Neo: an object model for handling electrophysiology data in multiple formats
Neuroscientists use many different software tools to acquire, analyze and visualize electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis metho...
Saved in:
| Published in: | Frontiers in neuroinformatics Vol. 8; p. 10 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
Frontiers Research Foundation
20.02.2014
Frontiers Media Frontiers Media S.A |
| Subjects: | |
| ISSN: | 1662-5196, 1662-5196 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Neuroscientists use many different software tools to acquire, analyze and visualize electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis methods inaccessible and impedes collaboration between labs. A common representation of the core data would improve interoperability and facilitate data-sharing. To that end, we propose here a language-independent object model, named "Neo," suitable for representing data acquired from electroencephalographic, intracellular, or extracellular recordings, or generated from simulations. As a concrete instantiation of this object model we have developed an open source implementation in the Python programming language. In addition to representing electrophysiology data in memory for the purposes of analysis and visualization, the Python implementation provides a set of input/output (IO) modules for reading/writing the data from/to a variety of commonly used file formats. Support is included for formats produced by most of the major manufacturers of electrophysiology recording equipment and also for more generic formats such as MATLAB. Data representation and data analysis are conceptually separate: it is easier to write robust analysis code if it is focused on analysis and relies on an underlying package to handle data representation. For that reason, and also to be as lightweight as possible, the Neo object model and the associated Python package are deliberately limited to representation of data, with no functions for data analysis or visualization. Software for neurophysiology data analysis and visualization built on top of Neo automatically gains the benefits of interoperability, easier data sharing and automatic format conversion; there is already a burgeoning ecosystem of such tools. We intend that Neo should become the standard basis for Python tools in neurophysiology. |
|---|---|
| AbstractList | Neuroscientists use many different software tools to acquire, analyze and visualize electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis methods inaccessible and impedes collaboration between labs. A common representation of the core data would improve interoperability and facilitate data-sharing. To that end, we propose here a language-independent object model, named "Neo," suitable for representing data acquired from electroencephalographic, intracellular, or extracellular recordings, or generated from simulations. As a concrete instantiation of this object model we have developed an open source implementation in the Python programming language. In addition to representing electrophysiology data in memory for the purposes of analysis and visualization, the Python implementation provides a set of input/output (IO) modules for reading/writing the data from/to a variety of commonly used file formats. Support is included for formats produced by most of the major manufacturers of electrophysiology recording equipment and also for more generic formats such as MATLAB. Data representation and data analysis are conceptually separate: it is easier to write robust analysis code if it is focused on analysis and relies on an underlying package to handle data representation. For that reason, and also to be as lightweight as possible, the Neo object model and the associated Python package are deliberately limited to representation of data, with no functions for data analysis or visualization. Software for neurophysiology data analysis and visualization built on top of Neo automatically gains the benefits of interoperability, easier data sharing and automatic format conversion; there is already a burgeoning ecosystem of such tools. We intend that Neo should become the standard basis for Python tools in neurophysiology. Neuroscientists use many different software tools to acquire, analyse and visualise electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis methods inaccessible and impedes collaboration between labs.A common representation of the core data would improve interoperability and facilitate data-sharing.To that end, we propose here a language-independent object model, named "Neo", suitable for representing data acquired from electroencephalographic, intracellular, or extracellular recordings, or generated from simulations. As a concrete instantiation of this object model we have developed an open source implementation in the Python programming language.In addition to representing electrophysiology data in memory for the purposes of analysis and visualisation, the Python implementation provides a set of input/output (IO) modules for reading/writing the data from/to a variety of commonly used file formats.Support is included for formats produced by most of the major manufacturers of electrophysiology recording equipment and also for more generic formats such as MATLAB.Data representation and data analysis are conceptually separate: it is easier to write robust analysis code if it is focused on analysis and relies on an underlying package to handle data representation.For that reason, and also to be as lightweight as possible, the Neo object model and the associated Python package are deliberately limited to representation of data, with no functions for data analysis or visualisation.Software for neurophysiology data analysis and visualisation built on top of Neo automatically gains the benefits of interoperability, easier data sharing and automatic format conversion; there is already a burgeoning ecosystem of such tools. We intend that Neo should become the standard basis for Python tools in neurophysiology. Neuroscientists use many different software tools to acquire, analyze and visualize electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis methods inaccessible and impedes collaboration between labs. A common representation of the core data would improve interoperability and facilitate data-sharing. To that end, we propose here a language-independent object model, named "Neo," suitable for representing data acquired from electroencephalographic, intracellular, or extracellular recordings, or generated from simulations. As a concrete instantiation of this object model we have developed an open source implementation in the Python programming language. In addition to representing electrophysiology data in memory for the purposes of analysis and visualization, the Python implementation provides a set of input/output (IO) modules for reading/writing the data from/to a variety of commonly used file formats. Support is included for formats produced by most of the major manufacturers of electrophysiology recording equipment and also for more generic formats such as MATLAB. Data representation and data analysis are conceptually separate: it is easier to write robust analysis code if it is focused on analysis and relies on an underlying package to handle data representation. For that reason, and also to be as lightweight as possible, the Neo object model and the associated Python package are deliberately limited to representation of data, with no functions for data analysis or visualization. Software for neurophysiology data analysis and visualization built on top of Neo automatically gains the benefits of interoperability, easier data sharing and automatic format conversion; there is already a burgeoning ecosystem of such tools. We intend that Neo should become the standard basis for Python tools in neurophysiology.Neuroscientists use many different software tools to acquire, analyze and visualize electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis methods inaccessible and impedes collaboration between labs. A common representation of the core data would improve interoperability and facilitate data-sharing. To that end, we propose here a language-independent object model, named "Neo," suitable for representing data acquired from electroencephalographic, intracellular, or extracellular recordings, or generated from simulations. As a concrete instantiation of this object model we have developed an open source implementation in the Python programming language. In addition to representing electrophysiology data in memory for the purposes of analysis and visualization, the Python implementation provides a set of input/output (IO) modules for reading/writing the data from/to a variety of commonly used file formats. Support is included for formats produced by most of the major manufacturers of electrophysiology recording equipment and also for more generic formats such as MATLAB. Data representation and data analysis are conceptually separate: it is easier to write robust analysis code if it is focused on analysis and relies on an underlying package to handle data representation. For that reason, and also to be as lightweight as possible, the Neo object model and the associated Python package are deliberately limited to representation of data, with no functions for data analysis or visualization. Software for neurophysiology data analysis and visualization built on top of Neo automatically gains the benefits of interoperability, easier data sharing and automatic format conversion; there is already a burgeoning ecosystem of such tools. We intend that Neo should become the standard basis for Python tools in neurophysiology. |
| Author | Davison, Andrew P. Rodgers, Chris C. Jaillet, Florent Guarino, Domenico Sobolev, Andrey Yger, Pierre Rautenberg, Philipp L. Garcia, Samuel Pröpper, Robert Wachtler, Thomas Jennings, Todd |
| AuthorAffiliation | 1 Centre de Recherche en Neuroscience de Lyon, CNRS UMR5292–INSERM U1028–Université Claude Bernard Lyon 1 Lyon, France 7 Helen Wills Neuroscience Institute, University of California Berkeley, CA, USA 4 Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München Planegg-Martinsried, Germany 3 Institut de Neurosciences de la Timone UMR 7289, Aix Marseille Université, CNRS Marseille, France 6 G-Node, Department Biology II, Ludwig-Maximilians-Universität München Planegg-Martinsried, Germany 5 Neural Information Processing Group, TU Berlin Berlin, Germany 2 Unité de Neurosciences, Information et Complexité, Neuroinformatics group, CNRS UPR 3293 Gif-sur-Yvette, France |
| AuthorAffiliation_xml | – name: 5 Neural Information Processing Group, TU Berlin Berlin, Germany – name: 7 Helen Wills Neuroscience Institute, University of California Berkeley, CA, USA – name: 6 G-Node, Department Biology II, Ludwig-Maximilians-Universität München Planegg-Martinsried, Germany – name: 3 Institut de Neurosciences de la Timone UMR 7289, Aix Marseille Université, CNRS Marseille, France – name: 4 Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München Planegg-Martinsried, Germany – name: 1 Centre de Recherche en Neuroscience de Lyon, CNRS UMR5292–INSERM U1028–Université Claude Bernard Lyon 1 Lyon, France – name: 2 Unité de Neurosciences, Information et Complexité, Neuroinformatics group, CNRS UPR 3293 Gif-sur-Yvette, France |
| Author_xml | – sequence: 1 givenname: Samuel surname: Garcia fullname: Garcia, Samuel – sequence: 2 givenname: Domenico surname: Guarino fullname: Guarino, Domenico – sequence: 3 givenname: Florent surname: Jaillet fullname: Jaillet, Florent – sequence: 4 givenname: Todd surname: Jennings fullname: Jennings, Todd – sequence: 5 givenname: Robert surname: Pröpper fullname: Pröpper, Robert – sequence: 6 givenname: Philipp L. surname: Rautenberg fullname: Rautenberg, Philipp L. – sequence: 7 givenname: Chris C. surname: Rodgers fullname: Rodgers, Chris C. – sequence: 8 givenname: Andrey surname: Sobolev fullname: Sobolev, Andrey – sequence: 9 givenname: Thomas surname: Wachtler fullname: Wachtler, Thomas – sequence: 10 givenname: Pierre surname: Yger fullname: Yger, Pierre – sequence: 11 givenname: Andrew P. surname: Davison fullname: Davison, Andrew P. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24600386$$D View this record in MEDLINE/PubMed https://hal.science/hal-01055571$$DView record in HAL |
| BookMark | eNp1Uk1vEzEQXaEi-gF3TmglLnBI8MeOd80BqaqAVorgAmfLX5s48trB3q2Uf483aVEbiZPtmffezHjeZXUWYrBV9RajJaUd_9QHF_olQbhZIoQwelFdYMbIAjBnZ0_u59VlzluEGGHQvqrOScMQoh27qFY_bPxcy1BHtbV6rIdorK_7mOqNDMa7sK6tL4kUd5t9dtHH9b42cpS1C_Uw-dHtvJ3xgxzz6-plL322bx7Oq-r3t6-_bm4Xq5_f726uVwsNpBkXhsketUAoAamI5haIoQC0x5rSnlskgRMKhpFONcAb3LVGS1BGlycYQq-qu6OuiXIrdskNMu1FlE4cAjGthUyj094K6HhndaMUV7hhfacow1J1ClOuWAu2aH05au0mNVijbRiT9M9En2eC24h1vBeUU4Q4FIGPR4HNCe32eiXmWNkLALT4Hhfsh4diKf6ZbB7F4LK23stg45QFBgQEWtbOM74_gW7jlEL5VkEIhwZQARfUu6fd_6v_uOACYEeATjHnZHuh3ShHF-dhnBcYidlJ4uAkMTtJHJxUiOiE-Kj9X8pfsmbK3g |
| CitedBy_id | crossref_primary_10_1007_s12021_016_9319_4 crossref_primary_10_1016_j_crmeth_2023_100681 crossref_primary_10_7554_eLife_95135 crossref_primary_10_7717_peerj_cs_790 crossref_primary_10_3389_fnmol_2024_1351280 crossref_primary_10_1113_JP285875 crossref_primary_10_1371_journal_pone_0192477 crossref_primary_10_1152_jn_00251_2021 crossref_primary_10_1002_widm_1206 crossref_primary_10_3389_fninf_2018_00038 crossref_primary_10_7554_eLife_61834 crossref_primary_10_1038_s41467_024_52674_y crossref_primary_10_1038_s41467_022_27984_8 crossref_primary_10_3389_fninf_2016_00007 crossref_primary_10_3389_fncir_2020_00016 crossref_primary_10_3389_fninf_2014_00032 crossref_primary_10_3389_fninf_2023_1250260 crossref_primary_10_7554_eLife_100268_3 crossref_primary_10_1002_advs_202306826 crossref_primary_10_1371_journal_pcbi_1007696 crossref_primary_10_1371_journal_pone_0301713 crossref_primary_10_3389_fninf_2021_713899 crossref_primary_10_1093_chemse_bjw114 crossref_primary_10_7554_eLife_74758 crossref_primary_10_1523_JNEUROSCI_0952_22_2023 crossref_primary_10_3390_app8112269 crossref_primary_10_7554_eLife_71647 crossref_primary_10_1007_s12021_020_09467_7 crossref_primary_10_3389_fninf_2021_768615 crossref_primary_10_1523_JNEUROSCI_1219_22_2022 crossref_primary_10_3389_fninf_2019_00057 crossref_primary_10_1016_j_clinph_2018_12_013 crossref_primary_10_1007_s12021_015_9282_5 crossref_primary_10_7554_eLife_78362 crossref_primary_10_3389_fcell_2021_770458 crossref_primary_10_3389_fninf_2015_00024 crossref_primary_10_1371_journal_pcbi_1011852 crossref_primary_10_7554_eLife_85786_3 crossref_primary_10_1113_JP286176 crossref_primary_10_1515_nf_2020_0041 crossref_primary_10_1186_s12938_017_0419_7 crossref_primary_10_1186_s40708_021_00135_3 crossref_primary_10_1038_s42003_021_02437_y crossref_primary_10_1016_j_neuron_2015_10_025 crossref_primary_10_1162_neco_a_01672 crossref_primary_10_1038_s41467_023_41803_8 crossref_primary_10_1038_s41597_025_05213_3 crossref_primary_10_1162_netn_a_00106 crossref_primary_10_3389_fninf_2019_00062 crossref_primary_10_3389_fninf_2018_00016 crossref_primary_10_1515_nf_2020_0036 crossref_primary_10_1016_j_jplph_2021_153418 crossref_primary_10_7554_eLife_85786 crossref_primary_10_3390_s25030921 crossref_primary_10_1093_gigascience_giad049 crossref_primary_10_1038_s41597_022_01180_1 crossref_primary_10_3389_fninf_2016_00026 crossref_primary_10_1016_j_brainresbull_2015_06_009 crossref_primary_10_1016_j_neuron_2016_10_035 crossref_primary_10_1093_cercor_bhac280 crossref_primary_10_7554_eLife_95135_3 crossref_primary_10_1016_j_cub_2021_04_039 crossref_primary_10_1038_s41467_024_44983_z crossref_primary_10_1523_ENEURO_0444_24_2025 crossref_primary_10_3389_fncom_2022_899584 crossref_primary_10_3389_fninf_2018_00049 crossref_primary_10_3389_fninf_2018_00006 crossref_primary_10_3389_fninf_2014_00063 crossref_primary_10_1016_j_biosystems_2019_104022 crossref_primary_10_1038_sdata_2018_55 crossref_primary_10_12688_wellcomeopenres_15533_1 crossref_primary_10_3389_fninf_2015_00004 crossref_primary_10_7554_eLife_100268 crossref_primary_10_1073_pnas_2119044119 crossref_primary_10_7554_eLife_71437 crossref_primary_10_1016_j_neuron_2014_04_031 crossref_primary_10_1007_s12021_022_09598_z crossref_primary_10_1152_jn_00137_2016 |
| ContentType | Journal Article |
| Copyright | 2014. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2014 Garcia, Guarino, Jaillet, Jennings, Pröpper, Rautenberg, Rodgers, Sobolev, Wachtler, Yger and Davison. 2014 |
| Copyright_xml | – notice: 2014. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2014 Garcia, Guarino, Jaillet, Jennings, Pröpper, Rautenberg, Rodgers, Sobolev, Wachtler, Yger and Davison. 2014 |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM DOA |
| DOI | 10.3389/fninf.2014.00010 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Computer Science |
| EISSN | 1662-5196 |
| ExternalDocumentID | oai_doaj_org_article_5898ec4bb9b146f8b361ab8b139b675e PMC3930095 oai:HAL:hal-01055571v1 24600386 10_3389_fninf_2014_00010 |
| Genre | Journal Article |
| GeographicLocations | France Germany |
| GeographicLocations_xml | – name: France – name: Germany |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAKPC AAYXX ABUWG ACGFO ACGFS ADBBV ADRAZ AEGXH AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ C1A CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE IPNFZ KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RIG RNS RPM TR2 ACXDI IAO IEA IHR ISR NPM 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 1XC VOOES 5PM |
| ID | FETCH-LOGICAL-c524t-d6af0752325ab2c9e52d3553f1c33f9e0a59235d628b4594187dca5bdcb455d23 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 98 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000348105500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1662-5196 |
| IngestDate | Fri Oct 03 12:53:46 EDT 2025 Tue Nov 04 01:59:53 EST 2025 Tue Oct 14 20:46:40 EDT 2025 Thu Sep 04 17:33:05 EDT 2025 Fri Jul 25 11:54:06 EDT 2025 Thu Jan 02 22:19:19 EST 2025 Tue Nov 18 22:35:48 EST 2025 Sat Nov 29 02:31:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | interoperability electrophysiology software file formats Python |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c524t-d6af0752325ab2c9e52d3553f1c33f9e0a59235d628b4594187dca5bdcb455d23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC3930095 Reviewed by: Matthew Brett, University of Cambridge, UK; Luke Campagnola, University of North Carolina at Chapel Hill, USA; Alois Schlögl, Institute of Science and Technology, Austria This article was submitted to the journal Frontiers in Neuroinformatics. Edited by: Yaroslav O. Halchenko, Dartmouth College, USA |
| ORCID | 0000-0003-3781-9514 0000-0001-6389-9779 0000-0002-4793-7541 |
| OpenAccessLink | https://www.proquest.com/docview/2295450150?pq-origsite=%requestingapplication% |
| PMID | 24600386 |
| PQID | 2295450150 |
| PQPubID | 4424404 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5898ec4bb9b146f8b361ab8b139b675e pubmedcentral_primary_oai_pubmedcentral_nih_gov_3930095 hal_primary_oai_HAL_hal_01055571v1 proquest_miscellaneous_1505257672 proquest_journals_2295450150 pubmed_primary_24600386 crossref_citationtrail_10_3389_fninf_2014_00010 crossref_primary_10_3389_fninf_2014_00010 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-02-20 |
| PublicationDateYYYYMMDD | 2014-02-20 |
| PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in neuroinformatics |
| PublicationTitleAlternate | Front Neuroinform |
| PublicationYear | 2014 |
| Publisher | Frontiers Research Foundation Frontiers Media Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media – name: Frontiers Media S.A |
| References | 21941477 - Front Neuroinform. 2011 Aug 30;5:16 12948806 - Clin Neurophysiol. 2003 Sep;114(9):1755-61 19194529 - Front Neuroinform. 2009 Jan 27;2:11 24273510 - Front Neuroinform. 2013 Nov 11;7:26 19521545 - Front Neuroinform. 2009 May 27;3:14 15501512 - Comput Methods Programs Biomed. 2004 Dec;76(3):261-3 15501511 - Comput Methods Programs Biomed. 2004 Dec;76(3):253-9 24634654 - Front Neuroinform. 2014 Mar 05;8:15 1374708 - Electroencephalogr Clin Neurophysiol. 1992 May;82(5):391-3 23055966 - Front Neuroinform. 2012 Jun 29;6:22 |
| References_xml | – reference: 19194529 - Front Neuroinform. 2009 Jan 27;2:11 – reference: 23055966 - Front Neuroinform. 2012 Jun 29;6:22 – reference: 15501512 - Comput Methods Programs Biomed. 2004 Dec;76(3):261-3 – reference: 19521545 - Front Neuroinform. 2009 May 27;3:14 – reference: 1374708 - Electroencephalogr Clin Neurophysiol. 1992 May;82(5):391-3 – reference: 15501511 - Comput Methods Programs Biomed. 2004 Dec;76(3):253-9 – reference: 12948806 - Clin Neurophysiol. 2003 Sep;114(9):1755-61 – reference: 24273510 - Front Neuroinform. 2013 Nov 11;7:26 – reference: 24634654 - Front Neuroinform. 2014 Mar 05;8:15 – reference: 21941477 - Front Neuroinform. 2011 Aug 30;5:16 |
| SSID | ssj0062657 |
| Score | 2.3562186 |
| Snippet | Neuroscientists use many different software tools to acquire, analyze and visualize electrophysiological signals. However, incompatible data models and file... Neuroscientists use many different software tools to acquire, analyse and visualise electrophysiological signals. However, incompatible data models and file... |
| SourceID | doaj pubmedcentral hal proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 10 |
| SubjectTerms | Application programming interface Computer programs Computer Science Consortia Data analysis Data processing EEG Electroencephalography Electrophysiology File formats Information sharing Interoperability Language Libraries Life Sciences Metadata Neurons and Cognition Neurophysiology Neuroscience Neurosciences python Signal and Image Processing Software Time series |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6higMXBJRHoCCDEBKHaBMnfvW2IKoeVisOIPVm2Y6jrgTeqrutxL_vjJONdkGCC8c4dmKNx_Y3nvE3AO-F1KE1jSuN0LFsVdWXRjWqrAQZI5XXwWfK_IVaLvXFhfm6l-qLYsIGeuBBcDOhjY6h9d54nNS99o2sndcekYtHsBtp9a2U2RlTwxqMKF2owSmJJpiZ9QmHi-K4iCq7otuye5tQ5urHreWSIiH_hJm_R0vubT9nj-DhiBvZfOjvY7gX0xM4nie0mX_-Yh9YjuTMR-THsFjG9Slzia09nbKwnO2GITplmVMBNys2Zr-5mloxChVlq8R2EYZsQLObp_D97Mu3z-flmDWhDIK327KTrkccgEhJOM-DiYJ3CCqavg5N05tYOYGgTnSSa98K09ZadcEJ3wV8FB1vnsFRWqf4ApgU3qEBxXuOtmvfS9cFhANRytg6L6IuYLYTow0jpThltvhh0bQgwdsseEuCz17uqoCPU4urgU7jL3U_0chM9YgIOxegethRPey_1KOAdziuB984ny8sleXcoELVt3UBJ7tht-MU3ljKc94KOhAq4O30GicfeVRciuubja2HNIBS8QKeD1oy_Yq3ktyusgB1oD8HfTl8k1aXmeC7MQ1B35f_QwCv4AGJNN_Cr07gaHt9E1_D_XC7XW2u3-RZcwfGexwP priority: 102 providerName: Directory of Open Access Journals |
| Title | Neo: an object model for handling electrophysiology data in multiple formats |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24600386 https://www.proquest.com/docview/2295450150 https://www.proquest.com/docview/1505257672 https://hal.science/hal-01055571 https://pubmed.ncbi.nlm.nih.gov/PMC3930095 https://doaj.org/article/5898ec4bb9b146f8b361ab8b139b675e |
| Volume | 8 |
| WOSCitedRecordID | wos000348105500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1662-5196 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: M7P dateStart: 20071102 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1662-5196 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: BENPR dateStart: 20071102 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1662-5196 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: PIMPY dateStart: 20071102 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1662-5196 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: M2P dateStart: 20071102 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xuxy48FoegaUyCCFxiJqXHZsL6qKuFqlbVQikcopsx9mtBElpuytx4bcz4yRlC9JeuERKnIeVsT3fPDwfwGsupM1UqkPFpQuzPKpClad5GHEyRiIjrfEl8yf5dCrnczXrHG7rLq2yXxP9Ql02lnzkQ6KdzjjZ5--XP0JijaLoakehsQcHiGxiSuk6S2b9SoxYnedtaBINMTWsahQaZXNRweyI9sxeU0W-Yj8qmAvKh_wXbP6dM3lNCZ3c-9_u34e7Hfxko3a8PIBbrn4Ih6MaTe_vP9kb5hNCvaf9ECZT17xjumaNIWcN86Q5DEEu86UZUOexjkRnuX2KUcYpW9SsT1RkLSheP4IvJ-PPH07DjnwhtDzJNmEpdIVwAgEX1yaxyvGkRGySVrFN00q5SHPEhrwUiTQZV1ks89JqbkqLp7xM0sewXze1ewpMcKPRDkuqBE3gqhK6tIgqnBAu04Y7GcCwl0Nhu8rkRJDxrUALhSRXeMkVJDkfLI8CeLt9YtlW5bjh3mMS7fY-qqftLzSr86KbngWXSjqbGaMMqo5KmlTE2kiD-NigSeUCeIUDY-cdp6NJQdc8xSjP46s4gKNe9kW3EqyLP4IP4OW2GecwBWZ07ZrLdRG3bIIiTwJ40g6z7aeSTFD0VgSQ7wzAnb7sttSLC18nPFUpIehnN3frOdyhn-W36UdHsL9ZXboXcNtebRbr1QD28rkcwMHxeDr7NPAei4GfZHTM_fHXGNtnH89mX38DZ20xGA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQkuvMojUMAgQOIQbV52HCSElke1VZdVD0XqzbUdh64EybK7Leqf4jcy4yRLF6TeeuCYt5N8npkvM5kP4AUX0mZFqsOCSxdmeVSFRZ7mYcSJjERGWuNb5o_zyUQeHhb7G_Cr_xeGyip7m-gNddlY-kY-INnpjBM_fzf7EZJqFGVXewmNFhZ77uwnUrbF292P-H5fJsnOp4MPo7BTFQgtT7JlWApdoZ_ESIJrk9jC8aREp5tWsU3TqnCR5hj08FIk0mS8yGKZl1ZzU1pc5CU1OkCTfyUj2WZfKrjfW37kBjxvU6FI_IpBVSNIqHqMGnRH9I_uOdfnFQLQoR1T_eW_we3fNZrnnN7Ozf_tcd2CG114zYbtfLgNG66-A1vDWi-b72fsFfMFrz6TsAXjiWveMF2zxtDHKOZFgRgG8cy3nkCfzjqRoNnqKEYVtWxas74Qk7VB_-IufLmU-7oHm3VTuwfABDcaeWZSJUjxq0ro0iI2nBAu04Y7GcCgf-_Kdp3XSQDkm0IGRkhRHimKkOKLAaIAXq-OmLVdRy7Y9z1BabUf9Qv3K5r5V9WZH8VlIZ3NjCkMusZKmlTE2kiD8b9ByugCeI5AXDvHaDhWtM5LqPI8Po0D2O6xpjpLt1B_gBbAs9VmtFGUeNK1a04WKm7VEkWeBHC_hfXqUkkmKDstAsjXAL82lvUt9fTY90FPi5QYwsOLh_UUro0OPo_VeHey9wiu04PzLQmibdhczk_cY7hqT5fTxfyJn8wMji57OvwG-r6Fxg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqghAXXuURKGAQIHGINnFix0ZCaKGsWnVZ9QBSb67tOHQlSJbdbVH_Gr-OGSdZuiD11gPHvJ3k88x8mcl8hLzgQrpcZSZWXPo4L5IqVkVWxAlHMpJY6WxomT8uJhN5eKgONsiv_l8YLKvsbWIw1GXj8Bv5AGWnc478fFB1ZREHO6N3sx8xKkhhprWX02ghsu_PfgJ9W7zd24F3_ZKx0cfPH3bjTmEgdpzly7gUpgKfCVEFN5Y55TkrwQFnVeqyrFI-MRwCIF4KJm3OVZ7KonSG29LBIi-x6QGY_ysFLKBR-MQOei8APIEXbVoUSKAaVDUABivJsFl3gv_rnnODQS0AnNsx1mL-G-j-Xa95zgGObv7Pj-4WudGF3XTYzpPbZMPXd8jWsDbL5vsZfUVDIWzIMGyR8cQ3b6ipaWPxIxUNYkEUgnsaWlKAr6edeNBsdRTFSls6rWlfoElbMrC4S75cyn3dI5t1U_sHhApuDfBPVjGg_lUlTOkgmvJC-NxY7mVEBj0GtOs6sqMwyDcNzAxRowNqNKImFAkkEXm9OmLWdiO5YN_3CKvVfthHPKxo5l91Z5Y0l0p6l1urLLjMStpMpMZKC7zAApX0EXkOoFw7x-5wrHFdkFblRXqaRmS7x53uLOBC_wFdRJ6tNoPtwoSUqX1zstBpq6IoChaR-y3EV5diucCstYhIsQb-tbGsb6mnx6E_eqYyZA4PLx7WU3INZoEe7032H5Hr-NxCp4Jkm2wu5yf-MbnqTpfTxfxJmNeUHF32bPgNMtqOgQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neo%3A+an+object+model+for+handling+electrophysiology+data+in+multiple+formats&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Garcia%2C+Samuel&rft.au=Guarino%2C+Domenico&rft.au=Jaillet%2C+Florent&rft.au=Jennings%2C+Todd+R&rft.date=2014-02-20&rft.pub=Frontiers+Research+Foundation&rft.eissn=1662-5196&rft_id=info:doi/10.3389%2Ffninf.2014.00010&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon |