A three-dimensional hybrid smoothed finite element method (H-SFEM) for nonlinear solid mechanics problems

This paper presents a novel three-dimensional hybrid smoothed finite element method (H-SFEM) for solid mechanics problems. In 3D H-SFEM, the strain field is assumed to be the weighted average between compatible strains from the finite element method (FEM) and smoothed strains from the node-based smo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta mechanica Ročník 226; číslo 12; s. 4223 - 4245
Hlavní autoři: Li, Eric, He, Z. C., Xu, Xu, Liu, G. R., Gu, Y. T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Vienna Springer Vienna 01.12.2015
Springer
Springer Nature B.V
Témata:
ISSN:0001-5970, 1619-6937
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents a novel three-dimensional hybrid smoothed finite element method (H-SFEM) for solid mechanics problems. In 3D H-SFEM, the strain field is assumed to be the weighted average between compatible strains from the finite element method (FEM) and smoothed strains from the node-based smoothed FEM with a parameter α equipped into H-SFEM. By adjusting α, the upper and lower bound solutions in the strain energy norm and eigenfrequencies can always be obtained. The optimized α value in 3D H-SFEM using a tetrahedron mesh possesses a close-to-exact stiffness of the continuous system, and produces ultra-accurate solutions in terms of displacement, strain energy and eigenfrequencies in the linear and nonlinear problems. The novel domain-based selective scheme is proposed leading to a combined selective H-SFEM model that is immune from volumetric locking and hence works well for nearly incompressible materials. The proposed 3D H-SFEM is an innovative and unique numerical method with its distinct features, which has great potential in the successful application for solid mechanics problems.
AbstractList This paper presents a novel three-dimensional hybrid smoothed finite element method (H-SFEM) for solid mechanics problems. In 3D H-SFEM, the strain field is assumed to be the weighted average between compatible strains from the finite element method (FEM) and smoothed strains from the node-based smoothed FEM with a parameter a equipped into H-SFEM. By adjusting a, the upper and lower bound solutions in the strain energy norm and eigenfrequencies can always be obtained. The optimized α value in 3D H-SFEM using a tetrahedron mesh possesses a close-to-exact stiffness of the continuous system, and produces ultra-accurate solutions in terms of displacement, strain energy and eigenfrequencies in the linear and nonlinear problems. The novel domain-based selective scheme is proposed leading to a combined selective H-SFEM model that is immune from volumetric locking and hence works well for nearly incompressible materials. The proposed 3D H-SFEM is an innovative and unique numerical method with its distinct features, which has great potential in the successful application for solid mechanics problems.
This paper presents a novel three-dimensional hybrid smoothed finite element method (H-SFEM) for solid mechanics problems. In 3D H-SFEM, the strain field is assumed to be the weighted average between compatible strains from the finite element method (FEM) and smoothed strains from the node-based smoothed FEM with a parameter [alpha] equipped into H-SFEM. By adjusting [alpha], the upper and lower bound solutions in the strain energy norm and eigenfrequencies can always be obtained. The optimized [alpha] value in 3D H-SFEM using a tetrahedron mesh possesses a close-to-exact stiffness of the continuous system, and produces ultra-accurate solutions in terms of displacement, strain energy and eigenfrequencies in the linear and nonlinear problems. The novel domain-based selective scheme is proposed leading to a combined selective H-SFEM model that is immune from volumetric locking and hence works well for nearly incompressible materials. The proposed 3D H-SFEM is an innovative and unique numerical method with its distinct features, which has great potential in the successful application for solid mechanics problems.
This paper presents a novel three-dimensional hybrid smoothed finite element method (H-SFEM) for solid mechanics problems. In 3D H-SFEM, the strain field is assumed to be the weighted average between compatible strains from the finite element method (FEM) and smoothed strains from the node-based smoothed FEM with a parameter α equipped into H-SFEM. By adjusting α, the upper and lower bound solutions in the strain energy norm and eigenfrequencies can always be obtained. The optimized α value in 3D H-SFEM using a tetrahedron mesh possesses a close-to-exact stiffness of the continuous system, and produces ultra-accurate solutions in terms of displacement, strain energy and eigenfrequencies in the linear and nonlinear problems. The novel domain-based selective scheme is proposed leading to a combined selective H-SFEM model that is immune from volumetric locking and hence works well for nearly incompressible materials. The proposed 3D H-SFEM is an innovative and unique numerical method with its distinct features, which has great potential in the successful application for solid mechanics problems.
Audience Academic
Author Li, Eric
Xu, Xu
He, Z. C.
Liu, G. R.
Gu, Y. T.
Author_xml – sequence: 1
  givenname: Eric
  surname: Li
  fullname: Li, Eric
  email: ericsg2012@gmail.com
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University
– sequence: 2
  givenname: Z. C.
  surname: He
  fullname: He, Z. C.
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University
– sequence: 3
  givenname: Xu
  surname: Xu
  fullname: Xu, Xu
  organization: College of Mathematics, Jilin University
– sequence: 4
  givenname: G. R.
  surname: Liu
  fullname: Liu, G. R.
  organization: School of Aerospace Systems, University of Cincinnati
– sequence: 5
  givenname: Y. T.
  surname: Gu
  fullname: Gu, Y. T.
  organization: School of Engineering Systems, Queensland University of Technology
BookMark eNp9kU1rHSEUhqWk0Ju0P6A7oZt0YerHqOPyEpKmkNJF27V49ZgxzGiqcxf59_UyXZRAi6Aoz3PU856js1wyIPSe0StGqf7U-kQ1oUwSNkhF1Cu0Y4oZoozQZ2hHKWVEGk3foPPWHvuO64HtUNrjdaoAJKQFcksluxlPz4eaAm5LKesEAceU0woYZujMihdYpxLw5R35fnvz9SOOpeL-nDllcBW3Mnd3AT-5nHzDT7UcutjeotfRzQ3e_Vkv0M_bmx_Xd-T-2-cv1_t74iUfVqICD96BD1FJMVLJQRgunHYCOOU6AHgjdeBsBKl8PICJjnMvuBzpIVIhLtDlVrdf_OsIbbVLah7m2WUox2aZ1qey4zB09MML9LEca-_AiRJSGqWE7tTVRj24GWzKsazV-T4CLMn3GGLq5_tBKDNyI00X9Cb4WlqrEK1Pq1t7b7uYZsuoPWVmt8xsz8yeMrOqm-yF-VTT4urzfx2-Oa2z-QHqX5_4p_Qb17qqog
CODEN AMHCAP
CitedBy_id crossref_primary_10_1016_j_enganabound_2017_07_014
crossref_primary_10_1016_j_apacoust_2018_12_034
crossref_primary_10_1016_j_advengsoft_2018_04_014
crossref_primary_10_1016_j_apm_2020_11_040
crossref_primary_10_1016_j_enganabound_2019_05_007
crossref_primary_10_1016_j_enganabound_2017_12_002
crossref_primary_10_1016_j_enganabound_2021_09_021
crossref_primary_10_1016_j_enganabound_2021_10_015
crossref_primary_10_1007_s11709_019_0519_5
crossref_primary_10_1007_s00707_017_1977_2
crossref_primary_10_3390_math11092016
crossref_primary_10_1002_mma_6832
crossref_primary_10_1016_j_enganabound_2020_04_007
crossref_primary_10_1007_s00707_019_02489_6
crossref_primary_10_3390_math11112529
crossref_primary_10_1016_j_compstruc_2025_107654
crossref_primary_10_1007_s11831_016_9202_3
crossref_primary_10_1007_s00707_018_2291_3
Cites_doi 10.1007/s00466-006-0075-4
10.1002/nme.2050
10.1093/acprof:oso/9780198525295.001.0001
10.1002/nme.2204
10.1201/9781420082104
10.1002/nme.2719
10.1016/j.compstruc.2008.09.003
10.1016/j.cma.2008.03.011
10.1002/nme.1968
10.1016/0045-7825(78)90005-1
10.1201/9781482270211
10.1017/CBO9780511605345
10.1002/(SICI)1097-0207(20000510)48:1<79::AID-NME869>3.0.CO;2-D
10.1016/0045-7825(90)90168-L
10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
10.1016/S0045-7825(01)00281-X
10.1142/S0219876208001510
10.1016/j.jsv.2008.08.027
10.1002/nme.1620370205
10.1007/s00466-012-0809-4
10.1007/978-1-4612-3172-1
10.1002/nme.1620200911
10.1017/CBO9780511791253
ContentType Journal Article
Copyright Springer-Verlag Wien 2015
COPYRIGHT 2015 Springer
Copyright_xml – notice: Springer-Verlag Wien 2015
– notice: COPYRIGHT 2015 Springer
DBID AAYXX
CITATION
3V.
7TB
7XB
88I
8AO
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
KR7
L6V
M2O
M2P
M7S
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1007/s00707-015-1456-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Research Library
Science Database
Engineering Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Research Library Prep
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1619-6937
EndPage 4245
ExternalDocumentID 3874580311
A436982959
10_1007_s00707_015_1456_6
GrantInformation_xml – fundername: Hunan University
  grantid: 31175002
  funderid: http://dx.doi.org/10.13039/501100003824
GroupedDBID --Z
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
88I
8AO
8FE
8FG
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M2O
M2P
M4Y
M7S
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF-
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z92
_50
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7TB
7XB
8FD
8FK
FR3
KR7
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c524t-6d2dcaecdf6538052e3923a7a3e2027deec957d218e56cfbe9fa22c32580bf033
IEDL.DBID RSV
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000365513500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-5970
IngestDate Thu Sep 04 17:27:22 EDT 2025
Wed Nov 05 14:22:10 EST 2025
Sun Nov 23 09:03:11 EST 2025
Tue Nov 18 20:40:18 EST 2025
Sat Nov 29 05:42:44 EST 2025
Fri Feb 21 02:35:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Incompressible Material
Meshfree Method
Solid Mechanic Problem
Tetrahedral Element
Nonlinear Deformation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c524t-6d2dcaecdf6538052e3923a7a3e2027deec957d218e56cfbe9fa22c32580bf033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1735596637
PQPubID 47448
PageCount 23
ParticipantIDs proquest_miscellaneous_1778052844
proquest_journals_1735596637
gale_infotracacademiconefile_A436982959
crossref_citationtrail_10_1007_s00707_015_1456_6
crossref_primary_10_1007_s00707_015_1456_6
springer_journals_10_1007_s00707_015_1456_6
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Acta mechanica
PublicationTitleAbbrev Acta Mech
PublicationYear 2015
Publisher Springer Vienna
Springer
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer
– name: Springer Nature B.V
References LiuG.R.DaiK.Y.NguyenT.T.A smoothed finite element method for mechanics problemsComput. Mech.2007398598771169.7404710.1007/s00466-006-0075-4
ReddyJ.N.An Introduction to Nonlinear Finite Element Analysis2004OxfordOxford University Press1057.6508710.1093/acprof:oso/9780198525295.001.0001
LeVequeR.J.Finite Volume Methods for Hyperbolic Problems2002New YorkCambridge University Press1010.6504010.1017/CBO9780511791253
LiuG.R.A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methodsInt. J. Comput. Methods.200851992361222.74044242862110.1142/S0219876208001510
PianT.H.H.SumiharaK.Rational approach for assumed stress finite elementsInt. J. Numer. Methods Eng.198420168516950544.7309510.1002/nme.1620200911
ArnoldD.N.Mixed finite element methods for elliptic problemsComput. Methods Appl. Mech. Eng.1990822813000729.7319810.1016/0045-7825(90)90168-L
RongT.Y.LuA.Q.Generalized mixed variational principles and solutions for ill-conditioned problems in computational mechanics—part I: volumetric lockingComput. Meth. Appl. Mech. Eng.20011914074221054.74737186850410.1016/S0045-7825(01)00281-X
TimoshenkoS.P.GoodierJ.N.Theory of Elasticity19703New YorkMcGraw-Hill0266.73008
LiuG.R.LiuM.B.Smoothed Particle Hydrodynamics: A Meshfree Practical Method2003SingaporeWorld Scientific10.1142/5340
HughesT.J.R.The Finite Element Method: Linear Static and Dynamic Finite Element Analysis1987Englewood CliffsPrentice-Hall0634.73056
ZienkiewiczO.C.TaylorR.L.The Finite Element Method20005OxfordButterworth-Heinemann0991.74002
LiuG.R.ZhangG.Y.Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC-PIM)Int. J. Numer. Methods Eng.200874112811611158.7453210.1002/nme.2204
MalkusD.S.HughesT.J.R.Mixed finite element methods—reduced and selective integration techniques: a unification of conceptsComput. Methods Appl. Mech. Eng.19781563810381.7307510.1016/0045-7825(78)90005-1
LiuG.R.QuekS.S.Finite Element Method: A Practical Course2003BurlingtonButterworth-Heinemann
LiuG.R.NguyenT.T.NguyenH.X.A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problemsComput. Struct.200987142610.1016/j.compstruc.2008.09.003
LiuG.R.Meshfree Methods: Moving Beyond the Finite Element Method20092Boca RatonCRC Press10.1201/9781420082104
ReeseS.WriggersP.A stabilization technique to avoid hourglassing in finite elasticityInt. J. Numer. Methods Eng.200048791090983.7407010.1002/(SICI)1097-0207(20000510)48:1<79::AID-NME869>3.0.CO;2-D
LiuG.R.NguyenT.T.LamK.Y.An edge-based smoothed finite element method (ES-FEM) for static and dynamic problems of solid mechanicsJ. Sound Vib.20093201100113010.1016/j.jsv.2008.08.027
LiR.H.ChenZ.Y.WuW.Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods2000New YorkMarcel Dekker
WuT.W.Boundary Element in Acoustics: Fundamentals and Computer Codes2000SouthamptonWIT Press
BrezziF.FortinM.Mixed and Hybrid Finite Element Methods1991New YorkSpringer0788.7300210.1007/978-1-4612-3172-1
LiuG.R.GuY.T.An Introduction to Meshfree Methods and Their Programming2005DordrechtSpringer
BatheK.J.Finite Element Procedures1996Prentice-Hall: CambridgeMIT Press
LiuY.J.Fast Multipole Boundary Element Method: Theory and Applications in Engineering2009CambridgeCambridge University Press10.1017/CBO9780511605345
ZhangG.Y.LiuG.R.WangY.Y.A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problemsInt. J. Numer. Methods Eng.200772113152415431194.74543237234510.1002/nme.2050
LiuG.R.A weakened weak (W2) form for a unified formulation of compatible and incompatible methods, Part I: Theory and Part II: Applications to solid mechanics problemsInt. J. Numer. Methods Eng.201081109311561183.74358
XuX.GuY.T.LiuG.R.A hybrid smoothed finite element method (H-SFEM) to solid mechanics problemsInt. J. Comput. Methods.201310117303765610.1142/S0219876213400112
BelytschkoT.LuY.Y.GuL.Element-free Galerkin methodsInt. J. Numer. Methods Eng.1994372292560796.73077125681810.1002/nme.1620370205
ChenJ.S.WuC.T.YoonS.A stabilized conforming nodal integration for Galerkin mesh-free methodsInt. J. Numer. Methods Eng.2001504354661011.7408110.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
LiuG.R.NguyenT.T.DaiK.Y.Theoretical aspects of the smoothed finite element method (SFEM)Int. J. Numer. Methods Eng.2007719029301194.74432234465710.1002/nme.1968
HeZ.C.LiG.Y.ZhongZ.H.An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problemsComput. Mech.20135222123606184630306696510.1007/s00466-012-0809-4
LiuG.R.NguyenT.T.LamK.Y.Novel alpha finite element method (αFEM) for exact solution to mechanics problems using triangular and tetrahedral elementsComput. Meth. Appl. Mech. Eng.2008197388338971194.7443310.1016/j.cma.2008.03.011
T.W. Wu (1456_CR3) 2000
J.S. Chen (1456_CR19) 2001; 50
O.C. Zienkiewicz (1456_CR5) 2000
T.H.H. Pian (1456_CR15) 1984; 20
S. Reese (1456_CR16) 2000; 48
K.J. Bathe (1456_CR29) 1996
G.R. Liu (1456_CR13) 2007; 71
D.S. Malkus (1456_CR14) 1978; 15
J.N. Reddy (1456_CR30) 2004
G.R. Liu (1456_CR20) 2008; 197
G.R. Liu (1456_CR7) 2003
T. Belytschko (1456_CR8) 1994; 37
Y.J. Liu (1456_CR4) 2009
D.N. Arnold (1456_CR10) 1990; 82
G.R. Liu (1456_CR24) 2009; 320
G.Y. Zhang (1456_CR21) 2007; 72
X. Xu (1456_CR28) 2013; 10
R.J. LeVeque (1456_CR1) 2002
F. Brezzi (1456_CR11) 1991
G.R. Liu (1456_CR12) 2007; 39
G.R. Liu (1456_CR23) 2008; 74
G.R. Liu (1456_CR18) 2005
G.R. Liu (1456_CR26) 2008; 5
T.Y. Rong (1456_CR17) 2001; 191
Z.C. He (1456_CR25) 2013; 52
T.J.R. Hughes (1456_CR32) 1987
R.H. Li (1456_CR2) 2000
G.R. Liu (1456_CR9) 2009
G.R. Liu (1456_CR22) 2009; 87
G.R. Liu (1456_CR6) 2003
G.R. Liu (1456_CR27) 2010; 81
S.P. Timoshenko (1456_CR31) 1970
References_xml – reference: LiuG.R.Meshfree Methods: Moving Beyond the Finite Element Method20092Boca RatonCRC Press10.1201/9781420082104
– reference: LiuG.R.NguyenT.T.NguyenH.X.A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problemsComput. Struct.200987142610.1016/j.compstruc.2008.09.003
– reference: LiuG.R.NguyenT.T.LamK.Y.An edge-based smoothed finite element method (ES-FEM) for static and dynamic problems of solid mechanicsJ. Sound Vib.20093201100113010.1016/j.jsv.2008.08.027
– reference: HeZ.C.LiG.Y.ZhongZ.H.An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problemsComput. Mech.20135222123606184630306696510.1007/s00466-012-0809-4
– reference: LiuG.R.ZhangG.Y.Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC-PIM)Int. J. Numer. Methods Eng.200874112811611158.7453210.1002/nme.2204
– reference: LiuG.R.A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methodsInt. J. Comput. Methods.200851992361222.74044242862110.1142/S0219876208001510
– reference: XuX.GuY.T.LiuG.R.A hybrid smoothed finite element method (H-SFEM) to solid mechanics problemsInt. J. Comput. Methods.201310117303765610.1142/S0219876213400112
– reference: LiuY.J.Fast Multipole Boundary Element Method: Theory and Applications in Engineering2009CambridgeCambridge University Press10.1017/CBO9780511605345
– reference: WuT.W.Boundary Element in Acoustics: Fundamentals and Computer Codes2000SouthamptonWIT Press
– reference: BelytschkoT.LuY.Y.GuL.Element-free Galerkin methodsInt. J. Numer. Methods Eng.1994372292560796.73077125681810.1002/nme.1620370205
– reference: LiuG.R.LiuM.B.Smoothed Particle Hydrodynamics: A Meshfree Practical Method2003SingaporeWorld Scientific10.1142/5340
– reference: HughesT.J.R.The Finite Element Method: Linear Static and Dynamic Finite Element Analysis1987Englewood CliffsPrentice-Hall0634.73056
– reference: ChenJ.S.WuC.T.YoonS.A stabilized conforming nodal integration for Galerkin mesh-free methodsInt. J. Numer. Methods Eng.2001504354661011.7408110.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
– reference: LeVequeR.J.Finite Volume Methods for Hyperbolic Problems2002New YorkCambridge University Press1010.6504010.1017/CBO9780511791253
– reference: ZhangG.Y.LiuG.R.WangY.Y.A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problemsInt. J. Numer. Methods Eng.200772113152415431194.74543237234510.1002/nme.2050
– reference: LiuG.R.QuekS.S.Finite Element Method: A Practical Course2003BurlingtonButterworth-Heinemann
– reference: LiuG.R.NguyenT.T.LamK.Y.Novel alpha finite element method (αFEM) for exact solution to mechanics problems using triangular and tetrahedral elementsComput. Meth. Appl. Mech. Eng.2008197388338971194.7443310.1016/j.cma.2008.03.011
– reference: MalkusD.S.HughesT.J.R.Mixed finite element methods—reduced and selective integration techniques: a unification of conceptsComput. Methods Appl. Mech. Eng.19781563810381.7307510.1016/0045-7825(78)90005-1
– reference: LiR.H.ChenZ.Y.WuW.Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods2000New YorkMarcel Dekker
– reference: BrezziF.FortinM.Mixed and Hybrid Finite Element Methods1991New YorkSpringer0788.7300210.1007/978-1-4612-3172-1
– reference: LiuG.R.NguyenT.T.DaiK.Y.Theoretical aspects of the smoothed finite element method (SFEM)Int. J. Numer. Methods Eng.2007719029301194.74432234465710.1002/nme.1968
– reference: ReeseS.WriggersP.A stabilization technique to avoid hourglassing in finite elasticityInt. J. Numer. Methods Eng.200048791090983.7407010.1002/(SICI)1097-0207(20000510)48:1<79::AID-NME869>3.0.CO;2-D
– reference: LiuG.R.GuY.T.An Introduction to Meshfree Methods and Their Programming2005DordrechtSpringer
– reference: ReddyJ.N.An Introduction to Nonlinear Finite Element Analysis2004OxfordOxford University Press1057.6508710.1093/acprof:oso/9780198525295.001.0001
– reference: TimoshenkoS.P.GoodierJ.N.Theory of Elasticity19703New YorkMcGraw-Hill0266.73008
– reference: LiuG.R.DaiK.Y.NguyenT.T.A smoothed finite element method for mechanics problemsComput. Mech.2007398598771169.7404710.1007/s00466-006-0075-4
– reference: PianT.H.H.SumiharaK.Rational approach for assumed stress finite elementsInt. J. Numer. Methods Eng.198420168516950544.7309510.1002/nme.1620200911
– reference: ZienkiewiczO.C.TaylorR.L.The Finite Element Method20005OxfordButterworth-Heinemann0991.74002
– reference: RongT.Y.LuA.Q.Generalized mixed variational principles and solutions for ill-conditioned problems in computational mechanics—part I: volumetric lockingComput. Meth. Appl. Mech. Eng.20011914074221054.74737186850410.1016/S0045-7825(01)00281-X
– reference: BatheK.J.Finite Element Procedures1996Prentice-Hall: CambridgeMIT Press
– reference: ArnoldD.N.Mixed finite element methods for elliptic problemsComput. Methods Appl. Mech. Eng.1990822813000729.7319810.1016/0045-7825(90)90168-L
– reference: LiuG.R.A weakened weak (W2) form for a unified formulation of compatible and incompatible methods, Part I: Theory and Part II: Applications to solid mechanics problemsInt. J. Numer. Methods Eng.201081109311561183.74358
– volume: 39
  start-page: 859
  year: 2007
  ident: 1456_CR12
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-006-0075-4
– volume: 72
  start-page: 1524
  issue: 113
  year: 2007
  ident: 1456_CR21
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.2050
– volume-title: An Introduction to Nonlinear Finite Element Analysis
  year: 2004
  ident: 1456_CR30
  doi: 10.1093/acprof:oso/9780198525295.001.0001
– volume: 74
  start-page: 1128
  year: 2008
  ident: 1456_CR23
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.2204
– volume-title: Meshfree Methods: Moving Beyond the Finite Element Method
  year: 2009
  ident: 1456_CR9
  doi: 10.1201/9781420082104
– volume: 81
  start-page: 1093
  year: 2010
  ident: 1456_CR27
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.2719
– volume-title: The Finite Element Method
  year: 2000
  ident: 1456_CR5
– volume: 87
  start-page: 14
  year: 2009
  ident: 1456_CR22
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2008.09.003
– volume-title: Finite Element Method: A Practical Course
  year: 2003
  ident: 1456_CR6
– volume: 197
  start-page: 3883
  year: 2008
  ident: 1456_CR20
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2008.03.011
– volume: 71
  start-page: 902
  year: 2007
  ident: 1456_CR13
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1968
– volume: 10
  start-page: 1
  year: 2013
  ident: 1456_CR28
  publication-title: Int. J. Comput. Methods.
– volume: 15
  start-page: 63
  year: 1978
  ident: 1456_CR14
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(78)90005-1
– volume-title: Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods
  year: 2000
  ident: 1456_CR2
  doi: 10.1201/9781482270211
– volume-title: Theory of Elasticity
  year: 1970
  ident: 1456_CR31
– volume-title: Smoothed Particle Hydrodynamics: A Meshfree Practical Method
  year: 2003
  ident: 1456_CR7
– volume-title: Fast Multipole Boundary Element Method: Theory and Applications in Engineering
  year: 2009
  ident: 1456_CR4
  doi: 10.1017/CBO9780511605345
– volume: 48
  start-page: 79
  year: 2000
  ident: 1456_CR16
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/(SICI)1097-0207(20000510)48:1<79::AID-NME869>3.0.CO;2-D
– volume: 82
  start-page: 281
  year: 1990
  ident: 1456_CR10
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(90)90168-L
– volume: 50
  start-page: 435
  year: 2001
  ident: 1456_CR19
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
– volume: 191
  start-page: 407
  year: 2001
  ident: 1456_CR17
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(01)00281-X
– volume: 5
  start-page: 199
  year: 2008
  ident: 1456_CR26
  publication-title: Int. J. Comput. Methods.
