Maximizing the sum of a generalized Rayleigh quotient and another Rayleigh quotient on the unit sphere via semidefinite programming

The problem is a type of “sum-of-ratios” fractional programming and is known to be NP-hard. Due to many local maxima, finding the global maximizer is in general difficult. The best attempt so far is a critical point approach based on a necessary optimality condition. The problem therefore has not be...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of global optimization Ročník 64; číslo 2; s. 399 - 416
Hlavní autoři: Nguyen, Van-Bong, Sheu, Ruey-Lin, Xia, Yong
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.02.2016
Springer
Springer Nature B.V
Témata:
ISSN:0925-5001, 1573-2916
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The problem is a type of “sum-of-ratios” fractional programming and is known to be NP-hard. Due to many local maxima, finding the global maximizer is in general difficult. The best attempt so far is a critical point approach based on a necessary optimality condition. The problem therefore has not been completely solved. Our novel idea is to replace the generalized Rayleigh quotient by a parameter μ and generate a family of quadratic subproblems ( P μ ) ′ s subject to two quadratic constraints. Each ( P μ ) , if the problem dimension n ≥ 3 , can be solved in polynomial time by incorporating a version of S-lemma; a tight SDP relaxation; and a matrix rank-one decomposition procedure. Then, the difficulty of the problem is largely reduced to become a one-dimensional maximization problem over an interval of parameters [ μ ̲ , μ ¯ ] . We propose a two-stage scheme incorporating the quadratic fit line search algorithm to find μ ∗ numerically. Computational experiments show that our method solves the problem correctly and efficiently.
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).The problem is a type of "sum-of-ratios" fractional programming and is known to be NP-hard. Due to many local maxima, finding the global maximizer is in general difficult. The best attempt so far is a critical point approach based on a necessary optimality condition. The problem therefore has not been completely solved. Our novel idea is to replace the generalized Rayleigh quotient by a parameter ... and generate a family of quadratic subproblems ... subject to two quadratic constraints. Each ..., if the problem dimension ..., can be solved in polynomial time by incorporating a version of S-lemma; a tight SDP relaxation; and a matrix rank-one decomposition procedure. Then, the difficulty of the problem is largely reduced to become a one-dimensional maximization problem over an interval of parameters ... We propose a two-stage scheme incorporating the quadratic fit line search algorithm to find ... numerically. Computational experiments show that our method solves the problem correctly and efficiently.
The problem is a type of “sum-of-ratios” fractional programming and is known to be NP-hard. Due to many local maxima, finding the global maximizer is in general difficult. The best attempt so far is a critical point approach based on a necessary optimality condition. The problem therefore has not been completely solved. Our novel idea is to replace the generalized Rayleigh quotient by a parameter μ and generate a family of quadratic subproblems ( P μ ) ′ s subject to two quadratic constraints. Each ( P μ ) , if the problem dimension n ≥ 3 , can be solved in polynomial time by incorporating a version of S-lemma; a tight SDP relaxation; and a matrix rank-one decomposition procedure. Then, the difficulty of the problem is largely reduced to become a one-dimensional maximization problem over an interval of parameters [ μ ̲ , μ ¯ ] . We propose a two-stage scheme incorporating the quadratic fit line search algorithm to find μ ∗ numerically. Computational experiments show that our method solves the problem correctly and efficiently.
The problem is a type of "sum-of-ratios" fractional programming and is known to be NP-hard. Due to many local maxima, finding the global maximizer is in general difficult. The best attempt so far is a critical point approach based on a necessary optimality condition. The problem therefore has not been completely solved. Our novel idea is to replace the generalized Rayleigh quotient by a parameter [Formula omitted] and generate a family of quadratic subproblems [Formula omitted] subject to two quadratic constraints. Each [Formula omitted], if the problem dimension [Formula omitted], can be solved in polynomial time by incorporating a version of S-lemma; a tight SDP relaxation; and a matrix rank-one decomposition procedure. Then, the difficulty of the problem is largely reduced to become a one-dimensional maximization problem over an interval of parameters [Formula omitted]. We propose a two-stage scheme incorporating the quadratic fit line search algorithm to find [Formula omitted] numerically. Computational experiments show that our method solves the problem correctly and efficiently.
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Special Issue on MAGO 2014 The problem is a type of "sum-of-ratios" fractional programming and is known to be NP-hard. Due to many local maxima, finding the global maximizer is in general difficult. The best attempt so far is a critical point approach based on a necessary optimality condition. The problem therefore has not been completely solved. Our novel idea is to replace the generalized Rayleigh quotient by a parameter ... and generate a family of quadratic subproblems ... subject to two quadratic constraints. Each ..., if the problem dimension ..., can be solved in polynomial time by incorporating a version of S-lemma; a tight SDP relaxation; and a matrix rank-one decomposition procedure. Then, the difficulty of the problem is largely reduced to become a one-dimensional maximization problem over an interval of parameters ... We propose a two-stage scheme incorporating the quadratic fit line search algorithm to find ... numerically. Computational experiments show that our method solves the problem correctly and efficiently.
Audience Academic
Author Sheu, Ruey-Lin
Xia, Yong
Nguyen, Van-Bong
Author_xml – sequence: 1
  givenname: Van-Bong
  surname: Nguyen
  fullname: Nguyen, Van-Bong
  organization: Department of Mathematics, National Cheng Kung University
– sequence: 2
  givenname: Ruey-Lin
  surname: Sheu
  fullname: Sheu, Ruey-Lin
  email: rsheu@mail.ncku.edu.tw
  organization: Department of Mathematics, National Cheng Kung University
– sequence: 3
  givenname: Yong
  surname: Xia
  fullname: Xia, Yong
  organization: State Key Laboratory of Software Development Environment, LMIB of the Ministry of Education, School of Mathematics and System Sciences, Beihang University
BookMark eNp9kUFrFTEQx4NU8LX6AbwFvHjZOkk2u5tjKVqFiiB6Dnm7k23KbvKa7Irt1S_uPNeDFJWQBGb-v5lM_qfsJKaIjL0UcC4A2jdFQGe6CoSuQNEhn7Cd0K2qpBHNCduBkbrSAOIZOy3lFgBMp-WO_fjovoc5PIQ48uUGeVlnnjx3fMSI2U3hAQf-2d1PGMYbfremJWBcuIsD7URE_ks2xV-11hgWXg6kQf4tOF5wDgP6QGHkh5zG7OaZGj9nT72bCr74fZ-xr-_efrl8X11_uvpweXFd9VrWSzWoXmG_N3XrFci9lHKQpoNuaAc8pkTjG99p1Sqn9ro34KB22jfSSQHeoDpjr7e61PtuxbLYOZQep8lFTGuxojVKSmEMkPTVI-ltWnOk15GqEY1spa5Jdb6pRjehDdGnJbue1kCT9mSQDxS_aEVXC0UfTkC7AX1OpWT0tg-LW0KKBIbJCrBHN-3mpiU37dFNK4kUj8hDDrPL9_9l5MYU0sYR8x9D_BP6CSx9tPI
CitedBy_id crossref_primary_10_1016_j_orl_2017_11_010
crossref_primary_10_1145_3638048
crossref_primary_10_1177_02783649231186165
crossref_primary_10_1109_TWC_2018_2808955
crossref_primary_10_1007_s10898_019_00835_5
crossref_primary_10_1007_s11042_016_4087_6
crossref_primary_10_1007_s40314_018_0575_9
crossref_primary_10_1137_18M1164639
Cites_doi 10.1023/B:JOTA.0000026129.07165.5a
10.1137/S003614450444614X
10.1007/s10898-008-9285-y
10.1287/moor.28.2.246.14485
10.1023/A:1008314922240
10.1137/07070601X
10.1007/s10898-008-9378-7
10.1093/bioinformatics/btp019
10.1023/A:1013072027218
10.1023/A:1013869015288
10.1016/j.cam.2013.08.005
10.6026/97320630002230
10.1090/S0002-9939-1961-0122827-1
10.1023/A:1008316327038
10.1023/A:1013807129844
10.1137/S105262340139001X
10.1002/0471787779
10.1007/s10589-012-9479-6
10.1007/b102138
10.1137/1.9780898718829
10.1109/ISSSTA.2006.311820
10.1137/1.9781611972757.44
10.1007/978-0-387-74503-9
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
COPYRIGHT 2016 Springer
Springer Science+Business Media New York 2016
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: COPYRIGHT 2016 Springer
– notice: Springer Science+Business Media New York 2016
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s10898-015-0315-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection (LUT)
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts


ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 416
ExternalDocumentID 3939321741
A718413098
10_1007_s10898_015_0315_2
Genre Feature
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L.0
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
PUEGO
ID FETCH-LOGICAL-c524t-d3c3ecb947f302b222d29808d7de3c3e16f6f85373a3b5c90a04a5f62a210f9e3
IEDL.DBID M2P
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000369249300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-5001
IngestDate Wed Oct 01 14:08:34 EDT 2025
Tue Nov 04 22:12:37 EST 2025
Sat Nov 29 10:09:44 EST 2025
Sat Nov 29 01:59:32 EST 2025
Tue Nov 18 22:13:26 EST 2025
Fri Feb 21 02:42:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Semidefinite programming
Quadratic fit line search
S-Lemma
90C25
90C22
Fractional programming
Quadratically constrained quadratic programming
(Generalized) Rayleigh quotient
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c524t-d3c3ecb947f302b222d29808d7de3c3e16f6f85373a3b5c90a04a5f62a210f9e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1761627254
PQPubID 29930
PageCount 18
ParticipantIDs proquest_miscellaneous_1793221990
proquest_journals_1761627254
gale_infotracacademiconefile_A718413098
crossref_citationtrail_10_1007_s10898_015_0315_2
crossref_primary_10_1007_s10898_015_0315_2
springer_journals_10_1007_s10898_015_0315_2
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2016
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Ai, Zhang (CR1) 2009; 19
Wolkowicz, Saigal, Vandenberghe (CR25) 2000
Kuno (CR19) 2002; 22
Ben-Tal, Teboulle (CR8) 1996; 72
Fang, Gao, Sheu, Xing (CR13) 2009; 45
CR16
Rendl, Wolkowicz (CR23) 1997; 77
CR12
CR11
Luenberger, Ye (CR20) 2008
Brickman (CR9) 1961; 12
Konno, Fukaishi (CR18) 2000; 18
Sturm, Zhang (CR24) 2003; 28
Fung, Ng (CR15) 2007; 2
Benson (CR6) 2004; 121
Zhang (CR30) 2014; 257
Freund, Jarre (CR14) 2001; 19
Benson (CR5) 2002; 22
Ye, Zhang (CR28) 2003; 14
Zhang (CR29) 2013; 54
CR7
Bazaraa, Sherali, Shetty (CR3) 2006
Craven (CR10) 1988
Pólik, Terlaky (CR21) 2007; 49
CR22
Wu, Zhang, Wang, Christiani, Lin (CR26) 2009; 25
Benson (CR4) 2002; 112
Hsia, Lin, Sheu (CR17) 2014; 10
Antoniou, Lu (CR2) 2007
Wu, Sheu, Birbil (CR27) 2008; 42
315_CR12
H Konno (315_CR18) 2000; 18
T Kuno (315_CR19) 2002; 22
LH Zhang (315_CR30) 2014; 257
HP Benson (315_CR4) 2002; 112
315_CR16
MS Bazaraa (315_CR3) 2006
MC Wu (315_CR26) 2009; 25
315_CR11
A Antoniou (315_CR2) 2007
Y Ye (315_CR28) 2003; 14
315_CR7
DG Luenberger (315_CR20) 2008
HP Benson (315_CR6) 2004; 121
Y Hsia (315_CR17) 2014; 10
JF Sturm (315_CR24) 2003; 28
W Ai (315_CR1) 2009; 19
(315_CR25) 2000
SC Fang (315_CR13) 2009; 45
I Pólik (315_CR21) 2007; 49
L Brickman (315_CR9) 1961; 12
HP Benson (315_CR5) 2002; 22
A Ben-Tal (315_CR8) 1996; 72
F Rendl (315_CR23) 1997; 77
315_CR22
RW Freund (315_CR14) 2001; 19
LH Zhang (315_CR29) 2013; 54
BD Craven (315_CR10) 1988
WY Wu (315_CR27) 2008; 42
E Fung (315_CR15) 2007; 2
References_xml – volume: 121
  start-page: 19
  year: 2004
  end-page: 39
  ident: CR6
  article-title: On the global optimization of sum of linear fractional functions over a convex set
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/B:JOTA.0000026129.07165.5a
– ident: CR22
– volume: 49
  start-page: 371
  issue: 3
  year: 2007
  end-page: 418
  ident: CR21
  article-title: A survey of S-lemma
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450444614X
– volume: 42
  start-page: 91
  issue: 1
  year: 2008
  end-page: 109
  ident: CR27
  article-title: Solving the sum-of-ratios problem by a stochastic search algorithm
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-008-9285-y
– ident: CR16
– ident: CR12
– volume: 28
  start-page: 246
  year: 2003
  end-page: 267
  ident: CR24
  article-title: On cones of nonnegative quadratic functions
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.28.2.246.14485
– volume: 18
  start-page: 283
  year: 2000
  end-page: 299
  ident: CR18
  article-title: A branch and bound algorithm for solving low rank linear multiplicative and fractional programming problems
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008314922240
– volume: 19
  start-page: 1735
  issue: 4
  year: 2009
  end-page: 1756
  ident: CR1
  article-title: Strong duality for the CDT subproblem: a necessary and sufficient condition
  publication-title: SIAM J. Optim.
