Comparing accuracy assessments to infer superiority of image classification methods

The z-test based on the Kappa statistic is commonly used to infer superiority of one map production method over another. Typically the same reference data set is used to calculate and next compare the Kappa's of the two maps. This data structure easily leads to dependence between the two error-...

Full description

Saved in:
Bibliographic Details
Published in:International journal of remote sensing Vol. 27; no. 1; pp. 223 - 232
Main Authors: de Leeuw, J., Jia, H., Yang, L., Liu, X., Schmidt, K., Skidmore, A. K.
Format: Journal Article
Language:English
Published: Abingdon Taylor & Francis 10.01.2006
Taylor and Francis
Subjects:
ISSN:0143-1161, 1366-5901
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The z-test based on the Kappa statistic is commonly used to infer superiority of one map production method over another. Typically the same reference data set is used to calculate and next compare the Kappa's of the two maps. This data structure easily leads to dependence between the two error-matrices. This may result in overly large variance estimates and too conservative inference about the difference in accuracy between the two methods. Tests considering the dependency between the error matrices would be more sensitive in such case. In this article we compare the performance of two such tests, a randomization and McNemar's test, with the traditional z-test. We compared 16 alternative methods to classify salt marsh vegetation in The Netherlands. The error matrices were positively associated in all 120 possible comparisons of pairs of classification methods. This suggests that dependency between pairs of error matrices used in classifier comparison is a common phenomenon. Both the randomization and McNemar test gave lower p values and rejected the null hypothesis of equal performance more frequently than the z-test. We therefore recommend considering their use.
AbstractList The z-test based on the Kappa statistic is commonly used to infer superiority of one map production method over another. Typically the same reference data set is used to calculate and next compare the Kappa's of the two maps. This data structure easily leads to dependence between the two error-matrices. This may result in overly large variance estimates and too conservative inference about the difference in accuracy between the two methods. Tests considering the dependency between the error matrices would be more sensitive in such case. In this article we compare the performance of two such tests, a randomization and McNemar's test, with the traditional z-test. We compared 16 alternative methods to classify salt marsh vegetation in The Netherlands. The error matrices were positively associated in all 120 possible comparisons of pairs of classification methods. This suggests that dependency between pairs of error matrices used in classifier comparison is a common phenomenon. Both the randomization and McNemar test gave lower p values and rejected the null hypothesis of equal performance more frequently than the z-test. We therefore recommend considering their use
The z-test based on the Kappa statistic is commonly used to infer superiority of one map production method over another. Typically the same reference data set is used to calculate and next compare the Kappa's of the two maps. This data structure easily leads to dependence between the two error-matrices. This may result in overly large variance estimates and too conservative inference about the difference in accuracy between the two methods. Tests considering the dependency between the error matrices would be more sensitive in such case. In this article we compare the performance of two such tests, a randomization and McNemar's test, with the traditional z-test. We compared 16 alternative methods to classify salt marsh vegetation in The Netherlands. The error matrices were positively associated in all 120 possible comparisons of pairs of classification methods. This suggests that dependency between pairs of error matrices used in classifier comparison is a common phenomenon. Both the randomization and McNemar test gave lower p values and rejected the null hypothesis of equal performance more frequently than the z-test. We therefore recommend considering their use.
Author Schmidt, K.
Jia, H.
Liu, X.
de Leeuw, J.
Yang, L.
Skidmore, A. K.
Author_xml – sequence: 1
  givenname: J.
  surname: de Leeuw
  fullname: de Leeuw, J.
  email: leeuw@itc.nl
  organization: Department of Natural Resources , International Institute for Geo-Information Science and Earth Observation
– sequence: 2
  givenname: H.
  surname: Jia
  fullname: Jia, H.
  organization: Department of Environmental Science and Engineering , Tsinghua University
– sequence: 3
  givenname: L.
  surname: Yang
  fullname: Yang, L.
  organization: Department of Civil and Environmental Engineering , University of Cincinnati
– sequence: 4
  givenname: X.