  doi: 10.1142/S0219876208001510
– volume: 320
  start-page: 1100
  year: 2009
  ident: 1456_CR24
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2008.08.027
– volume: 37
  start-page: 229
  year: 1994
  ident: 1456_CR8
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620370205
– volume-title: Boundary Element in Acoustics: Fundamentals and Computer Codes
  year: 2000
  ident: 1456_CR3
– volume: 52
  start-page: 221
  year: 2013
  ident: 1456_CR25
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-012-0809-4
– volume-title: Mixed and Hybrid Finite Element Methods
  year: 1991
  ident: 1456_CR11
  doi: 10.1007/978-1-4612-3172-1
– volume: 20
  start-page: 1685
  year: 1984
  ident: 1456_CR15
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620200911
– volume-title: An Introduction to Meshfree Methods and Their Programming
  year: 2005
  ident: 1456_CR18
– volume-title: Finite Element Procedures
  year: 1996
  ident: 1456_CR29
– volume-title: Finite Volume Methods for Hyperbolic Problems
  year: 2002
  ident: 1456_CR1
  doi: 10.1017/CBO9780511791253
– volume-title: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
  year: 1987
  ident: 1456_CR32
SSID ssj0012741
Score 2.2029035
Snippet This paper presents a novel three-dimensional hybrid smoothed finite element method (H-SFEM) for solid mechanics problems. In 3D H-SFEM, the strain field is...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4223
SubjectTerms Analysis
Classical and Continuum Physics
Control
Dynamical Systems
Eigenfrequencies
Engineering
Engineering Thermodynamics
Finite element analysis
Finite element method
Heat and Mass Transfer
Mathematical analysis
Mathematical models
Mechanical engineering
Methods
Nonlinearity
Original Paper
Solid Mechanics
Strain
Theoretical and Applied Mechanics
Three dimensional
Vibration
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZp0kN7aNJH6LZJUKHQFyK2bMnWKSwlSw5JKKSF3IQsjelCs5usN4H--87IWjdtaC69-GK9YEYzH5qZbxh761zmcwDi067wE1opjAYlSvCZdi6vdRNJXI-r09P6_Nx8SQ9uXUqrXNnEaKjD3NMb-X5eoWdEbF5UB5dXgrpGUXQ1tdB4wDaIJUHG1L2zIYpA1Cw9_M0FAuchqplFEtEqJl0qkSOGEPoPv_S3db4TJo3eZ7L5v-feYk8S7uTjXlGesjWYPWOPb7ERPmfTMV-iZEEEYvzv2Tr4959U0sW7izmVagXeTgmkcuizznnfgJq_PxJnk8OTDxwhMJ_17BtuwVGvce4FUHXx1Hc8da_pXrBvk8Ovn49E6sQgvJLlUuggg3fgQ6vRQGZKAsKqwlWuAHo8CQDeqCogXAClfduAaZ2UvpCqzpo2K4ptto6bw0vGnQsUm3XGNOhApWkU1LnTTWiVb2WjRyxbycH6RFNO3TJ-2IFgOYrOougsic7ilI_DlMueo-O-we9IuJbuL67rXSpDwNMRE5Ydl4U2tTTKjNjOSqI2XezO_hbniL0ZfuOVpDiLm8H8msbERhF1WY7Yp5Xe3FriX0d7df-Gr9kjGfWVcml22PpycQ277KG_WU67xV7U_F9vZQka
  priority: 102
  providerName: ProQuest
Title A three-dimensional hybrid smoothed finite element method (H-SFEM) for nonlinear solid mechanics problems
URI https://link.springer.com/article/10.1007/s00707-015-1456-6
https://www.proquest.com/docview/1735596637
https://www.proquest.com/docview/1778052844
Volume 226
WOSCitedRecordID wos000365513500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1619-6937
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0012741
  issn: 0001-5970
  databaseCode: M7S
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1619-6937
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0012741
  issn: 0001-5970
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1619-6937
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0012741
  issn: 0001-5970
  databaseCode: M2O
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1619-6937
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0012741
  issn: 0001-5970
  databaseCode: M2P
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1619-6937
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012741
  issn: 0001-5970
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6apIf20HfJtsmiQqEvBLZsydZxG3bJodku2bbkZmRpTBeSTVlvCv33nfGL9AntRRdLshjNaD57NN8APHcu8jEi82ln1IRKSWtQyxR9ZJyLc1M2JK7vsvk8Pzuziy6Pu-5vu_chyeakHpLdGmYa-vTVMiavL80O7JG3y9kaT5efhtAB87G0mDeWhJaHUObvpvjBGf18JP8SG21czuzufy32HtzpEKaYtCpxH27g-gHcvsY7-BBWE7GlPUQZmNu_5eUQn79x8paoLy45KSuIasVwVGB7v1y0pabFy2O5nE1PXgkCu2Ld8my4jSANprEXyHnEK1-Lrk5N_Qg-zqYfjo5lV3NBeq3SrTRBBe_Qh8rQURhphQSgEpe5BPk3SUD0VmeBgAFq46sSbeWU8onSeVRWUZI8hl16Oe6DcC5wFNZZW5KrVLbUmMfOlKHSvlKlGUHUC7_wHSE518U4LwYq5UaKBUmxYCkWNOT1MORLy8bxt84veEcLtlSa17su4YBWx5xXxSRNjM2V1XYEB_2mF50J10WcERSjj8EkG8Gz4TEZH0dU3Bovr7hPUxIiT9MRvOkV4doUf1rak3_q_RRuqUaT-BLNAexuN1d4CDf91-2q3oxh7-10vjgdw86Jet-0C26z5bixi-_bigLK
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VBQl64I0IFFgkEC-tsNde23tAKIJGqZpGSC1Sb8t6d6xGokmJU1D_FL-RmfWDAqK3HrjkEq_txN_MfN6Z-Yaxp9ZGLgYgPe0cP3wlhc5AiRRclFkbF1kZRFwn-XRaHBzoj2vsR9cLQ2WVnU8MjtovHO2Rv4lzjIzIzZP83fFXQVOjKLvajdBoYLEDp9_xla1-u_0Bn-8zKUdb--_Hop0qIJyS6UpkXnpnwfkqQ2OPlASkCInNbQK0EeABnFa5x9AHKnNVCbqyUrpEqiIqq4g2QNHlX0rJ-4dSwb0-a0FSMA3djgUS9T6LGgXR0jwUeSoRI2cR2W9x8M9o8FdaNkS70fX_7X-6wa61vJoPG0O4ydZgfottnFFbvM1mQ75C5ILwNNGgUSPhh6fUssbrowW1onlezYiEc2iq6nkzYJu_GIu90dbuS44Un88bdRG75Gi3uPYIqHt65mreTuep77BPF_Jb77J1vDjcY9xaT7lnq3WJBEHqUkER26z0lXKVLLMBi7rnblwrw07TQL6YXkA6QMUgVAxBxeCSV_2S40aD5LyDnxOYDPknPK-zbZsF3h0pfZlhmmS6kFrpAdvsEGRax1WbX_AZsCf91-hyKI9k57A4oWPCIIwiTQfsdYfTM6f4163dP_-Cj9mV8f7uxEy2pzsP2FUZbIXqhjbZ-mp5Ag_ZZfdtNauXj4LVcfb5ouH7E4MDZ0w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VBSF64I0IFFgkEC-taq-9a-8BoYg2atU2igRIvW3Xu2M1Ek1KnIL61_h1zPhFAdFbD1x8sdd2km9mvuzMfMPYc-ciHwOQnnaGh1BKYTQokYKPtHNxrotaxHUvG4_zgwMzWWE_ul4YKqvsfGLtqMPc0x75RpxhZERunmQbZVsWMdkcvT_5KmiCFGVau3EaDUR24ew7_n2r3u1s4m_9QsrR1qcP26KdMCC8kulS6CCDd-BDqdHwIyUB6ULiMpcAbQoEAG9UFjAMgtK-LMCUTkqfSJVHRRnRZii6_ytZqhRZ176c9BkMkoVpqHcskLT3GdWoFjDN6oJPJWLkL0L_FhP_jAx_pWjryDe6-T9_Z7fYjZZv82FjILfZCszusLVzKox32XTIl4hoEIEmHTQqJfzojFrZeHU8pxa1wMspkXMOTbU9bwZv81fb4uNoa_81R-rPZ43qiFtwtGdcewzUVT31FW-n9lT32OdL-az32So-HB4w7lygnLQzpkDiIE2hII-dLkKpfCkLPWBRhwHrW3l2mhLyxfbC0jVsLMLGEmwsLnnTLzlptEkuuvglAcuS38L7ete2X-DbkQKYHaaJNrk0ygzYeocm2zq0yv6C0oA960-jK6L8kpvB_JSuqQdk5Gk6YG87zJ67xb9e7eHFD3zKriFq7d7OePcRuy5rs6FyonW2ulycwmN21X9bTqvFk9oAOTu8bPT-BN9HcAk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+three-dimensional+hybrid+smoothed+finite+element+method+%28H-SFEM%29+for+nonlinear+solid+mechanics+problems&rft.jtitle=Acta+mechanica&rft.au=Li%2C+Eric&rft.au=He%2C+Z+C&rft.au=Xu%2C+Xu&rft.au=Liu%2C+G+R&rft.date=2015-12-01&rft.issn=0001-5970&rft.eissn=1619-6937&rft.volume=226&rft.issue=12&rft.spage=4223&rft.epage=4245&rft_id=info:doi/10.1007%2Fs00707-015-1456-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-5970&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-5970&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-5970&client=summon