  doi: 10.1137/07070601X
– volume: 45
  start-page: 337
  issue: 3
  year: 2009
  end-page: 353
  ident: CR13
  article-title: Global optimization for a class of fractional programming problems
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-008-9378-7
– year: 2008
  ident: CR20
  publication-title: Linear and Nonlinear Programming
– volume: 77
  start-page: 273
  year: 1997
  end-page: 299
  ident: CR23
  article-title: A semidefinite framework for trust region subproblems with applications to large scale minimization
  publication-title: Math. Program.
– volume: 25
  start-page: 1145
  year: 2009
  end-page: 1151
  ident: CR26
  article-title: Sparse linear discriminant analysis for simultaneous testing for the significance of a gene set/pathway and gene selection
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp019
– volume: 112
  start-page: 1
  year: 2002
  end-page: 29
  ident: CR4
  article-title: Global optimization algorithm for the nonlinear sum of ratios problem
  publication-title: J. Optim. Theor. Appl.
  doi: 10.1023/A:1013072027218
– volume: 22
  start-page: 343
  year: 2002
  end-page: 364
  ident: CR5
  article-title: Using concave envelopes to globally solve the nonlinear sum of ratios problems
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1013869015288
– volume: 257
  start-page: 14
  year: 2014
  end-page: 28
  ident: CR30
  article-title: On a self-consistent-field-like iteration for maximizing the sum of the Rayleigh quotients
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2013.08.005
– volume: 10
  start-page: 461
  year: 2014
  end-page: 481
  ident: CR17
  article-title: A revisit to quadratic programming with one inequality quadratic constraint via matrix pencil
  publication-title: Pac. J. Optim.
– volume: 2
  start-page: 230
  year: 2007
  end-page: 234
  ident: CR15
  article-title: On sparse Fisher discriminant method for microarray data analysis
  publication-title: Bioinformation
  doi: 10.6026/97320630002230
– volume: 12
  start-page: 61
  year: 1961
  end-page: 66
  ident: CR9
  article-title: On the field of values of a matrix
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1961-0122827-1
– volume: 19
  start-page: 83
  year: 2001
  end-page: 102
  ident: CR14
  article-title: Solving the sum-of-ratios problem by an interior-point method
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008316327038
– volume: 22
  start-page: 155
  year: 2002
  end-page: 174
  ident: CR19
  article-title: A branch-and-bound algorithm for maximizing the sum of several linear ratios
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1013807129844
– ident: CR11
– volume: 72
  start-page: 51
  year: 1996
  end-page: 63
  ident: CR8
  article-title: Hidden convexity in some nonconvex quadratically constrained quadratic programming
  publication-title: Math. Program.
– year: 2007
  ident: CR2
  publication-title: Practical Optimization: Algorithms and Engineering Applications
– ident: CR7
– year: 1988
  ident: CR10
  publication-title: Fractional Programming. Sigma Series in Applied Mathematics
– volume: 14
  start-page: 245
  issue: 1
  year: 2003
  end-page: 267
  ident: CR28
  article-title: New results on quadratic minimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/S105262340139001X
– year: 2000
  ident: CR25
  publication-title: Handbook on Semidefinite Programming: Theory, Algorithms and Applications
– year: 2006
  ident: CR3
  publication-title: Nonliear Programming: Theory and Algorithms
  doi: 10.1002/0471787779
– volume: 54
  start-page: 111
  year: 2013
  end-page: 139
  ident: CR29
  article-title: On optimizing the sum of the Rayleigh quotient and the generalized Rayleigh quotient on the unit sphere
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-012-9479-6
– volume: 14
  start-page: 245
  issue: 1
  year: 2003
  ident: 315_CR28
  publication-title: SIAM J. Optim.
  doi: 10.1137/S105262340139001X
– volume: 72
  start-page: 51
  year: 1996
  ident: 315_CR8
  publication-title: Math. Program.
– volume: 22
  start-page: 343
  year: 2002
  ident: 315_CR5
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1013869015288
– ident: 315_CR12
  doi: 10.1007/b102138
– volume: 19
  start-page: 83
  year: 2001
  ident: 315_CR14
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008316327038
– volume: 121
  start-page: 19
  year: 2004
  ident: 315_CR6
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/B:JOTA.0000026129.07165.5a
– ident: 315_CR7
  doi: 10.1137/1.9780898718829
– volume: 22
  start-page: 155
  year: 2002
  ident: 315_CR19
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1013807129844
– ident: 315_CR22
  doi: 10.1109/ISSSTA.2006.311820
– volume: 2
  start-page: 230
  year: 2007
  ident: 315_CR15
  publication-title: Bioinformation
  doi: 10.6026/97320630002230
– volume: 18
  start-page: 283
  year: 2000
  ident: 315_CR18
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008314922240
– volume: 112
  start-page: 1
  year: 2002
  ident: 315_CR4
  publication-title: J. Optim. Theor. Appl.
  doi: 10.1023/A:1013072027218
– volume: 10
  start-page: 461
  year: 2014
  ident: 315_CR17
  publication-title: Pac. J. Optim.
– ident: 315_CR11
  doi: 10.1137/1.9781611972757.44
– volume: 25
  start-page: 1145
  year: 2009
  ident: 315_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp019
– volume: 19
  start-page: 1735
  issue: 4
  year: 2009
  ident: 315_CR1
  publication-title: SIAM J. Optim.
  doi: 10.1137/07070601X
– volume: 28
  start-page: 246
  year: 2003
  ident: 315_CR24
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.28.2.246.14485
– volume: 77
  start-page: 273
  year: 1997
  ident: 315_CR23
  publication-title: Math. Program.
– volume-title: Linear and Nonlinear Programming
  year: 2008
  ident: 315_CR20
  doi: 10.1007/978-0-387-74503-9
– volume: 42
  start-page: 91
  issue: 1
  year: 2008
  ident: 315_CR27
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-008-9285-y
– ident: 315_CR16
– volume-title: Handbook on Semidefinite Programming: Theory, Algorithms and Applications
  year: 2000
  ident: 315_CR25
– volume-title: Practical Optimization: Algorithms and Engineering Applications
  year: 2007
  ident: 315_CR2
– volume: 54
  start-page: 111
  year: 2013
  ident: 315_CR29
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-012-9479-6
– volume-title: Fractional Programming. Sigma Series in Applied Mathematics
  year: 1988
  ident: 315_CR10
– volume: 45
  start-page: 337
  issue: 3
  year: 2009
  ident: 315_CR13
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-008-9378-7
– volume: 257
  start-page: 14
  year: 2014
  ident: 315_CR30
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2013.08.005
– volume: 12
  start-page: 61
  year: 1961
  ident: 315_CR9
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1961-0122827-1
– volume: 49
  start-page: 371
  issue: 3
  year: 2007
  ident: 315_CR21
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450444614X
– volume-title: Nonliear Programming: Theory and Algorithms
  year: 2006
  ident: 315_CR3
  doi: 10.1002/0471787779
SSID ssj0009852
Score 2.161988
Snippet The problem is a type of “sum-of-ratios” fractional programming and is known to be NP-hard. Due to many local maxima, finding the global maximizer is in...
The problem is a type of "sum-of-ratios" fractional programming and is known to be NP-hard. Due to many local maxima, finding the global maximizer is in...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Special Issue on MAGO 2014 The problem is a type of "sum-of-ratios"...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).The problem is a type of "sum-of-ratios" fractional programming and is known to be...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 399
SubjectTerms Algorithms
Computer Science
Discriminant analysis
Eigenvalues
Intervals
Investment analysis
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Maximization
Operations Research/Decision Theory
Optimization
Polynomials
Programming
Quadratic programming
Quotients
Rankings
Ratios
Rayleigh number
Real Functions
Semidefinite programming
Studies
Texts
SummonAdditionalLinks – databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hwgEOfSygphRkJCRespTYcRIfK9SKA61Qgao3y7GdKlI3gWa3gl7544y9znaBggSHHFaedSzNeOZzxvMNwDPDGXd1kVNExyXNa8Gp1CKjrHYYrJ2sWOgNePKuPDqqTk_l-1jHPYy33ceUZPDUK8VulS8HywT1nQko-t3bGO0q36_h-MPJNdNuFdrspJIJKtAJj6nMm6b4KRj96pJ_y42GkHOw8V-L3YT1iDDJ3sIktuCW6yawMXZvIHEzT-DeChUh_jpc8rcOE9iKUgN5EXmpX96H74f6azttr1CeoCxBGyZ9QzQ5W4i0V86SY_0tfG0lX-Z9YGwlurP4hEKvG0b7Lsw1R89CBk9x4Mhlq8ngpq11TesRMYl3yKb44gfw6WD_45u3NPZwoEawfEYtN9yZWuZlw1NWIxqxDHVW2dI6P5QVTdEgZCi55rUwMtVprkVTMI1n0UY6_hDWur5z20CEKDTLhWAWT1HOCt8m2TjEc7locp7qBNJRmcpEgnPfZ-NcXVMze60o1IryWlEsgVfLv3xesHv8Tfi5txDldz7Oa3QsYMDVeQ4ttYdh3kMCWSWwOxqRii5hUFlZZAUr8UCewNPlMG5mn6HRnevnXgbhNMYQmSbwejSslSn-tLSdf5J-BHcR9sW757uwNruYu8dwx1zO2uHiSdhNPwBxmxgB
  priority: 102
  providerName: Springer Nature
Title Maximizing the sum of a generalized Rayleigh quotient and another Rayleigh quotient on the unit sphere via semidefinite programming
URI https://link.springer.com/article/10.1007/s10898-015-0315-2
https://www.proquest.com/docview/1761627254
https://www.proquest.com/docview/1793221990
Volume 64
WOSCitedRecordID wos000369249300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: 7WY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: M0C
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: M2O
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMcgBYQgVIZCYmXLBInzuOEStUKCXZZbaG0XCLHdlAkNmmb3Qp65Y8zk3V2y6sXDhkp8sSx5PHM59c3AI91KEJbxBFHdJzwqJAhz5QMuCgsBmubpaLLDXjwLhkO08PDbOQW3Fp3rLL3iZ2jNo2mNfKXAc63Y5HgfObV8QmnrFG0u-pSaKzAGiKbgI50DcRoSbqbdhl3_ExILtEf97ua86tzKV0uCySnPAdc_BKXfvfOf2yTdtFn7-b_tvsW3HC4k23PDWUdrth6A65fYCPEt8GCwrXdgHU36lv21FFTP7sNPwbqWzWpzlGfoS7D-llTMsW-zFWqc2vYWH3vFlzZyazpSFuZqg0-3V2vv5Q2dVfXDJ0La4nlwLKzSrHWTipjy4pAMXPHyCb44zvwcW_3w84b7tI4cC1FNOUm1KHVRRYlZeiLAgGJEVnqpyYxloqCuIxLRA1JqMJC6sxXfqRkGQuF09Eys-FdWK2b2t4DJmWsRCSlMDiRskZSpmRtEdJFsoxCX3ng952Ya8dxTqk2vuZLdmbq9xz7Pad-z4UHzxefHM8JPi5TfkKWkdPgx3q1cncYsHVEo5VvY6QnVJClHmz25pA7r9DmS1vw4NGiGMczbdKo2jYz0kFEjWEk8z140RvdhSr-1bT7l__wAVxDqOfOm2_C6vR0Zh_CVX02rdrTLVhJPh1twdrr3eFojG9vE45y4O-QFO87OSKZ7KMcyc8ox_sHPwHemCSe
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQcgBYqFgoYCcSjssg6cRIfEKqAqlV3VxUqVW_GcRwUiU3aZrfQXvk__EZm8tgtr9564JBD5ImTOJ_nEXu-AXhifeG7JAw4escRDxLpc2Vkn4vEobF2KhZ1bcC9QTQaxfv7amcBfnS5MLStstOJtaJOS0v_yF_1Md4ORYTxzJuDQ05Vo2h1tSuh0cBi2518xZCter31Dr_vUyE23u--3eRtVQFupQgmPPWt72yigijzPZGgfUyFir04jVJHTf0wCzM0YpFv_ERa5RkvMDILhcHoKFPOx34vweWAmMVoq6DYmZP8xnWFH08JySXq_24VtUnViymZrS851VXg4hc7-Ls1-GNZtrZ2Gzf_t3G6BTdav5qtNxNhCRZcsQzXz7At4tlwRlFbLcNSq9Uq9ryl3n5xG74Pzbd8nJ-iPENZhu_DyowZ9rkRyU9dyj6Yk_qHMjucljUpLTNFikedy_aX1rKo-5qi8mQVsTg4dpwbVrlxnrosJ6eftdvkxnjjO_DxQgZqBRaLsnB3gUkZGhFIKVIMFF0qqRK0deiyBjILfM_0wOtAo23L4U6lRL7oOfs04UwjzjThTIsevJxdctAQmJwn_IyQqEm5Yb_WtDka-HREE6bX0ZMhr0fFPVjt4KdbrVfpOfZ68HjWjPqKFqFM4copyWDEgGZSeT1Y60B-pot_Pdq982_4CK5u7g4HerA12r4P19CtbffWr8Li5GjqHsAVezzJq6OH9ZRl8Omisf8THmx4vg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAcgBYqFgoYCcSjspq14yQ-IFRRVlRtVysEqOJiHNtBkdikbXYL7ZV_xa9jnMduefXWA4ccIk-c15d5xDPfADwynHGXRiFF7zimYSo4lVr0KUsdGmsnE1b3BvywEw-Hyd6eHC3Aj64WxqdVdjqxVtS2NP4f-Xof4-2IxRjPrGdtWsRoc_By_4D6DlJ-pbVrp9FAZNsdf8XwrXqxtYnv-jFjg9fvXr2hbYcBagQLJ9Ryw51JZRhnPGAp2krLZBIkNrbOD_WjLMrQoMVc81QYGegg1CKLmMZIKZOO47wX4GKMMaZPJxyJj3PC36Tu9hNIJqhAW9CtqDZle4kvbOsL6nssUPaLTfzdMvyxRFtbvsH1__mZ3YBrrb9NNpoPZAkWXLEMV0-xMOLe7oy6tlqGpVbbVeRpS8n97CZ839Xf8nF-gvIEZQneDykzosnnRiQ_cZa81cf1j2ZyMC1rslqiC4tbXeP2l9GyqOeaolIllWd3cOQo16Ry49y6LPfBAGnT58Z44lvw_lwe1AosFmXhbgMRItIsFIJZDCCdFb5DtHHoyoYiC3mgexB0AFKm5Xb3LUa-qDkrtcecQswpjznFevB8dsh-Q2xylvATj0rllR7Oa3Rbu4FX5-nD1AZ6ON4bkkkPVjsoqlYbVmqOwx48nA2jHvOLU7pw5dTLYCSB5lMGPVjrAH9qin9d2p2zT_gALiPk1c7WcPsuXEFvt025X4XFyeHU3YNL5miSV4f366-XwKfzhv5P302Bqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximizing+the+sum+of+a+generalized+Rayleigh+quotient+and+another+Rayleigh+quotient+on+the+unit+sphere+via+semidefinite+programming&rft.jtitle=Journal+of+global+optimization&rft.au=Nguyen%2C+Van-Bong&rft.au=Sheu%2C+Ruey-Lin&rft.au=Xia%2C+Yong&rft.date=2016-02-01&rft.pub=Springer&rft.issn=0925-5001&rft.volume=64&rft.issue=2&rft.spage=399&rft_id=info:doi/10.1007%2Fs10898-015-0315-2&rft.externalDocID=A718413098
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon