A Constrained Backpropagation Approach for the Adaptive Solution of Partial Differential Equations

This paper presents a constrained backpropagation (CPROP) methodology for solving nonlinear elliptic and parabolic partial differential equations (PDEs) adaptively, subject to changes in the PDE parameters or external forcing. Unlike existing methods based on penalty functions or Lagrange multiplier...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 25; H. 3; S. 571 - 584
Hauptverfasser: Rudd, Keith, Muro, Gianluca Di, Ferrari, Silvia
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.03.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2162-237X, 2162-2388, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents a constrained backpropagation (CPROP) methodology for solving nonlinear elliptic and parabolic partial differential equations (PDEs) adaptively, subject to changes in the PDE parameters or external forcing. Unlike existing methods based on penalty functions or Lagrange multipliers, CPROP solves the constrained optimization problem associated with training a neural network to approximate the PDE solution by means of direct elimination. As a result, CPROP reduces the dimensionality of the optimization problem, while satisfying the equality constraints associated with the boundary and initial conditions exactly, at every iteration of the algorithm. The effectiveness of this method is demonstrated through several examples, including nonlinear elliptic and parabolic PDEs with changing parameters and nonhomogeneous terms.
AbstractList This paper presents a constrained backpropagation (CPROP) methodology for solving nonlinear elliptic and parabolic partial differential equations (PDEs) adaptively, subject to changes in the PDE parameters or external forcing. Unlike existing methods based on penalty functions or Lagrange multipliers, CPROP solves the constrained optimization problem associated with training a neural network to approximate the PDE solution by means of direct elimination. As a result, CPROP reduces the dimensionality of the optimization problem, while satisfying the equality constraints associated with the boundary and initial conditions exactly, at every iteration of the algorithm. The effectiveness of this method is demonstrated through several examples, including nonlinear elliptic and parabolic PDEs with changing parameters and nonhomogeneous terms.This paper presents a constrained backpropagation (CPROP) methodology for solving nonlinear elliptic and parabolic partial differential equations (PDEs) adaptively, subject to changes in the PDE parameters or external forcing. Unlike existing methods based on penalty functions or Lagrange multipliers, CPROP solves the constrained optimization problem associated with training a neural network to approximate the PDE solution by means of direct elimination. As a result, CPROP reduces the dimensionality of the optimization problem, while satisfying the equality constraints associated with the boundary and initial conditions exactly, at every iteration of the algorithm. The effectiveness of this method is demonstrated through several examples, including nonlinear elliptic and parabolic PDEs with changing parameters and nonhomogeneous terms.
This paper presents a constrained backpropagation (CPROP) methodology for solving nonlinear elliptic and parabolic partial differential equations (PDEs) adaptively, subject to changes in the PDE parameters or external forcing. Unlike existing methods based on penalty functions or Lagrange multipliers, CPROP solves the constrained optimization problem associated with training a neural network to approximate the PDE solution by means of direct elimination. As a result, CPROP reduces the dimensionality of the optimization problem, while satisfying the equality constraints associated with the boundary and initial conditions exactly, at every iteration of the algorithm. The effectiveness of this method is demonstrated through several examples, including nonlinear elliptic and parabolic PDEs with changing parameters and nonhomogeneous terms.
Author Rudd, Keith
Ferrari, Silvia
Muro, Gianluca Di
Author_xml – sequence: 1
  givenname: Keith
  surname: Rudd
  fullname: Rudd, Keith
  email: keith.rudd@duke.edu
  organization: Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
– sequence: 2
  givenname: Gianluca Di
  surname: Muro
  fullname: Muro, Gianluca Di
  organization: Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
– sequence: 3
  givenname: Silvia
  surname: Ferrari
  fullname: Ferrari, Silvia
  email: sferrari@duke.edu
  organization: Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28403989$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24807452$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1rFDEUhoNUbK39AwoyIII3uyaZJJNcrmv9gKUKreBdOJMPmzo7mSYzgv_e7Oy2Qi_E3CQnPO97kvM-RUd97B1CzwleEoLV26uLi83lkmJSLyltGoHJI3RCiaALWkt5dH9uvh-js5xvcFkCc8HUE3RMmcQN4_QEtatqHfs8Jgi9s9U7MD-HFAf4AWOIfbUaSgXmuvIxVeO1q1YWhjH8ctVl7KYZib76CmkM0FXvg_cuuX4uzm-n2SM_Q489dNmdHfZT9O3D-dX602Lz5ePn9WqzMJyycQHWc055I6V32HLwjcJUiaa1ttyzFjC3xBgA3rJWWSrrmjEqgAlPuWxNfYre7H3Lk28nl0e9Ddm4roPexSlrwmnNcNHI_0GxKjMSqqCvHqA3cUp9-UihcLFsqGwK9fJATe3WWT2ksIX0W98NugCvDwBkA51P0JuQ_3KS4VrJXTu550yKOSfntQnjPMddRJ0mWO_i13P8ehe_PsRfpPSB9M79n6IXe1Fwzt0LhOBSCVb_AdN8uV8
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TNNLS_2015_2461491
crossref_primary_10_1016_j_jcp_2020_109907
crossref_primary_10_1016_j_matcom_2022_10_018
crossref_primary_10_1016_j_camwa_2022_02_004
crossref_primary_10_1016_j_neucom_2018_09_092
crossref_primary_10_1016_j_neunet_2020_12_028
crossref_primary_10_1007_s40687_019_0183_3
crossref_primary_10_3389_fmats_2021_824958
crossref_primary_10_1109_TNNLS_2023_3242345
crossref_primary_10_1016_j_cageo_2021_104842
crossref_primary_10_1080_0952813X_2023_2242356
crossref_primary_10_1109_TNNLS_2025_3529516
crossref_primary_10_1137_18M1203602
crossref_primary_10_1016_j_jcp_2020_109278
crossref_primary_10_1016_j_ijepes_2019_01_011
crossref_primary_10_1038_s41598_022_18315_4
crossref_primary_10_1007_s40687_020_00215_6
crossref_primary_10_1002_num_22445
crossref_primary_10_1109_MCI_2021_3061854
crossref_primary_10_1002_fld_5164
crossref_primary_10_1016_j_energy_2016_09_096
crossref_primary_10_1016_j_neucom_2014_11_058
crossref_primary_10_1007_s00521_024_10311_1
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1007_s00498_022_00333_2
crossref_primary_10_1016_j_neucom_2018_06_056
crossref_primary_10_1016_j_epsr_2016_03_012
crossref_primary_10_1007_s00521_020_04743_8
crossref_primary_10_1088_2058_9565_acaa51
crossref_primary_10_1016_j_jfranklin_2025_107694
crossref_primary_10_1016_j_heliyon_2024_e38799
crossref_primary_10_1007_s11063_024_11620_1
Cites_doi 10.1109/TNN.2009.2020735
10.1109/72.712178
10.1109/TNN.2007.915108
10.1109/72.870037
10.1016/S0045-7825(02)00221-9
10.1109/TNN.2007.905848
10.1007/3-540-28438-9_2
10.1002/cnm.1640100303
10.1109/TNN.2004.836233
10.1016/0893-6080(90)90005-6
10.1029/93WR01494
10.1137/0111030
10.1109/72.471375
10.1090/qam/10666
10.1063/1.354232
10.1016/S0893-6080(97)00010-5
10.1016/j.asoc.2008.02.003
10.1016/0925-2312(95)00070-4
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2014
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
IQODW
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2013.2277601
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

Technology Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
Mathematics
EISSN 2162-2388
EndPage 584
ExternalDocumentID 3241034991
24807452
28403989
10_1109_TNNLS_2013_2277601
6658964
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: National Science Foundation; National Science Foundation under ECCS
  grantid: 0823945
  funderid: 10.13039/100000001
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ABPTK
IPNFZ
IQODW
PQEST
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c524t-adf5525788fe0d5af7902967bdd5524ba05d1ccaa5b4b9d28334426a46f258bc3
IEDL.DBID RIE
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000331985500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 07:32:56 EDT 2025
Sat Sep 27 17:20:50 EDT 2025
Sun Nov 30 05:05:42 EST 2025
Mon Jul 21 05:54:41 EDT 2025
Tue Sep 20 21:46:57 EDT 2022
Sat Nov 29 01:39:48 EST 2025
Tue Nov 18 21:44:58 EST 2025
Wed Aug 27 08:31:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Backpropagation
Dimensionality
artificial neural networks (ANNs)
Adaptive algorithm
Initial condition
scientific computing
Elimination
Constraint satisfaction
Neural network
Boundary condition
Adaptive method
Partial differential equation
Penalty method
Constrained optimization
Backpropagation algorithm
Parabolic equation
Lagrange multiplier
Elliptic equation
Scientific computation
partial differential equations (PDEs)
Non linear effect
Mathematical programming
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c524t-adf5525788fe0d5af7902967bdd5524ba05d1ccaa5b4b9d28334426a46f258bc3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://ieeexplore.ieee.org/document/6658964
PMID 24807452
PQID 1505237287
PQPubID 85436
PageCount 14
ParticipantIDs proquest_miscellaneous_1520948069
proquest_miscellaneous_1523404428
ieee_primary_6658964
pascalfrancis_primary_28403989
proquest_journals_1505237287
pubmed_primary_24807452
crossref_citationtrail_10_1109_TNNLS_2013_2277601
crossref_primary_10_1109_TNNLS_2013_2277601
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2014
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
bertsekas (ref15) 1996
ref30
smith (ref3) 1978
levenberg (ref10) 1944; 2
muro (ref19) 2008
ref2
ref1
stengel (ref14) 1986
ref17
ref16
o'neil (ref26) 2012
delleur (ref32) 2007
beidokhti (ref11) 2009; 346
ref24
ref23
ref25
hughes (ref4) 1987
press (ref5) 1986
ref22
husken (ref20) 2000
ref21
(ref7) 2005
(ref29) 2005
ref27
ref8
ref9
ref6
liu (ref31) 2006
bower (ref18) 1989
liu (ref28) 2000; 191
References_xml – start-page: 1975
  year: 2006
  ident: ref31
  article-title: Neural network based decentralized excitation control of large scale power systems
  publication-title: Proc IJCNN
– ident: ref12
  doi: 10.1109/TNN.2009.2020735
– ident: ref1
  doi: 10.1109/72.712178
– start-page: 2353
  year: 2008
  ident: ref19
  article-title: A constrained-optimization approach to training neural networks for smooth function approximation and system identification
  publication-title: Proc Int Joint Conf Neural Netw
– year: 1996
  ident: ref15
  publication-title: Constrained Optimization and Lagrange Multiplier Methods
– ident: ref16
  doi: 10.1109/TNN.2007.915108
– ident: ref8
  doi: 10.1109/72.870037
– volume: 191
  start-page: 2831
  year: 2000
  ident: ref28
  article-title: Detection of cracks using neural networks and computational mechanics
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(02)00221-9
– ident: ref2
  doi: 10.1109/TNN.2007.905848
– ident: ref24
  doi: 10.1007/3-540-28438-9_2
– volume: 346
  start-page: 1
  year: 2009
  ident: ref11
  article-title: Solving initial-boundary value problems for systems of partial differential equations using neural networks and optimization techniques
  publication-title: J Franklin Inst
– ident: ref13
  doi: 10.1002/cnm.1640100303
– ident: ref17
  doi: 10.1109/TNN.2004.836233
– ident: ref23
  doi: 10.1016/0893-6080(90)90005-6
– year: 1986
  ident: ref5
  publication-title: Numerical Recipes The Art of Scientific Computing
– year: 2005
  ident: ref7
  publication-title: MATLAB Neural Network Toolbox User's Guide
– year: 2005
  ident: ref29
  publication-title: MATLAB Partial Differential Equation Toolbox User's Guide
– ident: ref27
  doi: 10.1029/93WR01494
– year: 1989
  ident: ref18
  publication-title: The psychology of learning and motivation Advances in research and theory
– ident: ref25
  doi: 10.1137/0111030
– ident: ref30
  doi: 10.1109/72.471375
– year: 2007
  ident: ref32
  publication-title: Ground Eng
– volume: 2
  start-page: 164
  year: 1944
  ident: ref10
  article-title: A method for the solution of certain non-linear problems in least squares
  publication-title: Quart J Appl Math
  doi: 10.1090/qam/10666
– year: 1978
  ident: ref3
  publication-title: Numerical Solution of Partial Differential Equations Finite Difference Methods
– ident: ref6
  doi: 10.1063/1.354232
– year: 2012
  ident: ref26
  publication-title: Advanced Engineering Mathematics
– start-page: 181
  year: 2000
  ident: ref20
  article-title: Fast adaptation of the solution of differential equations to changing constraints
  publication-title: Proc 2nd ICSC Symp Neural Comput
– ident: ref21
  doi: 10.1016/S0893-6080(97)00010-5
– year: 1986
  ident: ref14
  publication-title: Optimal Control and Estimation
– ident: ref9
  doi: 10.1016/j.asoc.2008.02.003
– ident: ref22
  doi: 10.1016/0925-2312(95)00070-4
– year: 1987
  ident: ref4
  publication-title: The Finite Element Method
SSID ssj0000605649
Score 2.346233
Snippet This paper presents a constrained backpropagation (CPROP) methodology for solving nonlinear elliptic and parabolic partial differential equations (PDEs)...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 571
SubjectTerms Adaptive algorithm
Applied sciences
Approximation
Artificial intelligence
Artificial neural networks
artificial neural networks (ANNs)
Back propagation
Boundaries
Computer science; control theory; systems
Connectionism. Neural networks
Constraints
Equations
Exact sciences and technology
Jacobian matrices
Linear programming
Mathematical analysis
Mathematics
Neural networks
Nonlinearity
Optimization
Partial differential equations
partial differential equations (PDEs)
Sciences and techniques of general use
scientific computing
Training
Title A Constrained Backpropagation Approach for the Adaptive Solution of Partial Differential Equations
URI https://ieeexplore.ieee.org/document/6658964
https://www.ncbi.nlm.nih.gov/pubmed/24807452
https://www.proquest.com/docview/1505237287
https://www.proquest.com/docview/1520948069
https://www.proquest.com/docview/1523404428
Volume 25
WOSCitedRecordID wos000331985500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQcuFCiPQFkZiRukTRw_jwu04lCtKlHQ3iIntiUE2i3dXX4_M44TVAkqcctjotiZmcxnezwfwBuqMB57rkvEGrEUjtdlJ1SDpxgPvDfCJua5rxd6sTDLpb3cg3fTXpgQQko-Cyd0mNby_brf0VTZqcJwaZXYh32t1bBXa5pPqRCXq4R2ea14yRu9HPfIVPb0arG4-EyJXM0J55ryQKgKMG2nFpLfCkmJY4UyJN0GP1Ic2C3-DT9TGDo__L8OPIQHGW6y-WAfj2AvrB7D4UjlwLJnH0E3Z0TdmQgjgmfvXf8dm4I_m6Q4Ns-VxxlCXIaQkc29u6YfJRun1dg6sksyQ3zbx0y6kk7Ofg7FxDdP4Mv52dWHT2WmXyh7ycW2dD5KqpVqTAyVly5qW3GrdOc9Xhedq6Sv0QCc7ERnPeKURmC8d0JFLk3XN0_hYLVehefApIqxsSYoYwLKSIcoKEZLdOum8ZIXUI8aaPtcm5x6_KNNY5TKtkmBLSmwzQos4O30zPVQmeNO6SNSxySZNVHA7Jaip_sYtStssS3geNR8m71709bE_tdoHGwW8Hq6jX5Jiy1uFdY7kuE4cjaVsnfKNKLCD2IKeDZY1Z8GZON88feGv4T72D0xZMMdw8H2Zhdewb3-1_bb5maGDrI0s-QgvwEqaQh6
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NgQQvDBg_AmMYiTfIlji2Yz8W2DREqSZRUN8iJ7YlBGrH2vL3c-c4QZNgEm_5cVXtfOfcZ-d8H8ArqjAeOl7nyDVCLiwv81aoCk8xHjinhYnKc1-n9WymFwtzvgNvxr0w3vuYfOaP6DB-y3erbktLZccKw6VR4gbcJOUs0-_WGldUCmTmKvJdXiqe86peDLtkCnM8n82mnymVqzrivKZMEKoDTBuqheRXglJUWaEcSbvGxxR6fYt_E9AYiE73_q8L9-BuIpxs0nvIfdjxywewN4g5sDS296GdMBLvjJIR3rG3tvuOTcHXTYSOTVLtcYYklyFpZBNnL-hVyYaFNbYK7JwcEf_tfZJdiScnP_ty4uuH8OX0ZP7uLE8CDHknudjk1gVJ1VK1Dr5w0obaFNyounUOr4vWFtKV6AJWtqI1DplKJTDiW6ECl7rtqkewu1wt_RNgUoVQGe2V1h5tpEUeFIIhwXVdOckzKAcEmi5VJ6ce_2jiLKUwTQSwIQCbBGAGr8ffXPS1Oa613ic4RsuERAaHV4Ae72PcLrDFJoODAfkmje91U5L-X1XjdDODl-NtHJn0ucUu_WpLNhznzrpQ5lqbShT4QHQGj3uv-tOA5JxP_97wF3D7bP5p2kw_zD4-gzvYVdHnxh3A7uZy65_Dre7X5tv68jAOk9_o8wrh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Constrained+Backpropagation+Approach+for+the+Adaptive+Solution+of+Partial+Differential+Equations&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Rudd%2C+Keith&rft.au=Muro%2C+Gianluca+Di&rft.au=Ferrari%2C+Silvia&rft.date=2014-03-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=25&rft.issue=3&rft.spage=571&rft.epage=584&rft_id=info:doi/10.1109%2FTNNLS.2013.2277601&rft_id=info%3Apmid%2F24807452&rft.externalDocID=6658964
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon