Neo: an object model for handling electrophysiology data in multiple formats

Neuroscientists use many different software tools to acquire, analyze and visualize electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis metho...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neuroinformatics Vol. 8; p. 10
Main Authors: Garcia, Samuel, Guarino, Domenico, Jaillet, Florent, Jennings, Todd, Pröpper, Robert, Rautenberg, Philipp L., Rodgers, Chris C., Sobolev, Andrey, Wachtler, Thomas, Yger, Pierre, Davison, Andrew P.
Format: Journal Article
Language:English
Published: Switzerland Frontiers Research Foundation 20.02.2014
Frontiers Media
Frontiers Media S.A
Subjects:
ISSN:1662-5196, 1662-5196
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Neuroscientists use many different software tools to acquire, analyze and visualize electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis methods inaccessible and impedes collaboration between labs. A common representation of the core data would improve interoperability and facilitate data-sharing. To that end, we propose here a language-independent object model, named "Neo," suitable for representing data acquired from electroencephalographic, intracellular, or extracellular recordings, or generated from simulations. As a concrete instantiation of this object model we have developed an open source implementation in the Python programming language. In addition to representing electrophysiology data in memory for the purposes of analysis and visualization, the Python implementation provides a set of input/output (IO) modules for reading/writing the data from/to a variety of commonly used file formats. Support is included for formats produced by most of the major manufacturers of electrophysiology recording equipment and also for more generic formats such as MATLAB. Data representation and data analysis are conceptually separate: it is easier to write robust analysis code if it is focused on analysis and relies on an underlying package to handle data representation. For that reason, and also to be as lightweight as possible, the Neo object model and the associated Python package are deliberately limited to representation of data, with no functions for data analysis or visualization. Software for neurophysiology data analysis and visualization built on top of Neo automatically gains the benefits of interoperability, easier data sharing and automatic format conversion; there is already a burgeoning ecosystem of such tools. We intend that Neo should become the standard basis for Python tools in neurophysiology.
AbstractList Neuroscientists use many different software tools to acquire, analyze and visualize electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis methods inaccessible and impedes collaboration between labs. A common representation of the core data would improve interoperability and facilitate data-sharing. To that end, we propose here a language-independent object model, named "Neo," suitable for representing data acquired from electroencephalographic, intracellular, or extracellular recordings, or generated from simulations. As a concrete instantiation of this object model we have developed an open source implementation in the Python programming language. In addition to representing electrophysiology data in memory for the purposes of analysis and visualization, the Python implementation provides a set of input/output (IO) modules for reading/writing the data from/to a variety of commonly used file formats. Support is included for formats produced by most of the major manufacturers of electrophysiology recording equipment and also for more generic formats such as MATLAB. Data representation and data analysis are conceptually separate: it is easier to write robust analysis code if it is focused on analysis and relies on an underlying package to handle data representation. For that reason, and also to be as lightweight as possible, the Neo object model and the associated Python package are deliberately limited to representation of data, with no functions for data analysis or visualization. Software for neurophysiology data analysis and visualization built on top of Neo automatically gains the benefits of interoperability, easier data sharing and automatic format conversion; there is already a burgeoning ecosystem of such tools. We intend that Neo should become the standard basis for Python tools in neurophysiology.
Neuroscientists use many different software tools to acquire, analyse and visualise electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis methods inaccessible and impedes collaboration between labs.A common representation of the core data would improve interoperability and facilitate data-sharing.To that end, we propose here a language-independent object model, named "Neo", suitable for representing data acquired from electroencephalographic, intracellular, or extracellular recordings, or generated from simulations. As a concrete instantiation of this object model we have developed an open source implementation in the Python programming language.In addition to representing electrophysiology data in memory for the purposes of analysis and visualisation, the Python implementation provides a set of input/output (IO) modules for reading/writing the data from/to a variety of commonly used file formats.Support is included for formats produced by most of the major manufacturers of electrophysiology recording equipment and also for more generic formats such as MATLAB.Data representation and data analysis are conceptually separate: it is easier to write robust analysis code if it is focused on analysis and relies on an underlying package to handle data representation.For that reason, and also to be as lightweight as possible, the Neo object model and the associated Python package are deliberately limited to representation of data, with no functions for data analysis or visualisation.Software for neurophysiology data analysis and visualisation built on top of Neo automatically gains the benefits of interoperability, easier data sharing and automatic format conversion; there is already a burgeoning ecosystem of such tools. We intend that Neo should become the standard basis for Python tools in neurophysiology.
Neuroscientists use many different software tools to acquire, analyze and visualize electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis methods inaccessible and impedes collaboration between labs. A common representation of the core data would improve interoperability and facilitate data-sharing. To that end, we propose here a language-independent object model, named "Neo," suitable for representing data acquired from electroencephalographic, intracellular, or extracellular recordings, or generated from simulations. As a concrete instantiation of this object model we have developed an open source implementation in the Python programming language. In addition to representing electrophysiology data in memory for the purposes of analysis and visualization, the Python implementation provides a set of input/output (IO) modules for reading/writing the data from/to a variety of commonly used file formats. Support is included for formats produced by most of the major manufacturers of electrophysiology recording equipment and also for more generic formats such as MATLAB. Data representation and data analysis are conceptually separate: it is easier to write robust analysis code if it is focused on analysis and relies on an underlying package to handle data representation. For that reason, and also to be as lightweight as possible, the Neo object model and the associated Python package are deliberately limited to representation of data, with no functions for data analysis or visualization. Software for neurophysiology data analysis and visualization built on top of Neo automatically gains the benefits of interoperability, easier data sharing and automatic format conversion; there is already a burgeoning ecosystem of such tools. We intend that Neo should become the standard basis for Python tools in neurophysiology.Neuroscientists use many different software tools to acquire, analyze and visualize electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis methods inaccessible and impedes collaboration between labs. A common representation of the core data would improve interoperability and facilitate data-sharing. To that end, we propose here a language-independent object model, named "Neo," suitable for representing data acquired from electroencephalographic, intracellular, or extracellular recordings, or generated from simulations. As a concrete instantiation of this object model we have developed an open source implementation in the Python programming language. In addition to representing electrophysiology data in memory for the purposes of analysis and visualization, the Python implementation provides a set of input/output (IO) modules for reading/writing the data from/to a variety of commonly used file formats. Support is included for formats produced by most of the major manufacturers of electrophysiology recording equipment and also for more generic formats such as MATLAB. Data representation and data analysis are conceptually separate: it is easier to write robust analysis code if it is focused on analysis and relies on an underlying package to handle data representation. For that reason, and also to be as lightweight as possible, the Neo object model and the associated Python package are deliberately limited to representation of data, with no functions for data analysis or visualization. Software for neurophysiology data analysis and visualization built on top of Neo automatically gains the benefits of interoperability, easier data sharing and automatic format conversion; there is already a burgeoning ecosystem of such tools. We intend that Neo should become the standard basis for Python tools in neurophysiology.
Author Davison, Andrew P.
Rodgers, Chris C.
Jaillet, Florent
Guarino, Domenico
Sobolev, Andrey
Yger, Pierre
Rautenberg, Philipp L.
Garcia, Samuel
Pröpper, Robert
Wachtler, Thomas
Jennings, Todd
AuthorAffiliation 1 Centre de Recherche en Neuroscience de Lyon, CNRS UMR5292–INSERM U1028–Université Claude Bernard Lyon 1 Lyon, France
7 Helen Wills Neuroscience Institute, University of California Berkeley, CA, USA
4 Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München Planegg-Martinsried, Germany
3 Institut de Neurosciences de la Timone UMR 7289, Aix Marseille Université, CNRS Marseille, France
6 G-Node, Department Biology II, Ludwig-Maximilians-Universität München Planegg-Martinsried, Germany
5 Neural Information Processing Group, TU Berlin Berlin, Germany
2 Unité de Neurosciences, Information et Complexité, Neuroinformatics group, CNRS UPR 3293 Gif-sur-Yvette, France
AuthorAffiliation_xml – name: 5 Neural Information Processing Group, TU Berlin Berlin, Germany
– name: 7 Helen Wills Neuroscience Institute, University of California Berkeley, CA, USA
– name: 6 G-Node, Department Biology II, Ludwig-Maximilians-Universität München Planegg-Martinsried, Germany
– name: 3 Institut de Neurosciences de la Timone UMR 7289, Aix Marseille Université, CNRS Marseille, France
– name: 4 Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München Planegg-Martinsried, Germany
– name: 1 Centre de Recherche en Neuroscience de Lyon, CNRS UMR5292–INSERM U1028–Université Claude Bernard Lyon 1 Lyon, France
– name: 2 Unité de Neurosciences, Information et Complexité, Neuroinformatics group, CNRS UPR 3293 Gif-sur-Yvette, France
Author_xml – sequence: 1
  givenname: Samuel
  surname: Garcia
  fullname: Garcia, Samuel
– sequence: 2
  givenname: Domenico
  surname: Guarino
  fullname: Guarino, Domenico
– sequence: 3
  givenname: Florent
  surname: Jaillet
  fullname: Jaillet, Florent
– sequence: 4
  givenname: Todd
  surname: Jennings
  fullname: Jennings, Todd
– sequence: 5
  givenname: Robert
  surname: Pröpper
  fullname: Pröpper, Robert
– sequence: 6
  givenname: Philipp L.
  surname: Rautenberg
  fullname: Rautenberg, Philipp L.
– sequence: 7
  givenname: Chris C.
  surname: Rodgers
  fullname: Rodgers, Chris C.
– sequence: 8
  givenname: Andrey
  surname: Sobolev
  fullname: Sobolev, Andrey
– sequence: 9
  givenname: Thomas
  surname: Wachtler
  fullname: Wachtler, Thomas
– sequence: 10
  givenname: Pierre
  surname: Yger
  fullname: Yger, Pierre
– sequence: 11
  givenname: Andrew P.
  surname: Davison
  fullname: Davison, Andrew P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24600386$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01055571$$DView record in HAL
BookMark eNp1Uk1vEzEQXaEi-gF3TmglLnBI8MeOd80BqaqAVorgAmfLX5s48trB3q2Uf483aVEbiZPtmffezHjeZXUWYrBV9RajJaUd_9QHF_olQbhZIoQwelFdYMbIAjBnZ0_u59VlzluEGGHQvqrOScMQoh27qFY_bPxcy1BHtbV6rIdorK_7mOqNDMa7sK6tL4kUd5t9dtHH9b42cpS1C_Uw-dHtvJ3xgxzz6-plL322bx7Oq-r3t6-_bm4Xq5_f726uVwsNpBkXhsketUAoAamI5haIoQC0x5rSnlskgRMKhpFONcAb3LVGS1BGlycYQq-qu6OuiXIrdskNMu1FlE4cAjGthUyj094K6HhndaMUV7hhfacow1J1ClOuWAu2aH05au0mNVijbRiT9M9En2eC24h1vBeUU4Q4FIGPR4HNCe32eiXmWNkLALT4Hhfsh4diKf6ZbB7F4LK23stg45QFBgQEWtbOM74_gW7jlEL5VkEIhwZQARfUu6fd_6v_uOACYEeATjHnZHuh3ShHF-dhnBcYidlJ4uAkMTtJHJxUiOiE-Kj9X8pfsmbK3g
CitedBy_id crossref_primary_10_1007_s12021_016_9319_4
crossref_primary_10_1016_j_crmeth_2023_100681
crossref_primary_10_7554_eLife_95135
crossref_primary_10_7717_peerj_cs_790
crossref_primary_10_3389_fnmol_2024_1351280
crossref_primary_10_1113_JP285875
crossref_primary_10_1371_journal_pone_0192477
crossref_primary_10_1152_jn_00251_2021
crossref_primary_10_1002_widm_1206
crossref_primary_10_3389_fninf_2018_00038
crossref_primary_10_7554_eLife_61834
crossref_primary_10_1038_s41467_024_52674_y
crossref_primary_10_1038_s41467_022_27984_8
crossref_primary_10_3389_fninf_2016_00007
crossref_primary_10_3389_fncir_2020_00016
crossref_primary_10_3389_fninf_2014_00032
crossref_primary_10_3389_fninf_2023_1250260
crossref_primary_10_7554_eLife_100268_3
crossref_primary_10_1002_advs_202306826
crossref_primary_10_1371_journal_pcbi_1007696
crossref_primary_10_1371_journal_pone_0301713
crossref_primary_10_3389_fninf_2021_713899
crossref_primary_10_1093_chemse_bjw114
crossref_primary_10_7554_eLife_74758
crossref_primary_10_1523_JNEUROSCI_0952_22_2023
crossref_primary_10_3390_app8112269
crossref_primary_10_7554_eLife_71647
crossref_primary_10_1007_s12021_020_09467_7
crossref_primary_10_3389_fninf_2021_768615
crossref_primary_10_1523_JNEUROSCI_1219_22_2022
crossref_primary_10_3389_fninf_2019_00057
crossref_primary_10_1016_j_clinph_2018_12_013
crossref_primary_10_1007_s12021_015_9282_5
crossref_primary_10_7554_eLife_78362
crossref_primary_10_3389_fcell_2021_770458
crossref_primary_10_3389_fninf_2015_00024
crossref_primary_10_1371_journal_pcbi_1011852
crossref_primary_10_7554_eLife_85786_3
crossref_primary_10_1113_JP286176
crossref_primary_10_1515_nf_2020_0041
crossref_primary_10_1186_s12938_017_0419_7
crossref_primary_10_1186_s40708_021_00135_3
crossref_primary_10_1038_s42003_021_02437_y
crossref_primary_10_1016_j_neuron_2015_10_025
crossref_primary_10_1162_neco_a_01672
crossref_primary_10_1038_s41467_023_41803_8
crossref_primary_10_1038_s41597_025_05213_3
crossref_primary_10_1162_netn_a_00106
crossref_primary_10_3389_fninf_2019_00062
crossref_primary_10_3389_fninf_2018_00016
crossref_primary_10_1515_nf_2020_0036
crossref_primary_10_1016_j_jplph_2021_153418
crossref_primary_10_7554_eLife_85786
crossref_primary_10_3390_s25030921
crossref_primary_10_1093_gigascience_giad049
crossref_primary_10_1038_s41597_022_01180_1
crossref_primary_10_3389_fninf_2016_00026
crossref_primary_10_1016_j_brainresbull_2015_06_009
crossref_primary_10_1016_j_neuron_2016_10_035
crossref_primary_10_1093_cercor_bhac280
crossref_primary_10_7554_eLife_95135_3
crossref_primary_10_1016_j_cub_2021_04_039
crossref_primary_10_1038_s41467_024_44983_z
crossref_primary_10_1523_ENEURO_0444_24_2025
crossref_primary_10_3389_fncom_2022_899584
crossref_primary_10_3389_fninf_2018_00049
crossref_primary_10_3389_fninf_2018_00006
crossref_primary_10_3389_fninf_2014_00063
crossref_primary_10_1016_j_biosystems_2019_104022
crossref_primary_10_1038_sdata_2018_55
crossref_primary_10_12688_wellcomeopenres_15533_1
crossref_primary_10_3389_fninf_2015_00004
crossref_primary_10_7554_eLife_100268
crossref_primary_10_1073_pnas_2119044119
crossref_primary_10_7554_eLife_71437
crossref_primary_10_1016_j_neuron_2014_04_031
crossref_primary_10_1007_s12021_022_09598_z
crossref_primary_10_1152_jn_00137_2016
ContentType Journal Article
Copyright 2014. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2014 Garcia, Guarino, Jaillet, Jennings, Pröpper, Rautenberg, Rodgers, Sobolev, Wachtler, Yger and Davison. 2014
Copyright_xml – notice: 2014. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2014 Garcia, Guarino, Jaillet, Jennings, Pröpper, Rautenberg, Rodgers, Sobolev, Wachtler, Yger and Davison. 2014
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.3389/fninf.2014.00010
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Computer Science
EISSN 1662-5196
ExternalDocumentID oai_doaj_org_article_5898ec4bb9b146f8b361ab8b139b675e
PMC3930095
oai:HAL:hal-01055571v1
24600386
10_3389_fninf_2014_00010
Genre Journal Article
GeographicLocations France
Germany
GeographicLocations_xml – name: France
– name: Germany
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
C1A
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
IPNFZ
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RIG
RNS
RPM
TR2
ACXDI
IAO
IEA
IHR
ISR
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
1XC
VOOES
5PM
ID FETCH-LOGICAL-c524t-d6af0752325ab2c9e52d3553f1c33f9e0a59235d628b4594187dca5bdcb455d23
IEDL.DBID M2P
ISICitedReferencesCount 98
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000348105500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-5196
IngestDate Fri Oct 03 12:53:46 EDT 2025
Tue Nov 04 01:59:53 EST 2025
Tue Oct 14 20:46:40 EDT 2025
Thu Sep 04 17:33:05 EDT 2025
Fri Jul 25 11:54:06 EDT 2025
Thu Jan 02 22:19:19 EST 2025
Tue Nov 18 22:35:48 EST 2025
Sat Nov 29 02:31:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords interoperability
electrophysiology
software
file formats
Python
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c524t-d6af0752325ab2c9e52d3553f1c33f9e0a59235d628b4594187dca5bdcb455d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC3930095
Reviewed by: Matthew Brett, University of Cambridge, UK; Luke Campagnola, University of North Carolina at Chapel Hill, USA; Alois Schlögl, Institute of Science and Technology, Austria
This article was submitted to the journal Frontiers in Neuroinformatics.
Edited by: Yaroslav O. Halchenko, Dartmouth College, USA
ORCID 0000-0003-3781-9514
0000-0001-6389-9779
0000-0002-4793-7541
OpenAccessLink https://www.proquest.com/docview/2295450150?pq-origsite=%requestingapplication%
PMID 24600386
PQID 2295450150
PQPubID 4424404
ParticipantIDs doaj_primary_oai_doaj_org_article_5898ec4bb9b146f8b361ab8b139b675e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3930095
hal_primary_oai_HAL_hal_01055571v1
proquest_miscellaneous_1505257672
proquest_journals_2295450150
pubmed_primary_24600386
crossref_citationtrail_10_3389_fninf_2014_00010
crossref_primary_10_3389_fninf_2014_00010
PublicationCentury 2000
PublicationDate 2014-02-20
PublicationDateYYYYMMDD 2014-02-20
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-20
  day: 20
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroinformatics
PublicationTitleAlternate Front Neuroinform
PublicationYear 2014
Publisher Frontiers Research Foundation
Frontiers Media
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media
– name: Frontiers Media S.A
References 21941477 - Front Neuroinform. 2011 Aug 30;5:16
12948806 - Clin Neurophysiol. 2003 Sep;114(9):1755-61
19194529 - Front Neuroinform. 2009 Jan 27;2:11
24273510 - Front Neuroinform. 2013 Nov 11;7:26
19521545 - Front Neuroinform. 2009 May 27;3:14
15501512 - Comput Methods Programs Biomed. 2004 Dec;76(3):261-3
15501511 - Comput Methods Programs Biomed. 2004 Dec;76(3):253-9
24634654 - Front Neuroinform. 2014 Mar 05;8:15
1374708 - Electroencephalogr Clin Neurophysiol. 1992 May;82(5):391-3
23055966 - Front Neuroinform. 2012 Jun 29;6:22
References_xml – reference: 19194529 - Front Neuroinform. 2009 Jan 27;2:11
– reference: 23055966 - Front Neuroinform. 2012 Jun 29;6:22
– reference: 15501512 - Comput Methods Programs Biomed. 2004 Dec;76(3):261-3
– reference: 19521545 - Front Neuroinform. 2009 May 27;3:14
– reference: 1374708 - Electroencephalogr Clin Neurophysiol. 1992 May;82(5):391-3
– reference: 15501511 - Comput Methods Programs Biomed. 2004 Dec;76(3):253-9
– reference: 12948806 - Clin Neurophysiol. 2003 Sep;114(9):1755-61
– reference: 24273510 - Front Neuroinform. 2013 Nov 11;7:26
– reference: 24634654 - Front Neuroinform. 2014 Mar 05;8:15
– reference: 21941477 - Front Neuroinform. 2011 Aug 30;5:16
SSID ssj0062657
Score 2.3562186
Snippet Neuroscientists use many different software tools to acquire, analyze and visualize electrophysiological signals. However, incompatible data models and file...
Neuroscientists use many different software tools to acquire, analyse and visualise electrophysiological signals. However, incompatible data models and file...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 10
SubjectTerms Application programming interface
Computer programs
Computer Science
Consortia
Data analysis
Data processing
EEG
Electroencephalography
Electrophysiology
File formats
Information sharing
Interoperability
Language
Libraries
Life Sciences
Metadata
Neurons and Cognition
Neurophysiology
Neuroscience
Neurosciences
python
Signal and Image Processing
Software
Time series
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6higMXBJRHoCCDEBKHaBMnfvW2IKoeVisOIPVm2Y6jrgTeqrutxL_vjJONdkGCC8c4dmKNx_Y3nvE3AO-F1KE1jSuN0LFsVdWXRjWqrAQZI5XXwWfK_IVaLvXFhfm6l-qLYsIGeuBBcDOhjY6h9d54nNS99o2sndcekYtHsBtp9a2U2RlTwxqMKF2owSmJJpiZ9QmHi-K4iCq7otuye5tQ5urHreWSIiH_hJm_R0vubT9nj-DhiBvZfOjvY7gX0xM4nie0mX_-Yh9YjuTMR-THsFjG9Slzia09nbKwnO2GITplmVMBNys2Zr-5mloxChVlq8R2EYZsQLObp_D97Mu3z-flmDWhDIK327KTrkccgEhJOM-DiYJ3CCqavg5N05tYOYGgTnSSa98K09ZadcEJ3wV8FB1vnsFRWqf4ApgU3qEBxXuOtmvfS9cFhANRytg6L6IuYLYTow0jpThltvhh0bQgwdsseEuCz17uqoCPU4urgU7jL3U_0chM9YgIOxegethRPey_1KOAdziuB984ny8sleXcoELVt3UBJ7tht-MU3ljKc94KOhAq4O30GicfeVRciuubja2HNIBS8QKeD1oy_Yq3ktyusgB1oD8HfTl8k1aXmeC7MQ1B35f_QwCv4AGJNN_Cr07gaHt9E1_D_XC7XW2u3-RZcwfGexwP
  priority: 102
  providerName: Directory of Open Access Journals
Title Neo: an object model for handling electrophysiology data in multiple formats
URI https://www.ncbi.nlm.nih.gov/pubmed/24600386
https://www.proquest.com/docview/2295450150
https://www.proquest.com/docview/1505257672
https://hal.science/hal-01055571
https://pubmed.ncbi.nlm.nih.gov/PMC3930095
https://doaj.org/article/5898ec4bb9b146f8b361ab8b139b675e
Volume 8
WOSCitedRecordID wos000348105500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M7P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: BENPR
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: PIMPY
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M2P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xuxy48FoegaUyCCFxiJqXHZsL6qKuFqlbVQikcopsx9mtBElpuytx4bcz4yRlC9JeuERKnIeVsT3fPDwfwGsupM1UqkPFpQuzPKpClad5GHEyRiIjrfEl8yf5dCrnczXrHG7rLq2yXxP9Ql02lnzkQ6KdzjjZ5--XP0JijaLoakehsQcHiGxiSuk6S2b9SoxYnedtaBINMTWsahQaZXNRweyI9sxeU0W-Yj8qmAvKh_wXbP6dM3lNCZ3c-9_u34e7Hfxko3a8PIBbrn4Ih6MaTe_vP9kb5hNCvaf9ECZT17xjumaNIWcN86Q5DEEu86UZUOexjkRnuX2KUcYpW9SsT1RkLSheP4IvJ-PPH07DjnwhtDzJNmEpdIVwAgEX1yaxyvGkRGySVrFN00q5SHPEhrwUiTQZV1ks89JqbkqLp7xM0sewXze1ewpMcKPRDkuqBE3gqhK6tIgqnBAu04Y7GcCwl0Nhu8rkRJDxrUALhSRXeMkVJDkfLI8CeLt9YtlW5bjh3mMS7fY-qqftLzSr86KbngWXSjqbGaMMqo5KmlTE2kiD-NigSeUCeIUDY-cdp6NJQdc8xSjP46s4gKNe9kW3EqyLP4IP4OW2GecwBWZ07ZrLdRG3bIIiTwJ40g6z7aeSTFD0VgSQ7wzAnb7sttSLC18nPFUpIehnN3frOdyhn-W36UdHsL9ZXboXcNtebRbr1QD28rkcwMHxeDr7NPAei4GfZHTM_fHXGNtnH89mX38DZ20xGA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQkuvMojUMAgQOIQbV52HCSElke1VZdVD0XqzbUdh64EybK7Leqf4jcy4yRLF6TeeuCYt5N8npkvM5kP4AUX0mZFqsOCSxdmeVSFRZ7mYcSJjERGWuNb5o_zyUQeHhb7G_Cr_xeGyip7m-gNddlY-kY-INnpjBM_fzf7EZJqFGVXewmNFhZ77uwnUrbF292P-H5fJsnOp4MPo7BTFQgtT7JlWApdoZ_ESIJrk9jC8aREp5tWsU3TqnCR5hj08FIk0mS8yGKZl1ZzU1pc5CU1OkCTfyUj2WZfKrjfW37kBjxvU6FI_IpBVSNIqHqMGnRH9I_uOdfnFQLQoR1T_eW_we3fNZrnnN7Ozf_tcd2CG114zYbtfLgNG66-A1vDWi-b72fsFfMFrz6TsAXjiWveMF2zxtDHKOZFgRgG8cy3nkCfzjqRoNnqKEYVtWxas74Qk7VB_-IufLmU-7oHm3VTuwfABDcaeWZSJUjxq0ro0iI2nBAu04Y7GcCgf-_Kdp3XSQDkm0IGRkhRHimKkOKLAaIAXq-OmLVdRy7Y9z1BabUf9Qv3K5r5V9WZH8VlIZ3NjCkMusZKmlTE2kiD8b9ByugCeI5AXDvHaDhWtM5LqPI8Po0D2O6xpjpLt1B_gBbAs9VmtFGUeNK1a04WKm7VEkWeBHC_hfXqUkkmKDstAsjXAL82lvUt9fTY90FPi5QYwsOLh_UUro0OPo_VeHey9wiu04PzLQmibdhczk_cY7hqT5fTxfyJn8wMji57OvwG-r6Fxg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqghAXXuURKGAQIHGINnFix0ZCaKGsWnVZ9QBSb67tOHQlSJbdbVH_Gr-OGSdZuiD11gPHvJ3k88x8mcl8hLzgQrpcZSZWXPo4L5IqVkVWxAlHMpJY6WxomT8uJhN5eKgONsiv_l8YLKvsbWIw1GXj8Bv5AGWnc478fFB1ZREHO6N3sx8xKkhhprWX02ghsu_PfgJ9W7zd24F3_ZKx0cfPH3bjTmEgdpzly7gUpgKfCVEFN5Y55TkrwQFnVeqyrFI-MRwCIF4KJm3OVZ7KonSG29LBIi-x6QGY_ysFLKBR-MQOei8APIEXbVoUSKAaVDUABivJsFl3gv_rnnODQS0AnNsx1mL-G-j-Xa95zgGObv7Pj-4WudGF3XTYzpPbZMPXd8jWsDbL5vsZfUVDIWzIMGyR8cQ3b6ipaWPxIxUNYkEUgnsaWlKAr6edeNBsdRTFSls6rWlfoElbMrC4S75cyn3dI5t1U_sHhApuDfBPVjGg_lUlTOkgmvJC-NxY7mVEBj0GtOs6sqMwyDcNzAxRowNqNKImFAkkEXm9OmLWdiO5YN_3CKvVfthHPKxo5l91Z5Y0l0p6l1urLLjMStpMpMZKC7zAApX0EXkOoFw7x-5wrHFdkFblRXqaRmS7x53uLOBC_wFdRJ6tNoPtwoSUqX1zstBpq6IoChaR-y3EV5diucCstYhIsQb-tbGsb6mnx6E_eqYyZA4PLx7WU3INZoEe7032H5Hr-NxCp4Jkm2wu5yf-MbnqTpfTxfxJmNeUHF32bPgNMtqOgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neo%3A+an+object+model+for+handling+electrophysiology+data+in+multiple+formats&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Garcia%2C+Samuel&rft.au=Guarino%2C+Domenico&rft.au=Jaillet%2C+Florent&rft.au=Jennings%2C+Todd+R&rft.date=2014-02-20&rft.pub=Frontiers+Research+Foundation&rft.eissn=1662-5196&rft_id=info:doi/10.3389%2Ffninf.2014.00010&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon