Matrix remodeling stimulates stromal autophagy, "fueling" cancer cell mitochondrial metabolism and metastasis

We have previously demonstrated that loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts is a strong and independent predictor of poor clinical outcome in human breast cancer patients. However, the signaling mechanism(s) by which Cav-1 downregulation leads to this tumor-promoting mic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell cycle (Georgetown, Tex.) Jg. 10; H. 12; S. 2021 - 2034
Hauptverfasser: Castello-Cros, Remedios, Bonnuccelli, Gloria, Molchansky, Alex, Capozza, Franco, Witkiewicz, Agnieszka K., Birbe, Ruth, Howell, Anthony, Pestell, Richard G., Whitaker-Menezes, Diana, Sotgia, Federica, Lisanti, Michael P
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Taylor & Francis 15.06.2011
Landes Bioscience
Schlagworte:
ISSN:1538-4101, 1551-4005, 1551-4005
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We have previously demonstrated that loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts is a strong and independent predictor of poor clinical outcome in human breast cancer patients. However, the signaling mechanism(s) by which Cav-1 downregulation leads to this tumor-promoting microenvironment are not well understood. To address this issue, we performed an unbiased comparative proteomic analysis of wild-type (WT) and Cav-1 -/- null mammary stromal fibroblasts (MSFs). Our results show that plasminogen activator inhibitor type 1 and type 2 (PAI-1 and PAI-2) expression is significantly increased in Cav-1 -/- MSFs. To establish a direct cause-effect relationship, we next generated immortalized human fibroblast lines stably overexpressing either PAI-1 or PAI-2. Importantly, PAI-1/2(+) fibroblasts promote the growth of MDA-MB-231 tumors (a human breast cancer cell line) in a murine xenograft model, without any increases in angiogenesis. Similarly, PAI-1/2(+) fibroblasts stimulate experimental metastasis of MDA-MB-231 cells using an in vivo lung colonization assay. Further mechanistic studies revealed that fibroblasts overexpressing PAI-1 or PAI-2 display increased autophagy ("self-eating") and are sufficient to induce mitochondrial biogenesis/activity in adjacent cancer cells, in co-culture experiments. In xenografts, PAI-1/2(+) fibroblasts significantly reduce the apoptosis of MDA-MB-231 tumor cells. The current study provides further support for the "Autophagic Tumor Stroma Model of Cancer" and identifies a novel "extracellular matrix"-based signaling mechanism, by which a loss of stromal Cav-1 generates a metastatic phenotype. Thus, the secretion and remodeling of extracellular matrix components (such as PAI-1/2) can directly regulate both (1) autophagy in stromal fibroblasts and (2) epithelial tumor cell mitochondrial metabolism.
AbstractList We have previously demonstrated that loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts is a strong and independent predictor of poor clinical outcome in human breast cancer patients. However, the signaling mechanism(s) by which Cav-1 downregulation leads to this tumor-promoting microenvironment are not well understood. To address this issue, we performed an unbiased comparative proteomic analysis of wild-type (WT) and Cav-1 -/- null mammary stromal fibroblasts (MSFs). Our results show that plasminogen activator inhibitor type 1 and type 2 (PAI-1 and PAI-2) expression is significantly increased in Cav-1 -/- MSFs. To establish a direct cause-effect relationship, we next generated immortalized human fibroblast lines stably overexpressing either PAI-1 or PAI-2. Importantly, PAI-1/2(+) fibroblasts promote the growth of MDA-MB-231 tumors (a human breast cancer cell line) in a murine xenograft model, without any increases in angiogenesis. Similarly, PAI-1/2(+) fibroblasts stimulate experimental metastasis of MDA-MB-231 cells using an in vivo lung colonization assay. Further mechanistic studies revealed that fibroblasts overexpressing PAI-1 or PAI-2 display increased autophagy ("self-eating") and are sufficient to induce mitochondrial biogenesis/activity in adjacent cancer cells, in co-culture experiments. In xenografts, PAI-1/2(+) fibroblasts significantly reduce the apoptosis of MDA-MB-231 tumor cells. The current study provides further support for the "Autophagic Tumor Stroma Model of Cancer" and identifies a novel "extracellular matrix"-based signaling mechanism, by which a loss of stromal Cav-1 generates a metastatic phenotype. Thus, the secretion and remodeling of extracellular matrix components (such as PAI-1/2) can directly regulate both (1) autophagy in stromal fibroblasts and (2) epithelial tumor cell mitochondrial metabolism.
We have previously demonstrated that loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts is a strong and independent predictor of poor clinical outcome in human breast cancer patients. However, the signaling mechanism(s) by which Cav-1 downregulation leads to this tumor-promoting microenvironment are not well understood. To address this issue, we performed an unbiased comparative proteomic analysis of wild-type (WT) and Cav-1-/- null mammary stromal fibroblasts (MSFs). Our results show that plasminogen activator inhibitor type 1 and type 2 (PAI-1 and PAI-2) expression is significantly increased in Cav-1-/- MSFs. To establish a direct cause-effect relationship, we next generated immortalized human fibroblast lines stably overexpressing either PAI-1 or PAI-2. Importantly, PAI-1/2(+) fibroblasts promote the growth of MDA-MB-231 tumors (a human breast cancer cell line) in a murine xenograft model, without any increases in angiogenesis. Similarly, PAI-1/2(+) fibroblasts stimulate experimental metastasis of MDA-MB-231 cells using an in vivo lung colonization assay. Further mechanistic studies revealed that fibroblasts overexpressing PAI-1 or PAI-2 display increased autophagy (“self-eating”) and are sufficient to induce mitochondrial biogenesis/activity in adjacent cancer cells, in co-culture experiments. In xenografts, PAI-1/2(+) fibroblasts significantly reduce the apoptosis of MDA-MB-231 tumor cells. The current study provides further support for the “Autophagic Tumor Stroma Model of Cancer” and identifies a novel “extracellular matrix”-based signaling mechanism, by which a loss of stromal Cav-1 generates a metastatic phenotype. Thus, the secretion and remodeling of extracellular matrix components (such as PAI-1/2) can directly regulate both (1) autophagy in stromal fibroblasts and (2) epithelial tumor cell mitochondrial metabolism.
We have previously demonstrated that loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts is a strong and independent predictor of poor clinical outcome in human breast cancer patients. However, the signaling mechanism(s) by which Cav-1 downregulation leads to this tumor-promoting microenvironment are not well understood. To address this issue, we performed an unbiased comparative proteomic analysis of wild-type (WT) and Cav-1(-/-) null mammary stromal fibroblasts (MSFs). Our results show that plasminogen activator inhibitor type 1 and type 2 (PAI-1 and PAI-2) expression is significantly increased in Cav-1(-/-) MSFs. To establish a direct cause-effect relationship, we next generated immortalized human fibroblast lines stably overexpressing either PAI-1 or PAI-2. Importantly, PAI-1/2(+) fibroblasts promote the growth of MDA-MB-231 tumors (a human breast cancer cell line) in a murine xenograft model, without any increases in angiogenesis. Similarly, PAI-1/2(+) fibroblasts stimulate experimental metastasis of MDA-MB-231 cells using an in vivo lung colonization assay. Further mechanistic studies revealed that fibroblasts overexpressing PAI-1 or PAI-2 display increased autophagy ("self-eating") and are sufficient to induce mitochondrial biogenesis/activity in adjacent cancer cells, in co-culture experiments. In xenografts, PAI-1/2(+) fibroblasts significantly reduce the apoptosis of MDA-MB-231 tumor cells. The current study provides further support for the "Autophagic Tumor Stroma Model of Cancer" and identifies a novel "extracellular matrix"-based signaling mechanism, by which a loss of stromal Cav-1 generates a metastatic phenotype. Thus, the secretion and remodeling of extracellular matrix components (such as PAI-1/2) can directly regulate both (1) autophagy in stromal fibroblasts and (2) epithelial tumor cell mitochondrial metabolism.We have previously demonstrated that loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts is a strong and independent predictor of poor clinical outcome in human breast cancer patients. However, the signaling mechanism(s) by which Cav-1 downregulation leads to this tumor-promoting microenvironment are not well understood. To address this issue, we performed an unbiased comparative proteomic analysis of wild-type (WT) and Cav-1(-/-) null mammary stromal fibroblasts (MSFs). Our results show that plasminogen activator inhibitor type 1 and type 2 (PAI-1 and PAI-2) expression is significantly increased in Cav-1(-/-) MSFs. To establish a direct cause-effect relationship, we next generated immortalized human fibroblast lines stably overexpressing either PAI-1 or PAI-2. Importantly, PAI-1/2(+) fibroblasts promote the growth of MDA-MB-231 tumors (a human breast cancer cell line) in a murine xenograft model, without any increases in angiogenesis. Similarly, PAI-1/2(+) fibroblasts stimulate experimental metastasis of MDA-MB-231 cells using an in vivo lung colonization assay. Further mechanistic studies revealed that fibroblasts overexpressing PAI-1 or PAI-2 display increased autophagy ("self-eating") and are sufficient to induce mitochondrial biogenesis/activity in adjacent cancer cells, in co-culture experiments. In xenografts, PAI-1/2(+) fibroblasts significantly reduce the apoptosis of MDA-MB-231 tumor cells. The current study provides further support for the "Autophagic Tumor Stroma Model of Cancer" and identifies a novel "extracellular matrix"-based signaling mechanism, by which a loss of stromal Cav-1 generates a metastatic phenotype. Thus, the secretion and remodeling of extracellular matrix components (such as PAI-1/2) can directly regulate both (1) autophagy in stromal fibroblasts and (2) epithelial tumor cell mitochondrial metabolism.
Author Capozza, Franco
Molchansky, Alex
Whitaker-Menezes, Diana
Witkiewicz, Agnieszka K.
Castello-Cros, Remedios
Sotgia, Federica
Bonnuccelli, Gloria
Pestell, Richard G.
Lisanti, Michael P
Howell, Anthony
Birbe, Ruth
AuthorAffiliation 4 Manchester Breast Centre and Breakthrough Breast Cancer Research Unit; Paterson Institute for Cancer Research; School of Cancer; Enabling Sciences and Technology; Manchester Academic Health Science Centre; University of Manchester; Machester UK
5 Department of Medical Oncology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA
3 Department of Pathology, Anatomy and Cell Biology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA
1 The Jefferson Stem Cell Biology and Regenerative Medicine Center; Thomas Jefferson University; Philadelphia, PA USA
2 Departments of Stem Cell Biology and Regenerative Medicine and Cancer Biology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA
AuthorAffiliation_xml – name: 2 Departments of Stem Cell Biology and Regenerative Medicine and Cancer Biology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA
– name: 3 Department of Pathology, Anatomy and Cell Biology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA
– name: 1 The Jefferson Stem Cell Biology and Regenerative Medicine Center; Thomas Jefferson University; Philadelphia, PA USA
– name: 5 Department of Medical Oncology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA
– name: 4 Manchester Breast Centre and Breakthrough Breast Cancer Research Unit; Paterson Institute for Cancer Research; School of Cancer; Enabling Sciences and Technology; Manchester Academic Health Science Centre; University of Manchester; Machester UK
Author_xml – sequence: 1
  givenname: Remedios
  surname: Castello-Cros
  fullname: Castello-Cros, Remedios
  email: remedios.castello@jefferson.edu, michaelp.lisanti@gmail.com
– sequence: 2
  givenname: Gloria
  surname: Bonnuccelli
  fullname: Bonnuccelli, Gloria
– sequence: 3
  givenname: Alex
  surname: Molchansky
  fullname: Molchansky, Alex
– sequence: 4
  givenname: Franco
  surname: Capozza
  fullname: Capozza, Franco
– sequence: 5
  givenname: Agnieszka K.
  surname: Witkiewicz
  fullname: Witkiewicz, Agnieszka K.
– sequence: 6
  givenname: Ruth
  surname: Birbe
  fullname: Birbe, Ruth
– sequence: 7
  givenname: Anthony
  surname: Howell
  fullname: Howell, Anthony
– sequence: 8
  givenname: Richard G.
  surname: Pestell
  fullname: Pestell, Richard G.
– sequence: 9
  givenname: Diana
  surname: Whitaker-Menezes
  fullname: Whitaker-Menezes, Diana
– sequence: 10
  givenname: Federica
  surname: Sotgia
  fullname: Sotgia, Federica
– sequence: 11
  givenname: Michael P
  surname: Lisanti
  fullname: Lisanti, Michael P
  email: remedios.castello@jefferson.edu, michaelp.lisanti@gmail.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21646868$$D View this record in MEDLINE/PubMed
BookMark eNqFksuLFDEQxhtZcR969SjNXrzYY17dnb4I0viCFS96Dnn1TCSPMUmvzn9venp3UFGEQCrk-31VlcpldeaD11X1FIINgR18KeWmhBBtYAcAelBdwLaFDQGgPVtiTBsCATyvLlP6WgS0H-Cj6hzBjnS0oxeV-8hzND_qqF1Q2hq_rVM2brY861TCGBy3NZ9z2O_49vCivp7mo-y6ltxLHWupra2dyUHuglfRFLnTmYtgTXI19-p4TGWZ9Lh6OHGb9JO7_ar68vbN5_F9c_Pp3Yfx9U0jW0Ryo3vVSjgI2ndKYq0EFWpoeyomxAXs0TR0CosBYi6laFFLJew0H3qsCZaAIHxVvVp997NwWkntc-SW7aNxPB5Y4Ib9fuPNjm3DLcOwJQSBYvD8ziCGb7NOmTmTlk6512FOjPaEUDTgviif_ZrqlOP-iYuArAIZQ0pRT0yazLMJS2ZjGQRsmSSTcgkhYsdJFmzzB3bv_E8ArECpUekkTEjS6DKiE1gAHrORVp8Q_B9kLIMrXYdxXFPt1VSoYaWMn0J0_HuIVrHMDzbEKZZPYVJ5x78X-RNBDNsV
CitedBy_id crossref_primary_10_1002_ijc_27664
crossref_primary_10_1002_med_21531
crossref_primary_10_1038_nrc3365
crossref_primary_10_1016_j_semcancer_2014_01_005
crossref_primary_10_1002_path_4115
crossref_primary_10_1007_s11010_021_04281_4
crossref_primary_10_1016_j_biopha_2023_114762
crossref_primary_10_1016_j_burns_2013_11_010
crossref_primary_10_1016_j_prp_2024_155597
crossref_primary_10_1053_j_seminoncol_2014_03_002
crossref_primary_10_1371_journal_pone_0063226
crossref_primary_10_1016_j_bbagen_2013_10_016
crossref_primary_10_3390_cancers15041070
crossref_primary_10_1080_15548627_2018_1450020
crossref_primary_10_1007_s00418_011_0879_y
crossref_primary_10_3892_ol_2016_5451
crossref_primary_10_3390_antiox10111838
crossref_primary_10_3390_cells1020168
crossref_primary_10_1038_s41388_022_02309_7
crossref_primary_10_1038_s41420_018_0105_y
crossref_primary_10_1186_1757_2215_5_22
crossref_primary_10_1177_1933719118768704
crossref_primary_10_1038_s41556_018_0042_2
crossref_primary_10_1007_s00018_015_2071_3
crossref_primary_10_1002_adbi_202100090
crossref_primary_10_1016_j_bbadis_2012_11_001
crossref_primary_10_3389_fimmu_2025_1648757
crossref_primary_10_1111_jcmm_12030
crossref_primary_10_1186_s12864_022_08704_4
crossref_primary_10_4161_auto_24132
crossref_primary_10_1038_s41598_020_79789_8
crossref_primary_10_1158_1078_0432_CCR_12_2123
crossref_primary_10_1158_1541_7786_MCR_18_0836
crossref_primary_10_3390_ijms22105209
crossref_primary_10_4161_cc_10_17_16574
crossref_primary_10_1002_pmic_201800278
crossref_primary_10_1038_bjc_2013_177
crossref_primary_10_1158_0008_5472_CAN_15_2468
Cites_doi 10.1038/35094059
10.4161/cc.9.17.12731
10.1007/978-1-59745-413-1_19
10.1093/clinchem/48.8.1194
10.4161/cc.8.11.8544
10.1016/j.cell.2005.02.034
10.1182/blood.V94.12.4177
10.4161/cc.9.10.11601
10.4161/cbt.10.2.11983
10.4161/cbt.8.11.8874
10.2174/1381612043453559
10.1016/j.abb.2010.12.020
10.1016/S0021-9258(17)35287-0
10.2353/ajpath.2006.060590
10.1093/clinchem/48.8.1288
10.1007/s00216-005-3126-3
10.1038/nrc2400
10.1007/s12307-008-0017-0
10.4161/cc.9.17.12721
10.1016/S0021-9258(18)90730-1
10.4161/cc.9.12.12048
10.1172/OCI118323
10.4161/cc.9.17.12908
10.1074/jbc.M008340200
10.1038/nrc1877
10.1146/annurev.pathol.1.110304.100224
10.1016/S0002-9440(10)62991-4
10.4161/cbt.7.8.6220
10.1016/S0002-9440(10)63547-X
10.1160/TH03-12-0798
10.4161/cbt.10.6.13370
10.4161/cc.9.17.12928
10.1182/blood.V86.11.4007.bloodjournal86114007
10.1016/0303-7207(90)90164-4
10.4161/cbt.11.4.14101
10.1002/(SICI)1096-9896(199712)183:4<388::AID-PATH943>3.0.CO;2-I
10.1158/0008-5472.CAN-07-5714
10.2353/ajpath.2009.080873
10.1016/j.clinbiochem.2004.05.013
10.1016/j.molmed.2008.11.001.[L1]
10.1016/j.bbrc.2007.05.121
10.1093/jnci/94.2.116
10.4161/cc.8.15.9116
10.1016/S0021-9258(18)68581-3
10.4161/cc.5.15.3112
10.3109/02713689509003755
10.4161/cc.9.21.13817
10.4161/cc.8.23.10238
10.1097/01.ju.0000138082.68045.48
10.2353/ajpath.2009.080924
10.2353/ajpath.2009.080658
10.4161/cc.9.16.12553
10.4161/cc.9.11.11848
10.1016/S0002-9440(10)64637-8
ContentType Journal Article
Copyright Copyright © 2011 Landes Bioscience 2011
Copyright_xml – notice: Copyright © 2011 Landes Bioscience 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.4161/cc.10.12.16002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1551-4005
EndPage 2034
ExternalDocumentID PMC3154420
21646868
10_4161_cc_10_12_16002
10916002
Genre Research Article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: R01 AR055660
– fundername: NCI NIH HHS
  grantid: R01 CA120876
– fundername: NCI NIH HHS
  grantid: R01 CA080250
– fundername: NCI NIH HHS
  grantid: R01 CA075503
– fundername: NCI NIH HHS
  grantid: P30 CA056036
– fundername: NCI NIH HHS
  grantid: R01-CA-75503
– fundername: NCI NIH HHS
  grantid: R01-CA-86072
– fundername: NCI NIH HHS
  grantid: P30-CA-56036
– fundername: NCI NIH HHS
  grantid: R01-CA-120876
– fundername: NCI NIH HHS
  grantid: R01-CA-080250
GroupedDBID ---
0BK
0R~
29B
30N
4.4
53G
5GY
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABFMO
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACFTK
ACGFS
ACTIO
ADBBV
ADCVX
ADGTB
AEISY
AENEX
AEXWM
AEYOC
AFRVT
AGDLA
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AOIJS
AQRUH
AQTUD
AVBZW
AWYRJ
BAWUL
BLEHA
CCCUG
DGEBU
DIK
DKSSO
E3Z
EBS
EJD
EMOBN
F5P
GTTXZ
H13
HYE
KRBQP
KWAYT
KYCEM
M4Z
O9-
OK1
P2P
RNANH
ROSJB
RPM
RTWRZ
SJN
SNACF
TASJS
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TR2
TTHFI
TUROJ
ZGOLN
-
0R
AAAVI
ABJVF
ABQHQ
ADACO
AEGYZ
AFOLD
AHDLD
AIRXU
FUNRP
FVPDL
UNR
V1K
ZA5
AAYXX
CITATION
ADYSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c524t-e7d5c19b876dc3edb8bd9578bf2ab172f96d3b913accb5258c16ea973e43c0423
IEDL.DBID TFW
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000291651300029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1538-4101
1551-4005
IngestDate Tue Nov 04 01:36:12 EST 2025
Sun Nov 09 11:20:22 EST 2025
Thu Apr 03 06:57:08 EDT 2025
Tue Nov 18 19:38:07 EST 2025
Sat Nov 29 03:22:00 EST 2025
Fri Jan 15 03:37:35 EST 2021
Tue May 21 11:32:55 EDT 2019
Mon Oct 20 23:45:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c524t-e7d5c19b876dc3edb8bd9578bf2ab172f96d3b913accb5258c16ea973e43c0423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.tandfonline.com/doi/pdf/10.4161/cc.10.12.16002?needAccess=true
PMID 21646868
PQID 874482937
PQPubID 23479
PageCount 14
ParticipantIDs informaworld_taylorfrancis_310_4161_cc_10_12_16002
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3154420
pubmed_primary_21646868
crossref_citationtrail_10_4161_cc_10_12_16002
landesbioscience_primary_cc_article_16002
proquest_miscellaneous_874482937
crossref_primary_10_4161_cc_10_12_16002
PublicationCentury 2000
PublicationDate 6/15/2011
2011/06/15
2011-06-15
2011-Jun-15
20110615
PublicationDateYYYYMMDD 2011-06-15
PublicationDate_xml – month: 06
  year: 2011
  text: 6/15/2011
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell cycle (Georgetown, Tex.)
PublicationTitleAlternate Cell Cycle
PublicationYear 2011
Publisher Taylor & Francis
Landes Bioscience
Publisher_xml – name: Taylor & Francis
– name: Landes Bioscience
References Westerhausen DR (R52) 1991; 266
Mains RE (R39) 1988; 263
R21
R20
Arvan P (R38) 1984; 259
R23
R22
R25
R24
R1
Kruithof EK (R44) 1995; 86
R2
R3
R4
R5
R6
R7
R8
R9
R30
R31
R34
R33
R36
Beacham DA (R55) 2007; 10
R35
R37
Harbeck N (R26) 2004; 91
Duffy MJ (R32) 2002; 48
Foekens JA (R29) 2000; 60
Kietzmann T (R42) 1999; 94
Look MP (R27) 2002; 94
R41
R40
R43
R45
R47
R46
R49
R48
Castelló R (R28) 2002; 48
R50
R51
R10
R54
R53
R12
R56
R11
R14
R13
R16
R15
R18
R17
R19
21150282 - Cancer Biol Ther. 2011 Feb 15;11(4):383-94
12142386 - Clin Chem. 2002 Aug;48(8):1288-95
18548086 - Nat Rev Cancer. 2008 Jul;8(7):535-45
15882617 - Cell. 2005 May 6;121(3):335-48
11102446 - J Biol Chem. 2001 Mar 2;276(9):6727-38
20562526 - Cell Cycle. 2010 Jun 15;9(12):2423-33
16049333 - Am J Pathol. 2005 Aug;167(2):475-88
19411448 - Am J Pathol. 2009 Jun;174(6):2023-34
21051947 - Cell Cycle. 2010 Nov 1;9(21):4297-306
19502809 - Cancer Biol Ther. 2009 Jun;8(11):1071-9
21869598 - Cell Cycle. 2011 Sep 1;10(17):2829-30
18228495 - Curr Protoc Cell Biol. 2007 Jan;Chapter 10:Unit 10.9
20861672 - Cell Cycle. 2010 Sep 1;9(17):3485-505
17071600 - Am J Pathol. 2006 Nov;169(5):1784-801
19091631 - Trends Mol Med. 2009 Jan;15(1):5-13
2836400 - J Biol Chem. 1988 Jun 5;263(16):7887-94
21946523 - Cell Cycle. 2011 Oct 1;10(19):3231-2
1985937 - J Biol Chem. 1991 Jan 15;266(2):1092-100
19308679 - Cancer Microenviron. 2009 Dec;2(1):9-21
19923890 - Cell Cycle. 2009 Dec;8(23):3984-4001
18458534 - Cancer Biol Ther. 2008 Aug;7(8):1212-25
15900442 - Anal Bioanal Chem. 2005 Jun;382(3):669-78
2105900 - Mol Cell Endocrinol. 1990 Jan 2;68(1):1-19
18245495 - Cancer Res. 2008 Feb 1;68(3):918-26
12142372 - Clin Chem. 2002 Aug;48(8):1194-7
19234134 - Am J Pathol. 2009 Mar;174(3):746-61
8675623 - J Clin Invest. 1995 Dec;96(6):2593-600
18039110 - Annu Rev Pathol. 2006;1:119-50
10676647 - Cancer Res. 2000 Feb 1;60(3):636-43
6490664 - J Biol Chem. 1984 Nov 10;259(21):13567-72
16572188 - Nat Rev Cancer. 2006 May;6(5):392-401
21869600 - Cell Cycle. 2011 Sep 1;10(17):2830-1
14754404 - Curr Pharm Des. 2004;10(1):39-49
21176770 - Arch Biochem Biophys. 2011 Mar 15;507(2):241-7
16880743 - Cell Cycle. 2006 Aug;5(15):1597-601
20864819 - Cell Cycle. 2010 Sep 1;9(17):3534-51
20495363 - Cell Cycle. 2010 May 15;9(10):1960-71
20818174 - Cell Cycle. 2010 Sep 1;9(17):3506-14
11900251 - Nat Rev Cancer. 2001 Oct;1(1):46-54
15234235 - Clin Biochem. 2004 Jul;37(7):541-8
7671626 - Curr Eye Res. 1995 Jun;14(6):449-58
11792750 - J Natl Cancer Inst. 2002 Jan 16;94(2):116-28
19556867 - Cell Cycle. 2009 Aug;8(15):2420-4
20519932 - Cell Cycle. 2010 Jun 1;9(11):2201-19
20814239 - Cell Cycle. 2010 Aug 15;9(16):3256-76
19411449 - Am J Pathol. 2009 Jun;174(6):2035-43
20431349 - Cancer Biol Ther. 2010 Jul 15;10(2):135-43
19448435 - Cell Cycle. 2009 Jun 1;8(11):1654-8
7492756 - Blood. 1995 Dec 1;86(11):4007-24
20855962 - Cell Cycle. 2010 Sep 1;9(17):3515-33
11021826 - Am J Pathol. 2000 Oct;157(4):1219-27
10590062 - Blood. 1999 Dec 15;94(12):4177-85
14578188 - Am J Pathol. 2003 Nov;163(5):1887-99
17543885 - Biochem Biophys Res Commun. 2007 Jul 27;359(2):385-90
15538284 - J Urol. 2004 Dec;172(6 Pt 1):2421-5
14983219 - Thromb Haemost. 2004 Mar;91(3):450-6
19247611 - Methods Mol Biol. 2009;522:275-305
9496254 - J Pathol. 1997 Dec;183(4):388-97
20861671 - Cancer Biol Ther. 2010 Sep 15;10(6):537-42
References_xml – ident: R2
  doi: 10.1038/35094059
– ident: R47
  doi: 10.4161/cc.9.17.12731
– ident: R54
  doi: 10.1007/978-1-59745-413-1_19
– volume: 48
  start-page: 1194
  year: 2002
  ident: R32
  publication-title: Clin Chem
  doi: 10.1093/clinchem/48.8.1194
– ident: R13
  doi: 10.4161/cc.8.11.8544
– ident: R6
  doi: 10.1016/j.cell.2005.02.034
– volume: 94
  start-page: 4177
  year: 1999
  ident: R42
  publication-title: Blood
  doi: 10.1182/blood.V94.12.4177
– ident: R41
  doi: 10.4161/cc.9.10.11601
– ident: R15
  doi: 10.4161/cbt.10.2.11983
– ident: R14
  doi: 10.4161/cbt.8.11.8874
– ident: R24
  doi: 10.2174/1381612043453559
– ident: R43
  doi: 10.1016/j.abb.2010.12.020
– volume: 266
  start-page: 1092
  year: 1991
  ident: R52
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(17)35287-0
– ident: R11
  doi: 10.2353/ajpath.2006.060590
– volume: 48
  start-page: 1288
  year: 2002
  ident: R28
  publication-title: Clin Chem
  doi: 10.1093/clinchem/48.8.1288
– ident: R53
  doi: 10.1007/s00216-005-3126-3
– volume: 60
  start-page: 636
  year: 2000
  ident: R29
  publication-title: Cancer Res
– ident: R31
  doi: 10.1038/nrc2400
– ident: R35
  doi: 10.1007/s12307-008-0017-0
– ident: R19
  doi: 10.4161/cc.9.17.12721
– volume: 259
  start-page: 13567
  year: 1984
  ident: R38
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)90730-1
– ident: R37
  doi: 10.4161/cc.9.12.12048
– ident: R49
  doi: 10.1172/OCI118323
– ident: R21
  doi: 10.4161/cc.9.17.12908
– ident: R51
  doi: 10.1074/jbc.M008340200
– volume: 10
  start-page: 9
  year: 2007
  ident: R55
  publication-title: Curr Protoc Cell Biol
– ident: R4
  doi: 10.1038/nrc1877
– ident: R1
  doi: 10.1146/annurev.pathol.1.110304.100224
– ident: R56
  doi: 10.1016/S0002-9440(10)62991-4
– ident: R8
  doi: 10.4161/cbt.7.8.6220
– ident: R34
  doi: 10.1016/S0002-9440(10)63547-X
– volume: 91
  start-page: 450
  year: 2004
  ident: R26
  publication-title: Thromb Haemost
  doi: 10.1160/TH03-12-0798
– ident: R23
  doi: 10.4161/cbt.10.6.13370
– ident: R22
  doi: 10.4161/cc.9.17.12928
– volume: 86
  start-page: 4007
  year: 1995
  ident: R44
  publication-title: Blood
  doi: 10.1182/blood.V86.11.4007.bloodjournal86114007
– ident: R25
  doi: 10.1016/0303-7207(90)90164-4
– ident: R12
  doi: 10.4161/cbt.11.4.14101
– ident: R33
  doi: 10.1002/(SICI)1096-9896(199712)183:4<388::AID-PATH943>3.0.CO;2-I
– ident: R7
  doi: 10.1158/0008-5472.CAN-07-5714
– ident: R16
  doi: 10.2353/ajpath.2009.080873
– ident: R30
  doi: 10.1016/j.clinbiochem.2004.05.013
– ident: R3
  doi: 10.1016/j.molmed.2008.11.001.[L1]
– ident: R40
  doi: 10.1016/j.bbrc.2007.05.121
– volume: 94
  start-page: 116
  year: 2002
  ident: R27
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/94.2.116
– ident: R18
  doi: 10.4161/cc.8.15.9116
– volume: 263
  start-page: 7887
  year: 1988
  ident: R39
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)68581-3
– ident: R5
  doi: 10.4161/cc.5.15.3112
– ident: R48
  doi: 10.3109/02713689509003755
– ident: R20
  doi: 10.4161/cc.9.21.13817
– ident: R10
  doi: 10.4161/cc.8.23.10238
– ident: R50
  doi: 10.1097/01.ju.0000138082.68045.48
– ident: R17
  doi: 10.2353/ajpath.2009.080924
– ident: R9
  doi: 10.2353/ajpath.2009.080658
– ident: R46
  doi: 10.4161/cc.9.16.12553
– ident: R45
  doi: 10.4161/cc.9.11.11848
– ident: R36
  doi: 10.1016/S0002-9440(10)64637-8
– reference: 19411449 - Am J Pathol. 2009 Jun;174(6):2035-43
– reference: 11102446 - J Biol Chem. 2001 Mar 2;276(9):6727-38
– reference: 18039110 - Annu Rev Pathol. 2006;1:119-50
– reference: 2836400 - J Biol Chem. 1988 Jun 5;263(16):7887-94
– reference: 16880743 - Cell Cycle. 2006 Aug;5(15):1597-601
– reference: 14578188 - Am J Pathol. 2003 Nov;163(5):1887-99
– reference: 11792750 - J Natl Cancer Inst. 2002 Jan 16;94(2):116-28
– reference: 20431349 - Cancer Biol Ther. 2010 Jul 15;10(2):135-43
– reference: 21150282 - Cancer Biol Ther. 2011 Feb 15;11(4):383-94
– reference: 20864819 - Cell Cycle. 2010 Sep 1;9(17):3534-51
– reference: 19247611 - Methods Mol Biol. 2009;522:275-305
– reference: 20861671 - Cancer Biol Ther. 2010 Sep 15;10(6):537-42
– reference: 20855962 - Cell Cycle. 2010 Sep 1;9(17):3515-33
– reference: 21176770 - Arch Biochem Biophys. 2011 Mar 15;507(2):241-7
– reference: 19411448 - Am J Pathol. 2009 Jun;174(6):2023-34
– reference: 1985937 - J Biol Chem. 1991 Jan 15;266(2):1092-100
– reference: 19923890 - Cell Cycle. 2009 Dec;8(23):3984-4001
– reference: 18458534 - Cancer Biol Ther. 2008 Aug;7(8):1212-25
– reference: 15538284 - J Urol. 2004 Dec;172(6 Pt 1):2421-5
– reference: 19308679 - Cancer Microenviron. 2009 Dec;2(1):9-21
– reference: 10590062 - Blood. 1999 Dec 15;94(12):4177-85
– reference: 20818174 - Cell Cycle. 2010 Sep 1;9(17):3506-14
– reference: 16049333 - Am J Pathol. 2005 Aug;167(2):475-88
– reference: 21869600 - Cell Cycle. 2011 Sep 1;10(17):2830-1
– reference: 21869598 - Cell Cycle. 2011 Sep 1;10(17):2829-30
– reference: 18228495 - Curr Protoc Cell Biol. 2007 Jan;Chapter 10:Unit 10.9
– reference: 20519932 - Cell Cycle. 2010 Jun 1;9(11):2201-19
– reference: 19448435 - Cell Cycle. 2009 Jun 1;8(11):1654-8
– reference: 12142372 - Clin Chem. 2002 Aug;48(8):1194-7
– reference: 20562526 - Cell Cycle. 2010 Jun 15;9(12):2423-33
– reference: 15234235 - Clin Biochem. 2004 Jul;37(7):541-8
– reference: 6490664 - J Biol Chem. 1984 Nov 10;259(21):13567-72
– reference: 15882617 - Cell. 2005 May 6;121(3):335-48
– reference: 19502809 - Cancer Biol Ther. 2009 Jun;8(11):1071-9
– reference: 21946523 - Cell Cycle. 2011 Oct 1;10(19):3231-2
– reference: 11021826 - Am J Pathol. 2000 Oct;157(4):1219-27
– reference: 17071600 - Am J Pathol. 2006 Nov;169(5):1784-801
– reference: 19091631 - Trends Mol Med. 2009 Jan;15(1):5-13
– reference: 20495363 - Cell Cycle. 2010 May 15;9(10):1960-71
– reference: 11900251 - Nat Rev Cancer. 2001 Oct;1(1):46-54
– reference: 21051947 - Cell Cycle. 2010 Nov 1;9(21):4297-306
– reference: 7671626 - Curr Eye Res. 1995 Jun;14(6):449-58
– reference: 15900442 - Anal Bioanal Chem. 2005 Jun;382(3):669-78
– reference: 10676647 - Cancer Res. 2000 Feb 1;60(3):636-43
– reference: 16572188 - Nat Rev Cancer. 2006 May;6(5):392-401
– reference: 2105900 - Mol Cell Endocrinol. 1990 Jan 2;68(1):1-19
– reference: 18548086 - Nat Rev Cancer. 2008 Jul;8(7):535-45
– reference: 19556867 - Cell Cycle. 2009 Aug;8(15):2420-4
– reference: 18245495 - Cancer Res. 2008 Feb 1;68(3):918-26
– reference: 20861672 - Cell Cycle. 2010 Sep 1;9(17):3485-505
– reference: 20814239 - Cell Cycle. 2010 Aug 15;9(16):3256-76
– reference: 8675623 - J Clin Invest. 1995 Dec;96(6):2593-600
– reference: 9496254 - J Pathol. 1997 Dec;183(4):388-97
– reference: 14983219 - Thromb Haemost. 2004 Mar;91(3):450-6
– reference: 7492756 - Blood. 1995 Dec 1;86(11):4007-24
– reference: 12142386 - Clin Chem. 2002 Aug;48(8):1288-95
– reference: 17543885 - Biochem Biophys Res Commun. 2007 Jul 27;359(2):385-90
– reference: 19234134 - Am J Pathol. 2009 Mar;174(3):746-61
– reference: 14754404 - Curr Pharm Des. 2004;10(1):39-49
SSID ssj0028791
Score 2.2296011
Snippet We have previously demonstrated that loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts is a strong and independent predictor of poor clinical...
SourceID pubmedcentral
proquest
pubmed
crossref
landesbioscience
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2021
SubjectTerms Animals
Autophagy
Binding
Biology
Bioscience
Breast Neoplasms - pathology
Calcium
Cancer
Caveolin 1 - metabolism
Cell
Cell Line, Tumor
Coculture Techniques
Cycle
Extracellular Matrix - metabolism
Fibroblasts - pathology
Humans
Landes
Mice
Mitochondria - metabolism
Mitochondria - pathology
Neoplasm Metastasis
Neoplasms - pathology
Neoplasms - ultrastructure
Organogenesis
Plasminogen Activator Inhibitor 1 - metabolism
Plasminogen Activator Inhibitor 2 - metabolism
Proteins
Stromal Cells - pathology
Transplantation, Heterologous
Tumor Microenvironment
Title Matrix remodeling stimulates stromal autophagy, "fueling" cancer cell mitochondrial metabolism and metastasis
URI https://www.tandfonline.com/doi/abs/10.4161/cc.10.12.16002
http://www.landesbioscience.com/journals/cc/article/16002/
https://www.ncbi.nlm.nih.gov/pubmed/21646868
https://www.proquest.com/docview/874482937
https://pubmed.ncbi.nlm.nih.gov/PMC3154420
Volume 10
WOSCitedRecordID wos000291651300029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1551-4005
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028791
  issn: 1538-4101
  databaseCode: TFW
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagAokeKO-GR2VVSAipgSR2EvuIVqw4QMWhwN4iP2GlJlslWUT_PTNONupW3QvcEmXs7Nqfx2N78n2EvC5ZbpTgMi6LwsQQ__NYM57FiYfoIOG-4OGr9--fy9NTsVjIr2NWZTemVeIa2g9EEcFX4-BWOiiQYDj-3ph3gRYBd0YCjyTM-ShecDb_Ma21RClHqlQRc4DdwNd4Q_Gt-WiLrXSfHGByIZ7TjLyS7qYw9Ho25ZXpaX7wP3_sAbk_BqX0w4Cih-SWax6Ru4NM5eVjUn9BHv8_tHVBNwcmOwqOoUbhL9fBZbuqobRaI0eB-nl5Qo_9OpgdU4OgaikeD9AanAc428Yi5mntesDf-bKrKfzecAuBarfsnpBv849ns0_xKNMQmzzjfexKm5tUavCr1jBntdBWgiPQPlMa4iMvC8u0TJkyRudZLkxaOCVL5jgzmJbzlOw1q8YdEmpNIr2GVbM1Kc-N1FIVtlDC-kTz1LOIxJvOqszIYY5SGucVrGWwCStj8DLNqtCEEXkz2V8M7B07LbOrfV_1Yb_ED-ImFdtV6OQ6QqbXzKDR8PhsNhsKXFgfkbc7zaHi0VVsqqYbpFUw4LGbVONW665CvQIBQVoZkWcD8KZKMiSLE4WISLkFyckAucS3nzTLX4FTnCErU5Y8_5dmeEHuDTvtRZzmL8le367dK3LH_O6XXXtEbpcLcRRG518nvEAj
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqAgIOlFchPK0KCSHVNImdh8UJrVgVsV1xWKC3KH7BSk22SrKI_ntmnOyqW3UvcEuUGSexP4_H9vgbQt5kPNFlLiTL0lQz8P8FU1zELHTgHYTCpcKfev8-yabT_PRUft0hH1ZnYTCsEufQrieK8LYaOzcuRmMPR3_8SOv3nhcBl0aQSPJGAoMswns2_rGebeWZHMhScyYAeD1j4zX6GyPSBl_pXbKH4YW4UzMwS9rrHNGr8ZSXBqjx3n_92n1yb_BL6cceSA_Ijq0fklt9psqLR6Q6QSr_P7SxPnUOjHcUbEOFub9sC5fNogLtcok0BeXPi0N64JZe7IBqxFVDcYeAVmA_wN7WBmFPK9sBBM_mbUXhg_0t-KrtvH1Mvo0_zUbHbMjUwHQSi47ZzCQ6kgpMq9HcGpUrI8EWKBeXClwkJ1PDlYx4qbVK4iTXUWpLmXEruMbInH2yWy9q-5RQo0PpFEycjY5EoqWSZWrSMjcuVCJyPCBs1VqFHmjMMZvGWQHTGazCQmu8jOLCV2FA3q7lz3sCj62S8eXGLzq_ZOL6_CYF36Z0eBUi69eMoNJwB2006hXOjQvIu63iUPBgLVZF0xXUCujz2ExlbRfLtsCUBTn4aVlAnvTIWxcSI19cnuYByTYwuRZAOvHNJ_X8l6cV50jMFIfP_qUaXpPbx7OTSTH5PP3ynNzpF95TFiUvyG7XLO1LclP_7uZt88p30r-SVkNm
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQuAgeGHfC1ZqQENIMSewk9iMqVCBGtYcBe4viG1Ra0ilJEfv3nOOk1TqtL_CWqsdua38-_o59-h1CXhU8M5UUihV5bhjwf8E0FymLPbCDWPhchH-9fz8oZjN5fKwOx6zKbkyrxBjaD0IRwVfj4j61Hhc40vF3xrwNsgh4MoI6kleBM-cYeB1Nf6yDLVmoUStVMgG4GwQbL2m_sSFtyJXeIruYXYgXNaOwpLuMh15Mpzy3P013_-eX3SG3R1ZK3w8wukuuuOYeuT7UqTy7T-qvKOT_h7YuFM6B3Y6CZ6ix8pfr4LFd1NC6WqJIQfXzbJ_u-WUw26MGUdVSvB-gNXgP8LaNRdDT2vUAwJN5V1P4vuElMNVu3j0g36Yfjyaf2FingZksFT1zhc1MojQ4Vmu4s1pqq8ATaJ9WGgiSV7nlWiW8MkZnaSZNkrtKFdwJbjAv5yHZaRaNe0yoNbHyGsJmaxKRGaVVldu8ktbHWiSeR4StJqs0o4g51tI4KSGYwSEsjcHHJC3DEEbk9dr-dJDv2GqZnp_7sg8HJn6oblLybY32LyJk_TETGDS8P5tMhgYwzxF5s9UcOh59xaprukJaCSsep6lq3GLZlViwQAJLKyLyaADeupMU1eJkLiNSbEBybYBi4pvvNPNfQVScoyxTGj_5l2F4SW4cfpiWB59nX56Sm8Ope86S7BnZ6dule06umd_9vGtfhCX6F62JQhc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Matrix+remodeling+stimulates+stromal+autophagy%2C+%22fueling%22+cancer+cell+mitochondrial+metabolism+and+metastasis&rft.jtitle=Cell+cycle+%28Georgetown%2C+Tex.%29&rft.au=Castello-Cros%2C+Remedios&rft.au=Bonuccelli%2C+Gloria&rft.au=Molchansky%2C+Alex&rft.au=Capozza%2C+Franco&rft.date=2011-06-15&rft.issn=1551-4005&rft.eissn=1551-4005&rft.volume=10&rft.issue=12&rft.spage=2021&rft_id=info:doi/10.4161%2Fcc.10.12.16002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-4101&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-4101&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-4101&client=summon