Daniels (bb0180) 2017; 127
Wang (bb0150) 2019; 38
Diaz-Castro (bb0480) 2019; 11
Rabchevsky (bb0605) 1998; 18
Geyer (bb0515) 2019; 12
Herrmann (bb0080) 2008; 28
Yeste (bb0140) 2016; 9
Giovannoni (bb0205) 2020; 23
Brahmachari (bb0595) 2006; 26
Wheeler, Quintana (bb0215) 2019; 9
Crosio (bb0105) 2011; 6
Rothhammer (bb0400) 2017; 114
Hyvarinen (bb0365) 2019; 9
Cao-Lormeau (bb0550) 2016; 387
Liu (bb0600) 2006; 26
Norris (bb0110) 2005; 25
Yamada (bb0200) 2016; 17
Colonna, Brioschi (bb0065) 2020; 20
Chen (bb0420) 2019; 177
Werner (bb0240) 2001; 50
Abraham, Manjunath (bb0285) 2006; 119
Rothhammer (bb0135) 2016; 22
Akama (bb0625) 1998; 95
Barreto (bb0615) 2007; 25
Butchi (bb0640) 2010; 58
Priego (bb0130) 2018; 24
Senecal (bb0325) 2016; 64
Wheeler (bb0465) 2019; 176
Furman, Norris (bb0095) 2014; 11
Ben Haim (bb0120) 2015; 9
Seth (bb0165) 2005; 122
Graves (bb0470) 2017; 139
Sheng (bb0670) 2013; 38
Rostami (bb0280) 2020; 17
Mascanfroni (bb0335) 2015; 21
Gorina (bb0630) 2011; 59
Fitzgerald (bb0320) 2007; 179
Labombarda (bb0610) 2011; 231
Osso, Chan (bb0560) 2015; 163
Juricek (bb0445) 2017; 7
Patel (bb0525) 2015; 15
Wang (bb0145) 2013; 126
Garcia Samartino (bb0520) 2010; 176
Liddelow (bb0060) 2017; 541
De Miranda (bb0635) 2009; 23
Jordao (bb0250) 2019; 363
Du (10.1016/j.it.2020.07.007_bb0370) 2018; 558
Waisman (10.1016/j.it.2020.07.007_bb0265) 2018; 96
Chen (10.1016/j.it.2020.07.007_bb0420) 2019; 177
Butchi (10.1016/j.it.2020.07.007_bb0640) 2010; 58
Giraud (10.1016/j.it.2020.07.007_bb0620) 2010; 107
Kornberg (10.1016/j.it.2020.07.007_bb0380) 2018; 360
Cao-Lormeau (10.1016/j.it.2020.07.007_bb0550) 2016; 387
Akama (10.1016/j.it.2020.07.007_bb0625) 1998; 95
Vagaska (10.1016/j.it.2020.07.007_bb0270) 2016; 6
Garcia Samartino (10.1016/j.it.2020.07.007_bb0520) 2010; 176
Farmer (10.1016/j.it.2020.07.007_bb0050) 2016; 351
Chu (10.1016/j.it.2020.07.007_bb0425) 2019; 574
Sheng (10.1016/j.it.2020.07.007_bb0670) 2013; 38
Voskuhl (10.1016/j.it.2020.07.007_bb0225) 2009; 29
John Lin (10.1016/j.it.2020.07.007_bb0030) 2017; 20
Chihara (10.1016/j.it.2020.07.007_bb0340) 2018; 558
Toft-Hansen (10.1016/j.it.2020.07.007_bb0220) 2011; 59
França (10.1016/j.it.2020.07.007_bb0545) 2016; 388
Graves (10.1016/j.it.2020.07.007_bb0470) 2017; 139
Ito (10.1016/j.it.2020.07.007_bb0360) 2019; 565
Lindqvist (10.1016/j.it.2020.07.007_bb0195) 2016; 13
Kato (10.1016/j.it.2020.07.007_bb0170) 2006; 441
Ulland (10.1016/j.it.2020.07.007_bb0390) 2017; 170
Zhou (10.1016/j.it.2020.07.007_bb0490) 2020; 26
Norris (10.1016/j.it.2020.07.007_bb0110) 2005; 25
Jeffries (10.1016/j.it.2020.07.007_bb0645) 2017; 658
Tsai (10.1016/j.it.2020.07.007_bb0025) 2012; 337
Senecal (10.1016/j.it.2020.07.007_bb0325) 2016; 64
Mills (10.1016/j.it.2020.07.007_bb0385) 2018; 556
Wang (10.1016/j.it.2020.07.007_bb0150) 2019; 38
Sofroniew (10.1016/j.it.2020.07.007_bb0055) 2014; 7
Furman (10.1016/j.it.2020.07.007_bb0095) 2014; 11
Roy Choudhury (10.1016/j.it.2020.07.007_bb0100) 2014; 1551
Ben Haim (10.1016/j.it.2020.07.007_bb0125) 2015; 35
Ayata (10.1016/j.it.2020.07.007_bb0500) 2018; 21
Hyvarinen (10.1016/j.it.2020.07.007_bb0365) 2019; 9
Jing (10.1016/j.it.2020.07.007_bb0660) 2007; 120
Magistretti (10.1016/j.it.2020.07.007_bb0410) 2018; 19
Klein (10.1016/j.it.2020.07.007_bb0155) 2017; 18
Anderson (10.1016/j.it.2020.07.007_bb0230) 2016; 532
Crosio (10.1016/j.it.2020.07.007_bb0105) 2011; 6
Garber (10.1016/j.it.2020.07.007_bb0535) 2019; 22
Liu (10.1016/j.it.2020.07.007_bb0600) 2006; 26
Lanjakornsiripan (10.1016/j.it.2020.07.007_bb0035) 2018; 9
Orellana (10.1016/j.it.2020.07.007_bb0665) 2011; 118
Abraham (10.1016/j.it.2020.07.007_bb0285) 2006; 119
Wheeler (10.1016/j.it.2020.07.007_bb0495) 2020; 578
Diaz-Castro (10.1016/j.it.2020.07.007_bb0480) 2019; 11
Rothhammer (10.1016/j.it.2020.07.007_bb0430) 2018; 557
Hwang (10.1016/j.it.2020.07.007_bb0185) 2018; 92
Mascanfroni (10.1016/j.it.2020.07.007_bb0330) 2013; 14
Dodd (10.1016/j.it.2020.07.007_bb0415) 2017; 551
Mayo (10.1016/j.it.2020.07.007_bb0245) 2014; 20
Chakrabarti (10.1016/j.it.2020.07.007_bb0190) 2015; 17
Wheeler (10.1016/j.it.2020.07.007_bb0215) 2019; 9
Rabchevsky (10.1016/j.it.2020.07.007_bb0605) 1998; 18
Ben Haim (10.1016/j.it.2020.07.007_bb0120) 2015; 9
Fernandez (10.1016/j.it.2020.07.007_bb0115) 2012; 17
Allen (10.1016/j.it.2020.07.007_bb0005) 2012; 486
Chung (10.1016/j.it.2020.07.007_bb0015) 2013; 504
Garber (10.1016/j.it.2020.07.007_bb0530) 2018; 19
Rothhammer (10.1016/j.it.2020.07.007_bb0355) 2015; 37
Peng (10.1016/j.it.2020.07.007_bb0075) 2019; 97
Daniels (10.1016/j.it.2020.07.007_bb0180) 2017; 127
Molofsky (10.1016/j.it.2020.07.007_bb0020) 2014; 509
Patel (10.1016/j.it.2020.07.007_bb0525) 2015; 15
Basso (10.1016/j.it.2020.07.007_bb0570) 2008; 118
Seth (10.1016/j.it.2020.07.007_bb0165) 2005; 122
Smith (10.1016/j.it.2020.07.007_bb0475) 2020; 105
Rothhammer (10.1016/j.it.2020.07.007_bb0135) 2016; 22
McNab (10.1016/j.it.2020.07.007_bb0175) 2015; 15
Apetoh (10.1016/j.it.2020.07.007_bb0345) 2010; 11
Alvarez (10.1016/j.it.2020.07.007_bb0010) 2011; 334
Werner (10.1016/j.it.2020.07.007_bb0240) 2001; 50
Song (10.1016/j.it.2020.07.007_bb0655) 2018; 136
Yeste (10.1016/j.it.2020.07.007_bb0140) 2016; 9
Liddelow (10.1016/j.it.2020.07.007_bb0060) 2017; 541
Wang (10.1016/j.it.2020.07.007_bb0145) 2013; 126
Mundt (10.1016/j.it.2020.07.007_bb0255) 2019; 4
Rothhammer (10.1016/j.it.2020.07.007_bb0400) 2017; 114
Figueiredo (10.1016/j.it.2020.07.007_bb0555) 2019; 10
Codarri (10.1016/j.it.2020.07.007_bb0510) 2011; 12
John (10.1016/j.it.2020.07.007_bb0580) 2003; 9
Satoh (10.1016/j.it.2020.07.007_bb0305) 1995; 704
Rostami (10.1016/j.it.2020.07.007_bb0280) 2020; 17
Fitzgerald (10.1016/j.it.2020.07.007_bb0320) 2007; 179
Schachtrup (10.1016/j.it.2020.07.007_bb0575) 2010; 30
Magnus (10.1016/j.it.2020.07.007_bb0295) 2005; 25
Ramos-Garcia (10.1016/j.it.2020.07.007_bb0450) 2020; 21
Gorina (10.1016/j.it.2020.07.007_bb0630) 2011; 59
Colonna (10.1016/j.it.2020.07.007_bb0065) 2020; 20
Jordao (10.1016/j.it.2020.07.007_bb0250) 2019; 363
Rothhammer (10.1016/j.it.2020.07.007_bb0460) 2016; 43
Mayo (10.1016/j.it.2020.07.007_bb0350) 2016; 139
Nahirnyj (10.1016/j.it.2020.07.007_bb0590) 2013; 8
Simmons (10.1016/j.it.2020.07.007_bb0565) 2013; 34
Priego (10.1016/j.it.2020.07.007_bb0130) 2018; 24
Barreto (10.1016/j.it.2020.07.007_bb0615) 2007; 25
Hardin-Pouzet (10.1016/j.it.2020.07.007_bb0235) 1997; 20
Osso (10.1016/j.it.2020.07.007_bb0560) 2015; 163
Giovannoni (10.1016/j.it.2020.07.007_bb0205) 2020; 23
Wheeler (10.1016/j.it.2020.07.007_bb0465) 2019; 176
Constantinescu (10.1016/j.it.2020.07.007_bb0310) 2005; 95
Mathys (10.1016/j.it.2020.07.007_bb0485) 2019; 570
Brahmachari (10.1016/j.it.2020.07.007_bb0595) 2006; 26
Zeinstra (10.1016/j.it.2020.07.007_bb0275) 2000; 11
International Multiple Sclerosis Genetics Consortium (10.1016/j.it.2020.07.007_bb0455) 2019; 365
Brambilla (10.1016/j.it.2020.07.007_bb0090) 2005; 202
Bayraktar (10.1016/j.it.2020.07.007_bb0045) 2020; 23
Burbach (10.1016/j.it.2020.07.007_bb0650) 2004; 24
Busquets (10.1016/j.it.2020.07.007_bb0395) 2019; 97
Chao (10.1016/j.it.2020.07.007_bb0405) 2019; 179
Wendeln (10.1016/j.it.2020.07.007_bb0505) 2018; 556
Mascanfroni (10.1016/j.it.2020.07.007_bb0335) 2015; 21
Zeisel (10.1016/j.it.2020.07.007_bb0040) 2015; 347
Geiger (10.1016/j.it.2020.07.007_bb0375) 2016; 167
De Miranda (10.1016/j.it.2020.07.007_bb0635) 2009; 23
Herrmann (10.1016/j.it.2020.07.007_bb0080) 2008; 28
Zeinstra (10.1016/j.it.2020.07.007_bb0300) 2003; 135
Hamo (10.1016/j.it.2020.07.007_bb0290) 2007; 55
Meylan (10.1016/j.it.2020.07.007_bb0160) 2005; 437
Ceyzeriat (10.1016/j.it.2020.07.007_bb0085) 2016; 330
Vasek (10.1016/j.it.2020.07.007_bb0540) 2016; 534
Rothhammer (10.1016/j.it.2020.07.007_bb0440) 2018; 8
Quintana (10.1016/j.it.2020.07.007_bb0260) 2019; 4
Prajeeth (10.1016/j.it.2020.07.007_bb0315) 2017; 14
Juricek (10.1016/j.it.2020.07.007_bb0445) 2017; 7
Labombarda (10.1016/j.it.2020.07.007_bb0610) 2011; 231
Franke (10.1016/j.it.2020.07.007_bb0585) 2012; 8
Rothhammer (10.1016/j.it.2020.07.007_bb0435) 2017; 4
Geyer (10.1016/j.it.2020.07.007_bb0515) 2019; 12
Yamada (10.1016/j.it.2020.07.007_bb0200) 2016; 17
Baecher-Allan (10.1016/j.it.2020.07.007_bb0210) 2018; 97
References_xml – volume: 55
  start-page: 1169
  year: 2007
  end-page: 1177
  ident: bb0290
  article-title: Distinct regulation of MHC molecule expression on astrocytes and microglia during viral encephalomyelitis
  publication-title: Glia
– volume: 556
  start-page: 113
  year: 2018
  end-page: 117
  ident: bb0385
  article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1
  publication-title: Nature
– volume: 20
  start-page: 79
  year: 1997
  end-page: 85
  ident: bb0235
  article-title: Glutamate metabolism is down-regulated in astrocytes during experimental allergic encephalomyelitis
  publication-title: Glia
– volume: 15
  start-page: 951
  year: 2015
  end-page: 959
  ident: bb0525
  article-title: Long-term sequelae of West Nile virus-related illness: a systematic review
  publication-title: Lancet Infect. Dis.
– volume: 17
  start-page: 705
  year: 2012
  end-page: 718
  ident: bb0115
  article-title: Regulation of the phosphatase calcineurin by insulin-like growth factor I unveils a key role of astrocytes in Alzheimer’s pathology
  publication-title: Mol. Psychiatry
– volume: 95
  start-page: 5795
  year: 1998
  end-page: 5800
  ident: bb0625
  article-title: Amyloid beta-peptide stimulates nitric oxide production in astrocytes through an NFκB-dependent mechanism
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 127
  start-page: 843
  year: 2017
  end-page: 856
  ident: bb0180
  article-title: Regional astrocyte IFN signaling restricts pathogenesis during neurotropic viral infection
  publication-title: J. Clin. Invest.
– volume: 6
  start-page: 24251
  year: 2016
  ident: bb0270
  article-title: MHC-class-II are expressed in a subpopulation of human neural stem cells
  publication-title: Sci. Rep.
– volume: 38
  year: 2019
  ident: bb0150
  article-title: OTUB1 inhibits CNS autoimmunity by preventing IFN-γ-induced hyperactivation of astrocytes
  publication-title: EMBO J.
– volume: 22
  start-page: 586
  year: 2016
  end-page: 597
  ident: bb0135
  article-title: Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor
  publication-title: Nat. Med.
– volume: 135
  start-page: 166
  year: 2003
  end-page: 171
  ident: bb0300
  article-title: Reactive astrocytes in chronic active lesions of multiple sclerosis express co-stimulatory molecules B7-1 and B7-2
  publication-title: J. Neuroimmunol.
– volume: 558
  start-page: 141
  year: 2018
  end-page: 145
  ident: bb0370
  article-title: Hippo/Mst signalling couples metabolic state and immune function of CD8α
  publication-title: Nature
– volume: 231
  start-page: 135
  year: 2011
  end-page: 146
  ident: bb0610
  article-title: Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury
  publication-title: Exp. Neurol.
– volume: 363
  year: 2019
  ident: bb0250
  article-title: Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation
  publication-title: Science
– volume: 9
  start-page: 10
  year: 2003
  end-page: 22
  ident: bb0580
  article-title: Cytokines: powerful regulators of glial cell activation
  publication-title: Neuroscientist
– volume: 167
  start-page: 829
  year: 2016
  end-page: 842
  ident: bb0375
  article-title: L-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity
  publication-title: Cell
– volume: 20
  start-page: 81
  year: 2020
  end-page: 82
  ident: bb0065
  article-title: Neuroinflammation and neurodegeneration in human brain at single-cell resolution
  publication-title: Nat. Rev. Immunol.
– volume: 334
  start-page: 1727
  year: 2011
  end-page: 1731
  ident: bb0010
  article-title: The Hedgehog pathway promotes blood–brain barrier integrity and CNS immune quiescence
  publication-title: Science
– volume: 28
  start-page: 7231
  year: 2008
  end-page: 7243
  ident: bb0080
  article-title: STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury
  publication-title: J. Neurosci.
– volume: 8
  start-page: 4970
  year: 2018
  ident: bb0440
  article-title: Detection of aryl hydrocarbon receptor agonists in human samples
  publication-title: Sci. Rep.
– volume: 126
  start-page: 711
  year: 2013
  end-page: 724
  ident: bb0145
  article-title: Astrocytic A20 ameliorates experimental autoimmune encephalomyelitis by inhibiting NF-κB- and STAT1-dependent chemokine production in astrocytes
  publication-title: Acta Neuropathol.
– volume: 541
  start-page: 481
  year: 2017
  end-page: 487
  ident: bb0060
  article-title: Neurotoxic reactive astrocytes are induced by activated microglia
  publication-title: Nature
– volume: 38
  start-page: 2148
  year: 2013
  end-page: 2159
  ident: bb0670
  article-title: Reactive oxygen species from human astrocytes induced functional impairment and oxidative damage
  publication-title: Neurochem. Res.
– volume: 21
  start-page: 1983
  year: 2020
  ident: bb0450
  article-title: Aryl hydrocarbon receptor in post-mortem hippocampus and in serum from young, elder, and Alzheimer’s patients
  publication-title: Int. J. Mol. Sci.
– volume: 17
  start-page: 466
  year: 2015
  end-page: 477
  ident: bb0190
  article-title: RNase L activates the NLRP3 inflammasome during viral infections
  publication-title: Cell Host Microbe
– volume: 202
  start-page: 145
  year: 2005
  end-page: 156
  ident: bb0090
  article-title: Inhibition of astroglial nuclear factor κB reduces inflammation and improves functional recovery after spinal cord injury
  publication-title: J. Exp. Med.
– volume: 97
  start-page: 742
  year: 2018
  end-page: 768
  ident: bb0210
  article-title: Multiple sclerosis: mechanisms and immunotherapy
  publication-title: Neuron
– volume: 704
  start-page: 92
  year: 1995
  end-page: 96
  ident: bb0305
  article-title: T-cell costimulatory molecules B7-1 (CD80) and B7-2 (CD86) are expressed in human microglia but not in astrocytes in culture
  publication-title: Brain Res.
– volume: 170
  start-page: 649
  year: 2017
  end-page: 663
  ident: bb0390
  article-title: TREM2 maintains microglial metabolic fitness in Alzheimer’s disease
  publication-title: Cell
– volume: 177
  start-page: 1217
  year: 2019
  end-page: 1231
  ident: bb0420
  article-title: A forward chemical genetic screen reveals gut microbiota metabolites that modulate host physiology
  publication-title: Cell
– volume: 330
  start-page: 205
  year: 2016
  end-page: 218
  ident: bb0085
  article-title: The complex STATes of astrocyte reactivity: how are they controlled by the JAK–STAT3 pathway?
  publication-title: Neuroscience
– volume: 97
  start-page: 1723
  year: 2019
  end-page: 1733
  ident: bb0395
  article-title: c-Jun N-terminal Kinase 1 ablation protects against metabolic-induced hippocampal cognitive impairments
  publication-title: J. Mol. Med. (Berl.)
– volume: 23
  start-page: 500
  year: 2020
  end-page: 509
  ident: bb0045
  article-title: Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell
  publication-title: Nat. Neurosci.
– volume: 1551
  start-page: 45
  year: 2014
  end-page: 58
  ident: bb0100
  article-title: Involvement of p38 MAPK in reactive astrogliosis induced by ischemic stroke
  publication-title: Brain Res.
– volume: 21
  start-page: 1049
  year: 2018
  end-page: 1060
  ident: bb0500
  article-title: Epigenetic regulation of brain region-specific microglia clearance activity
  publication-title: Nat. Neurosci.
– volume: 9
  start-page: 1623
  year: 2018
  ident: bb0035
  article-title: Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers
  publication-title: Nat. Commun.
– volume: 351
  start-page: 849
  year: 2016
  end-page: 854
  ident: bb0050
  article-title: Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling
  publication-title: Science
– volume: 12
  start-page: 560
  year: 2011
  end-page: 567
  ident: bb0510
  article-title: RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation
  publication-title: Nat. Immunol.
– volume: 59
  start-page: 166
  year: 2011
  end-page: 176
  ident: bb0220
  article-title: Inhibition of reactive astrocytosis in established experimental autoimmune encephalomyelitis favors infiltration by myeloid cells over T cells and enhances severity of disease
  publication-title: Glia
– volume: 9
  start-page: 16944
  year: 2019
  ident: bb0365
  article-title: Co-stimulation with IL-1β and TNF-α induces an inflammatory reactive astrocyte phenotype with neurosupportive characteristics in a human pluripotent stem cell model system
  publication-title: Sci. Rep.
– volume: 23
  start-page: 1064
  year: 2009
  end-page: 1071
  ident: bb0635
  article-title: Astrocytes recognize intracellular polyinosinic-polycytidylic acid via MDA-5
  publication-title: FASEB J.
– volume: 4
  year: 2019
  ident: bb0260
  article-title: Myeloid cells in the central nervous system: so similar, yet so different
  publication-title: Sci. Immunol.
– volume: 565
  start-page: 246
  year: 2019
  end-page: 250
  ident: bb0360
  article-title: Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery
  publication-title: Nature
– volume: 12
  start-page: 57
  year: 2019
  ident: bb0515
  article-title: Immunity against bacterial infection of the central nervous system: an astrocyte perspective
  publication-title: Front. Mol. Neurosci.
– volume: 23
  start-page: 939
  year: 2020
  end-page: 951
  ident: bb0205
  article-title: AHR is a Zika virus host factor and a candidate target for antiviral therapy
  publication-title: Nat. Neurosci.
– volume: 13
  start-page: 277
  year: 2016
  ident: bb0195
  article-title: Fast type I interferon response protects astrocytes from flavivirus infection and virus-induced cytopathic effects
  publication-title: J. Neuroinflammation
– volume: 97
  start-page: 189
  year: 2019
  end-page: 199
  ident: bb0075
  article-title: Effect of DJ-1 on the neuroprotection of astrocytes subjected to cerebral ischemia/reperfusion injury
  publication-title: J. Mol. Med. (Berl.)
– volume: 509
  start-page: 189
  year: 2014
  end-page: 194
  ident: bb0020
  article-title: Astrocyte-encoded positional cues maintain sensorimotor circuit integrity
  publication-title: Nature
– volume: 534
  start-page: 538
  year: 2016
  end-page: 543
  ident: bb0540
  article-title: A complement-microglial axis drives synapse loss during virus-induced memory impairment
  publication-title: Nature
– volume: 14
  start-page: 1054
  year: 2013
  end-page: 1063
  ident: bb0330
  article-title: IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39
  publication-title: Nat. Immunol.
– volume: 35
  start-page: 2817
  year: 2015
  end-page: 2829
  ident: bb0125
  article-title: The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases
  publication-title: J. Neurosci.
– volume: 504
  start-page: 394
  year: 2013
  end-page: 400
  ident: bb0015
  article-title: Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways
  publication-title: Nature
– volume: 20
  start-page: 396
  year: 2017
  end-page: 405
  ident: bb0030
  article-title: Identification of diverse astrocyte populations and their malignant analogs
  publication-title: Nat. Neurosci.
– volume: 4
  year: 2019
  ident: bb0255
  article-title: Conventional DCs sample and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to initiate neuroinflammation
  publication-title: Sci. Immunol.
– volume: 14
  start-page: 204
  year: 2017
  ident: bb0315
  article-title: Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties
  publication-title: J. Neuroinflammation
– volume: 570
  start-page: 332
  year: 2019
  end-page: 337
  ident: bb0485
  article-title: Single-cell transcriptomic analysis of Alzheimer’s disease
  publication-title: Nature
– volume: 15
  start-page: 87
  year: 2015
  end-page: 103
  ident: bb0175
  article-title: Type I interferons in infectious disease
  publication-title: Nat. Rev. Immunol.
– volume: 92
  start-page: e01901
  year: 2018
  end-page: e01917
  ident: bb0185
  article-title: Alpha/beta interferon (IFN-α/β) signaling in astrocytes mediates protection against viral encephalomyelitis and regulates IFN-γ-dependent responses
  publication-title: J. Virol.
– volume: 20
  start-page: 1147
  year: 2014
  end-page: 1156
  ident: bb0245
  article-title: Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation
  publication-title: Nat. Med.
– volume: 387
  start-page: 1531
  year: 2016
  end-page: 1539
  ident: bb0550
  article-title: Guillain–Barré syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study
  publication-title: Lancet
– volume: 557
  start-page: 724
  year: 2018
  end-page: 728
  ident: bb0430
  article-title: Microglial control of astrocytes in response to microbial metabolites
  publication-title: Nature
– volume: 64
  start-page: 553
  year: 2016
  end-page: 569
  ident: bb0325
  article-title: Production of IL-27 in multiple sclerosis lesions by astrocytes and myeloid cells: modulation of local immune responses
  publication-title: Glia
– volume: 532
  start-page: 195
  year: 2016
  end-page: 200
  ident: bb0230
  article-title: Astrocyte scar formation aids central nervous system axon regeneration
  publication-title: Nature
– volume: 486
  start-page: 410
  year: 2012
  end-page: 414
  ident: bb0005
  article-title: Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors
  publication-title: Nature
– volume: 19
  start-page: 151
  year: 2018
  end-page: 161
  ident: bb0530
  article-title: Astrocytes decrease adult neurogenesis during virus-induced memory dysfunction via IL-1
  publication-title: Nat. Immunol.
– volume: 18
  start-page: 10541
  year: 1998
  end-page: 10552
  ident: bb0605
  article-title: A role for transforming growth factor alpha as an inducer of astrogliosis
  publication-title: J. Neurosci.
– volume: 24
  start-page: 1024
  year: 2018
  end-page: 1035
  ident: bb0130
  article-title: STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis
  publication-title: Nat. Med.
– volume: 11
  start-page: 158
  year: 2014
  ident: bb0095
  article-title: Calcineurin and glial signaling: neuroinflammation and beyond
  publication-title: J. Neuroinflammation
– volume: 34
  start-page: 410
  year: 2013
  end-page: 422
  ident: bb0565
  article-title: Modeling the heterogeneity of multiple sclerosis in animals
  publication-title: Trends Immunol.
– volume: 9
  start-page: a020009
  year: 2019
  ident: bb0215
  article-title: Regulation of astrocyte functions in multiple sclerosis
  publication-title: Cold Spring Harb. Perspect. Med.
– volume: 29
  start-page: 11511
  year: 2009
  end-page: 11522
  ident: bb0225
  article-title: Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS
  publication-title: J. Neurosci.
– volume: 37
  start-page: 625
  year: 2015
  end-page: 638
  ident: bb0355
  article-title: Control of autoimmune CNS inflammation by astrocytes
  publication-title: Semin. Immunopathol.
– volume: 25
  start-page: 3039
  year: 2007
  end-page: 3046
  ident: bb0615
  article-title: Testosterone decreases reactive astroglia and reactive microglia after brain injury in male rats: role of its metabolites, oestradiol and dihydrotestosterone
  publication-title: Eur. J. Neurosci.
– volume: 21
  start-page: 638
  year: 2015
  end-page: 646
  ident: bb0335
  article-title: Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α
  publication-title: Nat. Med.
– volume: 347
  start-page: 1138
  year: 2015
  end-page: 1142
  ident: bb0040
  article-title: Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
  publication-title: Science
– volume: 139
  start-page: 1939
  year: 2016
  end-page: 1957
  ident: bb0350
  article-title: IL-10-dependent Tr1 cells attenuate astrocyte activation and ameliorate chronic central nervous system inflammation
  publication-title: Brain
– volume: 8
  year: 2013
  ident: bb0590
  article-title: ROS detoxification and proinflammatory cytokines are linked by p38 MAPK signaling in a model of mature astrocyte activation
  publication-title: PLoS One
– volume: 337
  start-page: 358
  year: 2012
  end-page: 362
  ident: bb0025
  article-title: Regional astrocyte allocation regulates CNS synaptogenesis and repair
  publication-title: Science
– volume: 437
  start-page: 1167
  year: 2005
  end-page: 1172
  ident: bb0160
  article-title: Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus
  publication-title: Nature
– volume: 176
  start-page: 581
  year: 2019
  end-page: 596
  ident: bb0465
  article-title: Environmental control of astrocyte pathogenic activities in CNS inflammation
  publication-title: Cell
– volume: 163
  start-page: 1574
  year: 2015
  end-page: 1576
  ident: bb0560
  article-title: Astrocytes underlie neuroinflammatory memory impairment
  publication-title: Cell
– volume: 9
  start-page: 278
  year: 2015
  ident: bb0120
  article-title: Elusive roles for reactive astrocytes in neurodegenerative diseases
  publication-title: Front. Cell. Neurosci.
– volume: 43
  start-page: 46
  year: 2016
  end-page: 53
  ident: bb0460
  article-title: Environmental control of autoimmune inflammation in the central nervous system
  publication-title: Curr. Opin. Immunol.
– volume: 50
  start-page: 169
  year: 2001
  end-page: 180
  ident: bb0240
  article-title: Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage
  publication-title: Ann. Neurol.
– volume: 22
  start-page: 1276
  year: 2019
  end-page: 1288
  ident: bb0535
  article-title: T cells promote microglia-mediated synaptic elimination and cognitive dysfunction during recovery from neuropathogenic flaviviruses
  publication-title: Nat. Neurosci.
– volume: 6
  year: 2011
  ident: bb0105
  article-title: Astroglial inhibition of NF-κB does not ameliorate disease onset and progression in a mouse model for amyotrophic lateral sclerosis (ALS)
  publication-title: PLoS One
– volume: 11
  start-page: 854
  year: 2010
  end-page: 861
  ident: bb0345
  article-title: The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27
  publication-title: Nat. Immunol.
– volume: 26
  start-page: 7532
  year: 2006
  end-page: 7540
  ident: bb0600
  article-title: Epidermal growth factor receptor activation: an upstream signal for transition of quiescent astrocytes into reactive astrocytes after neural injury
  publication-title: J. Neurosci.
– volume: 558
  start-page: 454
  year: 2018
  end-page: 459
  ident: bb0340
  article-title: Induction and transcriptional regulation of the co-inhibitory gene module in T cells
  publication-title: Nature
– volume: 7
  start-page: 9794
  year: 2017
  ident: bb0445
  article-title: AhR-deficiency as a cause of demyelinating disease and inflammation
  publication-title: Sci. Rep.
– volume: 8
  start-page: 629
  year: 2012
  end-page: 657
  ident: bb0585
  article-title: Pathophysiology of astroglial purinergic signalling
  publication-title: Purinergic Signal
– volume: 360
  start-page: 449
  year: 2018
  end-page: 453
  ident: bb0380
  article-title: Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity
  publication-title: Science
– volume: 25
  start-page: 2537
  year: 2005
  end-page: 2546
  ident: bb0295
  article-title: Microglial expression of the B7 family member B7 homolog 1 confers strong immune inhibition: implications for immune responses and autoimmunity in the CNS
  publication-title: J. Neurosci.
– volume: 179
  start-page: 3268
  year: 2007
  end-page: 3275
  ident: bb0320
  article-title: Suppressive effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis
  publication-title: J. Immunol.
– volume: 105
  start-page: 855
  year: 2020
  end-page: 866.e5
  ident: bb0475
  article-title: Astrocyte unfolded protein response induces a specific reactivity state that causes non-cell-autonomous neuronal degeneration
  publication-title: Neuron
– volume: 4
  year: 2017
  ident: bb0435
  article-title: Dynamic regulation of serum aryl hydrocarbon receptor agonists in MS
  publication-title: Neurol. Neuroimmunol. Neuroinflamm.
– volume: 96
  start-page: 1279
  year: 2018
  end-page: 1292
  ident: bb0265
  article-title: Antigen-presenting cell diversity for T cell reactivation in central nervous system autoimmunity
  publication-title: J. Mol. Med. (Berl.)
– volume: 30
  start-page: 5843
  year: 2010
  end-page: 5854
  ident: bb0575
  article-title: Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-β after vascular damage
  publication-title: J. Neurosci.
– volume: 9
  year: 2016
  ident: bb0140
  article-title: Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity through SOCS2
  publication-title: Sci. Signal.
– volume: 179
  start-page: 1483
  year: 2019
  end-page: 1498.e22
  ident: bb0405
  article-title: Metabolic control of astrocyte pathogenic activity via cPLA2-MAVS
  publication-title: Cell
– volume: 118
  start-page: 1532
  year: 2008
  end-page: 1543
  ident: bb0570
  article-title: Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis
  publication-title: J. Clin. Invest.
– volume: 11
  year: 2019
  ident: bb0480
  article-title: Astrocyte molecular signatures in Huntington’s disease
  publication-title: Sci. Transl. Med.
– volume: 17
  start-page: 119
  year: 2020
  ident: bb0280
  article-title: Astrocytes have the capacity to act as antigen-presenting cells in the Parkinson’s disease brain
  publication-title: J. Neuroinflammation
– volume: 18
  start-page: 132
  year: 2017
  end-page: 141
  ident: bb0155
  article-title: Infectious immunity in the central nervous system and brain function
  publication-title: Nat. Immunol.
– volume: 388
  start-page: 891
  year: 2016
  end-page: 897
  ident: bb0545
  article-title: Congenital Zika virus syndrome in Brazil: a case series of the first 1501 livebirths with complete investigation
  publication-title: Lancet
– volume: 114
  start-page: 2012
  year: 2017
  end-page: 2017
  ident: bb0400
  article-title: Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 365
  year: 2019
  ident: bb0455
  article-title: Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility
  publication-title: Science
– volume: 120
  start-page: 1267
  year: 2007
  end-page: 1277
  ident: bb0660
  article-title: Synemin is expressed in reactive astrocytes in neurotrauma and interacts differentially with vimentin and GFAP intermediate filament networks
  publication-title: J. Cell Sci.
– volume: 25
  start-page: 4649
  year: 2005
  end-page: 4658
  ident: bb0110
  article-title: Calcineurin triggers reactive/inflammatory processes in astrocytes and is upregulated in aging and Alzheimer’s models
  publication-title: J. Neurosci.
– volume: 58
  start-page: 650
  year: 2010
  end-page: 664
  ident: bb0640
  article-title: Interactions between TLR7 and TLR9 agonists and receptors regulate innate immune responses by astrocytes and microglia
  publication-title: Glia
– volume: 122
  start-page: 669
  year: 2005
  end-page: 682
  ident: bb0165
  article-title: Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3
  publication-title: Cell
– volume: 176
  start-page: 1323
  year: 2010
  end-page: 1338
  ident: bb0520
  article-title: induces the secretion of proinflammatory mediators from glial cells leading to astrocyte apoptosis
  publication-title: Am. J. Pathol.
– volume: 119
  start-page: 216
  year: 2006
  end-page: 220
  ident: bb0285
  article-title: Induction of classical and nonclassical MHC-I on mouse brain astrocytes by Japanese encephalitis virus
  publication-title: Virus Res.
– volume: 17
  start-page: 687
  year: 2016
  end-page: 694
  ident: bb0200
  article-title: Constitutive aryl hydrocarbon receptor signaling constrains type I interferon-mediated antiviral innate defense
  publication-title: Nat. Immunol.
– volume: 11
  start-page: 89
  year: 2000
  end-page: 91
  ident: bb0275
  article-title: Astrocytes in chronic active multiple sclerosis plaques express MHC class II molecules
  publication-title: Neuroreport
– volume: 95
  start-page: 331
  year: 2005
  end-page: 340
  ident: bb0310
  article-title: Astrocytes as antigen-presenting cells: expression of IL-12/IL-23
  publication-title: J. Neurochem.
– volume: 118
  start-page: 826
  year: 2011
  end-page: 840
  ident: bb0665
  article-title: ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels
  publication-title: J. Neurochem.
– volume: 26
  start-page: 131
  year: 2020
  end-page: 142
  ident: bb0490
  article-title: Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease
  publication-title: Nat. Med.
– volume: 26
  start-page: 4930
  year: 2006
  end-page: 4939
  ident: bb0595
  article-title: Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide
  publication-title: J. Neurosci.
– volume: 658
  start-page: 53
  year: 2017
  end-page: 56
  ident: bb0645
  article-title: Human microglia and astrocytes express cGAS–STING viral sensing components
  publication-title: Neurosci. Lett.
– volume: 441
  start-page: 101
  year: 2006
  end-page: 105
  ident: bb0170
  article-title: Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses
  publication-title: Nature
– volume: 19
  start-page: 235
  year: 2018
  end-page: 249
  ident: bb0410
  article-title: Lactate in the brain: from metabolic end-product to signalling molecule
  publication-title: Nat. Rev. Neurosci.
– volume: 551
  start-page: 648
  year: 2017
  end-page: 652
  ident: bb0415
  article-title: A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites
  publication-title: Nature
– volume: 578
  start-page: 593
  year: 2020
  end-page: 599
  ident: bb0495
  article-title: MAFG-driven astrocytes promote CNS inflammation
  publication-title: Nature
– volume: 574
  start-page: 543
  year: 2019
  end-page: 548
  ident: bb0425
  article-title: The microbiota regulate neuronal function and fear extinction learning
  publication-title: Nature
– volume: 10
  start-page: 3890
  year: 2019
  ident: bb0555
  article-title: Zika virus replicates in adult human brain tissue and impairs synapses and memory in mice
  publication-title: Nat. Commun.
– volume: 107
  start-page: 8416
  year: 2010
  end-page: 8421
  ident: bb0620
  article-title: Estradiol inhibits ongoing autoimmune neuroinflammation and NFκB-dependent CCL2 expression in reactive astrocytes
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 556
  start-page: 332
  year: 2018
  end-page: 338
  ident: bb0505
  article-title: Innate immune memory in the brain shapes neurological disease hallmarks
  publication-title: Nature
– volume: 59
  start-page: 242
  year: 2011
  end-page: 255
  ident: bb0630
  article-title: Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways
  publication-title: Glia
– volume: 24
  start-page: 2421
  year: 2004
  end-page: 2430
  ident: bb0650
  article-title: Induction of brain-derived neurotrophic factor in plaque-associated glial cells of aged APP23 transgenic mice
  publication-title: J. Neurosci.
– volume: 7
  year: 2014
  ident: bb0055
  article-title: Astrogliosis
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 139
  year: 2017
  ident: bb0470
  article-title: Maternal and perinatal exposures are associated with risk for pediatric-onset multiple sclerosis
  publication-title: Pediatrics
– volume: 136
  start-page: 101
  year: 2018
  end-page: 108
  ident: bb0655
  article-title: Crosstalk between glia, extracellular matrix and neurons
  publication-title: Brain Res. Bull.
– volume: 35
  start-page: 2817
  year: 2015
  ident: 10.1016/j.it.2020.07.007_bb0125
  article-title: The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3516-14.2015
– volume: 11
  year: 2019
  ident: 10.1016/j.it.2020.07.007_bb0480
  article-title: Astrocyte molecular signatures in Huntington’s disease
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaw8546
– volume: 557
  start-page: 724
  year: 2018
  ident: 10.1016/j.it.2020.07.007_bb0430
  article-title: Microglial control of astrocytes in response to microbial metabolites
  publication-title: Nature
  doi: 10.1038/s41586-018-0119-x
– volume: 541
  start-page: 481
  year: 2017
  ident: 10.1016/j.it.2020.07.007_bb0060
  article-title: Neurotoxic reactive astrocytes are induced by activated microglia
  publication-title: Nature
  doi: 10.1038/nature21029
– volume: 38
  start-page: 2148
  year: 2013
  ident: 10.1016/j.it.2020.07.007_bb0670
  article-title: Reactive oxygen species from human astrocytes induced functional impairment and oxidative damage
  publication-title: Neurochem. Res.
  doi: 10.1007/s11064-013-1123-z
– volume: 17
  start-page: 705
  year: 2012
  ident: 10.1016/j.it.2020.07.007_bb0115
  article-title: Regulation of the phosphatase calcineurin by insulin-like growth factor I unveils a key role of astrocytes in Alzheimer’s pathology
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2011.128
– volume: 55
  start-page: 1169
  year: 2007
  ident: 10.1016/j.it.2020.07.007_bb0290
  article-title: Distinct regulation of MHC molecule expression on astrocytes and microglia during viral encephalomyelitis
  publication-title: Glia
  doi: 10.1002/glia.20538
– volume: 96
  start-page: 1279
  year: 2018
  ident: 10.1016/j.it.2020.07.007_bb0265
  article-title: Antigen-presenting cell diversity for T cell reactivation in central nervous system autoimmunity
  publication-title: J. Mol. Med. (Berl.)
  doi: 10.1007/s00109-018-1709-7
– volume: 12
  start-page: 560
  year: 2011
  ident: 10.1016/j.it.2020.07.007_bb0510
  article-title: RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2027
– volume: 97
  start-page: 189
  year: 2019
  ident: 10.1016/j.it.2020.07.007_bb0075
  article-title: Effect of DJ-1 on the neuroprotection of astrocytes subjected to cerebral ischemia/reperfusion injury
  publication-title: J. Mol. Med. (Berl.)
  doi: 10.1007/s00109-018-1719-5
– volume: 437
  start-page: 1167
  year: 2005
  ident: 10.1016/j.it.2020.07.007_bb0160
  article-title: Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus
  publication-title: Nature
  doi: 10.1038/nature04193
– volume: 23
  start-page: 500
  year: 2020
  ident: 10.1016/j.it.2020.07.007_bb0045
  article-title: Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-020-0602-1
– volume: 347
  start-page: 1138
  year: 2015
  ident: 10.1016/j.it.2020.07.007_bb0040
  article-title: Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
  publication-title: Science
  doi: 10.1126/science.aaa1934
– volume: 578
  start-page: 593
  year: 2020
  ident: 10.1016/j.it.2020.07.007_bb0495
  article-title: MAFG-driven astrocytes promote CNS inflammation
  publication-title: Nature
  doi: 10.1038/s41586-020-1999-0
– volume: 19
  start-page: 235
  year: 2018
  ident: 10.1016/j.it.2020.07.007_bb0410
  article-title: Lactate in the brain: from metabolic end-product to signalling molecule
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2018.19
– volume: 14
  start-page: 204
  year: 2017
  ident: 10.1016/j.it.2020.07.007_bb0315
  article-title: Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties
  publication-title: J. Neuroinflammation
  doi: 10.1186/s12974-017-0978-3
– volume: 8
  start-page: 629
  year: 2012
  ident: 10.1016/j.it.2020.07.007_bb0585
  article-title: Pathophysiology of astroglial purinergic signalling
  publication-title: Purinergic Signal
  doi: 10.1007/s11302-012-9300-0
– volume: 9
  start-page: 1623
  year: 2018
  ident: 10.1016/j.it.2020.07.007_bb0035
  article-title: Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03940-3
– volume: 139
  year: 2017
  ident: 10.1016/j.it.2020.07.007_bb0470
  article-title: Maternal and perinatal exposures are associated with risk for pediatric-onset multiple sclerosis
  publication-title: Pediatrics
  doi: 10.1542/peds.2016-2838
– volume: 177
  start-page: 1217
  year: 2019
  ident: 10.1016/j.it.2020.07.007_bb0420
  article-title: A forward chemical genetic screen reveals gut microbiota metabolites that modulate host physiology
  publication-title: Cell
  doi: 10.1016/j.cell.2019.03.036
– volume: 92
  start-page: e01901
  year: 2018
  ident: 10.1016/j.it.2020.07.007_bb0185
  article-title: Alpha/beta interferon (IFN-α/β) signaling in astrocytes mediates protection against viral encephalomyelitis and regulates IFN-γ-dependent responses
  publication-title: J. Virol.
  doi: 10.1128/JVI.01901-17
– volume: 17
  start-page: 466
  year: 2015
  ident: 10.1016/j.it.2020.07.007_bb0190
  article-title: RNase L activates the NLRP3 inflammasome during viral infections
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.02.010
– volume: 8
  start-page: 4970
  year: 2018
  ident: 10.1016/j.it.2020.07.007_bb0440
  article-title: Detection of aryl hydrocarbon receptor agonists in human samples
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-23323-4
– volume: 59
  start-page: 166
  year: 2011
  ident: 10.1016/j.it.2020.07.007_bb0220
  article-title: Inhibition of reactive astrocytosis in established experimental autoimmune encephalomyelitis favors infiltration by myeloid cells over T cells and enhances severity of disease
  publication-title: Glia
  doi: 10.1002/glia.21088
– volume: 170
  start-page: 649
  year: 2017
  ident: 10.1016/j.it.2020.07.007_bb0390
  article-title: TREM2 maintains microglial metabolic fitness in Alzheimer’s disease
  publication-title: Cell
  doi: 10.1016/j.cell.2017.07.023
– volume: 8
  year: 2013
  ident: 10.1016/j.it.2020.07.007_bb0590
  article-title: ROS detoxification and proinflammatory cytokines are linked by p38 MAPK signaling in a model of mature astrocyte activation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0083049
– volume: 97
  start-page: 742
  year: 2018
  ident: 10.1016/j.it.2020.07.007_bb0210
  article-title: Multiple sclerosis: mechanisms and immunotherapy
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.01.021
– volume: 25
  start-page: 2537
  year: 2005
  ident: 10.1016/j.it.2020.07.007_bb0295
  article-title: Microglial expression of the B7 family member B7 homolog 1 confers strong immune inhibition: implications for immune responses and autoimmunity in the CNS
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4794-04.2005
– volume: 19
  start-page: 151
  year: 2018
  ident: 10.1016/j.it.2020.07.007_bb0530
  article-title: Astrocytes decrease adult neurogenesis during virus-induced memory dysfunction via IL-1
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-017-0021-y
– volume: 20
  start-page: 79
  year: 1997
  ident: 10.1016/j.it.2020.07.007_bb0235
  article-title: Glutamate metabolism is down-regulated in astrocytes during experimental allergic encephalomyelitis
  publication-title: Glia
  doi: 10.1002/(SICI)1098-1136(199705)20:1<79::AID-GLIA8>3.0.CO;2-0
– volume: 25
  start-page: 3039
  year: 2007
  ident: 10.1016/j.it.2020.07.007_bb0615
  article-title: Testosterone decreases reactive astroglia and reactive microglia after brain injury in male rats: role of its metabolites, oestradiol and dihydrotestosterone
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2007.05563.x
– volume: 509
  start-page: 189
  year: 2014
  ident: 10.1016/j.it.2020.07.007_bb0020
  article-title: Astrocyte-encoded positional cues maintain sensorimotor circuit integrity
  publication-title: Nature
  doi: 10.1038/nature13161
– volume: 20
  start-page: 396
  year: 2017
  ident: 10.1016/j.it.2020.07.007_bb0030
  article-title: Identification of diverse astrocyte populations and their malignant analogs
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4493
– volume: 29
  start-page: 11511
  year: 2009
  ident: 10.1016/j.it.2020.07.007_bb0225
  article-title: Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1514-09.2009
– volume: 9
  start-page: 16944
  year: 2019
  ident: 10.1016/j.it.2020.07.007_bb0365
  article-title: Co-stimulation with IL-1β and TNF-α induces an inflammatory reactive astrocyte phenotype with neurosupportive characteristics in a human pluripotent stem cell model system
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-53414-9
– volume: 30
  start-page: 5843
  year: 2010
  ident: 10.1016/j.it.2020.07.007_bb0575
  article-title: Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-β after vascular damage
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0137-10.2010
– volume: 11
  start-page: 158
  year: 2014
  ident: 10.1016/j.it.2020.07.007_bb0095
  article-title: Calcineurin and glial signaling: neuroinflammation and beyond
  publication-title: J. Neuroinflammation
  doi: 10.1186/s12974-014-0158-7
– volume: 21
  start-page: 1983
  year: 2020
  ident: 10.1016/j.it.2020.07.007_bb0450
  article-title: Aryl hydrocarbon receptor in post-mortem hippocampus and in serum from young, elder, and Alzheimer’s patients
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21061983
– volume: 388
  start-page: 891
  year: 2016
  ident: 10.1016/j.it.2020.07.007_bb0545
  article-title: Congenital Zika virus syndrome in Brazil: a case series of the first 1501 livebirths with complete investigation
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)30902-3
– volume: 486
  start-page: 410
  year: 2012
  ident: 10.1016/j.it.2020.07.007_bb0005
  article-title: Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors
  publication-title: Nature
  doi: 10.1038/nature11059
– volume: 363
  year: 2019
  ident: 10.1016/j.it.2020.07.007_bb0250
  article-title: Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation
  publication-title: Science
  doi: 10.1126/science.aat7554
– volume: 11
  start-page: 854
  year: 2010
  ident: 10.1016/j.it.2020.07.007_bb0345
  article-title: The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1912
– volume: 534
  start-page: 538
  year: 2016
  ident: 10.1016/j.it.2020.07.007_bb0540
  article-title: A complement-microglial axis drives synapse loss during virus-induced memory impairment
  publication-title: Nature
  doi: 10.1038/nature18283
– volume: 13
  start-page: 277
  year: 2016
  ident: 10.1016/j.it.2020.07.007_bb0195
  article-title: Fast type I interferon response protects astrocytes from flavivirus infection and virus-induced cytopathic effects
  publication-title: J. Neuroinflammation
  doi: 10.1186/s12974-016-0748-7
– volume: 122
  start-page: 669
  year: 2005
  ident: 10.1016/j.it.2020.07.007_bb0165
  article-title: Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3
  publication-title: Cell
  doi: 10.1016/j.cell.2005.08.012
– volume: 558
  start-page: 454
  year: 2018
  ident: 10.1016/j.it.2020.07.007_bb0340
  article-title: Induction and transcriptional regulation of the co-inhibitory gene module in T cells
  publication-title: Nature
  doi: 10.1038/s41586-018-0206-z
– volume: 139
  start-page: 1939
  year: 2016
  ident: 10.1016/j.it.2020.07.007_bb0350
  article-title: IL-10-dependent Tr1 cells attenuate astrocyte activation and ameliorate chronic central nervous system inflammation
  publication-title: Brain
  doi: 10.1093/brain/aww113
– volume: 360
  start-page: 449
  year: 2018
  ident: 10.1016/j.it.2020.07.007_bb0380
  article-title: Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity
  publication-title: Science
  doi: 10.1126/science.aan4665
– volume: 58
  start-page: 650
  year: 2010
  ident: 10.1016/j.it.2020.07.007_bb0640
  article-title: Interactions between TLR7 and TLR9 agonists and receptors regulate innate immune responses by astrocytes and microglia
  publication-title: Glia
  doi: 10.1002/glia.20952
– volume: 95
  start-page: 5795
  year: 1998
  ident: 10.1016/j.it.2020.07.007_bb0625
  article-title: Amyloid beta-peptide stimulates nitric oxide production in astrocytes through an NFκB-dependent mechanism
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.95.10.5795
– volume: 107
  start-page: 8416
  year: 2010
  ident: 10.1016/j.it.2020.07.007_bb0620
  article-title: Estradiol inhibits ongoing autoimmune neuroinflammation and NFκB-dependent CCL2 expression in reactive astrocytes
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0910627107
– volume: 9
  start-page: a020009
  year: 2019
  ident: 10.1016/j.it.2020.07.007_bb0215
  article-title: Regulation of astrocyte functions in multiple sclerosis
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a029009
– volume: 565
  start-page: 246
  year: 2019
  ident: 10.1016/j.it.2020.07.007_bb0360
  article-title: Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery
  publication-title: Nature
  doi: 10.1038/s41586-018-0824-5
– volume: 21
  start-page: 1049
  year: 2018
  ident: 10.1016/j.it.2020.07.007_bb0500
  article-title: Epigenetic regulation of brain region-specific microglia clearance activity
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0192-3
– volume: 163
  start-page: 1574
  year: 2015
  ident: 10.1016/j.it.2020.07.007_bb0560
  article-title: Astrocytes underlie neuroinflammatory memory impairment
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.001
– volume: 9
  start-page: 278
  year: 2015
  ident: 10.1016/j.it.2020.07.007_bb0120
  article-title: Elusive roles for reactive astrocytes in neurodegenerative diseases
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2015.00278
– volume: 21
  start-page: 638
  year: 2015
  ident: 10.1016/j.it.2020.07.007_bb0335
  article-title: Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α
  publication-title: Nat. Med.
  doi: 10.1038/nm.3868
– volume: 135
  start-page: 166
  year: 2003
  ident: 10.1016/j.it.2020.07.007_bb0300
  article-title: Reactive astrocytes in chronic active lesions of multiple sclerosis express co-stimulatory molecules B7-1 and B7-2
  publication-title: J. Neuroimmunol.
  doi: 10.1016/S0165-5728(02)00462-9
– volume: 504
  start-page: 394
  year: 2013
  ident: 10.1016/j.it.2020.07.007_bb0015
  article-title: Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways
  publication-title: Nature
  doi: 10.1038/nature12776
– volume: 231
  start-page: 135
  year: 2011
  ident: 10.1016/j.it.2020.07.007_bb0610
  article-title: Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2011.06.001
– volume: 43
  start-page: 46
  year: 2016
  ident: 10.1016/j.it.2020.07.007_bb0460
  article-title: Environmental control of autoimmune inflammation in the central nervous system
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2016.09.002
– volume: 28
  start-page: 7231
  year: 2008
  ident: 10.1016/j.it.2020.07.007_bb0080
  article-title: STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1709-08.2008
– volume: 120
  start-page: 1267
  year: 2007
  ident: 10.1016/j.it.2020.07.007_bb0660
  article-title: Synemin is expressed in reactive astrocytes in neurotrauma and interacts differentially with vimentin and GFAP intermediate filament networks
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.03423
– volume: 23
  start-page: 939
  year: 2020
  ident: 10.1016/j.it.2020.07.007_bb0205
  article-title: AHR is a Zika virus host factor and a candidate target for antiviral therapy
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-020-0664-0
– volume: 127
  start-page: 843
  year: 2017
  ident: 10.1016/j.it.2020.07.007_bb0180
  article-title: Regional astrocyte IFN signaling restricts pathogenesis during neurotropic viral infection
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI88720
– volume: 532
  start-page: 195
  year: 2016
  ident: 10.1016/j.it.2020.07.007_bb0230
  article-title: Astrocyte scar formation aids central nervous system axon regeneration
  publication-title: Nature
  doi: 10.1038/nature17623
– volume: 37
  start-page: 625
  year: 2015
  ident: 10.1016/j.it.2020.07.007_bb0355
  article-title: Control of autoimmune CNS inflammation by astrocytes
  publication-title: Semin. Immunopathol.
  doi: 10.1007/s00281-015-0515-3
– volume: 7
  year: 2014
  ident: 10.1016/j.it.2020.07.007_bb0055
  article-title: Astrogliosis
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 15
  start-page: 87
  year: 2015
  ident: 10.1016/j.it.2020.07.007_bb0175
  article-title: Type I interferons in infectious disease
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3787
– volume: 34
  start-page: 410
  year: 2013
  ident: 10.1016/j.it.2020.07.007_bb0565
  article-title: Modeling the heterogeneity of multiple sclerosis in animals
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2013.04.006
– volume: 14
  start-page: 1054
  year: 2013
  ident: 10.1016/j.it.2020.07.007_bb0330
  article-title: IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2695
– volume: 9
  start-page: 10
  year: 2003
  ident: 10.1016/j.it.2020.07.007_bb0580
  article-title: Cytokines: powerful regulators of glial cell activation
  publication-title: Neuroscientist
  doi: 10.1177/1073858402239587
– volume: 22
  start-page: 586
  year: 2016
  ident: 10.1016/j.it.2020.07.007_bb0135
  article-title: Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor
  publication-title: Nat. Med.
  doi: 10.1038/nm.4106
– volume: 26
  start-page: 131
  year: 2020
  ident: 10.1016/j.it.2020.07.007_bb0490
  article-title: Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0695-9
– volume: 179
  start-page: 3268
  year: 2007
  ident: 10.1016/j.it.2020.07.007_bb0320
  article-title: Suppressive effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.179.5.3268
– volume: 167
  start-page: 829
  year: 2016
  ident: 10.1016/j.it.2020.07.007_bb0375
  article-title: L-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity
  publication-title: Cell
  doi: 10.1016/j.cell.2016.09.031
– volume: 97
  start-page: 1723
  year: 2019
  ident: 10.1016/j.it.2020.07.007_bb0395
  article-title: c-Jun N-terminal Kinase 1 ablation protects against metabolic-induced hippocampal cognitive impairments
  publication-title: J. Mol. Med. (Berl.)
  doi: 10.1007/s00109-019-01856-z
– volume: 570
  start-page: 332
  year: 2019
  ident: 10.1016/j.it.2020.07.007_bb0485
  article-title: Single-cell transcriptomic analysis of Alzheimer’s disease
  publication-title: Nature
  doi: 10.1038/s41586-019-1195-2
– volume: 26
  start-page: 4930
  year: 2006
  ident: 10.1016/j.it.2020.07.007_bb0595
  article-title: Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5480-05.2006
– volume: 95
  start-page: 331
  year: 2005
  ident: 10.1016/j.it.2020.07.007_bb0310
  article-title: Astrocytes as antigen-presenting cells: expression of IL-12/IL-23
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2005.03368.x
– volume: 1551
  start-page: 45
  year: 2014
  ident: 10.1016/j.it.2020.07.007_bb0100
  article-title: Involvement of p38 MAPK in reactive astrogliosis induced by ischemic stroke
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2014.01.013
– volume: 6
  year: 2011
  ident: 10.1016/j.it.2020.07.007_bb0105
  article-title: Astroglial inhibition of NF-κB does not ameliorate disease onset and progression in a mouse model for amyotrophic lateral sclerosis (ALS)
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0017187
– volume: 17
  start-page: 119
  year: 2020
  ident: 10.1016/j.it.2020.07.007_bb0280
  article-title: Astrocytes have the capacity to act as antigen-presenting cells in the Parkinson’s disease brain
  publication-title: J. Neuroinflammation
  doi: 10.1186/s12974-020-01776-7
– volume: 24
  start-page: 1024
  year: 2018
  ident: 10.1016/j.it.2020.07.007_bb0130
  article-title: STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0044-4
– volume: 330
  start-page: 205
  year: 2016
  ident: 10.1016/j.it.2020.07.007_bb0085
  article-title: The complex STATes of astrocyte reactivity: how are they controlled by the JAK–STAT3 pathway?
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2016.05.043
– volume: 704
  start-page: 92
  year: 1995
  ident: 10.1016/j.it.2020.07.007_bb0305
  article-title: T-cell costimulatory molecules B7-1 (CD80) and B7-2 (CD86) are expressed in human microglia but not in astrocytes in culture
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(95)01177-3
– volume: 26
  start-page: 7532
  year: 2006
  ident: 10.1016/j.it.2020.07.007_bb0600
  article-title: Epidermal growth factor receptor activation: an upstream signal for transition of quiescent astrocytes into reactive astrocytes after neural injury
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1004-06.2006
– volume: 556
  start-page: 332
  year: 2018
  ident: 10.1016/j.it.2020.07.007_bb0505
  article-title: Innate immune memory in the brain shapes neurological disease hallmarks
  publication-title: Nature
  doi: 10.1038/s41586-018-0023-4
– volume: 179
  start-page: 1483
  year: 2019
  ident: 10.1016/j.it.2020.07.007_bb0405
  article-title: Metabolic control of astrocyte pathogenic activity via cPLA2-MAVS
  publication-title: Cell
  doi: 10.1016/j.cell.2019.11.016
– volume: 50
  start-page: 169
  year: 2001
  ident: 10.1016/j.it.2020.07.007_bb0240
  article-title: Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.1077
– volume: 119
  start-page: 216
  year: 2006
  ident: 10.1016/j.it.2020.07.007_bb0285
  article-title: Induction of classical and nonclassical MHC-I on mouse brain astrocytes by Japanese encephalitis virus
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2006.03.006
– volume: 4
  year: 2017
  ident: 10.1016/j.it.2020.07.007_bb0435
  article-title: Dynamic regulation of serum aryl hydrocarbon receptor agonists in MS
  publication-title: Neurol. Neuroimmunol. Neuroinflamm.
  doi: 10.1212/NXI.0000000000000359
– volume: 387
  start-page: 1531
  year: 2016
  ident: 10.1016/j.it.2020.07.007_bb0550
  article-title: Guillain–Barré syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)00562-6
– volume: 334
  start-page: 1727
  year: 2011
  ident: 10.1016/j.it.2020.07.007_bb0010
  article-title: The Hedgehog pathway promotes blood–brain barrier integrity and CNS immune quiescence
  publication-title: Science
  doi: 10.1126/science.1206936
– volume: 114
  start-page: 2012
  year: 2017
  ident: 10.1016/j.it.2020.07.007_bb0400
  article-title: Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1615413114
– volume: 20
  start-page: 81
  year: 2020
  ident: 10.1016/j.it.2020.07.007_bb0065
  article-title: Neuroinflammation and neurodegeneration in human brain at single-cell resolution
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-019-0262-0
– volume: 118
  start-page: 826
  year: 2011
  ident: 10.1016/j.it.2020.07.007_bb0665
  article-title: ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2011.07210.x
– volume: 7
  start-page: 9794
  year: 2017
  ident: 10.1016/j.it.2020.07.007_bb0445
  article-title: AhR-deficiency as a cause of demyelinating disease and inflammation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-09621-3
– volume: 176
  start-page: 1323
  year: 2010
  ident: 10.1016/j.it.2020.07.007_bb0520
  article-title: Brucella abortus induces the secretion of proinflammatory mediators from glial cells leading to astrocyte apoptosis
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2010.090503
– volume: 18
  start-page: 132
  year: 2017
  ident: 10.1016/j.it.2020.07.007_bb0155
  article-title: Infectious immunity in the central nervous system and brain function
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3656
– volume: 556
  start-page: 113
  year: 2018
  ident: 10.1016/j.it.2020.07.007_bb0385
  article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1
  publication-title: Nature
  doi: 10.1038/nature25986
– volume: 22
  start-page: 1276
  year: 2019
  ident: 10.1016/j.it.2020.07.007_bb0535
  article-title: T cells promote microglia-mediated synaptic elimination and cognitive dysfunction during recovery from neuropathogenic flaviviruses
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0427-y
– volume: 574
  start-page: 543
  year: 2019
  ident: 10.1016/j.it.2020.07.007_bb0425
  article-title: The microbiota regulate neuronal function and fear extinction learning
  publication-title: Nature
  doi: 10.1038/s41586-019-1644-y
– volume: 126
  start-page: 711
  year: 2013
  ident: 10.1016/j.it.2020.07.007_bb0145
  article-title: Astrocytic A20 ameliorates experimental autoimmune encephalomyelitis by inhibiting NF-κB- and STAT1-dependent chemokine production in astrocytes
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-013-1183-9
– volume: 23
  start-page: 1064
  year: 2009
  ident: 10.1016/j.it.2020.07.007_bb0635
  article-title: Astrocytes recognize intracellular polyinosinic-polycytidylic acid via MDA-5
  publication-title: FASEB J.
  doi: 10.1096/fj.08-121434
– volume: 9
  year: 2016
  ident: 10.1016/j.it.2020.07.007_bb0140
  article-title: Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity through SOCS2
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.aad0612
– volume: 25
  start-page: 4649
  year: 2005
  ident: 10.1016/j.it.2020.07.007_bb0110
  article-title: Calcineurin triggers reactive/inflammatory processes in astrocytes and is upregulated in aging and Alzheimer’s models
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0365-05.2005
– volume: 18
  start-page: 10541
  year: 1998
  ident: 10.1016/j.it.2020.07.007_bb0605
  article-title: A role for transforming growth factor alpha as an inducer of astrogliosis
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.18-24-10541.1998
– volume: 441
  start-page: 101
  year: 2006
  ident: 10.1016/j.it.2020.07.007_bb0170
  article-title: Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses
  publication-title: Nature
  doi: 10.1038/nature04734
– volume: 118
  start-page: 1532
  year: 2008
  ident: 10.1016/j.it.2020.07.007_bb0570
  article-title: Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI33464
– volume: 15
  start-page: 951
  year: 2015
  ident: 10.1016/j.it.2020.07.007_bb0525
  article-title: Long-term sequelae of West Nile virus-related illness: a systematic review
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(15)00134-6
– volume: 4
  year: 2019
  ident: 10.1016/j.it.2020.07.007_bb0255
  article-title: Conventional DCs sample and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to initiate neuroinflammation
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aau8380
– volume: 11
  start-page: 89
  year: 2000
  ident: 10.1016/j.it.2020.07.007_bb0275
  article-title: Astrocytes in chronic active multiple sclerosis plaques express MHC class II molecules
  publication-title: Neuroreport
  doi: 10.1097/00001756-200001170-00018
– volume: 558
  start-page: 141
  year: 2018
  ident: 10.1016/j.it.2020.07.007_bb0370
  article-title: Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells
  publication-title: Nature
  doi: 10.1038/s41586-018-0177-0
– volume: 105
  start-page: 855
  year: 2020
  ident: 10.1016/j.it.2020.07.007_bb0475
  article-title: Astrocyte unfolded protein response induces a specific reactivity state that causes non-cell-autonomous neuronal degeneration
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.12.014
– volume: 64
  start-page: 553
  year: 2016
  ident: 10.1016/j.it.2020.07.007_bb0325
  article-title: Production of IL-27 in multiple sclerosis lesions by astrocytes and myeloid cells: modulation of local immune responses
  publication-title: Glia
  doi: 10.1002/glia.22948
– volume: 59
  start-page: 242
  year: 2011
  ident: 10.1016/j.it.2020.07.007_bb0630
  article-title: Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways
  publication-title: Glia
  doi: 10.1002/glia.21094
– volume: 24
  start-page: 2421
  year: 2004
  ident: 10.1016/j.it.2020.07.007_bb0650
  article-title: Induction of brain-derived neurotrophic factor in plaque-associated glial cells of aged APP23 transgenic mice
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5599-03.2004
– volume: 337
  start-page: 358
  year: 2012
  ident: 10.1016/j.it.2020.07.007_bb0025
  article-title: Regional astrocyte allocation regulates CNS synaptogenesis and repair
  publication-title: Science
  doi: 10.1126/science.1222381
– volume: 202
  start-page: 145
  year: 2005
  ident: 10.1016/j.it.2020.07.007_bb0090
  article-title: Inhibition of astroglial nuclear factor κB reduces inflammation and improves functional recovery after spinal cord injury
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20041918
– volume: 20
  start-page: 1147
  year: 2014
  ident: 10.1016/j.it.2020.07.007_bb0245
  article-title: Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation
  publication-title: Nat. Med.
  doi: 10.1038/nm.3681
– volume: 12
  start-page: 57
  year: 2019
  ident: 10.1016/j.it.2020.07.007_bb0515
  article-title: Immunity against bacterial infection of the central nervous system: an astrocyte perspective
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2019.00057
– volume: 365
  year: 2019
  ident: 10.1016/j.it.2020.07.007_bb0455
  article-title: Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility
  publication-title: Science
  doi: 10.1126/science.aav7188
– volume: 136
  start-page: 101
  year: 2018
  ident: 10.1016/j.it.2020.07.007_bb0655
  article-title: Crosstalk between glia, extracellular matrix and neurons
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2017.03.003
– volume: 351
  start-page: 849
  year: 2016
  ident: 10.1016/j.it.2020.07.007_bb0050
  article-title: Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling
  publication-title: Science
  doi: 10.1126/science.aab3103
– volume: 38
  year: 2019
  ident: 10.1016/j.it.2020.07.007_bb0150
  article-title: OTUB1 inhibits CNS autoimmunity by preventing IFN-γ-induced hyperactivation of astrocytes
  publication-title: EMBO J.
  doi: 10.15252/embj.2018100947
– volume: 4
  year: 2019
  ident: 10.1016/j.it.2020.07.007_bb0260
  article-title: Myeloid cells in the central nervous system: so similar, yet so different
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aaw2841
– volume: 17
  start-page: 687
  year: 2016
  ident: 10.1016/j.it.2020.07.007_bb0200
  article-title: Constitutive aryl hydrocarbon receptor signaling constrains type I interferon-mediated antiviral innate defense
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3422
– volume: 551
  start-page: 648
  year: 2017
  ident: 10.1016/j.it.2020.07.007_bb0415
  article-title: A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites
  publication-title: Nature
  doi: 10.1038/nature24661
– volume: 176
  start-page: 581
  year: 2019
  ident: 10.1016/j.it.2020.07.007_bb0465
  article-title: Environmental control of astrocyte pathogenic activities in CNS inflammation
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.012
– volume: 10
  start-page: 3890
  year: 2019
  ident: 10.1016/j.it.2020.07.007_bb0555
  article-title: Zika virus replicates in adult human brain tissue and impairs synapses and memory in mice
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11866-7
– volume: 658
  start-page: 53
  year: 2017
  ident: 10.1016/j.it.2020.07.007_bb0645
  article-title: Human microglia and astrocytes express cGAS–STING viral sensing components
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2017.08.039
– volume: 6
  start-page: 24251
  year: 2016
  ident: 10.1016/j.it.2020.07.007_bb0270
  article-title: MHC-class-II are expressed in a subpopulation of human neural stem cells in vitro in an IFNγ-independent fashion and during development
  publication-title: Sci. Rep.
  doi: 10.1038/srep24251
SSID ssj0015777
Score 2.7142694
SecondaryResourceType review_article
Snippet Astrocytes are the most abundant cell type in the central nervous system (CNS), performing complex functions in health and disease. It is now clear that...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 805
SubjectTerms astrocyte subsets
Astrocytes
Astrocytes - cytology
Astrocytes - immunology
Central nervous system
Central Nervous System - cytology
Central Nervous System - immunology
Disease
Gene expression
Genotype & phenotype
Humans
Inflammation
Inflammation - immunology
Kinases
Morphology
Nervous System Diseases - immunology
Neurological diseases
Phenotypes
Phenotypic plasticity
Proteins
reactive astrocytes
Tumor necrosis factor-TNF
Viruses
West Nile virus
Title The Role of Astrocytes in CNS Inflammation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1471490620301563
https://dx.doi.org/10.1016/j.it.2020.07.007
https://www.ncbi.nlm.nih.gov/pubmed/32800705
https://www.proquest.com/docview/2437835037
https://www.proquest.com/docview/2434757766
https://pubmed.ncbi.nlm.nih.gov/PMC8284746
Volume 41
WOSCitedRecordID wos000566832500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1471-4981
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015777
  issn: 1471-4906
  databaseCode: AIEXJ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYBogXBOOrMKYg8QJVhmMnsf1YTRswiQnBkPoWOY4tUkE6LRna_nvOsfPRTowPiZeoiu269f18vrN_vkPopSbYRLlRIVEqDuOU45ALcFxjCiIphNSFMG2yCXZ8zOdz8dEnGK_bdAKsqvjFhTj9r6KGdyBse3X2L8Tdfym8gM8gdHiC2OH5x4L_5DmDs7qBBeqyaVlX0317X7gygIHvgzwWzRo3trQ3RlY2299awmpVLdvsT9NDG34C8DNsmZYVWJiyM4NVWavl9GhvvJ8AzmNHmPKbXN1Fl4FVZPUirGFhLHA6VpwuYpUHiBhpQY6T8YLqdOIVXe22DRZ7paW0EtzGUHUZcNciYH-2vdvOifXfkpRuoC3CEgFKbGv2_mB-1B8bJaxNtdn_Wn8u7Qh9q_38yg656mes02VH9sfJPXTXOw7BzAn8Prqhq210y6USvdxGtz94ksQD9BoQEFgEBEsTDAgIyioABARjBDxEXw4PTvbfhT4lRqgSEjehiaQQoFINJUyyVAojcpEKDl6HyLGSihSE57kqNNaSsCIiRkaKyUSblBqp6SO0CXDRT1DAJFjSOS3AgIxjBoWcYk25NTDT3BA-QW-6AcqUjxdv05Z8yzpi4CIrm8wOaYYtiYFN0Ku-xamLlXJN3agb86y7AwyrVgbguKYN7dt4-9DZfb9ptdOJNPPTtM5sGE7wPTCF4hd9MWhWe1wmK708b-vEDBCVphP02CGg_1uUcBsoK5kgtoKNvoKN2r5aUpVf2-jt3BqEcfr0HwbgGbozzNgdtNmcnevn6Kb60ZT12S7aYHO-66fET4JAt6Y
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+Astrocytes+in+CNS+Inflammation&rft.jtitle=Trends+in+immunology&rft.au=Giovannoni%2C+Federico&rft.au=Quintana%2C+Francisco+J.&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=1471-4906&rft.volume=41&rft.issue=9&rft.spage=805&rft.epage=819&rft_id=info:doi/10.1016%2Fj.it.2020.07.007&rft.externalDocID=S1471490620301563
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-4906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-4906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-4906&client=summon