  surname: Liu
  fullname: Liu, X.
  organization: Department of Environmental Science and Engineering , Tsinghua University
– sequence: 5
  givenname: K.
  surname: Schmidt
  fullname: Schmidt, K.
  organization: Department of Natural Resources , International Institute for Geo-Information Science and Earth Observation
– sequence: 6
  givenname: A. K.
  surname: Skidmore
  fullname: Skidmore, A. K.
  organization: Department of Natural Resources , International Institute for Geo-Information Science and Earth Observation
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17474293$$DView record in Pascal Francis
BookMark eNqFkUtvEzEUhS1UJNKUH8DOG9gN-DkTIzYo4iVVYtF2bd1x7GLksQfbo5B_j0MCCypgdRf3fOfcxyW6iClahJ5R8pKSDXlFqOCU9kQSwgY59OwRWlHe951UhF6g1bHfNQF9gi5L-UoI6ZtshW62aZoh-3iPwZglgzlgKMWWMtlYC64J--hsxmWZbfYp-3rAyWE_wb3FJjStd95A9SniydYvaVeu0GMHodin57pGd-_f3W4_dtefP3zavr3ujGSidmZjpXPjxggpleFy3FElnLKCkpExJhXlXAgxmBHEMIxgqd0xpQSjdtNWU3yNXp98922W2FawUUfIxhedwOvgxwz5oPdL1jEcy7yMRXPJSLNeoxcneM7p22JL1ZMvxoYA0aalaKZoy6akCZ-fhVAMBJchHhPm3E7Q3OkgBsEUb7rhpDM5lZKt08bXn3epGXzQlOjjp_SDTzWS_kH-Nv8Hc05r30l5gn3KYacrHELKv0Z8QOn6vTbyzX9J_vfgH1wtvag
CODEN IJSEDK
CitedBy_id crossref_primary_10_1016_j_jag_2010_11_007
crossref_primary_10_3390_rs11171966
crossref_primary_10_1080_01431160701408436
crossref_primary_10_1109_JSTARS_2013_2266354
crossref_primary_10_1371_journal_pone_0098690
crossref_primary_10_3390_rs11010043
crossref_primary_10_1016_j_cageo_2011_08_019
crossref_primary_10_1007_s43621_024_00735_z
crossref_primary_10_3390_fire4010014
crossref_primary_10_3390_rs10101643
crossref_primary_10_1016_j_isprsjprs_2017_05_002
crossref_primary_10_3390_rs70911664
crossref_primary_10_1016_j_rse_2014_08_008
crossref_primary_10_1080_10106049_2018_1474274
crossref_primary_10_3390_agronomy9070373
crossref_primary_10_1016_j_rse_2010_08_019
crossref_primary_10_1007_s12518_019_00258_7
crossref_primary_10_1007_s10336_008_0319_5
crossref_primary_10_1016_j_jag_2018_03_002
crossref_primary_10_1080_01431161_2019_1608391
crossref_primary_10_1016_j_envsoft_2018_01_023
crossref_primary_10_1080_07038992_2015_1065706
crossref_primary_10_1007_s12665_025_12377_z
crossref_primary_10_7717_peerj_4540
crossref_primary_10_1080_01431161_2014_903435
crossref_primary_10_1088_1755_1315_789_1_012052
crossref_primary_10_3390_rs11111279
crossref_primary_10_1109_JSTARS_2014_2347203
crossref_primary_10_1016_j_rsase_2020_100436
crossref_primary_10_1016_j_envpol_2019_113360
crossref_primary_10_1080_10106049_2014_883439
crossref_primary_10_1016_j_atmosenv_2017_01_004
crossref_primary_10_1109_TGRS_2020_2999558
crossref_primary_10_3390_rs1030330
crossref_primary_10_1016_j_rse_2013_08_029
crossref_primary_10_1080_01431161_2024_2379515
crossref_primary_10_1109_JSTARS_2021_3083517
crossref_primary_10_1016_j_jas_2018_12_003
crossref_primary_10_1080_10106049_2020_1756460
crossref_primary_10_1007_s12517_015_2267_8
crossref_primary_10_1016_j_apgeog_2018_10_004
crossref_primary_10_1016_j_apgeog_2017_04_005
crossref_primary_10_1016_j_rsase_2020_100302
crossref_primary_10_1177_0309133307081294
crossref_primary_10_1016_j_isprsjprs_2017_04_016
crossref_primary_10_1007_s12145_021_00685_4
crossref_primary_10_1016_j_jag_2018_06_011
crossref_primary_10_1145_3686990
crossref_primary_10_3390_rs9090885
crossref_primary_10_1080_19475705_2024_2383309
crossref_primary_10_1016_j_rse_2017_03_001
crossref_primary_10_5721_EuJRS20164924
crossref_primary_10_1016_j_jag_2014_08_001
crossref_primary_10_1007_s12145_025_01819_8
crossref_primary_10_3390_rs12030529
crossref_primary_10_1590_1807_1929_agriambi_v22n5p366_370
crossref_primary_10_1016_j_jag_2018_06_018
crossref_primary_10_1080_01431161_2023_2292015
crossref_primary_10_1016_j_jag_2012_02_004
crossref_primary_10_3390_rs13071383
crossref_primary_10_1016_j_pce_2017_02_015
crossref_primary_10_3390_ijgi8090398
crossref_primary_10_1080_01431161_2013_774099
crossref_primary_10_1016_j_compag_2015_09_020
crossref_primary_10_3390_rs12061010
crossref_primary_10_1007_s11042_022_12263_x
crossref_primary_10_1016_j_rse_2017_07_010
crossref_primary_10_1007_s10346_013_0391_7
crossref_primary_10_1080_01431161_2020_1754493
crossref_primary_10_3390_rs13091666
crossref_primary_10_1080_2150704X_2015_1109158
crossref_primary_10_1016_j_rsase_2018_01_002
crossref_primary_10_3390_ijgi3010297
crossref_primary_10_3390_rs13193909
crossref_primary_10_7717_peerj_15027
crossref_primary_10_1080_01431161_2013_793861
crossref_primary_10_1016_j_jag_2017_09_004
crossref_primary_10_1109_TGRS_2011_2162589
crossref_primary_10_3390_su14095700
crossref_primary_10_3390_f5061304
crossref_primary_10_1016_j_rse_2020_111939
crossref_primary_10_1016_j_cageo_2013_07_002
crossref_primary_10_1109_TGRS_2008_2001035
crossref_primary_10_1007_s10661_007_9981_y
crossref_primary_10_3390_rs3112364
crossref_primary_10_1007_s11042_021_10824_0
crossref_primary_10_1007_s12524_019_01069_4
crossref_primary_10_3390_w12123366
crossref_primary_10_1080_10106049_2019_1581266
crossref_primary_10_1080_10106049_2019_1629645
crossref_primary_10_1007_s11273_025_10052_5
crossref_primary_10_1016_j_rse_2012_05_019
crossref_primary_10_1109_JSTARS_2015_2461136
crossref_primary_10_1109_JSTARS_2016_2574360
crossref_primary_10_1016_j_apgeog_2010_11_006
crossref_primary_10_3390_rs13132445
crossref_primary_10_1016_j_envsoft_2024_105956
crossref_primary_10_1016_j_isprsjprs_2013_11_013
crossref_primary_10_1016_j_jag_2011_06_008
crossref_primary_10_3390_f16040676
crossref_primary_10_3390_rs16122167
crossref_primary_10_1080_01431160903571791
crossref_primary_10_1080_01431160903130937
crossref_primary_10_1007_s00330_017_5171_7
crossref_primary_10_1016_j_enggeo_2015_04_004
crossref_primary_10_1016_j_isprsjprs_2018_02_002
crossref_primary_10_1088_1755_1315_767_1_012041
crossref_primary_10_1109_JSTARS_2025_3600991
crossref_primary_10_1016_j_rse_2015_12_026
crossref_primary_10_1016_j_atech_2023_100347
crossref_primary_10_1007_s12518_022_00423_5
crossref_primary_10_1080_01431161_2024_2424510
crossref_primary_10_1007_s13280_015_0649_5
crossref_primary_10_3390_rs14051226
crossref_primary_10_1007_s00024_023_03418_4
crossref_primary_10_1080_10106049_2015_1132483
crossref_primary_10_3390_rs10111704
Cites_doi 10.1037/h0028106
10.1177/001316446002000104
10.1016/0034-4257(91)90048-B
10.1016/0034-4257(93)90013-N
10.1007/0-306-47647-9_12
10.14358/PERS.70.6.703
10.1007/BF02295996
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2006
2006 INIST-CNRS
Wageningen University & Research
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2006
– notice: 2006 INIST-CNRS
– notice: Wageningen University & Research
DBID AAYXX
CITATION
IQODW
8FD
FR3
H8D
KR7
L7M
QVL
DOI 10.1080/01431160500275762
DatabaseName CrossRef
Pascal-Francis
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
NARCIS:Publications
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1366-5901
EndPage 232
ExternalDocumentID oai_library_wur_nl_wurpubs_352091
17474293
10_1080_01431160500275762
127559
GeographicLocations Netherlands
Western Europe
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
6TJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDPE
ABFIM
ABHAV
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABRLO
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACTTO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AFBWG
AFION
AFKVX
AFRVT
AGDLA
AGMYJ
AGVKY
AGWUF
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRRR
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
BWMZZ
CAG
CCCUG
CE4
COF
CS3
CYRSC
DAOYK
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
H13
H~9
IPNFZ
J.P
KYCEM
M4Z
OPCYK
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TAJZE
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
ZY4
~02
~S~
AAYXX
CITATION
07I
1TA
4B5
ABFMO
ADXEU
ADYSH
AEHZU
AEZBV
AGBLW
AI.
AIDBO
AKHJE
AKMBP
ALXIB
BGSSV
C0-
C5H
DEXXA
FETWF
HF~
IFELN
IQODW
L8C
LJTGL
TAP
UB6
VH1
VOH
8FD
FR3
H8D
KR7
L7M
02
08R
7F
AAAVI
ABFLS
ABJVF
ABPTK
ABQHQ
ADCOW
AEGYZ
AFOLD
AHDLD
AIRXU
FUNRP
FVPDL
G8K
NUSFT
QJ
QVL
S
TEJ
UAO
UNR
V1K
X
ID FETCH-LOGICAL-c524t-c8e5ffb8c4559c35bd194f9e410b222591334447cba477bae1ed299421e813693
IEDL.DBID TFW
ISICitedReferencesCount 136
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000235364700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-1161
IngestDate Tue Jan 05 18:10:52 EST 2021
Thu Sep 04 16:08:13 EDT 2025
Mon Jul 21 09:15:01 EDT 2025
Sat Nov 29 03:33:27 EST 2025
Tue Nov 18 22:25:24 EST 2025
Mon May 13 12:08:30 EDT 2019
Mon Oct 20 23:43:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords brackish-water environment
maps
Europe
accuracy
vegetation
Classifier
classification
evaluation
Randomization
salt marshes
imagery
Alternative method
statistical analysis
Performance
Data structure
errors
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c524t-c8e5ffb8c4559c35bd194f9e410b222591334447cba477bae1ed299421e813693
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29144710
PQPubID 23500
PageCount 10
ParticipantIDs pascalfrancis_primary_17474293
proquest_miscellaneous_29144710
wageningen_narcis_oai_library_wur_nl_wurpubs_352091
informaworld_taylorfrancis_310_1080_01431160500275762
crossref_citationtrail_10_1080_01431160500275762
crossref_primary_10_1080_01431160500275762
ProviderPackageCode QVL
PublicationCentury 2000
PublicationDate 2006-01-10
PublicationDateYYYYMMDD 2006-01-10
PublicationDate_xml – month: 01
  year: 2006
  text: 2006-01-10
  day: 10
PublicationDecade 2000
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of remote sensing
PublicationYear 2006
Publisher Taylor & Francis
Taylor and Francis
Publisher_xml – name: Taylor & Francis
– name: Taylor and Francis
References ref12
Rosenfield G. H. (ref11) 1981; 47
ref10
ref2
Janssen L. L. F. (ref6) 1994; 60
ref7
Congalton R. G. (ref3) 1983; 49
Manly B. F. J. (ref9) 1996
ref4
ref5
Ma Z. (ref8) 1995; 61
Skidmore A. K. (ref13) 1999
Zarr J. H. (ref14) 1996
Agresti A. (ref1) 1990
References_xml – ident: ref5
  doi: 10.1037/h0028106
– ident: ref2
  doi: 10.1177/001316446002000104
– volume: 60
  start-page: 419
  year: 1994
  ident: ref6
  publication-title: Photogrammetric Engineering and Remote Sensing
– ident: ref4
  doi: 10.1016/0034-4257(91)90048-B
– ident: ref7
  doi: 10.1016/0034-4257(93)90013-N
– volume-title: Biostatistical Analysis
  year: 1996
  ident: ref14
– volume: 49
  start-page: 1671
  year: 1983
  ident: ref3
  publication-title: Photogrammetric Engineering and Remote Sensing
– volume: 47
  start-page: 1685
  year: 1981
  ident: ref11
  publication-title: Photogrammetric Engineering and Remote Sensing
– volume: 61
  start-page: 435
  year: 1995
  ident: ref8
  publication-title: Photogrammetric Engineering and Remote Sensing
– volume-title: Categorical data analysis
  year: 1990
  ident: ref1
– volume-title: Randomization, Bootstrap and Monte Carlo Tests in Biology
  year: 1996
  ident: ref9
– start-page: 197
  volume-title: Spatial Statistics for Remote Sensing
  year: 1999
  ident: ref13
  doi: 10.1007/0-306-47647-9_12
– ident: ref12
  doi: 10.14358/PERS.70.6.703
– ident: ref10
  doi: 10.1007/BF02295996
SSID ssj0006757
Score 2.218967
Snippet The z-test based on the Kappa statistic is commonly used to infer superiority of one map production method over another. Typically the same reference data set...
SourceID wageningen
proquest
pascalfrancis
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 223
SubjectTerms Animal, plant and microbial ecology
Applied geophysics
Biological and medical sciences
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Internal geophysics
system
Teledetection and vegetation maps
Title Comparing accuracy assessments to infer superiority of image classification methods
URI https://www.tandfonline.com/doi/abs/10.1080/01431160500275762
https://www.proquest.com/docview/29144710
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F352091
Volume 27
WOSCitedRecordID wos000235364700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1366-5901
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006757
  issn: 0143-1161
  databaseCode: TFW
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1VCKlcCrRUDRTqQ0-VIuLYWSfHCrHqCSGVqtwsx2u3SDRBcVLKv2cmHwsL1R7aU6QoH45nxn7jjN8D-Oikz23mfZz5UsTSpVlszMLHDrG_MUYlZT6ITaizs_zysjgfa3PCWFZJObQfiCL6sZqC25Rhqog7Jko6zhGHU06FeJlGYET15N8X8-_LcRih8LBZmkg4EdhM_zT_9oSVWWmFs5SKJU3A_vKD0MUKEt26xaCv-l1Qj2al-fZ_fs8OvBrhKPs8-M8uvHDVa3g5KqP_vHsDX08GocLqBzPWdo2xd8ws2TwDa2tG9VwNCx1xJtekhcdqz65-YZuZJWxOxUi9_dkgVx324Nv89OLkSzwKMcQ2S2Ub29yhOcvcSsw_rMjKBS-kL5zkSUn5YoGJrpRS2dJIpUrjuFvgNCdT7nIuZoV4CxtVXbl3wOTM2EKKlPZNSZelRnCDp3KrnJrNlIogmQyh7chSTmIZ15pPZKZPeyuCT8tbbgaKjnUXJ4-tq9t-XWS07fPLdfunjSBbc4tY86qjFc95aBymcAgDRAQfJlfSGNT0p8ZUru6CTgvsHcR-EYgHD9MVqUsFTYTg4xKfvu0aXV3TAaMXG0NFTXz_Hxt8AFvTAhNP3sNG23TuEDbt7_YqNEd9cN0DZHciUQ
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hWgkufVcNpeBDT5WixrGzTo4VYgUqrJC6VblZjtdukWhS5QHl33cmj4Vt0R7KKVKUh2PP2N9Mxt8H8N5Jn9rE-zDxuQili5PQmIUPHWJ_Y4yK8rQXm1CzWXp-np0NCbd6KKukGNr3RBHdXE3OTcnosSTuI3HScY5AnIIqBMw4BT9KcJ2lkr759NtyJkYw3G-XJhpOhDbjX837HrGyLq2wllK5pKmxx3wvdbGCRbev0e2Lbh_UnXVp-vShX_QMngyIlH3qTeg5bLjiBWwN4ug_bl7Cl4Neq7D4zoy1bWXsDTNLQs-aNSWjkq6K1S3RJpckh8dKzy5-YqOZJXhO9UidCbBesbp-BV-nh_ODo3DQYghtEssmtKnDEc1TKzEEsSLJFzyTPnOSRzmFjBnGulJKZXMjlcqN426BK52MuUu5mGTiNWwWZeHeAJMTYzMpYto6JV0SG8ENnkqtcmoyUSqAaBwJbQeictLLuNR85DP9u7cC-LC85VfP0rHu4uju8OqmS40Mg_vv5br53QSQrLlFrHnV3orp3DYOozhEAiKA_dGWNPo1_awxhSvbWscZ9g7CvwDErYnpggSmak2c4EOWT1-3lS4u6YAOjI2huia-858N3oeto_npiT45nn1-C9tjvolHu7DZVK17B4_tVXNRV3udp_0Bjewmcg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hilouhT4QaSn40FOlqHHsrJNjBaxagVZIUJWb5XjtFokmKI9S_n1n8ljYttpDe4oUxYljz9jf2OPvA3jrpE9t4n2Y-FyE0sVJaMzchw6xvzFGRXnai02o2Sy9vMzOhtycekirpBja90QR3VhNzn0z92NG3HuipOMccTjFVIiXcQR-1BFjoTlfTL8sBmLEwv1paWLhRGQzbmr-7RVL09ISaSllS5oaG8z3ShdLUHTzFr2-6I5BPZiWplv_-UPb8HTAo-xDb0DPYM0Vz-HJII3-7e4FnB_2SoXFV2asbStj75hZ0HnWrCkZJXRVrG6JNLkkMTxWenb1HevMLIFzykbqDID1etX1S_g8Pb44_BgOSgyhTWLZhDZ12J95aiUGIFYk-Zxn0mdO8iingDHDSFdKqWxupFK5cdzNcZ6TMXcpF5NM7MB6URZuF5icGJtJEdPBKemS2Ahu8FZqlVOTiVIBRGNHaDvQlJNaxrXmI5vp760VwLtFkZueo2PVw9HD3tVNtzAy9O2fj-vmZxNAsqKIWPGp_SXLua8cxnCIA0QAB6MpafRq2qoxhSvbWscZtg6CvwDEvYXpguSlak2M4MMan75tK11c0wXdFytDWU381T9W-AAenx1N9emn2clr2BwXm3i0B-tN1bo3sGF_NFd1td_52S_KnyUW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+accuracy+assessments+to+infer+superiority+of+image+classification+methods&rft.jtitle=International+journal+of+remote+sensing&rft.au=de+Leeuw%2C+J.&rft.au=Jia%2C+H.&rft.au=Yang%2C+L.&rft.au=Liu%2C+X.&rft.date=2006-01-10&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=27&rft.issue=1&rft.spage=223&rft.epage=232&rft_id=info:doi/10.1080%2F01431160500275762&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01431160500275762
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon