The Role of Astrocytes in CNS Inflammation
Astrocytes are the most abundant cell type in the central nervous system (CNS), performing complex functions in health and disease. It is now clear that multiple astrocyte subsets or activation states (plastic phenotypes driven by intrinsic and extrinsic cues) can be identified, associated to specif...
Uloženo v:
| Vydáno v: | Trends in immunology Ročník 41; číslo 9; s. 805 - 819 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Elsevier Ltd
01.09.2020
Elsevier Limited |
| Témata: | |
| ISSN: | 1471-4906, 1471-4981, 1471-4981 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Astrocytes are the most abundant cell type in the central nervous system (CNS), performing complex functions in health and disease. It is now clear that multiple astrocyte subsets or activation states (plastic phenotypes driven by intrinsic and extrinsic cues) can be identified, associated to specific genomic programs and functions. The characterization of these subsets and the mechanisms that control them may provide unique insights into the pathogenesis of neurologic diseases, and identify potential targets for therapeutic intervention. In this article, we provide an overview of the role of astrocytes in CNS inflammation, highlighting recent discoveries on astrocyte subsets and the mechanisms that control them.
Astrocytes display functional and phenotypic heterogeneity across and within CNS regions under homeostatic conditions.CNS insults (trauma, infection, autoimmune inflammation, protein aggregates) induce a broad array of astrocyte activation states, poorly defined in terms of phenotype, function, and role in human pathology.Astrocyte activation during acute microbial infection is essential for pathogen clearance but can contribute to long-term neurological impairments.The plasticity of astrocytes and their ability to adopt either a proinflammatory or an anti-inflammatory phenotype could be targeted for therapeutic intervention. |
|---|---|
| AbstractList | Astrocytes are the most abundant cell type in the central nervous system (CNS), performing complex functions in health and disease. It is now clear that multiple astrocyte subsets or activation states (plastic phenotypes driven by intrinsic and extrinsic cues) can be identified, associated to specific genomic programs and functions. The characterization of these subsets and the mechanisms that control them may provide unique insights into the pathogenesis of neurologic diseases, and identify potential targets for therapeutic intervention. In this article, we provide an overview of the role of astrocytes in CNS inflammation, highlighting recent discoveries on astrocyte subsets and the mechanisms that control them.Astrocytes are the most abundant cell type in the central nervous system (CNS), performing complex functions in health and disease. It is now clear that multiple astrocyte subsets or activation states (plastic phenotypes driven by intrinsic and extrinsic cues) can be identified, associated to specific genomic programs and functions. The characterization of these subsets and the mechanisms that control them may provide unique insights into the pathogenesis of neurologic diseases, and identify potential targets for therapeutic intervention. In this article, we provide an overview of the role of astrocytes in CNS inflammation, highlighting recent discoveries on astrocyte subsets and the mechanisms that control them. Astrocytes are the most abundant cell type in the central nervous system (CNS), performing complex functions in health and disease. It is now clear that multiple astrocyte subsets or activation states (plastic phenotypes driven by intrinsic and extrinsic cues) can be identified, associated to specific genomic programs and functions. The characterization of these subsets and the mechanisms that control them may provide unique insights into the pathogenesis of neurologic diseases, and identify potential targets for therapeutic intervention. In this article, we provide an overview of the role of astrocytes in CNS inflammation, highlighting recent discoveries on astrocyte subsets and the mechanisms that control them. Astrocytes are the most abundant cell type in the central nervous system (CNS), performing complex functions in health and disease. It is now clear that multiple astrocyte subsets or activation states (plastic phenotypes driven by intrinsic and extrinsic cues) can be identified, associated to specific genomic programs and functions. The characterization of these subsets and the mechanisms that control them may provide unique insights into the pathogenesis of neurologic diseases, and identify potential targets for therapeutic intervention. In this article, we provide an overview of the role of astrocytes in CNS inflammation, highlighting recent discoveries on astrocyte subsets and the mechanisms that control them. Astrocytes display functional and phenotypic heterogeneity across and within CNS regions under homeostatic conditions.CNS insults (trauma, infection, autoimmune inflammation, protein aggregates) induce a broad array of astrocyte activation states, poorly defined in terms of phenotype, function, and role in human pathology.Astrocyte activation during acute microbial infection is essential for pathogen clearance but can contribute to long-term neurological impairments.The plasticity of astrocytes and their ability to adopt either a proinflammatory or an anti-inflammatory phenotype could be targeted for therapeutic intervention. |
| Author | Giovannoni, Federico Quintana, Francisco J. |
| AuthorAffiliation | 1 Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA 2 Broad Institute of MIT and Harvard, Cambridge, MA, USA |
| AuthorAffiliation_xml | – name: 2 Broad Institute of MIT and Harvard, Cambridge, MA, USA – name: 1 Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA |
| Author_xml | – sequence: 1 givenname: Federico surname: Giovannoni fullname: Giovannoni, Federico organization: Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA – sequence: 2 givenname: Francisco J. surname: Quintana fullname: Quintana, Francisco J. email: fquintana@rics.bwh.harvard.edu organization: Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32800705$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1rXCEUhiWk5LP7rMqFbkJhbtX7oXYRCEM_AqGFJl2L13tMnHo1UScw_75OJwntLGal4PO8HN9zjPZ98IDQGcE1waT_uKhtrimmuMasxpjtoSPSMjJrBSf7r3fcH6LjlBYYk44xdoAOG8oLjbsj9OH2HqqfwUEVTHWZcgx6lSFV1lfz7zfVlTdOTZPKNvhT9MYol-Dt83mCfn35fDv_Nrv-8fVqfnk90x1t88wQJQQTjWkoU6xXwohB9IJzMooBa6XpSPkw6BEwKMpGQo0imqkOTN8YBc0JutjkPiyHCUYNPkfl5EO0k4orGZSV_794ey_vwpPklLes7UvA-XNADI9LSFlONmlwTnkIyyRp27SsNNGv0fdb6CIsoy_fW1OMNx1uWKHe_TvR6ygvNRag3wA6hpQiGKlt_ltaGdA6SbBc70supM1yvS-JmSxqEfGW-JK9Q_m0UaDs4MlClElb8BpGG0FnOQa7S-ZbsnbWW63cb1jtVv8AB6-99A |
| CitedBy_id | crossref_primary_10_1124_pharmrev_122_000618 crossref_primary_10_1146_annurev_pathol_052920_040318 crossref_primary_10_3389_fphar_2020_618992 crossref_primary_10_1007_s12035_021_02518_3 crossref_primary_10_3390_cells13131144 crossref_primary_10_1111_cns_70598 crossref_primary_10_1002_mco2_70329 crossref_primary_10_1016_j_fbio_2025_107264 crossref_primary_10_3390_ijms23126626 crossref_primary_10_1016_j_bbii_2024_100087 crossref_primary_10_31083_j_fbl2903094 crossref_primary_10_1007_s11064_022_03671_4 crossref_primary_10_1016_j_celrep_2025_115656 crossref_primary_10_1007_s40122_024_00610_9 crossref_primary_10_1093_discim_kyaf005 crossref_primary_10_1186_s12974_025_03410_w crossref_primary_10_3390_ijms252010989 crossref_primary_10_3390_microorganisms12081713 crossref_primary_10_1016_j_bbi_2023_09_018 crossref_primary_10_3389_fphar_2023_1288994 crossref_primary_10_3389_fphys_2021_633618 crossref_primary_10_3389_fnagi_2022_968444 crossref_primary_10_1016_j_arr_2021_101335 crossref_primary_10_1186_s13041_024_01118_1 crossref_primary_10_1093_nsr_nwad309 crossref_primary_10_1016_j_tins_2021_11_004 crossref_primary_10_3390_mi12040441 crossref_primary_10_1111_cns_14300 crossref_primary_10_1111_cns_70448 crossref_primary_10_1016_j_physbeh_2025_114913 crossref_primary_10_1016_j_neuroscience_2024_09_042 crossref_primary_10_1038_s41398_023_02665_2 crossref_primary_10_3389_fnins_2022_824191 crossref_primary_10_1111_acel_70086 crossref_primary_10_1016_j_neuroscience_2024_10_019 crossref_primary_10_14814_phy2_15239 crossref_primary_10_3390_ijms22157864 crossref_primary_10_1212_NXI_0000000000200052 crossref_primary_10_3389_fncel_2023_1076851 crossref_primary_10_1007_s12264_024_01236_9 crossref_primary_10_1080_15376516_2023_2196687 crossref_primary_10_1212_NXI_0000000000000946 crossref_primary_10_1016_j_intimp_2024_113938 crossref_primary_10_3389_fnagi_2022_1022821 crossref_primary_10_1177_13872877251320419 crossref_primary_10_1007_s11064_023_03966_0 crossref_primary_10_3389_fncel_2021_654290 crossref_primary_10_3390_cells10082019 crossref_primary_10_3390_toxics12090655 crossref_primary_10_1007_s00415_025_13231_9 crossref_primary_10_1038_s41467_025_60074_z crossref_primary_10_1134_S0022093025020097 crossref_primary_10_20517_and_2025_25 crossref_primary_10_1186_s12951_023_02039_2 crossref_primary_10_1016_j_actbio_2022_10_022 crossref_primary_10_1002_glia_23992 crossref_primary_10_3389_fimmu_2023_1114596 crossref_primary_10_3389_fnagi_2022_827263 crossref_primary_10_1038_s41598_022_14812_8 crossref_primary_10_1007_s12035_024_04064_0 crossref_primary_10_1016_j_cellimm_2023_104778 crossref_primary_10_3390_biomedicines9091226 crossref_primary_10_3389_fnmol_2024_1431079 crossref_primary_10_1186_s12974_022_02678_6 crossref_primary_10_1186_s13578_023_01128_x crossref_primary_10_61958_NDWM5390 crossref_primary_10_4103_NRR_NRR_D_23_01876 crossref_primary_10_4103_NRR_NRR_D_23_01756 crossref_primary_10_1016_j_arr_2024_102288 crossref_primary_10_3389_fnmol_2025_1607675 crossref_primary_10_1016_j_immuni_2025_03_006 crossref_primary_10_1186_s12974_023_02771_4 crossref_primary_10_1002_biof_1703 crossref_primary_10_1016_j_ceca_2022_102619 crossref_primary_10_1186_s12964_024_01509_w crossref_primary_10_1016_j_nbd_2022_105698 crossref_primary_10_3389_fimmu_2022_966881 crossref_primary_10_1016_j_ejphar_2023_176231 crossref_primary_10_1016_j_bbi_2023_11_008 crossref_primary_10_1111_cns_14740 crossref_primary_10_3390_cells13191628 crossref_primary_10_4103_NRR_NRR_D_24_00204 crossref_primary_10_3390_v15010097 crossref_primary_10_1186_s12974_021_02271_3 crossref_primary_10_3390_ijms24119721 crossref_primary_10_1038_s41598_024_73259_1 crossref_primary_10_1016_j_biopha_2023_115807 crossref_primary_10_2147_JIR_S329864 crossref_primary_10_1016_j_pnpbp_2025_111375 crossref_primary_10_1016_j_brainresbull_2025_111556 crossref_primary_10_1016_j_brainresbull_2024_110964 crossref_primary_10_4103_NRR_NRR_D_23_01776 crossref_primary_10_3390_cells14030168 crossref_primary_10_1111_ggi_14729 crossref_primary_10_1016_j_wjam_2025_02_002 crossref_primary_10_1007_s12035_022_03073_1 crossref_primary_10_1097_RLU_0000000000005494 crossref_primary_10_5498_wjp_v14_i8_1208 crossref_primary_10_1007_s11064_024_04134_8 crossref_primary_10_1016_j_isci_2025_113246 crossref_primary_10_1016_j_clim_2025_110543 crossref_primary_10_1038_s41467_023_44532_0 crossref_primary_10_1038_s41420_022_00997_4 crossref_primary_10_1016_j_neuron_2023_05_031 crossref_primary_10_3390_cells13030286 crossref_primary_10_1016_j_nbd_2025_107096 crossref_primary_10_1371_journal_pone_0313556 crossref_primary_10_1038_s41419_025_07469_4 crossref_primary_10_1093_narmme_ugaf009 crossref_primary_10_3389_fimmu_2022_979414 crossref_primary_10_1002_adhm_202500498 crossref_primary_10_1002_glia_24239 crossref_primary_10_1016_j_semcdb_2022_11_001 crossref_primary_10_1016_j_brainresbull_2024_110988 crossref_primary_10_1007_s11064_025_04381_3 crossref_primary_10_1038_s41419_022_05399_z crossref_primary_10_1016_j_brainres_2024_149268 crossref_primary_10_3390_brainsci12091119 crossref_primary_10_1113_JP284197 crossref_primary_10_4103_1673_5374_390973 crossref_primary_10_1097_MD_0000000000038898 crossref_primary_10_1007_s12264_022_00957_z crossref_primary_10_1016_j_yexcr_2025_114595 crossref_primary_10_1186_s12974_023_02989_2 crossref_primary_10_3389_fncel_2024_1365448 crossref_primary_10_3389_fimmu_2022_903309 crossref_primary_10_1007_s00360_025_01613_4 crossref_primary_10_1007_s11064_022_03714_w crossref_primary_10_4103_REGENMED_REGENMED_D_24_00006 crossref_primary_10_1007_s12035_025_05187_8 crossref_primary_10_1111_jnc_16002 crossref_primary_10_3390_nu15143106 crossref_primary_10_1002_alz_70104 crossref_primary_10_1016_j_phrs_2024_107507 crossref_primary_10_1016_j_lfs_2023_122393 crossref_primary_10_3389_fnmol_2022_1007889 crossref_primary_10_3390_biom13040692 crossref_primary_10_1111_jnc_16126 crossref_primary_10_3390_biomedicines8100394 crossref_primary_10_1186_s12974_022_02672_y crossref_primary_10_1016_j_neuint_2021_105107 crossref_primary_10_1016_j_brainresbull_2024_110888 crossref_primary_10_1002_glia_24452 crossref_primary_10_3390_nano14050429 crossref_primary_10_3233_JAD_240088 crossref_primary_10_1515_revneuro_2024_0081 crossref_primary_10_1155_2024_5383099 crossref_primary_10_1186_s40779_024_00577_w crossref_primary_10_3390_biomedicines9020157 crossref_primary_10_1038_s41467_023_37025_7 crossref_primary_10_3389_fnagi_2024_1347987 crossref_primary_10_1016_j_neuropharm_2025_110542 crossref_primary_10_3390_ijms22083875 crossref_primary_10_1007_s12031_024_02223_5 crossref_primary_10_3390_biom12040538 crossref_primary_10_7759_cureus_61522 crossref_primary_10_3390_ijms25189859 crossref_primary_10_3389_fcell_2025_1589169 crossref_primary_10_3389_fmolb_2025_1636882 crossref_primary_10_1016_j_vetmic_2024_110280 crossref_primary_10_1016_j_brainres_2024_149115 crossref_primary_10_1016_j_neuroscience_2025_03_039 crossref_primary_10_3389_fnagi_2024_1444716 crossref_primary_10_3390_ijms22136925 crossref_primary_10_1002_advs_202415224 crossref_primary_10_1016_j_bioadv_2022_212971 crossref_primary_10_1007_s12975_023_01151_7 crossref_primary_10_3390_brainsci12081010 crossref_primary_10_3389_fimmu_2025_1584577 crossref_primary_10_4103_1673_5374_380869 crossref_primary_10_1172_JCI151803 crossref_primary_10_3390_ijms251910535 crossref_primary_10_1016_j_tem_2021_09_006 crossref_primary_10_1186_s12974_023_02824_8 crossref_primary_10_1523_JNEUROSCI_1376_23_2023 crossref_primary_10_3390_cells13181554 crossref_primary_10_3390_cells10051195 crossref_primary_10_3389_fncel_2022_888232 crossref_primary_10_1038_s41467_023_40968_6 crossref_primary_10_1007_s00204_025_04002_6 crossref_primary_10_1186_s13578_022_00867_7 crossref_primary_10_3389_fimmu_2022_924642 crossref_primary_10_3389_fncel_2025_1451889 crossref_primary_10_31083_j_jin2206148 crossref_primary_10_3389_fnmol_2022_874299 crossref_primary_10_1177_15593258221130752 crossref_primary_10_1016_j_ijbiomac_2025_140289 crossref_primary_10_3390_ijms231710191 crossref_primary_10_1007_s12035_023_03320_z crossref_primary_10_1002_glia_24539 crossref_primary_10_3389_fnmol_2022_1013033 crossref_primary_10_1016_j_neuroscience_2023_08_016 crossref_primary_10_3389_fimmu_2021_705308 crossref_primary_10_1007_s00210_024_03415_x crossref_primary_10_3389_fnmol_2023_1249320 crossref_primary_10_3389_fimmu_2024_1458967 crossref_primary_10_1016_j_bbr_2023_114350 crossref_primary_10_3389_fimmu_2024_1432342 crossref_primary_10_3389_fnmol_2023_1263369 crossref_primary_10_3390_cimb47060417 crossref_primary_10_3389_fcell_2020_623771 crossref_primary_10_3390_encyclopedia4040110 crossref_primary_10_1186_s12964_023_01255_5 crossref_primary_10_3389_fnins_2023_1125428 crossref_primary_10_1002_ana_26296 crossref_primary_10_1186_s42234_022_00101_2 crossref_primary_10_1038_s41419_025_07732_8 crossref_primary_10_1186_s12974_024_03038_2 crossref_primary_10_3389_fnagi_2021_682633 crossref_primary_10_3390_ijms23116000 crossref_primary_10_1016_j_jhazmat_2024_136832 crossref_primary_10_1126_scitranslmed_adi7828 crossref_primary_10_1016_j_prerep_2024_100015 crossref_primary_10_1186_s12974_024_03136_1 crossref_primary_10_1016_j_exer_2025_110235 crossref_primary_10_1016_j_nbd_2022_105915 crossref_primary_10_2147_JIR_S505433 crossref_primary_10_1093_nar_gkad131 crossref_primary_10_3390_cells13020188 crossref_primary_10_1007_s12264_022_00950_6 crossref_primary_10_1007_s12640_021_00403_4 crossref_primary_10_1002_advs_202401670 crossref_primary_10_1186_s42269_023_01083_0 crossref_primary_10_1016_j_clp_2024_04_012 crossref_primary_10_3390_ijms25010027 crossref_primary_10_1016_j_mcn_2023_103848 crossref_primary_10_1073_pnas_2110998118 crossref_primary_10_3389_fphar_2022_925568 crossref_primary_10_1097_j_pain_0000000000002986 crossref_primary_10_1111_jnc_70013 crossref_primary_10_3389_fimmu_2021_676621 crossref_primary_10_3389_fphar_2024_1485919 crossref_primary_10_1007_s11064_025_04336_8 crossref_primary_10_4103_1673_5374_350210 crossref_primary_10_3389_fbioe_2023_1261255 crossref_primary_10_3389_fnins_2024_1287228 crossref_primary_10_3390_ijms23116145 crossref_primary_10_3389_fncel_2024_1504555 crossref_primary_10_1002_adfm_202102912 crossref_primary_10_1002_advs_202504406 crossref_primary_10_3389_fnagi_2025_1563142 crossref_primary_10_3390_brainsci14060558 crossref_primary_10_1016_j_pneurobio_2025_102798 crossref_primary_10_1093_jnen_nlaf042 crossref_primary_10_1111_imr_13121 crossref_primary_10_3390_life13112203 crossref_primary_10_1186_s10020_025_01328_w crossref_primary_10_3390_cancers13174267 crossref_primary_10_1016_j_arr_2024_102618 crossref_primary_10_3389_fphar_2021_720249 crossref_primary_10_1080_13880209_2022_2074057 crossref_primary_10_3390_jpm11030192 crossref_primary_10_1038_s41467_025_60747_9 crossref_primary_10_1016_j_jep_2025_120234 crossref_primary_10_1007_s13205_025_04455_7 crossref_primary_10_3389_fnmol_2025_1621070 crossref_primary_10_1007_s10787_023_01424_5 crossref_primary_10_3390_biom11091361 crossref_primary_10_3892_ijmm_2025_5577 crossref_primary_10_1016_j_conb_2024_102940 crossref_primary_10_1016_j_bbih_2025_100948 crossref_primary_10_2174_0113816128319149240812103715 crossref_primary_10_3390_jcm13144258 crossref_primary_10_3390_ijms24032000 crossref_primary_10_1093_infdis_jiaf034 crossref_primary_10_1098_rsob_200396 crossref_primary_10_1186_s12868_025_00939_7 crossref_primary_10_3390_cells14090637 crossref_primary_10_1016_j_bbi_2024_06_008 crossref_primary_10_3389_fnins_2023_1217451 crossref_primary_10_3390_cimb47010008 crossref_primary_10_1126_scisignal_adq6422 crossref_primary_10_1016_j_ibneur_2025_03_014 crossref_primary_10_1007_s12012_022_09730_0 crossref_primary_10_1002_glia_24385 crossref_primary_10_3389_fncel_2021_805755 crossref_primary_10_3390_cells13020148 crossref_primary_10_3389_fnagi_2022_920861 crossref_primary_10_3389_fimmu_2022_841290 crossref_primary_10_1007_s00204_022_03397_w crossref_primary_10_1016_j_pneurobio_2024_102588 crossref_primary_10_3390_bioengineering10030349 crossref_primary_10_3390_cells13060474 crossref_primary_10_1016_j_neuropharm_2023_109571 crossref_primary_10_4274_balkanmedj_galenos_2022_2022_7_100 crossref_primary_10_3390_molecules30153158 crossref_primary_10_1016_j_coi_2021_05_001 crossref_primary_10_1111_jnc_70164 crossref_primary_10_3390_ijms221910254 crossref_primary_10_1016_j_tins_2023_01_005 crossref_primary_10_1038_s41577_024_01104_7 crossref_primary_10_3390_molecules29174159 crossref_primary_10_1146_annurev_neuro_112723_035356 crossref_primary_10_1016_j_biopha_2025_118346 crossref_primary_10_3390_ijms22052256 crossref_primary_10_3928_02793695_20230417_01 crossref_primary_10_3389_fnins_2023_1157652 crossref_primary_10_1016_j_biopha_2022_114026 crossref_primary_10_1097_WNR_0000000000001900 crossref_primary_10_1038_s41420_024_01987_4 crossref_primary_10_1016_j_bbi_2024_09_016 crossref_primary_10_3390_jpm13050853 crossref_primary_10_3389_fnins_2025_1602149 crossref_primary_10_3390_ijms25115754 crossref_primary_10_3390_ijms23105404 crossref_primary_10_1016_j_cej_2023_146190 crossref_primary_10_1016_j_psyneuen_2024_107245 crossref_primary_10_3390_cells13211791 crossref_primary_10_3390_cells12182258 crossref_primary_10_3390_toxins17030144 crossref_primary_10_1002_glia_23946 crossref_primary_10_1186_s12974_022_02428_8 crossref_primary_10_1016_j_jconrel_2024_11_074 crossref_primary_10_1002_adhm_202402960 crossref_primary_10_4081_ejh_2022_3428 crossref_primary_10_1016_j_neuron_2021_04_009 crossref_primary_10_1186_s12974_023_02884_w crossref_primary_10_1038_s41420_023_01633_5 crossref_primary_10_1186_s12974_021_02186_z crossref_primary_10_3390_v13061078 crossref_primary_10_1016_j_pnpbp_2025_111504 crossref_primary_10_3390_ijms252413614 crossref_primary_10_1016_j_neuroimage_2025_121386 crossref_primary_10_1111_jcmm_18214 crossref_primary_10_1186_s12977_023_00616_9 crossref_primary_10_1007_s12640_025_00730_w crossref_primary_10_1155_2022_3323201 crossref_primary_10_1134_S0026893324060086 crossref_primary_10_3389_fncel_2021_745178 crossref_primary_10_3389_fnut_2023_1191903 crossref_primary_10_1038_s41467_024_50466_y crossref_primary_10_1186_s12974_022_02657_x crossref_primary_10_1186_s13041_021_00868_6 crossref_primary_10_2174_1871524922666220929153215 crossref_primary_10_3390_cimb46050263 crossref_primary_10_3390_ijms26052032 crossref_primary_10_3390_ijms23084275 crossref_primary_10_1016_j_arr_2022_101775 crossref_primary_10_3389_fendo_2024_1393253 crossref_primary_10_1186_s12974_025_03438_y crossref_primary_10_3389_fncel_2023_1205261 crossref_primary_10_4103_NRR_NRR_D_23_01690 crossref_primary_10_1002_glia_70067 crossref_primary_10_3390_biomedicines10051206 crossref_primary_10_1007_s11064_025_04530_8 crossref_primary_10_1016_j_biopha_2023_114581 crossref_primary_10_3390_biom13010012 crossref_primary_10_3390_biomedicines9050524 crossref_primary_10_3389_fncel_2021_725693 crossref_primary_10_3390_biomedicines12061310 crossref_primary_10_1016_j_neuroscience_2024_05_042 crossref_primary_10_1186_s40001_023_01122_6 crossref_primary_10_3389_fimmu_2021_684344 crossref_primary_10_1111_ejn_16242 crossref_primary_10_1007_s12035_024_04509_6 crossref_primary_10_3389_fnmol_2023_1171101 crossref_primary_10_3389_fphar_2025_1491150 crossref_primary_10_3390_ijms252111626 crossref_primary_10_1016_j_sajb_2025_03_014 crossref_primary_10_3390_ijms23126540 crossref_primary_10_3389_fncel_2024_1491952 crossref_primary_10_1007_s00018_025_05671_3 crossref_primary_10_1016_j_neuroscience_2024_04_004 crossref_primary_10_3390_cells11121885 crossref_primary_10_1111_epi_18126 crossref_primary_10_1016_j_biopha_2024_116806 crossref_primary_10_59717_j_xinn_med_2024_100076 crossref_primary_10_1038_s41573_022_00390_x crossref_primary_10_1016_j_ajcnut_2023_05_003 crossref_primary_10_1002_bit_28470 crossref_primary_10_1007_s00415_024_12505_y crossref_primary_10_1016_j_ceca_2023_102838 crossref_primary_10_1016_j_jneuroim_2025_578535 crossref_primary_10_3389_fnins_2025_1598011 crossref_primary_10_1134_S1819712423010117 crossref_primary_10_3390_ijms231911938 crossref_primary_10_3389_fphar_2022_924955 crossref_primary_10_3389_fncel_2023_1233762 crossref_primary_10_1016_j_addr_2024_115219 crossref_primary_10_1186_s40659_023_00463_0 crossref_primary_10_2174_011574888X305349240511125540 crossref_primary_10_1186_s13041_023_00997_0 crossref_primary_10_3389_fnmol_2024_1327472 crossref_primary_10_1016_j_biopha_2025_118157 crossref_primary_10_1038_s41598_022_26628_7 crossref_primary_10_1002_glia_70079 crossref_primary_10_1002_glia_70073 crossref_primary_10_1113_JP284976 crossref_primary_10_1126_science_abi6087 crossref_primary_10_1016_j_bbagen_2023_130506 crossref_primary_10_3390_ijms23063399 crossref_primary_10_1038_s41434_023_00409_x crossref_primary_10_1038_s43018_024_00865_3 crossref_primary_10_3390_ijms252111638 crossref_primary_10_3390_life12091439 |
| Cites_doi | 10.1523/JNEUROSCI.3516-14.2015 10.1126/scitranslmed.aaw8546 10.1038/s41586-018-0119-x 10.1038/nature21029 10.1007/s11064-013-1123-z 10.1038/mp.2011.128 10.1002/glia.20538 10.1007/s00109-018-1709-7 10.1038/ni.2027 10.1007/s00109-018-1719-5 10.1038/nature04193 10.1038/s41593-020-0602-1 10.1126/science.aaa1934 10.1038/s41586-020-1999-0 10.1038/nrn.2018.19 10.1186/s12974-017-0978-3 10.1007/s11302-012-9300-0 10.1038/s41467-018-03940-3 10.1542/peds.2016-2838 10.1016/j.cell.2019.03.036 10.1128/JVI.01901-17 10.1016/j.chom.2015.02.010 10.1038/s41598-018-23323-4 10.1002/glia.21088 10.1016/j.cell.2017.07.023 10.1371/journal.pone.0083049 10.1016/j.neuron.2018.01.021 10.1523/JNEUROSCI.4794-04.2005 10.1038/s41590-017-0021-y 10.1002/(SICI)1098-1136(199705)20:1<79::AID-GLIA8>3.0.CO;2-0 10.1111/j.1460-9568.2007.05563.x 10.1038/nature13161 10.1038/nn.4493 10.1523/JNEUROSCI.1514-09.2009 10.1038/s41598-019-53414-9 10.1523/JNEUROSCI.0137-10.2010 10.1186/s12974-014-0158-7 10.3390/ijms21061983 10.1016/S0140-6736(16)30902-3 10.1038/nature11059 10.1126/science.aat7554 10.1038/ni.1912 10.1038/nature18283 10.1186/s12974-016-0748-7 10.1016/j.cell.2005.08.012 10.1038/s41586-018-0206-z 10.1093/brain/aww113 10.1126/science.aan4665 10.1002/glia.20952 10.1073/pnas.95.10.5795 10.1073/pnas.0910627107 10.1101/cshperspect.a029009 10.1038/s41586-018-0824-5 10.1038/s41593-018-0192-3 10.1016/j.cell.2015.12.001 10.3389/fncel.2015.00278 10.1038/nm.3868 10.1016/S0165-5728(02)00462-9 10.1038/nature12776 10.1016/j.expneurol.2011.06.001 10.1016/j.coi.2016.09.002 10.1523/JNEUROSCI.1709-08.2008 10.1242/jcs.03423 10.1038/s41593-020-0664-0 10.1172/JCI88720 10.1038/nature17623 10.1007/s00281-015-0515-3 10.1038/nri3787 10.1016/j.it.2013.04.006 10.1038/ni.2695 10.1177/1073858402239587 10.1038/nm.4106 10.1038/s41591-019-0695-9 10.4049/jimmunol.179.5.3268 10.1016/j.cell.2016.09.031 10.1007/s00109-019-01856-z 10.1038/s41586-019-1195-2 10.1523/JNEUROSCI.5480-05.2006 10.1111/j.1471-4159.2005.03368.x 10.1016/j.brainres.2014.01.013 10.1371/journal.pone.0017187 10.1186/s12974-020-01776-7 10.1038/s41591-018-0044-4 10.1016/j.neuroscience.2016.05.043 10.1016/0006-8993(95)01177-3 10.1523/JNEUROSCI.1004-06.2006 10.1038/s41586-018-0023-4 10.1016/j.cell.2019.11.016 10.1002/ana.1077 10.1016/j.virusres.2006.03.006 10.1212/NXI.0000000000000359 10.1016/S0140-6736(16)00562-6 10.1126/science.1206936 10.1073/pnas.1615413114 10.1038/s41577-019-0262-0 10.1111/j.1471-4159.2011.07210.x 10.1038/s41598-017-09621-3 10.2353/ajpath.2010.090503 10.1038/ni.3656 10.1038/nature25986 10.1038/s41593-019-0427-y 10.1038/s41586-019-1644-y 10.1007/s00401-013-1183-9 10.1096/fj.08-121434 10.1126/scisignal.aad0612 10.1523/JNEUROSCI.0365-05.2005 10.1523/JNEUROSCI.18-24-10541.1998 10.1038/nature04734 10.1172/JCI33464 10.1016/S1473-3099(15)00134-6 10.1126/sciimmunol.aau8380 10.1097/00001756-200001170-00018 10.1038/s41586-018-0177-0 10.1016/j.neuron.2019.12.014 10.1002/glia.22948 10.1002/glia.21094 10.1523/JNEUROSCI.5599-03.2004 10.1126/science.1222381 10.1084/jem.20041918 10.1038/nm.3681 10.3389/fnmol.2019.00057 10.1126/science.aav7188 10.1016/j.brainresbull.2017.03.003 10.1126/science.aab3103 10.15252/embj.2018100947 10.1126/sciimmunol.aaw2841 10.1038/ni.3422 10.1038/nature24661 10.1016/j.cell.2018.12.012 10.1038/s41467-019-11866-7 10.1016/j.neulet.2017.08.039 10.1038/srep24251 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. 2020. Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. – notice: 2020. Elsevier Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7U9 H94 K9. M7N NAPCQ 7X8 5PM |
| DOI | 10.1016/j.it.2020.07.007 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Immunology Abstracts Virology and AIDS Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic AIDS and Cancer Research Abstracts MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1471-4981 |
| EndPage | 819 |
| ExternalDocumentID | PMC8284746 32800705 10_1016_j_it_2020_07_007 S1471490620301563 |
| Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GroupedDBID | --- --K --M -DZ .1- .55 .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29Q 2KS 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8FE 8FH 8P~ 9M8 AAAJQ AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABEFU ABFNM ABFRF ABJNI ABLJU ABMAC ABMZM ABOCM ABWVN ABXDB ACDAQ ACGFO ACGFS ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRAH AFRHN AFTJW AFXIZ AGEKW AGHFR AGQPQ AGUBO AGYEJ AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKEYQ BKOJK BLXMC BPHCQ BVXVI CJTIS CS3 D0L DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IH2 IHE J1W KOM L7B LK8 LUGTX M41 MO0 MVM N9A O-L O9- O9~ OAUVE OK0 OMK OZT P-8 P-9 PC. PQQKQ PROAC Q38 R2- ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSI SSZ T5K WOW X7M XJT XPP Y6R Z5R ZCG ZGI ~G- ~HD AACTN AFCTW BNPGV RIG SSH 9DU AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7U9 H94 K9. M7N NAPCQ 7X8 5PM |
| ID | FETCH-LOGICAL-c524t-f1a99793f327a76a9f9b969881d9b0cac2d28bbcde0ea27d12fa1c7a5ef63fae3 |
| ISICitedReferencesCount | 443 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000566832500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-4906 1471-4981 |
| IngestDate | Tue Sep 30 16:42:58 EDT 2025 Sun Nov 09 12:22:27 EST 2025 Tue Oct 07 06:38:09 EDT 2025 Thu Apr 03 06:56:12 EDT 2025 Sat Nov 29 07:03:51 EST 2025 Tue Nov 18 22:11:29 EST 2025 Sun Apr 06 06:53:01 EDT 2025 Tue Oct 14 19:24:23 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | inflammation astrocyte subsets reactive astrocytes |
| Language | English |
| License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c524t-f1a99793f327a76a9f9b969881d9b0cac2d28bbcde0ea27d12fa1c7a5ef63fae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8284746 |
| PMID | 32800705 |
| PQID | 2437835037 |
| PQPubID | 2031073 |
| PageCount | 15 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8284746 proquest_miscellaneous_2434757766 proquest_journals_2437835037 pubmed_primary_32800705 crossref_citationtrail_10_1016_j_it_2020_07_007 crossref_primary_10_1016_j_it_2020_07_007 elsevier_sciencedirect_doi_10_1016_j_it_2020_07_007 elsevier_clinicalkey_doi_10_1016_j_it_2020_07_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Trends in immunology |
| PublicationTitleAlternate | Trends Immunol |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Peng (bb0075) 2019; 97 Sofroniew (bb0055) 2014; 7 International Multiple Sclerosis Genetics Consortium (bb0455) 2019; 365 Wheeler (bb0495) 2020; 578 Roy Choudhury (bb0100) 2014; 1551 Klein (bb0155) 2017; 18 Mundt (bb0255) 2019; 4 Chihara (bb0340) 2018; 558 Lindqvist (bb0195) 2016; 13 Farmer (bb0050) 2016; 351 Waisman, Johann (bb0265) 2018; 96 Brambilla (bb0090) 2005; 202 Voskuhl (bb0225) 2009; 29 Bayraktar (bb0045) 2020; 23 Mills (bb0385) 2018; 556 Rothhammer, Quintana (bb0355) 2015; 37 Dodd (bb0415) 2017; 551 Ulland (bb0390) 2017; 170 Song, Dityatev (bb0655) 2018; 136 Vasek (bb0540) 2016; 534 Mascanfroni (bb0330) 2013; 14 John (bb0580) 2003; 9 Magnus (bb0295) 2005; 25 Simmons (bb0565) 2013; 34 Rothhammer (bb0430) 2018; 557 Busquets (bb0395) 2019; 97 Chakrabarti (bb0190) 2015; 17 Lanjakornsiripan (bb0035) 2018; 9 Mathys (bb0485) 2019; 570 Kato (bb0170) 2006; 441 Fernandez (bb0115) 2012; 17 Ayata (bb0500) 2018; 21 McNab (bb0175) 2015; 15 Schachtrup (bb0575) 2010; 30 John Lin (bb0030) 2017; 20 Vagaska (bb0270) 2016; 6 Anderson (bb0230) 2016; 532 Chu (bb0425) 2019; 574 Jeffries, Marriott (bb0645) 2017; 658 Chao (bb0405) 2019; 179 Zeinstra (bb0300) 2003; 135 Allen (bb0005) 2012; 486 Tsai (bb0025) 2012; 337 Garber (bb0530) 2018; 19 Mayo (bb0245) 2014; 20 Codarri (bb0510) 2011; 12 Kornberg (bb0380) 2018; 360 Burbach (bb0650) 2004; 24 Hamo (bb0290) 2007; 55 Zhou (bb0490) 2020; 26 Orellana (bb0665) 2011; 118 Rothhammer (bb0440) 2018; 8 Ceyzeriat (bb0085) 2016; 330 Rothhammer, Quintana (bb0460) 2016; 43 Hwang, Bergmann (bb0185) 2018; 92 Ben Haim (bb0125) 2015; 35 Apetoh (bb0345) 2010; 11 Baecher-Allan (bb0210) 2018; 97 Figueiredo (bb0555) 2019; 10 Franke (bb0585) 2012; 8 Ito (bb0360) 2019; 565 Rothhammer (bb0435) 2017; 4 Meylan (bb0160) 2005; 437 Chung (bb0015) 2013; 504 Giraud (bb0620) 2010; 107 Nahirnyj (bb0590) 2013; 8 Garber (bb0535) 2019; 22 Mayo (bb0350) 2016; 139 Zeinstra (bb0275) 2000; 11 Wendeln (bb0505) 2018; 556 Ramos-Garcia (bb0450) 2020; 21 Toft-Hansen (bb0220) 2011; 59 Alvarez (bb0010) 2011; 334 Basso (bb0570) 2008; 118 Magistretti, Allaman (bb0410) 2018; 19 Geiger (bb0375) 2016; 167 Hardin-Pouzet (bb0235) 1997; 20 Molofsky (bb0020) 2014; 509 Jing (bb0660) 2007; 120 Smith (bb0475) 2020; 105 França (bb0545) 2016; 388 Quintana (bb0260) 2019; 4 Constantinescu (bb0310) 2005; 95 Prajeeth (bb0315) 2017; 14 Du (bb0370) 2018; 558 Satoh (bb0305) 1995; 704 Zeisel (bb0040) 2015; 347 Daniels (bb0180) 2017; 127 Wang (bb0150) 2019; 38 Diaz-Castro (bb0480) 2019; 11 Rabchevsky (bb0605) 1998; 18 Geyer (bb0515) 2019; 12 Herrmann (bb0080) 2008; 28 Yeste (bb0140) 2016; 9 Giovannoni (bb0205) 2020; 23 Brahmachari (bb0595) 2006; 26 Wheeler, Quintana (bb0215) 2019; 9 Crosio (bb0105) 2011; 6 Rothhammer (bb0400) 2017; 114 Hyvarinen (bb0365) 2019; 9 Cao-Lormeau (bb0550) 2016; 387 Liu (bb0600) 2006; 26 Norris (bb0110) 2005; 25 Yamada (bb0200) 2016; 17 Colonna, Brioschi (bb0065) 2020; 20 Chen (bb0420) 2019; 177 Werner (bb0240) 2001; 50 Abraham, Manjunath (bb0285) 2006; 119 Rothhammer (bb0135) 2016; 22 Akama (bb0625) 1998; 95 Barreto (bb0615) 2007; 25 Butchi (bb0640) 2010; 58 Priego (bb0130) 2018; 24 Senecal (bb0325) 2016; 64 Wheeler (bb0465) 2019; 176 Furman, Norris (bb0095) 2014; 11 Ben Haim (bb0120) 2015; 9 Seth (bb0165) 2005; 122 Graves (bb0470) 2017; 139 Sheng (bb0670) 2013; 38 Rostami (bb0280) 2020; 17 Mascanfroni (bb0335) 2015; 21 Gorina (bb0630) 2011; 59 Fitzgerald (bb0320) 2007; 179 Labombarda (bb0610) 2011; 231 Osso, Chan (bb0560) 2015; 163 Juricek (bb0445) 2017; 7 Patel (bb0525) 2015; 15 Wang (bb0145) 2013; 126 Garcia Samartino (bb0520) 2010; 176 Liddelow (bb0060) 2017; 541 De Miranda (bb0635) 2009; 23 Jordao (bb0250) 2019; 363 Du (10.1016/j.it.2020.07.007_bb0370) 2018; 558 Waisman (10.1016/j.it.2020.07.007_bb0265) 2018; 96 Chen (10.1016/j.it.2020.07.007_bb0420) 2019; 177 Butchi (10.1016/j.it.2020.07.007_bb0640) 2010; 58 Giraud (10.1016/j.it.2020.07.007_bb0620) 2010; 107 Kornberg (10.1016/j.it.2020.07.007_bb0380) 2018; 360 Cao-Lormeau (10.1016/j.it.2020.07.007_bb0550) 2016; 387 Akama (10.1016/j.it.2020.07.007_bb0625) 1998; 95 Vagaska (10.1016/j.it.2020.07.007_bb0270) 2016; 6 Garcia Samartino (10.1016/j.it.2020.07.007_bb0520) 2010; 176 Farmer (10.1016/j.it.2020.07.007_bb0050) 2016; 351 Chu (10.1016/j.it.2020.07.007_bb0425) 2019; 574 Sheng (10.1016/j.it.2020.07.007_bb0670) 2013; 38 Voskuhl (10.1016/j.it.2020.07.007_bb0225) 2009; 29 John Lin (10.1016/j.it.2020.07.007_bb0030) 2017; 20 Chihara (10.1016/j.it.2020.07.007_bb0340) 2018; 558 Toft-Hansen (10.1016/j.it.2020.07.007_bb0220) 2011; 59 França (10.1016/j.it.2020.07.007_bb0545) 2016; 388 Graves (10.1016/j.it.2020.07.007_bb0470) 2017; 139 Ito (10.1016/j.it.2020.07.007_bb0360) 2019; 565 Lindqvist (10.1016/j.it.2020.07.007_bb0195) 2016; 13 Kato (10.1016/j.it.2020.07.007_bb0170) 2006; 441 Ulland (10.1016/j.it.2020.07.007_bb0390) 2017; 170 Zhou (10.1016/j.it.2020.07.007_bb0490) 2020; 26 Norris (10.1016/j.it.2020.07.007_bb0110) 2005; 25 Jeffries (10.1016/j.it.2020.07.007_bb0645) 2017; 658 Tsai (10.1016/j.it.2020.07.007_bb0025) 2012; 337 Senecal (10.1016/j.it.2020.07.007_bb0325) 2016; 64 Mills (10.1016/j.it.2020.07.007_bb0385) 2018; 556 Wang (10.1016/j.it.2020.07.007_bb0150) 2019; 38 Sofroniew (10.1016/j.it.2020.07.007_bb0055) 2014; 7 Furman (10.1016/j.it.2020.07.007_bb0095) 2014; 11 Roy Choudhury (10.1016/j.it.2020.07.007_bb0100) 2014; 1551 Ben Haim (10.1016/j.it.2020.07.007_bb0125) 2015; 35 Ayata (10.1016/j.it.2020.07.007_bb0500) 2018; 21 Hyvarinen (10.1016/j.it.2020.07.007_bb0365) 2019; 9 Jing (10.1016/j.it.2020.07.007_bb0660) 2007; 120 Magistretti (10.1016/j.it.2020.07.007_bb0410) 2018; 19 Klein (10.1016/j.it.2020.07.007_bb0155) 2017; 18 Anderson (10.1016/j.it.2020.07.007_bb0230) 2016; 532 Crosio (10.1016/j.it.2020.07.007_bb0105) 2011; 6 Garber (10.1016/j.it.2020.07.007_bb0535) 2019; 22 Liu (10.1016/j.it.2020.07.007_bb0600) 2006; 26 Lanjakornsiripan (10.1016/j.it.2020.07.007_bb0035) 2018; 9 Orellana (10.1016/j.it.2020.07.007_bb0665) 2011; 118 Abraham (10.1016/j.it.2020.07.007_bb0285) 2006; 119 Wheeler (10.1016/j.it.2020.07.007_bb0495) 2020; 578 Diaz-Castro (10.1016/j.it.2020.07.007_bb0480) 2019; 11 Rothhammer (10.1016/j.it.2020.07.007_bb0430) 2018; 557 Hwang (10.1016/j.it.2020.07.007_bb0185) 2018; 92 Mascanfroni (10.1016/j.it.2020.07.007_bb0330) 2013; 14 Dodd (10.1016/j.it.2020.07.007_bb0415) 2017; 551 Mayo (10.1016/j.it.2020.07.007_bb0245) 2014; 20 Chakrabarti (10.1016/j.it.2020.07.007_bb0190) 2015; 17 Wheeler (10.1016/j.it.2020.07.007_bb0215) 2019; 9 Rabchevsky (10.1016/j.it.2020.07.007_bb0605) 1998; 18 Ben Haim (10.1016/j.it.2020.07.007_bb0120) 2015; 9 Fernandez (10.1016/j.it.2020.07.007_bb0115) 2012; 17 Allen (10.1016/j.it.2020.07.007_bb0005) 2012; 486 Chung (10.1016/j.it.2020.07.007_bb0015) 2013; 504 Garber (10.1016/j.it.2020.07.007_bb0530) 2018; 19 Rothhammer (10.1016/j.it.2020.07.007_bb0355) 2015; 37 Peng (10.1016/j.it.2020.07.007_bb0075) 2019; 97 Daniels (10.1016/j.it.2020.07.007_bb0180) 2017; 127 Molofsky (10.1016/j.it.2020.07.007_bb0020) 2014; 509 Patel (10.1016/j.it.2020.07.007_bb0525) 2015; 15 Basso (10.1016/j.it.2020.07.007_bb0570) 2008; 118 Seth (10.1016/j.it.2020.07.007_bb0165) 2005; 122 Smith (10.1016/j.it.2020.07.007_bb0475) 2020; 105 Rothhammer (10.1016/j.it.2020.07.007_bb0135) 2016; 22 McNab (10.1016/j.it.2020.07.007_bb0175) 2015; 15 Apetoh (10.1016/j.it.2020.07.007_bb0345) 2010; 11 Alvarez (10.1016/j.it.2020.07.007_bb0010) 2011; 334 Werner (10.1016/j.it.2020.07.007_bb0240) 2001; 50 Song (10.1016/j.it.2020.07.007_bb0655) 2018; 136 Yeste (10.1016/j.it.2020.07.007_bb0140) 2016; 9 Liddelow (10.1016/j.it.2020.07.007_bb0060) 2017; 541 Wang (10.1016/j.it.2020.07.007_bb0145) 2013; 126 Mundt (10.1016/j.it.2020.07.007_bb0255) 2019; 4 Rothhammer (10.1016/j.it.2020.07.007_bb0400) 2017; 114 Figueiredo (10.1016/j.it.2020.07.007_bb0555) 2019; 10 Codarri (10.1016/j.it.2020.07.007_bb0510) 2011; 12 John (10.1016/j.it.2020.07.007_bb0580) 2003; 9 Satoh (10.1016/j.it.2020.07.007_bb0305) 1995; 704 Rostami (10.1016/j.it.2020.07.007_bb0280) 2020; 17 Fitzgerald (10.1016/j.it.2020.07.007_bb0320) 2007; 179 Schachtrup (10.1016/j.it.2020.07.007_bb0575) 2010; 30 Magnus (10.1016/j.it.2020.07.007_bb0295) 2005; 25 Ramos-Garcia (10.1016/j.it.2020.07.007_bb0450) 2020; 21 Gorina (10.1016/j.it.2020.07.007_bb0630) 2011; 59 Colonna (10.1016/j.it.2020.07.007_bb0065) 2020; 20 Jordao (10.1016/j.it.2020.07.007_bb0250) 2019; 363 Rothhammer (10.1016/j.it.2020.07.007_bb0460) 2016; 43 Mayo (10.1016/j.it.2020.07.007_bb0350) 2016; 139 Nahirnyj (10.1016/j.it.2020.07.007_bb0590) 2013; 8 Simmons (10.1016/j.it.2020.07.007_bb0565) 2013; 34 Priego (10.1016/j.it.2020.07.007_bb0130) 2018; 24 Barreto (10.1016/j.it.2020.07.007_bb0615) 2007; 25 Hardin-Pouzet (10.1016/j.it.2020.07.007_bb0235) 1997; 20 Osso (10.1016/j.it.2020.07.007_bb0560) 2015; 163 Giovannoni (10.1016/j.it.2020.07.007_bb0205) 2020; 23 Wheeler (10.1016/j.it.2020.07.007_bb0465) 2019; 176 Constantinescu (10.1016/j.it.2020.07.007_bb0310) 2005; 95 Mathys (10.1016/j.it.2020.07.007_bb0485) 2019; 570 Brahmachari (10.1016/j.it.2020.07.007_bb0595) 2006; 26 Zeinstra (10.1016/j.it.2020.07.007_bb0275) 2000; 11 International Multiple Sclerosis Genetics Consortium (10.1016/j.it.2020.07.007_bb0455) 2019; 365 Brambilla (10.1016/j.it.2020.07.007_bb0090) 2005; 202 Bayraktar (10.1016/j.it.2020.07.007_bb0045) 2020; 23 Burbach (10.1016/j.it.2020.07.007_bb0650) 2004; 24 Busquets (10.1016/j.it.2020.07.007_bb0395) 2019; 97 Chao (10.1016/j.it.2020.07.007_bb0405) 2019; 179 Wendeln (10.1016/j.it.2020.07.007_bb0505) 2018; 556 Mascanfroni (10.1016/j.it.2020.07.007_bb0335) 2015; 21 Zeisel (10.1016/j.it.2020.07.007_bb0040) 2015; 347 Geiger (10.1016/j.it.2020.07.007_bb0375) 2016; 167 De Miranda (10.1016/j.it.2020.07.007_bb0635) 2009; 23 Herrmann (10.1016/j.it.2020.07.007_bb0080) 2008; 28 Zeinstra (10.1016/j.it.2020.07.007_bb0300) 2003; 135 Hamo (10.1016/j.it.2020.07.007_bb0290) 2007; 55 Meylan (10.1016/j.it.2020.07.007_bb0160) 2005; 437 Ceyzeriat (10.1016/j.it.2020.07.007_bb0085) 2016; 330 Vasek (10.1016/j.it.2020.07.007_bb0540) 2016; 534 Rothhammer (10.1016/j.it.2020.07.007_bb0440) 2018; 8 Quintana (10.1016/j.it.2020.07.007_bb0260) 2019; 4 Prajeeth (10.1016/j.it.2020.07.007_bb0315) 2017; 14 Juricek (10.1016/j.it.2020.07.007_bb0445) 2017; 7 Labombarda (10.1016/j.it.2020.07.007_bb0610) 2011; 231 Franke (10.1016/j.it.2020.07.007_bb0585) 2012; 8 Rothhammer (10.1016/j.it.2020.07.007_bb0435) 2017; 4 Geyer (10.1016/j.it.2020.07.007_bb0515) 2019; 12 Yamada (10.1016/j.it.2020.07.007_bb0200) 2016; 17 Baecher-Allan (10.1016/j.it.2020.07.007_bb0210) 2018; 97 |
| References_xml | – volume: 55 start-page: 1169 year: 2007 end-page: 1177 ident: bb0290 article-title: Distinct regulation of MHC molecule expression on astrocytes and microglia during viral encephalomyelitis publication-title: Glia – volume: 556 start-page: 113 year: 2018 end-page: 117 ident: bb0385 article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1 publication-title: Nature – volume: 20 start-page: 79 year: 1997 end-page: 85 ident: bb0235 article-title: Glutamate metabolism is down-regulated in astrocytes during experimental allergic encephalomyelitis publication-title: Glia – volume: 15 start-page: 951 year: 2015 end-page: 959 ident: bb0525 article-title: Long-term sequelae of West Nile virus-related illness: a systematic review publication-title: Lancet Infect. Dis. – volume: 17 start-page: 705 year: 2012 end-page: 718 ident: bb0115 article-title: Regulation of the phosphatase calcineurin by insulin-like growth factor I unveils a key role of astrocytes in Alzheimer’s pathology publication-title: Mol. Psychiatry – volume: 95 start-page: 5795 year: 1998 end-page: 5800 ident: bb0625 article-title: Amyloid beta-peptide stimulates nitric oxide production in astrocytes through an NFκB-dependent mechanism publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 127 start-page: 843 year: 2017 end-page: 856 ident: bb0180 article-title: Regional astrocyte IFN signaling restricts pathogenesis during neurotropic viral infection publication-title: J. Clin. Invest. – volume: 6 start-page: 24251 year: 2016 ident: bb0270 article-title: MHC-class-II are expressed in a subpopulation of human neural stem cells publication-title: Sci. Rep. – volume: 38 year: 2019 ident: bb0150 article-title: OTUB1 inhibits CNS autoimmunity by preventing IFN-γ-induced hyperactivation of astrocytes publication-title: EMBO J. – volume: 22 start-page: 586 year: 2016 end-page: 597 ident: bb0135 article-title: Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor publication-title: Nat. Med. – volume: 135 start-page: 166 year: 2003 end-page: 171 ident: bb0300 article-title: Reactive astrocytes in chronic active lesions of multiple sclerosis express co-stimulatory molecules B7-1 and B7-2 publication-title: J. Neuroimmunol. – volume: 558 start-page: 141 year: 2018 end-page: 145 ident: bb0370 article-title: Hippo/Mst signalling couples metabolic state and immune function of CD8α publication-title: Nature – volume: 231 start-page: 135 year: 2011 end-page: 146 ident: bb0610 article-title: Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury publication-title: Exp. Neurol. – volume: 363 year: 2019 ident: bb0250 article-title: Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation publication-title: Science – volume: 9 start-page: 10 year: 2003 end-page: 22 ident: bb0580 article-title: Cytokines: powerful regulators of glial cell activation publication-title: Neuroscientist – volume: 167 start-page: 829 year: 2016 end-page: 842 ident: bb0375 article-title: L-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity publication-title: Cell – volume: 20 start-page: 81 year: 2020 end-page: 82 ident: bb0065 article-title: Neuroinflammation and neurodegeneration in human brain at single-cell resolution publication-title: Nat. Rev. Immunol. – volume: 334 start-page: 1727 year: 2011 end-page: 1731 ident: bb0010 article-title: The Hedgehog pathway promotes blood–brain barrier integrity and CNS immune quiescence publication-title: Science – volume: 28 start-page: 7231 year: 2008 end-page: 7243 ident: bb0080 article-title: STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury publication-title: J. Neurosci. – volume: 8 start-page: 4970 year: 2018 ident: bb0440 article-title: Detection of aryl hydrocarbon receptor agonists in human samples publication-title: Sci. Rep. – volume: 126 start-page: 711 year: 2013 end-page: 724 ident: bb0145 article-title: Astrocytic A20 ameliorates experimental autoimmune encephalomyelitis by inhibiting NF-κB- and STAT1-dependent chemokine production in astrocytes publication-title: Acta Neuropathol. – volume: 541 start-page: 481 year: 2017 end-page: 487 ident: bb0060 article-title: Neurotoxic reactive astrocytes are induced by activated microglia publication-title: Nature – volume: 38 start-page: 2148 year: 2013 end-page: 2159 ident: bb0670 article-title: Reactive oxygen species from human astrocytes induced functional impairment and oxidative damage publication-title: Neurochem. Res. – volume: 21 start-page: 1983 year: 2020 ident: bb0450 article-title: Aryl hydrocarbon receptor in post-mortem hippocampus and in serum from young, elder, and Alzheimer’s patients publication-title: Int. J. Mol. Sci. – volume: 17 start-page: 466 year: 2015 end-page: 477 ident: bb0190 article-title: RNase L activates the NLRP3 inflammasome during viral infections publication-title: Cell Host Microbe – volume: 202 start-page: 145 year: 2005 end-page: 156 ident: bb0090 article-title: Inhibition of astroglial nuclear factor κB reduces inflammation and improves functional recovery after spinal cord injury publication-title: J. Exp. Med. – volume: 97 start-page: 742 year: 2018 end-page: 768 ident: bb0210 article-title: Multiple sclerosis: mechanisms and immunotherapy publication-title: Neuron – volume: 704 start-page: 92 year: 1995 end-page: 96 ident: bb0305 article-title: T-cell costimulatory molecules B7-1 (CD80) and B7-2 (CD86) are expressed in human microglia but not in astrocytes in culture publication-title: Brain Res. – volume: 170 start-page: 649 year: 2017 end-page: 663 ident: bb0390 article-title: TREM2 maintains microglial metabolic fitness in Alzheimer’s disease publication-title: Cell – volume: 177 start-page: 1217 year: 2019 end-page: 1231 ident: bb0420 article-title: A forward chemical genetic screen reveals gut microbiota metabolites that modulate host physiology publication-title: Cell – volume: 330 start-page: 205 year: 2016 end-page: 218 ident: bb0085 article-title: The complex STATes of astrocyte reactivity: how are they controlled by the JAK–STAT3 pathway? publication-title: Neuroscience – volume: 97 start-page: 1723 year: 2019 end-page: 1733 ident: bb0395 article-title: c-Jun N-terminal Kinase 1 ablation protects against metabolic-induced hippocampal cognitive impairments publication-title: J. Mol. Med. (Berl.) – volume: 23 start-page: 500 year: 2020 end-page: 509 ident: bb0045 article-title: Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell publication-title: Nat. Neurosci. – volume: 1551 start-page: 45 year: 2014 end-page: 58 ident: bb0100 article-title: Involvement of p38 MAPK in reactive astrogliosis induced by ischemic stroke publication-title: Brain Res. – volume: 21 start-page: 1049 year: 2018 end-page: 1060 ident: bb0500 article-title: Epigenetic regulation of brain region-specific microglia clearance activity publication-title: Nat. Neurosci. – volume: 9 start-page: 1623 year: 2018 ident: bb0035 article-title: Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers publication-title: Nat. Commun. – volume: 351 start-page: 849 year: 2016 end-page: 854 ident: bb0050 article-title: Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling publication-title: Science – volume: 12 start-page: 560 year: 2011 end-page: 567 ident: bb0510 article-title: RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation publication-title: Nat. Immunol. – volume: 59 start-page: 166 year: 2011 end-page: 176 ident: bb0220 article-title: Inhibition of reactive astrocytosis in established experimental autoimmune encephalomyelitis favors infiltration by myeloid cells over T cells and enhances severity of disease publication-title: Glia – volume: 9 start-page: 16944 year: 2019 ident: bb0365 article-title: Co-stimulation with IL-1β and TNF-α induces an inflammatory reactive astrocyte phenotype with neurosupportive characteristics in a human pluripotent stem cell model system publication-title: Sci. Rep. – volume: 23 start-page: 1064 year: 2009 end-page: 1071 ident: bb0635 article-title: Astrocytes recognize intracellular polyinosinic-polycytidylic acid via MDA-5 publication-title: FASEB J. – volume: 4 year: 2019 ident: bb0260 article-title: Myeloid cells in the central nervous system: so similar, yet so different publication-title: Sci. Immunol. – volume: 565 start-page: 246 year: 2019 end-page: 250 ident: bb0360 article-title: Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery publication-title: Nature – volume: 12 start-page: 57 year: 2019 ident: bb0515 article-title: Immunity against bacterial infection of the central nervous system: an astrocyte perspective publication-title: Front. Mol. Neurosci. – volume: 23 start-page: 939 year: 2020 end-page: 951 ident: bb0205 article-title: AHR is a Zika virus host factor and a candidate target for antiviral therapy publication-title: Nat. Neurosci. – volume: 13 start-page: 277 year: 2016 ident: bb0195 article-title: Fast type I interferon response protects astrocytes from flavivirus infection and virus-induced cytopathic effects publication-title: J. Neuroinflammation – volume: 97 start-page: 189 year: 2019 end-page: 199 ident: bb0075 article-title: Effect of DJ-1 on the neuroprotection of astrocytes subjected to cerebral ischemia/reperfusion injury publication-title: J. Mol. Med. (Berl.) – volume: 509 start-page: 189 year: 2014 end-page: 194 ident: bb0020 article-title: Astrocyte-encoded positional cues maintain sensorimotor circuit integrity publication-title: Nature – volume: 534 start-page: 538 year: 2016 end-page: 543 ident: bb0540 article-title: A complement-microglial axis drives synapse loss during virus-induced memory impairment publication-title: Nature – volume: 14 start-page: 1054 year: 2013 end-page: 1063 ident: bb0330 article-title: IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39 publication-title: Nat. Immunol. – volume: 35 start-page: 2817 year: 2015 end-page: 2829 ident: bb0125 article-title: The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases publication-title: J. Neurosci. – volume: 504 start-page: 394 year: 2013 end-page: 400 ident: bb0015 article-title: Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways publication-title: Nature – volume: 20 start-page: 396 year: 2017 end-page: 405 ident: bb0030 article-title: Identification of diverse astrocyte populations and their malignant analogs publication-title: Nat. Neurosci. – volume: 4 year: 2019 ident: bb0255 article-title: Conventional DCs sample and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to initiate neuroinflammation publication-title: Sci. Immunol. – volume: 14 start-page: 204 year: 2017 ident: bb0315 article-title: Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties publication-title: J. Neuroinflammation – volume: 570 start-page: 332 year: 2019 end-page: 337 ident: bb0485 article-title: Single-cell transcriptomic analysis of Alzheimer’s disease publication-title: Nature – volume: 15 start-page: 87 year: 2015 end-page: 103 ident: bb0175 article-title: Type I interferons in infectious disease publication-title: Nat. Rev. Immunol. – volume: 92 start-page: e01901 year: 2018 end-page: e01917 ident: bb0185 article-title: Alpha/beta interferon (IFN-α/β) signaling in astrocytes mediates protection against viral encephalomyelitis and regulates IFN-γ-dependent responses publication-title: J. Virol. – volume: 20 start-page: 1147 year: 2014 end-page: 1156 ident: bb0245 article-title: Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation publication-title: Nat. Med. – volume: 387 start-page: 1531 year: 2016 end-page: 1539 ident: bb0550 article-title: Guillain–Barré syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study publication-title: Lancet – volume: 557 start-page: 724 year: 2018 end-page: 728 ident: bb0430 article-title: Microglial control of astrocytes in response to microbial metabolites publication-title: Nature – volume: 64 start-page: 553 year: 2016 end-page: 569 ident: bb0325 article-title: Production of IL-27 in multiple sclerosis lesions by astrocytes and myeloid cells: modulation of local immune responses publication-title: Glia – volume: 532 start-page: 195 year: 2016 end-page: 200 ident: bb0230 article-title: Astrocyte scar formation aids central nervous system axon regeneration publication-title: Nature – volume: 486 start-page: 410 year: 2012 end-page: 414 ident: bb0005 article-title: Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors publication-title: Nature – volume: 19 start-page: 151 year: 2018 end-page: 161 ident: bb0530 article-title: Astrocytes decrease adult neurogenesis during virus-induced memory dysfunction via IL-1 publication-title: Nat. Immunol. – volume: 18 start-page: 10541 year: 1998 end-page: 10552 ident: bb0605 article-title: A role for transforming growth factor alpha as an inducer of astrogliosis publication-title: J. Neurosci. – volume: 24 start-page: 1024 year: 2018 end-page: 1035 ident: bb0130 article-title: STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis publication-title: Nat. Med. – volume: 11 start-page: 158 year: 2014 ident: bb0095 article-title: Calcineurin and glial signaling: neuroinflammation and beyond publication-title: J. Neuroinflammation – volume: 34 start-page: 410 year: 2013 end-page: 422 ident: bb0565 article-title: Modeling the heterogeneity of multiple sclerosis in animals publication-title: Trends Immunol. – volume: 9 start-page: a020009 year: 2019 ident: bb0215 article-title: Regulation of astrocyte functions in multiple sclerosis publication-title: Cold Spring Harb. Perspect. Med. – volume: 29 start-page: 11511 year: 2009 end-page: 11522 ident: bb0225 article-title: Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS publication-title: J. Neurosci. – volume: 37 start-page: 625 year: 2015 end-page: 638 ident: bb0355 article-title: Control of autoimmune CNS inflammation by astrocytes publication-title: Semin. Immunopathol. – volume: 25 start-page: 3039 year: 2007 end-page: 3046 ident: bb0615 article-title: Testosterone decreases reactive astroglia and reactive microglia after brain injury in male rats: role of its metabolites, oestradiol and dihydrotestosterone publication-title: Eur. J. Neurosci. – volume: 21 start-page: 638 year: 2015 end-page: 646 ident: bb0335 article-title: Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α publication-title: Nat. Med. – volume: 347 start-page: 1138 year: 2015 end-page: 1142 ident: bb0040 article-title: Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq publication-title: Science – volume: 139 start-page: 1939 year: 2016 end-page: 1957 ident: bb0350 article-title: IL-10-dependent Tr1 cells attenuate astrocyte activation and ameliorate chronic central nervous system inflammation publication-title: Brain – volume: 8 year: 2013 ident: bb0590 article-title: ROS detoxification and proinflammatory cytokines are linked by p38 MAPK signaling in a model of mature astrocyte activation publication-title: PLoS One – volume: 337 start-page: 358 year: 2012 end-page: 362 ident: bb0025 article-title: Regional astrocyte allocation regulates CNS synaptogenesis and repair publication-title: Science – volume: 437 start-page: 1167 year: 2005 end-page: 1172 ident: bb0160 article-title: Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus publication-title: Nature – volume: 176 start-page: 581 year: 2019 end-page: 596 ident: bb0465 article-title: Environmental control of astrocyte pathogenic activities in CNS inflammation publication-title: Cell – volume: 163 start-page: 1574 year: 2015 end-page: 1576 ident: bb0560 article-title: Astrocytes underlie neuroinflammatory memory impairment publication-title: Cell – volume: 9 start-page: 278 year: 2015 ident: bb0120 article-title: Elusive roles for reactive astrocytes in neurodegenerative diseases publication-title: Front. Cell. Neurosci. – volume: 43 start-page: 46 year: 2016 end-page: 53 ident: bb0460 article-title: Environmental control of autoimmune inflammation in the central nervous system publication-title: Curr. Opin. Immunol. – volume: 50 start-page: 169 year: 2001 end-page: 180 ident: bb0240 article-title: Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage publication-title: Ann. Neurol. – volume: 22 start-page: 1276 year: 2019 end-page: 1288 ident: bb0535 article-title: T cells promote microglia-mediated synaptic elimination and cognitive dysfunction during recovery from neuropathogenic flaviviruses publication-title: Nat. Neurosci. – volume: 6 year: 2011 ident: bb0105 article-title: Astroglial inhibition of NF-κB does not ameliorate disease onset and progression in a mouse model for amyotrophic lateral sclerosis (ALS) publication-title: PLoS One – volume: 11 start-page: 854 year: 2010 end-page: 861 ident: bb0345 article-title: The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27 publication-title: Nat. Immunol. – volume: 26 start-page: 7532 year: 2006 end-page: 7540 ident: bb0600 article-title: Epidermal growth factor receptor activation: an upstream signal for transition of quiescent astrocytes into reactive astrocytes after neural injury publication-title: J. Neurosci. – volume: 558 start-page: 454 year: 2018 end-page: 459 ident: bb0340 article-title: Induction and transcriptional regulation of the co-inhibitory gene module in T cells publication-title: Nature – volume: 7 start-page: 9794 year: 2017 ident: bb0445 article-title: AhR-deficiency as a cause of demyelinating disease and inflammation publication-title: Sci. Rep. – volume: 8 start-page: 629 year: 2012 end-page: 657 ident: bb0585 article-title: Pathophysiology of astroglial purinergic signalling publication-title: Purinergic Signal – volume: 360 start-page: 449 year: 2018 end-page: 453 ident: bb0380 article-title: Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity publication-title: Science – volume: 25 start-page: 2537 year: 2005 end-page: 2546 ident: bb0295 article-title: Microglial expression of the B7 family member B7 homolog 1 confers strong immune inhibition: implications for immune responses and autoimmunity in the CNS publication-title: J. Neurosci. – volume: 179 start-page: 3268 year: 2007 end-page: 3275 ident: bb0320 article-title: Suppressive effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis publication-title: J. Immunol. – volume: 105 start-page: 855 year: 2020 end-page: 866.e5 ident: bb0475 article-title: Astrocyte unfolded protein response induces a specific reactivity state that causes non-cell-autonomous neuronal degeneration publication-title: Neuron – volume: 4 year: 2017 ident: bb0435 article-title: Dynamic regulation of serum aryl hydrocarbon receptor agonists in MS publication-title: Neurol. Neuroimmunol. Neuroinflamm. – volume: 96 start-page: 1279 year: 2018 end-page: 1292 ident: bb0265 article-title: Antigen-presenting cell diversity for T cell reactivation in central nervous system autoimmunity publication-title: J. Mol. Med. (Berl.) – volume: 30 start-page: 5843 year: 2010 end-page: 5854 ident: bb0575 article-title: Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-β after vascular damage publication-title: J. Neurosci. – volume: 9 year: 2016 ident: bb0140 article-title: Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity through SOCS2 publication-title: Sci. Signal. – volume: 179 start-page: 1483 year: 2019 end-page: 1498.e22 ident: bb0405 article-title: Metabolic control of astrocyte pathogenic activity via cPLA2-MAVS publication-title: Cell – volume: 118 start-page: 1532 year: 2008 end-page: 1543 ident: bb0570 article-title: Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis publication-title: J. Clin. Invest. – volume: 11 year: 2019 ident: bb0480 article-title: Astrocyte molecular signatures in Huntington’s disease publication-title: Sci. Transl. Med. – volume: 17 start-page: 119 year: 2020 ident: bb0280 article-title: Astrocytes have the capacity to act as antigen-presenting cells in the Parkinson’s disease brain publication-title: J. Neuroinflammation – volume: 18 start-page: 132 year: 2017 end-page: 141 ident: bb0155 article-title: Infectious immunity in the central nervous system and brain function publication-title: Nat. Immunol. – volume: 388 start-page: 891 year: 2016 end-page: 897 ident: bb0545 article-title: Congenital Zika virus syndrome in Brazil: a case series of the first 1501 livebirths with complete investigation publication-title: Lancet – volume: 114 start-page: 2012 year: 2017 end-page: 2017 ident: bb0400 article-title: Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 365 year: 2019 ident: bb0455 article-title: Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility publication-title: Science – volume: 120 start-page: 1267 year: 2007 end-page: 1277 ident: bb0660 article-title: Synemin is expressed in reactive astrocytes in neurotrauma and interacts differentially with vimentin and GFAP intermediate filament networks publication-title: J. Cell Sci. – volume: 25 start-page: 4649 year: 2005 end-page: 4658 ident: bb0110 article-title: Calcineurin triggers reactive/inflammatory processes in astrocytes and is upregulated in aging and Alzheimer’s models publication-title: J. Neurosci. – volume: 58 start-page: 650 year: 2010 end-page: 664 ident: bb0640 article-title: Interactions between TLR7 and TLR9 agonists and receptors regulate innate immune responses by astrocytes and microglia publication-title: Glia – volume: 122 start-page: 669 year: 2005 end-page: 682 ident: bb0165 article-title: Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3 publication-title: Cell – volume: 176 start-page: 1323 year: 2010 end-page: 1338 ident: bb0520 article-title: induces the secretion of proinflammatory mediators from glial cells leading to astrocyte apoptosis publication-title: Am. J. Pathol. – volume: 119 start-page: 216 year: 2006 end-page: 220 ident: bb0285 article-title: Induction of classical and nonclassical MHC-I on mouse brain astrocytes by Japanese encephalitis virus publication-title: Virus Res. – volume: 17 start-page: 687 year: 2016 end-page: 694 ident: bb0200 article-title: Constitutive aryl hydrocarbon receptor signaling constrains type I interferon-mediated antiviral innate defense publication-title: Nat. Immunol. – volume: 11 start-page: 89 year: 2000 end-page: 91 ident: bb0275 article-title: Astrocytes in chronic active multiple sclerosis plaques express MHC class II molecules publication-title: Neuroreport – volume: 95 start-page: 331 year: 2005 end-page: 340 ident: bb0310 article-title: Astrocytes as antigen-presenting cells: expression of IL-12/IL-23 publication-title: J. Neurochem. – volume: 118 start-page: 826 year: 2011 end-page: 840 ident: bb0665 article-title: ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels publication-title: J. Neurochem. – volume: 26 start-page: 131 year: 2020 end-page: 142 ident: bb0490 article-title: Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease publication-title: Nat. Med. – volume: 26 start-page: 4930 year: 2006 end-page: 4939 ident: bb0595 article-title: Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide publication-title: J. Neurosci. – volume: 658 start-page: 53 year: 2017 end-page: 56 ident: bb0645 article-title: Human microglia and astrocytes express cGAS–STING viral sensing components publication-title: Neurosci. Lett. – volume: 441 start-page: 101 year: 2006 end-page: 105 ident: bb0170 article-title: Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses publication-title: Nature – volume: 19 start-page: 235 year: 2018 end-page: 249 ident: bb0410 article-title: Lactate in the brain: from metabolic end-product to signalling molecule publication-title: Nat. Rev. Neurosci. – volume: 551 start-page: 648 year: 2017 end-page: 652 ident: bb0415 article-title: A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites publication-title: Nature – volume: 578 start-page: 593 year: 2020 end-page: 599 ident: bb0495 article-title: MAFG-driven astrocytes promote CNS inflammation publication-title: Nature – volume: 574 start-page: 543 year: 2019 end-page: 548 ident: bb0425 article-title: The microbiota regulate neuronal function and fear extinction learning publication-title: Nature – volume: 10 start-page: 3890 year: 2019 ident: bb0555 article-title: Zika virus replicates in adult human brain tissue and impairs synapses and memory in mice publication-title: Nat. Commun. – volume: 107 start-page: 8416 year: 2010 end-page: 8421 ident: bb0620 article-title: Estradiol inhibits ongoing autoimmune neuroinflammation and NFκB-dependent CCL2 expression in reactive astrocytes publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 556 start-page: 332 year: 2018 end-page: 338 ident: bb0505 article-title: Innate immune memory in the brain shapes neurological disease hallmarks publication-title: Nature – volume: 59 start-page: 242 year: 2011 end-page: 255 ident: bb0630 article-title: Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways publication-title: Glia – volume: 24 start-page: 2421 year: 2004 end-page: 2430 ident: bb0650 article-title: Induction of brain-derived neurotrophic factor in plaque-associated glial cells of aged APP23 transgenic mice publication-title: J. Neurosci. – volume: 7 year: 2014 ident: bb0055 article-title: Astrogliosis publication-title: Cold Spring Harb. Perspect. Biol. – volume: 139 year: 2017 ident: bb0470 article-title: Maternal and perinatal exposures are associated with risk for pediatric-onset multiple sclerosis publication-title: Pediatrics – volume: 136 start-page: 101 year: 2018 end-page: 108 ident: bb0655 article-title: Crosstalk between glia, extracellular matrix and neurons publication-title: Brain Res. Bull. – volume: 35 start-page: 2817 year: 2015 ident: 10.1016/j.it.2020.07.007_bb0125 article-title: The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3516-14.2015 – volume: 11 year: 2019 ident: 10.1016/j.it.2020.07.007_bb0480 article-title: Astrocyte molecular signatures in Huntington’s disease publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaw8546 – volume: 557 start-page: 724 year: 2018 ident: 10.1016/j.it.2020.07.007_bb0430 article-title: Microglial control of astrocytes in response to microbial metabolites publication-title: Nature doi: 10.1038/s41586-018-0119-x – volume: 541 start-page: 481 year: 2017 ident: 10.1016/j.it.2020.07.007_bb0060 article-title: Neurotoxic reactive astrocytes are induced by activated microglia publication-title: Nature doi: 10.1038/nature21029 – volume: 38 start-page: 2148 year: 2013 ident: 10.1016/j.it.2020.07.007_bb0670 article-title: Reactive oxygen species from human astrocytes induced functional impairment and oxidative damage publication-title: Neurochem. Res. doi: 10.1007/s11064-013-1123-z – volume: 17 start-page: 705 year: 2012 ident: 10.1016/j.it.2020.07.007_bb0115 article-title: Regulation of the phosphatase calcineurin by insulin-like growth factor I unveils a key role of astrocytes in Alzheimer’s pathology publication-title: Mol. Psychiatry doi: 10.1038/mp.2011.128 – volume: 55 start-page: 1169 year: 2007 ident: 10.1016/j.it.2020.07.007_bb0290 article-title: Distinct regulation of MHC molecule expression on astrocytes and microglia during viral encephalomyelitis publication-title: Glia doi: 10.1002/glia.20538 – volume: 96 start-page: 1279 year: 2018 ident: 10.1016/j.it.2020.07.007_bb0265 article-title: Antigen-presenting cell diversity for T cell reactivation in central nervous system autoimmunity publication-title: J. Mol. Med. (Berl.) doi: 10.1007/s00109-018-1709-7 – volume: 12 start-page: 560 year: 2011 ident: 10.1016/j.it.2020.07.007_bb0510 article-title: RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation publication-title: Nat. Immunol. doi: 10.1038/ni.2027 – volume: 97 start-page: 189 year: 2019 ident: 10.1016/j.it.2020.07.007_bb0075 article-title: Effect of DJ-1 on the neuroprotection of astrocytes subjected to cerebral ischemia/reperfusion injury publication-title: J. Mol. Med. (Berl.) doi: 10.1007/s00109-018-1719-5 – volume: 437 start-page: 1167 year: 2005 ident: 10.1016/j.it.2020.07.007_bb0160 article-title: Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus publication-title: Nature doi: 10.1038/nature04193 – volume: 23 start-page: 500 year: 2020 ident: 10.1016/j.it.2020.07.007_bb0045 article-title: Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map publication-title: Nat. Neurosci. doi: 10.1038/s41593-020-0602-1 – volume: 347 start-page: 1138 year: 2015 ident: 10.1016/j.it.2020.07.007_bb0040 article-title: Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq publication-title: Science doi: 10.1126/science.aaa1934 – volume: 578 start-page: 593 year: 2020 ident: 10.1016/j.it.2020.07.007_bb0495 article-title: MAFG-driven astrocytes promote CNS inflammation publication-title: Nature doi: 10.1038/s41586-020-1999-0 – volume: 19 start-page: 235 year: 2018 ident: 10.1016/j.it.2020.07.007_bb0410 article-title: Lactate in the brain: from metabolic end-product to signalling molecule publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2018.19 – volume: 14 start-page: 204 year: 2017 ident: 10.1016/j.it.2020.07.007_bb0315 article-title: Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties publication-title: J. Neuroinflammation doi: 10.1186/s12974-017-0978-3 – volume: 8 start-page: 629 year: 2012 ident: 10.1016/j.it.2020.07.007_bb0585 article-title: Pathophysiology of astroglial purinergic signalling publication-title: Purinergic Signal doi: 10.1007/s11302-012-9300-0 – volume: 9 start-page: 1623 year: 2018 ident: 10.1016/j.it.2020.07.007_bb0035 article-title: Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers publication-title: Nat. Commun. doi: 10.1038/s41467-018-03940-3 – volume: 139 year: 2017 ident: 10.1016/j.it.2020.07.007_bb0470 article-title: Maternal and perinatal exposures are associated with risk for pediatric-onset multiple sclerosis publication-title: Pediatrics doi: 10.1542/peds.2016-2838 – volume: 177 start-page: 1217 year: 2019 ident: 10.1016/j.it.2020.07.007_bb0420 article-title: A forward chemical genetic screen reveals gut microbiota metabolites that modulate host physiology publication-title: Cell doi: 10.1016/j.cell.2019.03.036 – volume: 92 start-page: e01901 year: 2018 ident: 10.1016/j.it.2020.07.007_bb0185 article-title: Alpha/beta interferon (IFN-α/β) signaling in astrocytes mediates protection against viral encephalomyelitis and regulates IFN-γ-dependent responses publication-title: J. Virol. doi: 10.1128/JVI.01901-17 – volume: 17 start-page: 466 year: 2015 ident: 10.1016/j.it.2020.07.007_bb0190 article-title: RNase L activates the NLRP3 inflammasome during viral infections publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.02.010 – volume: 8 start-page: 4970 year: 2018 ident: 10.1016/j.it.2020.07.007_bb0440 article-title: Detection of aryl hydrocarbon receptor agonists in human samples publication-title: Sci. Rep. doi: 10.1038/s41598-018-23323-4 – volume: 59 start-page: 166 year: 2011 ident: 10.1016/j.it.2020.07.007_bb0220 article-title: Inhibition of reactive astrocytosis in established experimental autoimmune encephalomyelitis favors infiltration by myeloid cells over T cells and enhances severity of disease publication-title: Glia doi: 10.1002/glia.21088 – volume: 170 start-page: 649 year: 2017 ident: 10.1016/j.it.2020.07.007_bb0390 article-title: TREM2 maintains microglial metabolic fitness in Alzheimer’s disease publication-title: Cell doi: 10.1016/j.cell.2017.07.023 – volume: 8 year: 2013 ident: 10.1016/j.it.2020.07.007_bb0590 article-title: ROS detoxification and proinflammatory cytokines are linked by p38 MAPK signaling in a model of mature astrocyte activation publication-title: PLoS One doi: 10.1371/journal.pone.0083049 – volume: 97 start-page: 742 year: 2018 ident: 10.1016/j.it.2020.07.007_bb0210 article-title: Multiple sclerosis: mechanisms and immunotherapy publication-title: Neuron doi: 10.1016/j.neuron.2018.01.021 – volume: 25 start-page: 2537 year: 2005 ident: 10.1016/j.it.2020.07.007_bb0295 article-title: Microglial expression of the B7 family member B7 homolog 1 confers strong immune inhibition: implications for immune responses and autoimmunity in the CNS publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4794-04.2005 – volume: 19 start-page: 151 year: 2018 ident: 10.1016/j.it.2020.07.007_bb0530 article-title: Astrocytes decrease adult neurogenesis during virus-induced memory dysfunction via IL-1 publication-title: Nat. Immunol. doi: 10.1038/s41590-017-0021-y – volume: 20 start-page: 79 year: 1997 ident: 10.1016/j.it.2020.07.007_bb0235 article-title: Glutamate metabolism is down-regulated in astrocytes during experimental allergic encephalomyelitis publication-title: Glia doi: 10.1002/(SICI)1098-1136(199705)20:1<79::AID-GLIA8>3.0.CO;2-0 – volume: 25 start-page: 3039 year: 2007 ident: 10.1016/j.it.2020.07.007_bb0615 article-title: Testosterone decreases reactive astroglia and reactive microglia after brain injury in male rats: role of its metabolites, oestradiol and dihydrotestosterone publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2007.05563.x – volume: 509 start-page: 189 year: 2014 ident: 10.1016/j.it.2020.07.007_bb0020 article-title: Astrocyte-encoded positional cues maintain sensorimotor circuit integrity publication-title: Nature doi: 10.1038/nature13161 – volume: 20 start-page: 396 year: 2017 ident: 10.1016/j.it.2020.07.007_bb0030 article-title: Identification of diverse astrocyte populations and their malignant analogs publication-title: Nat. Neurosci. doi: 10.1038/nn.4493 – volume: 29 start-page: 11511 year: 2009 ident: 10.1016/j.it.2020.07.007_bb0225 article-title: Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1514-09.2009 – volume: 9 start-page: 16944 year: 2019 ident: 10.1016/j.it.2020.07.007_bb0365 article-title: Co-stimulation with IL-1β and TNF-α induces an inflammatory reactive astrocyte phenotype with neurosupportive characteristics in a human pluripotent stem cell model system publication-title: Sci. Rep. doi: 10.1038/s41598-019-53414-9 – volume: 30 start-page: 5843 year: 2010 ident: 10.1016/j.it.2020.07.007_bb0575 article-title: Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-β after vascular damage publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0137-10.2010 – volume: 11 start-page: 158 year: 2014 ident: 10.1016/j.it.2020.07.007_bb0095 article-title: Calcineurin and glial signaling: neuroinflammation and beyond publication-title: J. Neuroinflammation doi: 10.1186/s12974-014-0158-7 – volume: 21 start-page: 1983 year: 2020 ident: 10.1016/j.it.2020.07.007_bb0450 article-title: Aryl hydrocarbon receptor in post-mortem hippocampus and in serum from young, elder, and Alzheimer’s patients publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21061983 – volume: 388 start-page: 891 year: 2016 ident: 10.1016/j.it.2020.07.007_bb0545 article-title: Congenital Zika virus syndrome in Brazil: a case series of the first 1501 livebirths with complete investigation publication-title: Lancet doi: 10.1016/S0140-6736(16)30902-3 – volume: 486 start-page: 410 year: 2012 ident: 10.1016/j.it.2020.07.007_bb0005 article-title: Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors publication-title: Nature doi: 10.1038/nature11059 – volume: 363 year: 2019 ident: 10.1016/j.it.2020.07.007_bb0250 article-title: Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation publication-title: Science doi: 10.1126/science.aat7554 – volume: 11 start-page: 854 year: 2010 ident: 10.1016/j.it.2020.07.007_bb0345 article-title: The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27 publication-title: Nat. Immunol. doi: 10.1038/ni.1912 – volume: 534 start-page: 538 year: 2016 ident: 10.1016/j.it.2020.07.007_bb0540 article-title: A complement-microglial axis drives synapse loss during virus-induced memory impairment publication-title: Nature doi: 10.1038/nature18283 – volume: 13 start-page: 277 year: 2016 ident: 10.1016/j.it.2020.07.007_bb0195 article-title: Fast type I interferon response protects astrocytes from flavivirus infection and virus-induced cytopathic effects publication-title: J. Neuroinflammation doi: 10.1186/s12974-016-0748-7 – volume: 122 start-page: 669 year: 2005 ident: 10.1016/j.it.2020.07.007_bb0165 article-title: Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3 publication-title: Cell doi: 10.1016/j.cell.2005.08.012 – volume: 558 start-page: 454 year: 2018 ident: 10.1016/j.it.2020.07.007_bb0340 article-title: Induction and transcriptional regulation of the co-inhibitory gene module in T cells publication-title: Nature doi: 10.1038/s41586-018-0206-z – volume: 139 start-page: 1939 year: 2016 ident: 10.1016/j.it.2020.07.007_bb0350 article-title: IL-10-dependent Tr1 cells attenuate astrocyte activation and ameliorate chronic central nervous system inflammation publication-title: Brain doi: 10.1093/brain/aww113 – volume: 360 start-page: 449 year: 2018 ident: 10.1016/j.it.2020.07.007_bb0380 article-title: Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity publication-title: Science doi: 10.1126/science.aan4665 – volume: 58 start-page: 650 year: 2010 ident: 10.1016/j.it.2020.07.007_bb0640 article-title: Interactions between TLR7 and TLR9 agonists and receptors regulate innate immune responses by astrocytes and microglia publication-title: Glia doi: 10.1002/glia.20952 – volume: 95 start-page: 5795 year: 1998 ident: 10.1016/j.it.2020.07.007_bb0625 article-title: Amyloid beta-peptide stimulates nitric oxide production in astrocytes through an NFκB-dependent mechanism publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.95.10.5795 – volume: 107 start-page: 8416 year: 2010 ident: 10.1016/j.it.2020.07.007_bb0620 article-title: Estradiol inhibits ongoing autoimmune neuroinflammation and NFκB-dependent CCL2 expression in reactive astrocytes publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0910627107 – volume: 9 start-page: a020009 year: 2019 ident: 10.1016/j.it.2020.07.007_bb0215 article-title: Regulation of astrocyte functions in multiple sclerosis publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a029009 – volume: 565 start-page: 246 year: 2019 ident: 10.1016/j.it.2020.07.007_bb0360 article-title: Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery publication-title: Nature doi: 10.1038/s41586-018-0824-5 – volume: 21 start-page: 1049 year: 2018 ident: 10.1016/j.it.2020.07.007_bb0500 article-title: Epigenetic regulation of brain region-specific microglia clearance activity publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0192-3 – volume: 163 start-page: 1574 year: 2015 ident: 10.1016/j.it.2020.07.007_bb0560 article-title: Astrocytes underlie neuroinflammatory memory impairment publication-title: Cell doi: 10.1016/j.cell.2015.12.001 – volume: 9 start-page: 278 year: 2015 ident: 10.1016/j.it.2020.07.007_bb0120 article-title: Elusive roles for reactive astrocytes in neurodegenerative diseases publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2015.00278 – volume: 21 start-page: 638 year: 2015 ident: 10.1016/j.it.2020.07.007_bb0335 article-title: Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α publication-title: Nat. Med. doi: 10.1038/nm.3868 – volume: 135 start-page: 166 year: 2003 ident: 10.1016/j.it.2020.07.007_bb0300 article-title: Reactive astrocytes in chronic active lesions of multiple sclerosis express co-stimulatory molecules B7-1 and B7-2 publication-title: J. Neuroimmunol. doi: 10.1016/S0165-5728(02)00462-9 – volume: 504 start-page: 394 year: 2013 ident: 10.1016/j.it.2020.07.007_bb0015 article-title: Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways publication-title: Nature doi: 10.1038/nature12776 – volume: 231 start-page: 135 year: 2011 ident: 10.1016/j.it.2020.07.007_bb0610 article-title: Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2011.06.001 – volume: 43 start-page: 46 year: 2016 ident: 10.1016/j.it.2020.07.007_bb0460 article-title: Environmental control of autoimmune inflammation in the central nervous system publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2016.09.002 – volume: 28 start-page: 7231 year: 2008 ident: 10.1016/j.it.2020.07.007_bb0080 article-title: STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1709-08.2008 – volume: 120 start-page: 1267 year: 2007 ident: 10.1016/j.it.2020.07.007_bb0660 article-title: Synemin is expressed in reactive astrocytes in neurotrauma and interacts differentially with vimentin and GFAP intermediate filament networks publication-title: J. Cell Sci. doi: 10.1242/jcs.03423 – volume: 23 start-page: 939 year: 2020 ident: 10.1016/j.it.2020.07.007_bb0205 article-title: AHR is a Zika virus host factor and a candidate target for antiviral therapy publication-title: Nat. Neurosci. doi: 10.1038/s41593-020-0664-0 – volume: 127 start-page: 843 year: 2017 ident: 10.1016/j.it.2020.07.007_bb0180 article-title: Regional astrocyte IFN signaling restricts pathogenesis during neurotropic viral infection publication-title: J. Clin. Invest. doi: 10.1172/JCI88720 – volume: 532 start-page: 195 year: 2016 ident: 10.1016/j.it.2020.07.007_bb0230 article-title: Astrocyte scar formation aids central nervous system axon regeneration publication-title: Nature doi: 10.1038/nature17623 – volume: 37 start-page: 625 year: 2015 ident: 10.1016/j.it.2020.07.007_bb0355 article-title: Control of autoimmune CNS inflammation by astrocytes publication-title: Semin. Immunopathol. doi: 10.1007/s00281-015-0515-3 – volume: 7 year: 2014 ident: 10.1016/j.it.2020.07.007_bb0055 article-title: Astrogliosis publication-title: Cold Spring Harb. Perspect. Biol. – volume: 15 start-page: 87 year: 2015 ident: 10.1016/j.it.2020.07.007_bb0175 article-title: Type I interferons in infectious disease publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3787 – volume: 34 start-page: 410 year: 2013 ident: 10.1016/j.it.2020.07.007_bb0565 article-title: Modeling the heterogeneity of multiple sclerosis in animals publication-title: Trends Immunol. doi: 10.1016/j.it.2013.04.006 – volume: 14 start-page: 1054 year: 2013 ident: 10.1016/j.it.2020.07.007_bb0330 article-title: IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39 publication-title: Nat. Immunol. doi: 10.1038/ni.2695 – volume: 9 start-page: 10 year: 2003 ident: 10.1016/j.it.2020.07.007_bb0580 article-title: Cytokines: powerful regulators of glial cell activation publication-title: Neuroscientist doi: 10.1177/1073858402239587 – volume: 22 start-page: 586 year: 2016 ident: 10.1016/j.it.2020.07.007_bb0135 article-title: Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor publication-title: Nat. Med. doi: 10.1038/nm.4106 – volume: 26 start-page: 131 year: 2020 ident: 10.1016/j.it.2020.07.007_bb0490 article-title: Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease publication-title: Nat. Med. doi: 10.1038/s41591-019-0695-9 – volume: 179 start-page: 3268 year: 2007 ident: 10.1016/j.it.2020.07.007_bb0320 article-title: Suppressive effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis publication-title: J. Immunol. doi: 10.4049/jimmunol.179.5.3268 – volume: 167 start-page: 829 year: 2016 ident: 10.1016/j.it.2020.07.007_bb0375 article-title: L-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity publication-title: Cell doi: 10.1016/j.cell.2016.09.031 – volume: 97 start-page: 1723 year: 2019 ident: 10.1016/j.it.2020.07.007_bb0395 article-title: c-Jun N-terminal Kinase 1 ablation protects against metabolic-induced hippocampal cognitive impairments publication-title: J. Mol. Med. (Berl.) doi: 10.1007/s00109-019-01856-z – volume: 570 start-page: 332 year: 2019 ident: 10.1016/j.it.2020.07.007_bb0485 article-title: Single-cell transcriptomic analysis of Alzheimer’s disease publication-title: Nature doi: 10.1038/s41586-019-1195-2 – volume: 26 start-page: 4930 year: 2006 ident: 10.1016/j.it.2020.07.007_bb0595 article-title: Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5480-05.2006 – volume: 95 start-page: 331 year: 2005 ident: 10.1016/j.it.2020.07.007_bb0310 article-title: Astrocytes as antigen-presenting cells: expression of IL-12/IL-23 publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2005.03368.x – volume: 1551 start-page: 45 year: 2014 ident: 10.1016/j.it.2020.07.007_bb0100 article-title: Involvement of p38 MAPK in reactive astrogliosis induced by ischemic stroke publication-title: Brain Res. doi: 10.1016/j.brainres.2014.01.013 – volume: 6 year: 2011 ident: 10.1016/j.it.2020.07.007_bb0105 article-title: Astroglial inhibition of NF-κB does not ameliorate disease onset and progression in a mouse model for amyotrophic lateral sclerosis (ALS) publication-title: PLoS One doi: 10.1371/journal.pone.0017187 – volume: 17 start-page: 119 year: 2020 ident: 10.1016/j.it.2020.07.007_bb0280 article-title: Astrocytes have the capacity to act as antigen-presenting cells in the Parkinson’s disease brain publication-title: J. Neuroinflammation doi: 10.1186/s12974-020-01776-7 – volume: 24 start-page: 1024 year: 2018 ident: 10.1016/j.it.2020.07.007_bb0130 article-title: STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis publication-title: Nat. Med. doi: 10.1038/s41591-018-0044-4 – volume: 330 start-page: 205 year: 2016 ident: 10.1016/j.it.2020.07.007_bb0085 article-title: The complex STATes of astrocyte reactivity: how are they controlled by the JAK–STAT3 pathway? publication-title: Neuroscience doi: 10.1016/j.neuroscience.2016.05.043 – volume: 704 start-page: 92 year: 1995 ident: 10.1016/j.it.2020.07.007_bb0305 article-title: T-cell costimulatory molecules B7-1 (CD80) and B7-2 (CD86) are expressed in human microglia but not in astrocytes in culture publication-title: Brain Res. doi: 10.1016/0006-8993(95)01177-3 – volume: 26 start-page: 7532 year: 2006 ident: 10.1016/j.it.2020.07.007_bb0600 article-title: Epidermal growth factor receptor activation: an upstream signal for transition of quiescent astrocytes into reactive astrocytes after neural injury publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1004-06.2006 – volume: 556 start-page: 332 year: 2018 ident: 10.1016/j.it.2020.07.007_bb0505 article-title: Innate immune memory in the brain shapes neurological disease hallmarks publication-title: Nature doi: 10.1038/s41586-018-0023-4 – volume: 179 start-page: 1483 year: 2019 ident: 10.1016/j.it.2020.07.007_bb0405 article-title: Metabolic control of astrocyte pathogenic activity via cPLA2-MAVS publication-title: Cell doi: 10.1016/j.cell.2019.11.016 – volume: 50 start-page: 169 year: 2001 ident: 10.1016/j.it.2020.07.007_bb0240 article-title: Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage publication-title: Ann. Neurol. doi: 10.1002/ana.1077 – volume: 119 start-page: 216 year: 2006 ident: 10.1016/j.it.2020.07.007_bb0285 article-title: Induction of classical and nonclassical MHC-I on mouse brain astrocytes by Japanese encephalitis virus publication-title: Virus Res. doi: 10.1016/j.virusres.2006.03.006 – volume: 4 year: 2017 ident: 10.1016/j.it.2020.07.007_bb0435 article-title: Dynamic regulation of serum aryl hydrocarbon receptor agonists in MS publication-title: Neurol. Neuroimmunol. Neuroinflamm. doi: 10.1212/NXI.0000000000000359 – volume: 387 start-page: 1531 year: 2016 ident: 10.1016/j.it.2020.07.007_bb0550 article-title: Guillain–Barré syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study publication-title: Lancet doi: 10.1016/S0140-6736(16)00562-6 – volume: 334 start-page: 1727 year: 2011 ident: 10.1016/j.it.2020.07.007_bb0010 article-title: The Hedgehog pathway promotes blood–brain barrier integrity and CNS immune quiescence publication-title: Science doi: 10.1126/science.1206936 – volume: 114 start-page: 2012 year: 2017 ident: 10.1016/j.it.2020.07.007_bb0400 article-title: Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1615413114 – volume: 20 start-page: 81 year: 2020 ident: 10.1016/j.it.2020.07.007_bb0065 article-title: Neuroinflammation and neurodegeneration in human brain at single-cell resolution publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-019-0262-0 – volume: 118 start-page: 826 year: 2011 ident: 10.1016/j.it.2020.07.007_bb0665 article-title: ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2011.07210.x – volume: 7 start-page: 9794 year: 2017 ident: 10.1016/j.it.2020.07.007_bb0445 article-title: AhR-deficiency as a cause of demyelinating disease and inflammation publication-title: Sci. Rep. doi: 10.1038/s41598-017-09621-3 – volume: 176 start-page: 1323 year: 2010 ident: 10.1016/j.it.2020.07.007_bb0520 article-title: Brucella abortus induces the secretion of proinflammatory mediators from glial cells leading to astrocyte apoptosis publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2010.090503 – volume: 18 start-page: 132 year: 2017 ident: 10.1016/j.it.2020.07.007_bb0155 article-title: Infectious immunity in the central nervous system and brain function publication-title: Nat. Immunol. doi: 10.1038/ni.3656 – volume: 556 start-page: 113 year: 2018 ident: 10.1016/j.it.2020.07.007_bb0385 article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1 publication-title: Nature doi: 10.1038/nature25986 – volume: 22 start-page: 1276 year: 2019 ident: 10.1016/j.it.2020.07.007_bb0535 article-title: T cells promote microglia-mediated synaptic elimination and cognitive dysfunction during recovery from neuropathogenic flaviviruses publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0427-y – volume: 574 start-page: 543 year: 2019 ident: 10.1016/j.it.2020.07.007_bb0425 article-title: The microbiota regulate neuronal function and fear extinction learning publication-title: Nature doi: 10.1038/s41586-019-1644-y – volume: 126 start-page: 711 year: 2013 ident: 10.1016/j.it.2020.07.007_bb0145 article-title: Astrocytic A20 ameliorates experimental autoimmune encephalomyelitis by inhibiting NF-κB- and STAT1-dependent chemokine production in astrocytes publication-title: Acta Neuropathol. doi: 10.1007/s00401-013-1183-9 – volume: 23 start-page: 1064 year: 2009 ident: 10.1016/j.it.2020.07.007_bb0635 article-title: Astrocytes recognize intracellular polyinosinic-polycytidylic acid via MDA-5 publication-title: FASEB J. doi: 10.1096/fj.08-121434 – volume: 9 year: 2016 ident: 10.1016/j.it.2020.07.007_bb0140 article-title: Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity through SOCS2 publication-title: Sci. Signal. doi: 10.1126/scisignal.aad0612 – volume: 25 start-page: 4649 year: 2005 ident: 10.1016/j.it.2020.07.007_bb0110 article-title: Calcineurin triggers reactive/inflammatory processes in astrocytes and is upregulated in aging and Alzheimer’s models publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0365-05.2005 – volume: 18 start-page: 10541 year: 1998 ident: 10.1016/j.it.2020.07.007_bb0605 article-title: A role for transforming growth factor alpha as an inducer of astrogliosis publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.18-24-10541.1998 – volume: 441 start-page: 101 year: 2006 ident: 10.1016/j.it.2020.07.007_bb0170 article-title: Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses publication-title: Nature doi: 10.1038/nature04734 – volume: 118 start-page: 1532 year: 2008 ident: 10.1016/j.it.2020.07.007_bb0570 article-title: Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis publication-title: J. Clin. Invest. doi: 10.1172/JCI33464 – volume: 15 start-page: 951 year: 2015 ident: 10.1016/j.it.2020.07.007_bb0525 article-title: Long-term sequelae of West Nile virus-related illness: a systematic review publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(15)00134-6 – volume: 4 year: 2019 ident: 10.1016/j.it.2020.07.007_bb0255 article-title: Conventional DCs sample and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to initiate neuroinflammation publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aau8380 – volume: 11 start-page: 89 year: 2000 ident: 10.1016/j.it.2020.07.007_bb0275 article-title: Astrocytes in chronic active multiple sclerosis plaques express MHC class II molecules publication-title: Neuroreport doi: 10.1097/00001756-200001170-00018 – volume: 558 start-page: 141 year: 2018 ident: 10.1016/j.it.2020.07.007_bb0370 article-title: Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells publication-title: Nature doi: 10.1038/s41586-018-0177-0 – volume: 105 start-page: 855 year: 2020 ident: 10.1016/j.it.2020.07.007_bb0475 article-title: Astrocyte unfolded protein response induces a specific reactivity state that causes non-cell-autonomous neuronal degeneration publication-title: Neuron doi: 10.1016/j.neuron.2019.12.014 – volume: 64 start-page: 553 year: 2016 ident: 10.1016/j.it.2020.07.007_bb0325 article-title: Production of IL-27 in multiple sclerosis lesions by astrocytes and myeloid cells: modulation of local immune responses publication-title: Glia doi: 10.1002/glia.22948 – volume: 59 start-page: 242 year: 2011 ident: 10.1016/j.it.2020.07.007_bb0630 article-title: Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways publication-title: Glia doi: 10.1002/glia.21094 – volume: 24 start-page: 2421 year: 2004 ident: 10.1016/j.it.2020.07.007_bb0650 article-title: Induction of brain-derived neurotrophic factor in plaque-associated glial cells of aged APP23 transgenic mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5599-03.2004 – volume: 337 start-page: 358 year: 2012 ident: 10.1016/j.it.2020.07.007_bb0025 article-title: Regional astrocyte allocation regulates CNS synaptogenesis and repair publication-title: Science doi: 10.1126/science.1222381 – volume: 202 start-page: 145 year: 2005 ident: 10.1016/j.it.2020.07.007_bb0090 article-title: Inhibition of astroglial nuclear factor κB reduces inflammation and improves functional recovery after spinal cord injury publication-title: J. Exp. Med. doi: 10.1084/jem.20041918 – volume: 20 start-page: 1147 year: 2014 ident: 10.1016/j.it.2020.07.007_bb0245 article-title: Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation publication-title: Nat. Med. doi: 10.1038/nm.3681 – volume: 12 start-page: 57 year: 2019 ident: 10.1016/j.it.2020.07.007_bb0515 article-title: Immunity against bacterial infection of the central nervous system: an astrocyte perspective publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2019.00057 – volume: 365 year: 2019 ident: 10.1016/j.it.2020.07.007_bb0455 article-title: Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility publication-title: Science doi: 10.1126/science.aav7188 – volume: 136 start-page: 101 year: 2018 ident: 10.1016/j.it.2020.07.007_bb0655 article-title: Crosstalk between glia, extracellular matrix and neurons publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2017.03.003 – volume: 351 start-page: 849 year: 2016 ident: 10.1016/j.it.2020.07.007_bb0050 article-title: Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling publication-title: Science doi: 10.1126/science.aab3103 – volume: 38 year: 2019 ident: 10.1016/j.it.2020.07.007_bb0150 article-title: OTUB1 inhibits CNS autoimmunity by preventing IFN-γ-induced hyperactivation of astrocytes publication-title: EMBO J. doi: 10.15252/embj.2018100947 – volume: 4 year: 2019 ident: 10.1016/j.it.2020.07.007_bb0260 article-title: Myeloid cells in the central nervous system: so similar, yet so different publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aaw2841 – volume: 17 start-page: 687 year: 2016 ident: 10.1016/j.it.2020.07.007_bb0200 article-title: Constitutive aryl hydrocarbon receptor signaling constrains type I interferon-mediated antiviral innate defense publication-title: Nat. Immunol. doi: 10.1038/ni.3422 – volume: 551 start-page: 648 year: 2017 ident: 10.1016/j.it.2020.07.007_bb0415 article-title: A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites publication-title: Nature doi: 10.1038/nature24661 – volume: 176 start-page: 581 year: 2019 ident: 10.1016/j.it.2020.07.007_bb0465 article-title: Environmental control of astrocyte pathogenic activities in CNS inflammation publication-title: Cell doi: 10.1016/j.cell.2018.12.012 – volume: 10 start-page: 3890 year: 2019 ident: 10.1016/j.it.2020.07.007_bb0555 article-title: Zika virus replicates in adult human brain tissue and impairs synapses and memory in mice publication-title: Nat. Commun. doi: 10.1038/s41467-019-11866-7 – volume: 658 start-page: 53 year: 2017 ident: 10.1016/j.it.2020.07.007_bb0645 article-title: Human microglia and astrocytes express cGAS–STING viral sensing components publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2017.08.039 – volume: 6 start-page: 24251 year: 2016 ident: 10.1016/j.it.2020.07.007_bb0270 article-title: MHC-class-II are expressed in a subpopulation of human neural stem cells in vitro in an IFNγ-independent fashion and during development publication-title: Sci. Rep. doi: 10.1038/srep24251 |
| SSID | ssj0015777 |
| Score | 2.7142694 |
| SecondaryResourceType | review_article |
| Snippet | Astrocytes are the most abundant cell type in the central nervous system (CNS), performing complex functions in health and disease. It is now clear that... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 805 |
| SubjectTerms | astrocyte subsets Astrocytes Astrocytes - cytology Astrocytes - immunology Central nervous system Central Nervous System - cytology Central Nervous System - immunology Disease Gene expression Genotype & phenotype Humans Inflammation Inflammation - immunology Kinases Morphology Nervous System Diseases - immunology Neurological diseases Phenotypes Phenotypic plasticity Proteins reactive astrocytes Tumor necrosis factor-TNF Viruses West Nile virus |
| Title | The Role of Astrocytes in CNS Inflammation |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1471490620301563 https://dx.doi.org/10.1016/j.it.2020.07.007 https://www.ncbi.nlm.nih.gov/pubmed/32800705 https://www.proquest.com/docview/2437835037 https://www.proquest.com/docview/2434757766 https://pubmed.ncbi.nlm.nih.gov/PMC8284746 |
| Volume | 41 |
| WOSCitedRecordID | wos000566832500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1471-4981 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015777 issn: 1471-4906 databaseCode: AIEXJ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXYBogXBINBYUxBQkgwZSRxEtuP1dTyoVEQ6qS8WY5ri1TgliVD27_nOnHSZoMxHniJqthO0pyb62v7-B6EXkAEHYoklz4grP0Y-gxfaKx8nDCbGIAIHepabIJMJjTL2GcntF3WcgLEGHp2xpb_FWo4B2DbrbP_AHd3UTgBvwF0OALscLw28F8cZ3BYVtBBnVc162r_0O4XNhps4PsKj3l1gRtb2B0jvcn2t5awasyiVn_aH9v0E2A_qynTwkCEKdowWBalXLjVJjedAGPHli_VekDorfyYNToqB-o355zbjMM182BrPpDW-6gv--ZmmmB-UFgKaxTUOVMbxdt-GuzJJz4-Pjri01E2fbn84VuFMLuS7uRSNtBWRBIGHmxr-H6UfejWjBJS62x2D-sWpRs2X_-mfwpCLg8yLnJl14KP6T10140avGGD9n10Q5ltdKvRET3fRrc_OobEA_Qa4Pcs_N5Ceyv4vcJ4AL-3Dv9DdDweTQ_f-U4Pw5dJFFe-DgVj4E81joggqWCa5SxlFIYcLA-kkNEsonkuZypQIiKzMNIilEQkSqdYC4V30CbYinqMPMEsEyDPcRCJWMGFdBJiMqNUBULmWgzQm_YFcemSxVvNkm-8ZQXOeVFx-0p5YBkMZIBedS2WTaKUK-qG7Tvn7QZg6LI4WMoVbXDXxgWHTdD3l1a7LaTcfaMltzk4YeARYCh-3hWDW7VrZcKoxWldJyZgUWk6QI8aC-j-Fo6ozZKVDBDp2UZXwaZs75eY4mudup3aaDBOn1zjvk_RndX3uYs2q5NT9QzdlD-rojzZQxsko3vuE_gFSzO0CQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+Astrocytes+in+CNS+Inflammation&rft.jtitle=Trends+in+immunology&rft.au=Giovannoni%2C+Federico&rft.au=Quintana%2C+Francisco+J&rft.date=2020-09-01&rft.issn=1471-4981&rft.eissn=1471-4981&rft.volume=41&rft.issue=9&rft.spage=805&rft_id=info:doi/10.1016%2Fj.it.2020.07.007&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-4906&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-4906&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-4906&client=summon |