Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features

Recent studies in Electromyogram (EMG) pattern recognition reveal a gap between research findings and a viable clinical implementation of myoelectric control strategies. One of the important factors contributing to the limited performance of such controllers in practice is the variation in the limb...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural networks Ročník 55; s. 42 - 58
Hlavní autori: Khushaba, Rami N., Takruri, Maen, Miro, Jaime Valls, Kodagoda, Sarath
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Kidlington Elsevier Ltd 01.07.2014
Elsevier
Predmet:
ISSN:0893-6080, 1879-2782, 1879-2782
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recent studies in Electromyogram (EMG) pattern recognition reveal a gap between research findings and a viable clinical implementation of myoelectric control strategies. One of the important factors contributing to the limited performance of such controllers in practice is the variation in the limb position associated with normal use as it results in different EMG patterns for the same movements when carried out at different positions. However, the end goal of the myoelectric control scheme is to allow amputees to control their prosthetics in an intuitive and accurate manner regardless of the limb position at which the movement is initiated. In an attempt to reduce the impact of limb position on EMG pattern recognition, this paper proposes a new feature extraction method that extracts a set of power spectrum characteristics directly from the time-domain. The end goal is to form a set of features invariant to limb position. Specifically, the proposed method estimates the spectral moments, spectral sparsity, spectral flux, irregularity factor, and signals power spectrum correlation. This is achieved through using Fourier transform properties to form invariants to amplification, translation and signal scaling, providing an efficient and accurate representation of the underlying EMG activity. Additionally, due to the inherent temporal structure of the EMG signal, the proposed method is applied on the global segments of EMG data as well as the sliced segments using multiple overlapped windows. The performance of the proposed features is tested on EMG data collected from eleven subjects, while implementing eight classes of movements, each at five different limb positions. Practical results indicate that the proposed feature set can achieve significant reduction in classification error rates, in comparison to other methods, with ≈8% error on average across all subjects and limb positions. A real-time implementation and demonstration is also provided and made available as a video supplement (see Appendix A). •Human limb position has a substantial impact on the robustness of EMG pattern recognition.•Invariant power spectral moments described as a solution.•Real time classification experiments were carried out on 11 subjects.•Limb position invariant myoelectric pattern recognition achieved.
AbstractList Recent studies in Electromyogram (EMG) pattern recognition reveal a gap between research findings and a viable clinical implementation of myoelectric control strategies. One of the important factors contributing to the limited performance of such controllers in practice is the variation in the limb position associated with normal use as it results in different EMG patterns for the same movements when carried out at different positions. However, the end goal of the myoelectric control scheme is to allow amputees to control their prosthetics in an intuitive and accurate manner regardless of the limb position at which the movement is initiated. In an attempt to reduce the impact of limb position on EMG pattern recognition, this paper proposes a new feature extraction method that extracts a set of power spectrum characteristics directly from the time-domain. The end goal is to form a set of features invariant to limb position. Specifically, the proposed method estimates the spectral moments, spectral sparsity, spectral flux, irregularity factor, and signals power spectrum correlation. This is achieved through using Fourier transform properties to form invariants to amplification, translation and signal scaling, providing an efficient and accurate representation of the underlying EMG activity. Additionally, due to the inherent temporal structure of the EMG signal, the proposed method is applied on the global segments of EMG data as well as the sliced segments using multiple overlapped windows. The performance of the proposed features is tested on EMG data collected from eleven subjects, while implementing eight classes of movements, each at five different limb positions. Practical results indicate that the proposed feature set can achieve significant reduction in classification error rates, in comparison to other methods, with ≈8% error on average across all subjects and limb positions. A real-time implementation and demonstration is also provided and made available as a video supplement (see Appendix A).Recent studies in Electromyogram (EMG) pattern recognition reveal a gap between research findings and a viable clinical implementation of myoelectric control strategies. One of the important factors contributing to the limited performance of such controllers in practice is the variation in the limb position associated with normal use as it results in different EMG patterns for the same movements when carried out at different positions. However, the end goal of the myoelectric control scheme is to allow amputees to control their prosthetics in an intuitive and accurate manner regardless of the limb position at which the movement is initiated. In an attempt to reduce the impact of limb position on EMG pattern recognition, this paper proposes a new feature extraction method that extracts a set of power spectrum characteristics directly from the time-domain. The end goal is to form a set of features invariant to limb position. Specifically, the proposed method estimates the spectral moments, spectral sparsity, spectral flux, irregularity factor, and signals power spectrum correlation. This is achieved through using Fourier transform properties to form invariants to amplification, translation and signal scaling, providing an efficient and accurate representation of the underlying EMG activity. Additionally, due to the inherent temporal structure of the EMG signal, the proposed method is applied on the global segments of EMG data as well as the sliced segments using multiple overlapped windows. The performance of the proposed features is tested on EMG data collected from eleven subjects, while implementing eight classes of movements, each at five different limb positions. Practical results indicate that the proposed feature set can achieve significant reduction in classification error rates, in comparison to other methods, with ≈8% error on average across all subjects and limb positions. A real-time implementation and demonstration is also provided and made available as a video supplement (see Appendix A).
Recent studies in Electromyogram (EMG) pattern recognition reveal a gap between research findings and a viable clinical implementation of myoelectric control strategies. One of the important factors contributing to the limited performance of such controllers in practice is the variation in the limb position associated with normal use as it results in different EMG patterns for the same movements when carried out at different positions. However, the end goal of the myoelectric control scheme is to allow amputees to control their prosthetics in an intuitive and accurate manner regardless of the limb position at which the movement is initiated. In an attempt to reduce the impact of limb position on EMG pattern recognition, this paper proposes a new feature extraction method that extracts a set of power spectrum characteristics directly from the time-domain. The end goal is to form a set of features invariant to limb position. Specifically, the proposed method estimates the spectral moments, spectral sparsity, spectral flux, irregularity factor, and signals power spectrum correlation. This is achieved through using Fourier transform properties to form invariants to amplification, translation and signal scaling, providing an efficient and accurate representation of the underlying EMG activity. Additionally, due to the inherent temporal structure of the EMG signal, the proposed method is applied on the global segments of EMG data as well as the sliced segments using multiple overlapped windows. The performance of the proposed features is tested on EMG data collected from eleven subjects, while implementing eight classes of movements, each at five different limb positions. Practical results indicate that the proposed feature set can achieve significant reduction in classification error rates, in comparison to other methods, with approximately 8% approximately 8% error on average across all subjects and limb positions. A real-time implementation and demonstration is also provided and made available as a video supplement (see Appendix A).
Recent studies in Electromyogram (EMG) pattern recognition reveal a gap between research findings and a viable clinical implementation of myoelectric control strategies. One of the important factors contributing to the limited performance of such controllers in practice is the variation in the limb position associated with normal use as it results in different EMG patterns for the same movements when carried out at different positions. However, the end goal of the myoelectric control scheme is to allow amputees to control their prosthetics in an intuitive and accurate manner regardless of the limb position at which the movement is initiated. In an attempt to reduce the impact of limb position on EMG pattern recognition, this paper proposes a new feature extraction method that extracts a set of power spectrum characteristics directly from the time-domain. The end goal is to form a set of features invariant to limb position. Specifically, the proposed method estimates the spectral moments, spectral sparsity, spectral flux, irregularity factor, and signals power spectrum correlation. This is achieved through using Fourier transform properties to form invariants to amplification, translation and signal scaling, providing an efficient and accurate representation of the underlying EMG activity. Additionally, due to the inherent temporal structure of the EMG signal, the proposed method is applied on the global segments of EMG data as well as the sliced segments using multiple overlapped windows. The performance of the proposed features is tested on EMG data collected from eleven subjects, while implementing eight classes of movements, each at five different limb positions. Practical results indicate that the proposed feature set can achieve significant reduction in classification error rates, in comparison to other methods, with ≈8% error on average across all subjects and limb positions. A real-time implementation and demonstration is also provided and made available as a video supplement (see Appendix A). •Human limb position has a substantial impact on the robustness of EMG pattern recognition.•Invariant power spectral moments described as a solution.•Real time classification experiments were carried out on 11 subjects.•Limb position invariant myoelectric pattern recognition achieved.
Recent studies in Electromyogram (EMG) pattern recognition reveal a gap between research findings and a viable clinical implementation of myoelectric control strategies. One of the important factors contributing to the limited performance of such controllers in practice is the variation in the limb position associated with normal use as it results in different EMG patterns for the same movements when carried out at different positions. However, the end goal of the myoelectric control scheme is to allow amputees to control their prosthetics in an intuitive and accurate manner regardless of the limb position at which the movement is initiated. In an attempt to reduce the impact of limb position on EMG pattern recognition, this paper proposes a new feature extraction method that extracts a set of power spectrum characteristics directly from the time-domain. The end goal is to form a set of features invariant to limb position. Specifically, the proposed method estimates the spectral moments, spectral sparsity, spectral flux, irregularity factor, and signals power spectrum correlation. This is achieved through using Fourier transform properties to form invariants to amplification, translation and signal scaling, providing an efficient and accurate representation of the underlying EMG activity. Additionally, due to the inherent temporal structure of the EMG signal, the proposed method is applied on the global segments of EMG data as well as the sliced segments using multiple overlapped windows. The performance of the proposed features is tested on EMG data collected from eleven subjects, while implementing eight classes of movements, each at five different limb positions. Practical results indicate that the proposed feature set can achieve significant reduction in classification error rates, in comparison to other methods, with ≈8% error on average across all subjects and limb positions. A real-time implementation and demonstration is also provided and made available as a video supplement (see Appendix A).
Author Khushaba, Rami N.
Takruri, Maen
Kodagoda, Sarath
Miro, Jaime Valls
Author_xml – sequence: 1
  givenname: Rami N.
  surname: Khushaba
  fullname: Khushaba, Rami N.
  email: Rami.Khushaba@uts.edu.au
  organization: School of Electrical, Mechanical and Mechatronics Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney (UTS), Australia
– sequence: 2
  givenname: Maen
  surname: Takruri
  fullname: Takruri, Maen
  email: Maen.Takruri@aurak.edu.ae
  organization: American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
– sequence: 3
  givenname: Jaime Valls
  surname: Miro
  fullname: Miro, Jaime Valls
  email: Jaime.VallsMiro@uts.edu.au
  organization: School of Electrical, Mechanical and Mechatronics Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney (UTS), Australia
– sequence: 4
  givenname: Sarath
  surname: Kodagoda
  fullname: Kodagoda, Sarath
  email: Sarath.Kodagoda@uts.edu.au
  organization: School of Electrical, Mechanical and Mechatronics Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney (UTS), Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28517036$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24721224$$D View this record in MEDLINE/PubMed
BookMark eNqNkk2L1TAYhYOMOHdG_4FIN4Kb1jdJm6YuBBn8ggE34zqk6ZshlzatSTrD_HtTegfBheMqEJ7nEE7OBTnzs0dCXlOoKFDx_lh5XD2migGtK-AVUHhGDlS2Xclayc7IAWTHSwESzslFjEcAELLmL8g5q1tGGasPxN7M9zoMsRjd1BfLHF1ysy-cv9PBaZ-K6WHGEU0KzhSLTgmDLwKa-dbv5Bqdvy2Sm7AccEE_YJbishl6LCzqtAaML8lzq8eIr07nJfn55fPN1bfy-sfX71efrkvTsDrltxq0KHopAXhjoWVgBZO0EYOgokNma2l6a_JVK5reaopWW6sHPnBouoFfknd77hLmXyvGpCYXDY6j9jivUVHRUgEtb_jTaFNDrqgW9X-gHLqGShAZfXNC137CQS3BTTo8qMfGM_D2BOho9GiD9sbFP5xsaAt8C_qwcybMMQa0yrikt8pzsW5UFNQ2A3VU-wzUNgMFXOUZZLn-S37Mf0L7uGuYv-jOYVDROPQGB5e_PKlhdv8O-A27zM8i
CitedBy_id crossref_primary_10_1109_RBME_2019_2950897
crossref_primary_10_1109_ACCESS_2024_3373044
crossref_primary_10_1016_j_bspc_2019_101783
crossref_primary_10_1371_journal_pone_0291279
crossref_primary_10_3390_s19204596
crossref_primary_10_5370_KIEE_2016_65_1_194
crossref_primary_10_3390_su14095739
crossref_primary_10_1016_j_bspc_2019_101669
crossref_primary_10_3390_s22103737
crossref_primary_10_1007_s00202_025_02969_0
crossref_primary_10_1109_TBME_2022_3140269
crossref_primary_10_1016_j_measurement_2020_108456
crossref_primary_10_1109_JBHI_2022_3205058
crossref_primary_10_1016_j_rineng_2023_101660
crossref_primary_10_1166_jmihi_2021_3907
crossref_primary_10_1109_TIM_2023_3279873
crossref_primary_10_3233_JIFS_169794
crossref_primary_10_3390_s21217404
crossref_primary_10_1109_ACCESS_2021_3084442
crossref_primary_10_1007_s11004_021_09970_w
crossref_primary_10_1109_TNSRE_2025_3604618
crossref_primary_10_1016_j_neucom_2017_11_072
crossref_primary_10_1109_JIOT_2025_3567890
crossref_primary_10_1109_TNSRE_2025_3602397
crossref_primary_10_3390_machines6040065
crossref_primary_10_1109_TNSRE_2020_2999505
crossref_primary_10_1088_1741_2552_ab4063
crossref_primary_10_1109_JSEN_2025_3570236
crossref_primary_10_3390_s24175828
crossref_primary_10_1016_j_cclet_2020_04_038
crossref_primary_10_1097_JPO_0000000000000121
crossref_primary_10_3390_app14083417
crossref_primary_10_1016_j_neucom_2016_05_038
crossref_primary_10_3389_fbioe_2022_1097363
crossref_primary_10_1016_j_bspc_2024_107403
crossref_primary_10_1109_LRA_2021_3097257
crossref_primary_10_3390_diagnostics11050843
crossref_primary_10_1109_JSEN_2019_2937979
crossref_primary_10_1016_j_compbiomed_2018_08_020
crossref_primary_10_3389_fresc_2025_1469797
crossref_primary_10_1109_TNSRE_2022_3218430
crossref_primary_10_3390_s19163548
crossref_primary_10_1109_JSEN_2022_3165988
crossref_primary_10_1109_TBCAS_2023_3314053
crossref_primary_10_1098_rsta_2021_0268
crossref_primary_10_1038_s41597_024_04296_8
crossref_primary_10_3389_fnins_2023_1158280
crossref_primary_10_1109_TNSRE_2022_3141593
crossref_primary_10_3389_fbioe_2022_876836
crossref_primary_10_1088_1741_2560_11_5_051001
crossref_primary_10_1109_TIM_2024_3373045
crossref_primary_10_1080_00051144_2019_1565337
crossref_primary_10_1109_ACCESS_2018_2851282
crossref_primary_10_1109_TNSRE_2015_2478138
crossref_primary_10_1155_2021_5511922
crossref_primary_10_1109_TIE_2015_2497212
crossref_primary_10_1088_1757_899X_671_1_012064
crossref_primary_10_1109_JSEN_2023_3347949
crossref_primary_10_1109_TNSRE_2020_2991643
crossref_primary_10_3389_fnins_2021_657958
crossref_primary_10_3390_s22052007
crossref_primary_10_1109_JSEN_2024_3441102
crossref_primary_10_1371_journal_pone_0186318
crossref_primary_10_1007_s00221_018_5441_x
crossref_primary_10_1109_TNSRE_2019_2907200
crossref_primary_10_3390_s22135005
crossref_primary_10_1088_1742_6596_2008_1_012015
crossref_primary_10_1016_j_bspc_2019_101626
crossref_primary_10_1016_j_bspc_2020_101872
crossref_primary_10_1177_09544119221074770
crossref_primary_10_1016_j_bbe_2017_11_001
crossref_primary_10_1016_j_cmpb_2019_105278
crossref_primary_10_1109_ACCESS_2020_3000357
crossref_primary_10_1109_TNSRE_2015_2445634
crossref_primary_10_3389_fnbot_2018_00058
crossref_primary_10_1016_j_bspc_2016_01_011
crossref_primary_10_1038_s41598_024_54677_7
crossref_primary_10_1109_JSEN_2023_3344700
crossref_primary_10_7717_peerj_cs_949
crossref_primary_10_1088_1741_2552_adf888
crossref_primary_10_1177_09544119211053669
crossref_primary_10_1016_j_medengphy_2015_02_005
crossref_primary_10_1088_1741_2552_ac7079
crossref_primary_10_1109_TNSRE_2017_2687520
crossref_primary_10_1007_s00521_020_05536_9
crossref_primary_10_1088_1741_2552_ab673f
crossref_primary_10_1109_JSEN_2025_3577610
crossref_primary_10_3390_sym12101710
crossref_primary_10_1109_TNSRE_2023_3237181
crossref_primary_10_3390_s22010225
crossref_primary_10_1016_j_bbe_2021_03_006
crossref_primary_10_3389_fneur_2017_00007
crossref_primary_10_1088_1741_2552_abbed0
crossref_primary_10_3390_s18051615
crossref_primary_10_1080_10255842_2022_2054271
crossref_primary_10_1109_TIM_2022_3141163
crossref_primary_10_3389_frobt_2021_710806
crossref_primary_10_1016_j_birob_2025_100250
crossref_primary_10_3390_s25185920
crossref_primary_10_1016_j_artmed_2020_102005
crossref_primary_10_1016_j_eswa_2016_05_031
crossref_primary_10_1016_j_aca_2021_339223
crossref_primary_10_1016_j_bspc_2018_02_006
crossref_primary_10_1016_j_compbiomed_2017_09_013
crossref_primary_10_3390_bdcc2030021
crossref_primary_10_1016_j_bspc_2018_02_013
crossref_primary_10_1109_ACCESS_2022_3166885
crossref_primary_10_1109_TNSRE_2015_2481461
crossref_primary_10_1109_TNSRE_2020_3022587
crossref_primary_10_3390_computers7040058
crossref_primary_10_3389_fnins_2025_1568212
crossref_primary_10_3389_fnbot_2019_00043
crossref_primary_10_1038_s44182_025_00018_3
crossref_primary_10_1080_10255842_2024_2310726
crossref_primary_10_1088_1742_6596_1373_1_012051
crossref_primary_10_1371_journal_pone_0321319
crossref_primary_10_1155_2022_6414664
crossref_primary_10_3389_frai_2021_744476
crossref_primary_10_1016_j_compbiomed_2020_104188
crossref_primary_10_3390_s20061613
crossref_primary_10_1109_TNSRE_2018_2861465
crossref_primary_10_3390_robotics14060083
Cites_doi 10.1016/j.bspc.2007.07.009
10.1007/s11517-007-0291-x
10.1109/IEMBS.2010.5627638
10.1109/TNSRE.2012.2196711
10.1109/MEMB.2002.1044184
10.1145/1357054.1357138
10.1007/s11517-006-0100-y
10.1109/18.53742
10.1046/j.1365-201X.1998.0298f.x
10.1109/TBME.2006.889175
10.1109/TSA.2005.851998
10.1097/JPO.0b013e3182524cce
10.1109/70.538982
10.1109/10.204774
10.1109/TNSRE.2007.891391
10.1109/TBME.1986.325697
10.1155/ASP.2005.3165
10.1109/TNSRE.2011.2163529
10.1109/TBME.2005.856295
10.1109/ISSNIP.2011.6146521
10.1109/10.821766
10.1016/0141-5425(82)90021-8
10.1109/TCSI.2005.857555
10.1016/j.eswa.2012.02.192
10.1109/10.914793
10.1109/TBME.2011.2113182
10.1088/0967-3334/24/2/307
10.1109/TBME.2009.2039480
10.1109/ISCIT.2007.4392044
10.1109/CISP.2011.6100025
10.1016/j.bspc.2007.11.005
10.1016/0013-4694(70)90143-4
10.1109/TBME.2008.2003293
10.1109/TBME.2012.2191551
10.1109/TNSRE.2009.2039590
10.1016/j.eswa.2010.09.068
10.1109/BHI.2012.6211702
10.1109/TSMCB.2011.2168604
10.1109/86.481972
10.1109/TBME.2003.813539
10.1109/TBME.2008.919734
10.1007/BF00421659
10.1016/0013-4694(90)90015-C
10.1109/IEMBS.2006.4397932
10.1145/1753326.1753451
10.1109/TBME.2007.909536
10.1016/j.eswa.2012.01.102
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright © 2014 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright © 2014 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.neunet.2014.03.010
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList MEDLINE - Academic
Neurosciences Abstracts

MEDLINE
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1879-2782
EndPage 58
ExternalDocumentID 24721224
28517036
10_1016_j_neunet_2014_03_010
S0893608014000732
Genre Clinical Trial
Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c524t-60cefe6b880035f0720f628156d6169e2f48cbfc281765bfa1efaffad3d3059d3
ISICitedReferencesCount 162
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000337860600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0893-6080
1879-2782
IngestDate Thu Oct 02 16:28:31 EDT 2025
Thu Sep 25 08:38:03 EDT 2025
Sun Sep 28 00:21:43 EDT 2025
Mon Jul 21 06:08:12 EDT 2025
Wed Apr 02 07:16:10 EDT 2025
Tue Nov 18 20:44:40 EST 2025
Sat Nov 29 07:59:01 EST 2025
Fri Feb 23 02:28:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electromyogram (EMG)
Signal processing
Spectral moments
Invariant
Correlation
Fourier transformation
Prosthesis
Irregularity
Video signal
Modeling
Time dependence
Signal spectrum
Classification
Size effect
Selection criterion
Electromyography
Medical application
Pattern extraction
Video technique
Pattern recognition
Real time
Time domain method
Feature extraction
Data gathering
Power spectrum
Language English
License CC BY 4.0
Copyright © 2014 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c524t-60cefe6b880035f0720f628156d6169e2f48cbfc281765bfa1efaffad3d3059d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 24721224
PQID 1530951806
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_1671607353
proquest_miscellaneous_1540224464
proquest_miscellaneous_1530951806
pubmed_primary_24721224
pascalfrancis_primary_28517036
crossref_citationtrail_10_1016_j_neunet_2014_03_010
crossref_primary_10_1016_j_neunet_2014_03_010
elsevier_sciencedirect_doi_10_1016_j_neunet_2014_03_010
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Du, S. 2003. Feature extraction for classification prehensile Electromyography patterns
Scheme, Englehart, Hudgins (br000270) 2011; 58
Graupe, Salahi, Kohn (br000115) 1982; 4
Basmajian, De Luca (br000005) 1985
Shenoy, Miller, Crawford, Rao (br000285) 2008; 55
CHI, April 5–10, Florence, Italy.
Zhang, Zhou (br000335) 2012; 59
BHI (pp. 788–791).
Lock, B.A. 2005. Design and interactive assessment of continuous multifunction myoelectric control systems
(pp. 2417–2420), New York City, USA.
Fougner, Scheme, Chan, Englehart, Stavdahl (br000090) 2011; 19
Lin, Wu, Jung, Liang, Huang (br000200) 2005; 2005
Hudgins, Parker, Scott (br000155) 1993; 40
Khushaba, R.N., Kodagoa, S., Liu, D., & Dissanayake, G. 2011. Electromyogram (EMG) based fingers movement recognition using neighborhood preserving analysis with QR-decomposition. In
Hannaford, Lehman (br000120) 1986; BME-33
(pp. 344–350).
Lin, Wu, Liang, Chao, Chen, Jung (br000205) 2005; 52
Phinyomark, Limsakul, Phukpattaranont (br000240) 2009; 1
August 23–26, HeFei, China (pp. 1063–1072).
Yan, Wang, Xie (br000325) 2008; 46
Farrell, Weir (br000075) 2007; 15
Oskoei, Hu (br000225) 2007; 2
Wang, Wang, Chen, Zhuang (br000315) 2007; 44
Huang, Englehart, Hudgins, Chan (br000140) 2005; 52
IJCNN pp. 5294–5300.
Chen, L., Geng, Y., & Li, G. 2011. Effect of upper-limb positions on motion pattern recognition using electromyography. In
.
CMBEC28, Quebec City, Canada (pp. 141–144).
Khushaba, Al-Ani, Al-Jumaily (br000175) 2010; 57
Huang, Kuiken, Lipschutz (br000145) 2009; 56
Phinyomark, A., Hirunviriya, S., Limsakul, C., & Phukpattaranont, P. 2010. Evaluation of EMG feature extraction for hand movement recognition based on Euclidean distance and standard deviation. In
Khushaba, Kodagoda, Takruri, Dissanayake (br000190) 2012; 39
Oskoei, Hu (br000230) 2008; 55
Hargrove, Englehart, Hudgins (br000125) 2008; 3
ECTI-CON (pp. 856–860).
Bello, Daudet, Abdallah, Duxbury, Davies, Sandler (br000010) 2005; 13
Kay (br000170) 1998
Jiang, Dosen, Muller, Farina (br000160) 2012; 29
Adelaide, Australia (pp. 100–105).
Dirlik, T. 1985. Application of computers in fatigue
Merletti, Parker (br000220) 2004
Smith (br000290) 2007
Goncharova, Barlow (br000110) 1990; 76
Huang, Zhou, Ding, Zhang (br000150) 2012; 42
Matsumura, Y., Fukumi, M., & Mitsukura, Y. 2006. Hybrid EMG Recognition System by MDA and PCA. In
Boostani, Moradi (br000015) 2003; 24
Rafiee, Rafiee, Yavari, Schoen (br000250) 2011; 38
Phinyomark, Phukpattaranont, Limsakul (br000245) 2012; 39
Englehart, Hudgins (br000065) 2003; 50
Chu, J.U., Moon, I., & Mun, M.S. 2006. A supervised feature projection for real-time multifunction myoelectric hand control. In
Zardoshti-Kermani, Wheeler, Badie, Hashemi (br000330) 1995; 3
Saponas, T.S., Tan, D.S., Morris, D., Turner, J., & Landay, J.A. 2010. Making muscle–computer interfaces more practical. In
Du, S., & Vuskovic, M. 2004. Temporal vs. spectral approach to feature extraction from prehensile EMG signals. In
Buenos Aires, Sep. (pp. 6337–6340).
Englehart, K. 1998. Signal representation for classification of the transient myoelectric signal
Tkach, Huang, Kuiken (br000300) 2010; 7
(pp. 139–142).
Theodoridis, Koutroumbas (br000295) 2009
Vuskovic, M., & Du, S. 2005. Spectral moments for feature extraction from temporal signals. In
Englehart, Hudgins, Parker (br000070) 2001; 48
Scheme, Hudgins, Parker (br000280) 2007; 54
Hargrove, Scheme, Englehart, Hudgins (br000130) 2010; 18
Karlsson, Jun, Akay (br000165) 2000; 47
Li (br000195) 2011
Goge, A.R., & Chan, A.D.C. 2004. Investigating classification parameters for continuous myoelectrically controlled prostheses. In
Saponas, T.S., Tan, D.S., Morris, D., & Balakrishnan, R. 2008. Demonstrating the feasibility of using forearm electromyography for muscle–computer interfaces. In
White, Boashash (br000320) 1990; 36
Fougner, Stavdahl, Kyberd, Losier, Parker (br000095) 2012
Sahlin, Tonkonogi, Soderlund (br000255) 1998; 162
Geng, Y., Chen, L., Tian, L., & Li, G. 2012. Comparison of electromyography and mechanomyogram in control of prosthetic system in multiple limb positions. In
Vigreux, Cnockaert, Pertuzon (br000305) 1979; 41
Cipriani, Controzzi, Kanitz, Sassu (br000040) 2012; 24
Khushaba, R.N., Al-Jumaily, A., & Al-Ani, A. 2007. Novel feature extraction method based on fuzzy entropy and wavelet packet transform for myoelectric control. In
CHI, April 10–15, Atlanta, Georgia, USA.
Scheme, E., Fougner, A., Chan, A.D.C., Stavdahl, O., & Englehart, K. 2010. Examining the adverse effects of limb position on pattern recognition based myoelectric control. In
Flusser, Suk, Zitova (br000085) 2009
Hjorth (br000135) 1970; 29
Chan, Englehart, Hudgins, Lovely (br000020) 2002; 21
Chu, Moon, Kim, Mun (br000030) 2005; IROS
ISCIT (pp. 352–357).
Farry, Walker, Baraniuk (br000080) 1996; 12
Hannaford (10.1016/j.neunet.2014.03.010_br000120) 1986; BME-33
10.1016/j.neunet.2014.03.010_br000035
Tkach (10.1016/j.neunet.2014.03.010_br000300) 2010; 7
10.1016/j.neunet.2014.03.010_br000310
Phinyomark (10.1016/j.neunet.2014.03.010_br000245) 2012; 39
10.1016/j.neunet.2014.03.010_br000275
Rafiee (10.1016/j.neunet.2014.03.010_br000250) 2011; 38
Khushaba (10.1016/j.neunet.2014.03.010_br000175) 2010; 57
Huang (10.1016/j.neunet.2014.03.010_br000140) 2005; 52
Chan (10.1016/j.neunet.2014.03.010_br000020) 2002; 21
Englehart (10.1016/j.neunet.2014.03.010_br000065) 2003; 50
10.1016/j.neunet.2014.03.010_br000235
Bello (10.1016/j.neunet.2014.03.010_br000010) 2005; 13
Sahlin (10.1016/j.neunet.2014.03.010_br000255) 1998; 162
Fougner (10.1016/j.neunet.2014.03.010_br000090) 2011; 19
Lin (10.1016/j.neunet.2014.03.010_br000200) 2005; 2005
Basmajian (10.1016/j.neunet.2014.03.010_br000005) 1985
10.1016/j.neunet.2014.03.010_br000045
Hargrove (10.1016/j.neunet.2014.03.010_br000125) 2008; 3
Huang (10.1016/j.neunet.2014.03.010_br000145) 2009; 56
Khushaba (10.1016/j.neunet.2014.03.010_br000190) 2012; 39
Yan (10.1016/j.neunet.2014.03.010_br000325) 2008; 46
Zardoshti-Kermani (10.1016/j.neunet.2014.03.010_br000330) 1995; 3
Zhang (10.1016/j.neunet.2014.03.010_br000335) 2012; 59
Theodoridis (10.1016/j.neunet.2014.03.010_br000295) 2009
Scheme (10.1016/j.neunet.2014.03.010_br000280) 2007; 54
Kay (10.1016/j.neunet.2014.03.010_br000170) 1998
Shenoy (10.1016/j.neunet.2014.03.010_br000285) 2008; 55
Hargrove (10.1016/j.neunet.2014.03.010_br000130) 2010; 18
Scheme (10.1016/j.neunet.2014.03.010_br000270) 2011; 58
Cipriani (10.1016/j.neunet.2014.03.010_br000040) 2012; 24
10.1016/j.neunet.2014.03.010_br000210
10.1016/j.neunet.2014.03.010_br000055
Goncharova (10.1016/j.neunet.2014.03.010_br000110) 1990; 76
Hjorth (10.1016/j.neunet.2014.03.010_br000135) 1970; 29
Oskoei (10.1016/j.neunet.2014.03.010_br000225) 2007; 2
10.1016/j.neunet.2014.03.010_br000050
Flusser (10.1016/j.neunet.2014.03.010_br000085) 2009
Huang (10.1016/j.neunet.2014.03.010_br000150) 2012; 42
Smith (10.1016/j.neunet.2014.03.010_br000290) 2007
Li (10.1016/j.neunet.2014.03.010_br000195) 2011
10.1016/j.neunet.2014.03.010_br000215
Farry (10.1016/j.neunet.2014.03.010_br000080) 1996; 12
Farrell (10.1016/j.neunet.2014.03.010_br000075) 2007; 15
Chu (10.1016/j.neunet.2014.03.010_br000030) 2005; IROS
Phinyomark (10.1016/j.neunet.2014.03.010_br000240) 2009; 1
White (10.1016/j.neunet.2014.03.010_br000320) 1990; 36
Graupe (10.1016/j.neunet.2014.03.010_br000115) 1982; 4
Jiang (10.1016/j.neunet.2014.03.010_br000160) 2012; 29
10.1016/j.neunet.2014.03.010_br000180
10.1016/j.neunet.2014.03.010_br000060
Wang (10.1016/j.neunet.2014.03.010_br000315) 2007; 44
10.1016/j.neunet.2014.03.010_br000100
10.1016/j.neunet.2014.03.010_br000265
Boostani (10.1016/j.neunet.2014.03.010_br000015) 2003; 24
Vigreux (10.1016/j.neunet.2014.03.010_br000305) 1979; 41
10.1016/j.neunet.2014.03.010_br000185
10.1016/j.neunet.2014.03.010_br000260
Englehart (10.1016/j.neunet.2014.03.010_br000070) 2001; 48
10.1016/j.neunet.2014.03.010_br000105
Merletti (10.1016/j.neunet.2014.03.010_br000220) 2004
10.1016/j.neunet.2014.03.010_br000025
Fougner (10.1016/j.neunet.2014.03.010_br000095) 2012
Karlsson (10.1016/j.neunet.2014.03.010_br000165) 2000; 47
Lin (10.1016/j.neunet.2014.03.010_br000205) 2005; 52
Oskoei (10.1016/j.neunet.2014.03.010_br000230) 2008; 55
Hudgins (10.1016/j.neunet.2014.03.010_br000155) 1993; 40
References_xml – volume: 46
  start-page: 519
  year: 2008
  end-page: 527
  ident: br000325
  article-title: Joint application of rough set-based feature reduction and fuzzy LS-SVM classifier in motion classification
  publication-title: Medical and Biological Engineering and Computing
– volume: 48
  start-page: 302
  year: 2001
  end-page: 311
  ident: br000070
  article-title: A wavelet-based continuous classification scheme for multifunction myoelectric control
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 19
  start-page: 644
  year: 2011
  end-page: 651
  ident: br000090
  article-title: Resolving the limb position effect in myoelectric pattern recognition
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– year: 2012
  ident: br000095
  article-title: Control of upper limb prostheses: terminology and proportional myoelectric control—a review
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– year: 2004
  ident: br000220
  article-title: Electromyography physiology, engineering, and noninvasive applications
  publication-title: IEEE press series in biomedical engineering
– volume: 3
  start-page: 324
  year: 1995
  end-page: 333
  ident: br000330
  article-title: EMG feature evaluation for movement control of upper extremity prostheses
  publication-title: IEEE Transactions on Rehabilitation Engineering
– reference: Chu, J.U., Moon, I., & Mun, M.S. 2006. A supervised feature projection for real-time multifunction myoelectric hand control. In
– reference: (pp. 139–142).
– volume: 55
  year: 2008
  ident: br000230
  article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 42
  start-page: 513
  year: 2012
  end-page: 529
  ident: br000150
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
– volume: 76
  start-page: 197
  year: 1990
  end-page: 204
  ident: br000110
  article-title: Changes in EEG mean frequency and spectral purity during spontaneous alpha blocking
  publication-title: Electroencephalography and Clinical Neurophysiology
– reference: Vuskovic, M., & Du, S. 2005. Spectral moments for feature extraction from temporal signals. In
– volume: IROS
  start-page: 3511
  year: 2005
  end-page: 3516
  ident: br000030
  article-title: Control of multifunction myoelectric hand using a real-time EMG pattern recognition
  publication-title: EEE/RSJ International Conference on Intelligent Robots and Systems
– reference: (pp. 344–350).
– reference: Saponas, T.S., Tan, D.S., Morris, D., & Balakrishnan, R. 2008. Demonstrating the feasibility of using forearm electromyography for muscle–computer interfaces. In
– reference: , Buenos Aires, Sep. (pp. 6337–6340).
– volume: 12
  start-page: 775
  year: 1996
  end-page: 787
  ident: br000080
  article-title: Myoelectric teleoperation of a complex robotic hand
  publication-title: IEEE Transactions on Robotics and Automation
– year: 1985
  ident: br000005
  article-title: Muscles alive
– volume: 52
  start-page: 1801
  year: 2005
  end-page: 1811
  ident: br000140
  article-title: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses
  publication-title: IEEE Transactions on Biomedical Engineering
– start-page: 99
  year: 2011
  end-page: 116
  ident: br000195
  article-title: Electromyography pattern-recognition-based control of powered multifunctional upper-limb prostheses
  publication-title: Advances in applied electromyography
– volume: 52
  start-page: 2726
  year: 2005
  end-page: 2738
  ident: br000205
  article-title: EEG-based drowsiness estimation for safety driving using independent component analysis
  publication-title: IEEE Transactions on Circuits and Systems- I, Reg. Papers
– reference: (pp. 2417–2420), New York City, USA.
– volume: 15
  start-page: 111
  year: 2007
  end-page: 118
  ident: br000075
  article-title: The optimal controller delay for myoelectric prostheses
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 29
  start-page: 148
  year: 2012
  end-page: 152
  ident: br000160
  article-title: Myoelectric control of artificial limbs—is there a need to change focus?
  publication-title: IEEE Signal Processing Magazine
– reference: Phinyomark, A., Hirunviriya, S., Limsakul, C., & Phukpattaranont, P. 2010. Evaluation of EMG feature extraction for hand movement recognition based on Euclidean distance and standard deviation. In
– reference: , CMBEC28, Quebec City, Canada (pp. 141–144).
– reference: Goge, A.R., & Chan, A.D.C. 2004. Investigating classification parameters for continuous myoelectrically controlled prostheses. In
– volume: 39
  start-page: 7420
  year: 2012
  end-page: 7731
  ident: br000245
  article-title: Feature reduction and selection for EMG signal classification
  publication-title: Expert Systems with Applications
– reference: , August 23–26, HeFei, China (pp. 1063–1072).
– reference: Matsumura, Y., Fukumi, M., & Mitsukura, Y. 2006. Hybrid EMG Recognition System by MDA and PCA. In
– volume: 36
  start-page: 830
  year: 1990
  end-page: 835
  ident: br000320
  article-title: Cross spectral analysis of non-stationary processes
  publication-title: IEEE Transactions on Information Theory
– reference: Du, S., & Vuskovic, M. 2004. Temporal vs. spectral approach to feature extraction from prehensile EMG signals. In
– reference: , IJCNN pp. 5294–5300.
– year: 2007
  ident: br000290
  article-title: Mathematics of the discrete Fourier transform (DFT) with audio applications
– volume: 56
  start-page: 65
  year: 2009
  end-page: 73
  ident: br000145
  article-title: A strategy for identifying locomotion modes using surface electromyography
  publication-title: IEEE Transactions on Biomedical Engineering
– reference: Du, S. 2003. Feature extraction for classification prehensile Electromyography patterns,
– volume: 47
  start-page: 228
  year: 2000
  end-page: 238
  ident: br000165
  article-title: Time-frequency analysis of myoelectric signals during dynamic contractions: a comparative study
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 2
  start-page: 275
  year: 2007
  end-page: 294
  ident: br000225
  article-title: Myoelectric control systems—a survey
  publication-title: Biomedical Signal Processing and Control
– volume: 44
  start-page: 865
  year: 2007
  end-page: 872
  ident: br000315
  article-title: Classification of surface EMG signals using optimal wavelet packet method based on Davies–Bouldin criterion
  publication-title: Medical and Biological Engineering and Computing
– volume: 162
  start-page: 261
  year: 1998
  end-page: 266
  ident: br000255
  article-title: Energy supply and muscle fatigue in humans
  publication-title: Acta Physiologica Scandinavica
– volume: 59
  start-page: 1649
  year: 2012
  end-page: 1657
  ident: br000335
  article-title: High-density myoelectric pattern recognition toward improved stroke rehabilitation
  publication-title: IEEE Transactions on Biomedical Engineering
– reference: Lock, B.A. 2005. Design and interactive assessment of continuous multifunction myoelectric control systems,
– reference: , CHI, April 10–15, Atlanta, Georgia, USA.
– volume: 18
  start-page: 49
  year: 2010
  end-page: 57
  ident: br000130
  article-title: Multiple binary classifications via linear discriminant analysis for improved controllability of a powered prosthesis
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 41
  start-page: 119
  year: 1979
  end-page: 129
  ident: br000305
  article-title: Factors influencing quantified surface EMGs
  publication-title: European Journal of Applied Physiology and Occupational Physiology
– volume: 57
  start-page: 1410
  year: 2010
  end-page: 1419
  ident: br000175
  article-title: Orthogonal fuzzy neighborhood discriminant analysis for multifunction myoelectric hand control
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 54
  start-page: 694
  year: 2007
  end-page: 699
  ident: br000280
  article-title: Myoelectric signal classification for phoneme-based speech recognition
  publication-title: IEEE Transactions on Biomedical Engineering
– reference: Khushaba, R.N., Kodagoa, S., Liu, D., & Dissanayake, G. 2011. Electromyogram (EMG) based fingers movement recognition using neighborhood preserving analysis with QR-decomposition. In
– volume: 1
  start-page: 2151
  year: 2009
  end-page: 9617
  ident: br000240
  article-title: A novel feature extraction for robust EMG pattern recognition
  publication-title: Journal of Computing
– reference: , CHI, April 5–10, Florence, Italy.
– volume: 24
  start-page: 309
  year: 2003
  end-page: 319
  ident: br000015
  article-title: Evaluation of the forearm EMG signal features for the control of a prosthetic hand
  publication-title: Physiological Measurement
– reference: Scheme, E., Fougner, A., Chan, A.D.C., Stavdahl, O., & Englehart, K. 2010. Examining the adverse effects of limb position on pattern recognition based myoelectric control. In
– reference: Englehart, K. 1998. Signal representation for classification of the transient myoelectric signal,
– reference: Khushaba, R.N., Al-Jumaily, A., & Al-Ani, A. 2007. Novel feature extraction method based on fuzzy entropy and wavelet packet transform for myoelectric control. In
– reference: , ISCIT (pp. 352–357).
– reference: , Adelaide, Australia (pp. 100–105).
– volume: 39
  start-page: 10731
  year: 2012
  end-page: 10738
  ident: br000190
  article-title: Toward improved control of prosthetic fingers using surface electromyogram (EMG) signals
  publication-title: Expert Systems with Applications
– volume: 38
  start-page: 4058
  year: 2011
  end-page: 4067
  ident: br000250
  article-title: Feature extraction of forearm EMG signals for prosthetics
  publication-title: Expert Systems with Applications
– volume: 2005
  start-page: 3165
  year: 2005
  end-page: 3174
  ident: br000200
  article-title: Estimating alertness level based on EEG spectrum analysis
  publication-title: EURASIP Journal of Applied Signal Processing
– reference: Chen, L., Geng, Y., & Li, G. 2011. Effect of upper-limb positions on motion pattern recognition using electromyography. In
– reference: Dirlik, T. 1985. Application of computers in fatigue,
– year: 2009
  ident: br000295
  article-title: Pattern recognition
– year: 2009
  ident: br000085
  article-title: Moments and moment invariants in pattern recognition
– volume: 55
  start-page: 1128
  year: 2008
  end-page: 1135
  ident: br000285
  article-title: Online electromyographic control of a robotic prosthesis
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 4
  start-page: 17
  year: 1982
  end-page: 22
  ident: br000115
  article-title: Multifunctional prosthesis and orthosis control via microcomputer identification of temporal pattern differences in single-site myoelectric signals
  publication-title: Journal of Biomedical Engineering
– reference: , ECTI-CON (pp. 856–860).
– volume: 58
  start-page: 1698
  year: 2011
  end-page: 1705
  ident: br000270
  article-title: Selective classification for improved robustness of myoelectric control under nonideal conditions
  publication-title: IEEE Transactions on Biomedical Engineering
– reference: Saponas, T.S., Tan, D.S., Morris, D., Turner, J., & Landay, J.A. 2010. Making muscle–computer interfaces more practical. In
– reference: .
– year: 1998
  ident: br000170
  article-title: Modern spectral estimation: theory and application
– volume: 7
  year: 2010
  ident: br000300
  article-title: Study of stability of time-domain features for electromyographic pattern recognition
  publication-title: Journal of NeuroEngineering and Rehabilitation
– volume: 50
  start-page: 848
  year: 2003
  end-page: 854
  ident: br000065
  article-title: A robust, real-time control scheme for multifunction myoelectric control
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 29
  start-page: 306
  year: 1970
  end-page: 310
  ident: br000135
  article-title: EEG analysis based on time domain properties
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: BME-33
  start-page: 1173
  year: 1986
  end-page: 1181
  ident: br000120
  article-title: Short time Fourier analysis of the electromyogram: fast movements and constant contraction
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 24
  start-page: 86
  year: 2012
  end-page: 92
  ident: br000040
  article-title: The effects of weight and inertia of the prosthesis on the sensitivity of electromyographic pattern recognition in relax state
  publication-title: Journal of Prosthetics and Orthotics
– reference: Geng, Y., Chen, L., Tian, L., & Li, G. 2012. Comparison of electromyography and mechanomyogram in control of prosthetic system in multiple limb positions. In
– volume: 13
  start-page: 1035
  year: 2005
  end-page: 1047
  ident: br000010
  article-title: A tutorial on onset detection in music signals
  publication-title: IEEE Transactions on Speech and Audio Processing
– volume: 21
  start-page: 143
  year: 2002
  end-page: 146
  ident: br000020
  article-title: Hidden Markov model classification of myoelectric signals in speech
  publication-title: IEEE Engineering in Medicine and Biology Magazine
– reference: , BHI (pp. 788–791).
– volume: 3
  start-page: 175
  year: 2008
  end-page: 180
  ident: br000125
  article-title: A training strategy to reduce classification degradation due to electrode displacements in pattern recognition based myoelectric control
  publication-title: Biomedical Signal Processing and Control
– volume: 40
  start-page: 82
  year: 1993
  end-page: 94
  ident: br000155
  article-title: A new strategy for multifunction myoelectric control
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 2
  start-page: 275
  issue: 4
  year: 2007
  ident: 10.1016/j.neunet.2014.03.010_br000225
  article-title: Myoelectric control systems—a survey
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2007.07.009
– volume: 46
  start-page: 519
  issue: 6
  year: 2008
  ident: 10.1016/j.neunet.2014.03.010_br000325
  article-title: Joint application of rough set-based feature reduction and fuzzy LS-SVM classifier in motion classification
  publication-title: Medical and Biological Engineering and Computing
  doi: 10.1007/s11517-007-0291-x
– ident: 10.1016/j.neunet.2014.03.010_br000275
  doi: 10.1109/IEMBS.2010.5627638
– year: 2012
  ident: 10.1016/j.neunet.2014.03.010_br000095
  article-title: Control of upper limb prostheses: terminology and proportional myoelectric control—a review
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2012.2196711
– volume: 21
  start-page: 143
  issue: 4
  year: 2002
  ident: 10.1016/j.neunet.2014.03.010_br000020
  article-title: Hidden Markov model classification of myoelectric signals in speech
  publication-title: IEEE Engineering in Medicine and Biology Magazine
  doi: 10.1109/MEMB.2002.1044184
– ident: 10.1016/j.neunet.2014.03.010_br000260
  doi: 10.1145/1357054.1357138
– volume: 44
  start-page: 865
  issue: 10
  year: 2007
  ident: 10.1016/j.neunet.2014.03.010_br000315
  article-title: Classification of surface EMG signals using optimal wavelet packet method based on Davies–Bouldin criterion
  publication-title: Medical and Biological Engineering and Computing
  doi: 10.1007/s11517-006-0100-y
– volume: 36
  start-page: 830
  issue: 4
  year: 1990
  ident: 10.1016/j.neunet.2014.03.010_br000320
  article-title: Cross spectral analysis of non-stationary processes
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/18.53742
– year: 1998
  ident: 10.1016/j.neunet.2014.03.010_br000170
– volume: 162
  start-page: 261
  issue: 3
  year: 1998
  ident: 10.1016/j.neunet.2014.03.010_br000255
  article-title: Energy supply and muscle fatigue in humans
  publication-title: Acta Physiologica Scandinavica
  doi: 10.1046/j.1365-201X.1998.0298f.x
– volume: 54
  start-page: 694
  issue: 4
  year: 2007
  ident: 10.1016/j.neunet.2014.03.010_br000280
  article-title: Myoelectric signal classification for phoneme-based speech recognition
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2006.889175
– year: 2009
  ident: 10.1016/j.neunet.2014.03.010_br000295
– volume: 13
  start-page: 1035
  issue: 5
  year: 2005
  ident: 10.1016/j.neunet.2014.03.010_br000010
  article-title: A tutorial on onset detection in music signals
  publication-title: IEEE Transactions on Speech and Audio Processing
  doi: 10.1109/TSA.2005.851998
– ident: 10.1016/j.neunet.2014.03.010_br000105
– ident: 10.1016/j.neunet.2014.03.010_br000210
– year: 1985
  ident: 10.1016/j.neunet.2014.03.010_br000005
– volume: 24
  start-page: 86
  issue: 2
  year: 2012
  ident: 10.1016/j.neunet.2014.03.010_br000040
  article-title: The effects of weight and inertia of the prosthesis on the sensitivity of electromyographic pattern recognition in relax state
  publication-title: Journal of Prosthetics and Orthotics
  doi: 10.1097/JPO.0b013e3182524cce
– volume: 12
  start-page: 775
  issue: 5
  year: 1996
  ident: 10.1016/j.neunet.2014.03.010_br000080
  article-title: Myoelectric teleoperation of a complex robotic hand
  publication-title: IEEE Transactions on Robotics and Automation
  doi: 10.1109/70.538982
– volume: 40
  start-page: 82
  issue: 1
  year: 1993
  ident: 10.1016/j.neunet.2014.03.010_br000155
  article-title: A new strategy for multifunction myoelectric control
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/10.204774
– volume: 15
  start-page: 111
  year: 2007
  ident: 10.1016/j.neunet.2014.03.010_br000075
  article-title: The optimal controller delay for myoelectric prostheses
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2007.891391
– year: 2009
  ident: 10.1016/j.neunet.2014.03.010_br000085
– volume: BME-33
  start-page: 1173
  issue: 12
  year: 1986
  ident: 10.1016/j.neunet.2014.03.010_br000120
  article-title: Short time Fourier analysis of the electromyogram: fast movements and constant contraction
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.1986.325697
– volume: 2005
  start-page: 3165
  issue: 19
  year: 2005
  ident: 10.1016/j.neunet.2014.03.010_br000200
  article-title: Estimating alertness level based on EEG spectrum analysis
  publication-title: EURASIP Journal of Applied Signal Processing
  doi: 10.1155/ASP.2005.3165
– volume: 1
  start-page: 2151
  issue: 1
  year: 2009
  ident: 10.1016/j.neunet.2014.03.010_br000240
  article-title: A novel feature extraction for robust EMG pattern recognition
  publication-title: Journal of Computing
– ident: 10.1016/j.neunet.2014.03.010_br000310
– volume: 19
  start-page: 644
  issue: 6
  year: 2011
  ident: 10.1016/j.neunet.2014.03.010_br000090
  article-title: Resolving the limb position effect in myoelectric pattern recognition
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2011.2163529
– volume: 52
  start-page: 1801
  issue: 11
  year: 2005
  ident: 10.1016/j.neunet.2014.03.010_br000140
  article-title: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2005.856295
– ident: 10.1016/j.neunet.2014.03.010_br000185
  doi: 10.1109/ISSNIP.2011.6146521
– start-page: 99
  year: 2011
  ident: 10.1016/j.neunet.2014.03.010_br000195
  article-title: Electromyography pattern-recognition-based control of powered multifunctional upper-limb prostheses
– ident: 10.1016/j.neunet.2014.03.010_br000045
– volume: 47
  start-page: 228
  issue: 2
  year: 2000
  ident: 10.1016/j.neunet.2014.03.010_br000165
  article-title: Time-frequency analysis of myoelectric signals during dynamic contractions: a comparative study
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/10.821766
– volume: 4
  start-page: 17
  issue: 1
  year: 1982
  ident: 10.1016/j.neunet.2014.03.010_br000115
  article-title: Multifunctional prosthesis and orthosis control via microcomputer identification of temporal pattern differences in single-site myoelectric signals
  publication-title: Journal of Biomedical Engineering
  doi: 10.1016/0141-5425(82)90021-8
– ident: 10.1016/j.neunet.2014.03.010_br000215
– ident: 10.1016/j.neunet.2014.03.010_br000055
– volume: 52
  start-page: 2726
  issue: 12
  year: 2005
  ident: 10.1016/j.neunet.2014.03.010_br000205
  article-title: EEG-based drowsiness estimation for safety driving using independent component analysis
  publication-title: IEEE Transactions on Circuits and Systems- I, Reg. Papers
  doi: 10.1109/TCSI.2005.857555
– volume: 29
  start-page: 148
  issue: 5
  year: 2012
  ident: 10.1016/j.neunet.2014.03.010_br000160
  article-title: Myoelectric control of artificial limbs—is there a need to change focus?
  publication-title: IEEE Signal Processing Magazine
– volume: 39
  start-page: 10731
  year: 2012
  ident: 10.1016/j.neunet.2014.03.010_br000190
  article-title: Toward improved control of prosthetic fingers using surface electromyogram (EMG) signals
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.02.192
– volume: 48
  start-page: 302
  issue: 3
  year: 2001
  ident: 10.1016/j.neunet.2014.03.010_br000070
  article-title: A wavelet-based continuous classification scheme for multifunction myoelectric control
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/10.914793
– volume: 58
  start-page: 1698
  issue: 6
  year: 2011
  ident: 10.1016/j.neunet.2014.03.010_br000270
  article-title: Selective classification for improved robustness of myoelectric control under nonideal conditions
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2011.2113182
– volume: 24
  start-page: 309
  year: 2003
  ident: 10.1016/j.neunet.2014.03.010_br000015
  article-title: Evaluation of the forearm EMG signal features for the control of a prosthetic hand
  publication-title: Physiological Measurement
  doi: 10.1088/0967-3334/24/2/307
– volume: 57
  start-page: 1410
  issue: 6
  year: 2010
  ident: 10.1016/j.neunet.2014.03.010_br000175
  article-title: Orthogonal fuzzy neighborhood discriminant analysis for multifunction myoelectric hand control
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2009.2039480
– ident: 10.1016/j.neunet.2014.03.010_br000180
  doi: 10.1109/ISCIT.2007.4392044
– year: 2004
  ident: 10.1016/j.neunet.2014.03.010_br000220
  article-title: Electromyography physiology, engineering, and noninvasive applications
– ident: 10.1016/j.neunet.2014.03.010_br000025
  doi: 10.1109/CISP.2011.6100025
– volume: 3
  start-page: 175
  issue: 2
  year: 2008
  ident: 10.1016/j.neunet.2014.03.010_br000125
  article-title: A training strategy to reduce classification degradation due to electrode displacements in pattern recognition based myoelectric control
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2007.11.005
– volume: 29
  start-page: 306
  issue: 3
  year: 1970
  ident: 10.1016/j.neunet.2014.03.010_br000135
  article-title: EEG analysis based on time domain properties
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/0013-4694(70)90143-4
– volume: 56
  start-page: 65
  issue: 1
  year: 2009
  ident: 10.1016/j.neunet.2014.03.010_br000145
  article-title: A strategy for identifying locomotion modes using surface electromyography
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2008.2003293
– ident: 10.1016/j.neunet.2014.03.010_br000235
– volume: 59
  start-page: 1649
  issue: 6
  year: 2012
  ident: 10.1016/j.neunet.2014.03.010_br000335
  article-title: High-density myoelectric pattern recognition toward improved stroke rehabilitation
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2012.2191551
– volume: IROS
  start-page: 3511
  year: 2005
  ident: 10.1016/j.neunet.2014.03.010_br000030
  article-title: Control of multifunction myoelectric hand using a real-time EMG pattern recognition
  publication-title: EEE/RSJ International Conference on Intelligent Robots and Systems
– volume: 18
  start-page: 49
  issue: 1
  year: 2010
  ident: 10.1016/j.neunet.2014.03.010_br000130
  article-title: Multiple binary classifications via linear discriminant analysis for improved controllability of a powered prosthesis
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2009.2039590
– volume: 38
  start-page: 4058
  issue: 4
  year: 2011
  ident: 10.1016/j.neunet.2014.03.010_br000250
  article-title: Feature extraction of forearm EMG signals for prosthetics
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.09.068
– ident: 10.1016/j.neunet.2014.03.010_br000100
  doi: 10.1109/BHI.2012.6211702
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  ident: 10.1016/j.neunet.2014.03.010_br000150
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
  doi: 10.1109/TSMCB.2011.2168604
– volume: 3
  start-page: 324
  issue: 4
  year: 1995
  ident: 10.1016/j.neunet.2014.03.010_br000330
  article-title: EMG feature evaluation for movement control of upper extremity prostheses
  publication-title: IEEE Transactions on Rehabilitation Engineering
  doi: 10.1109/86.481972
– volume: 50
  start-page: 848
  issue: 7
  year: 2003
  ident: 10.1016/j.neunet.2014.03.010_br000065
  article-title: A robust, real-time control scheme for multifunction myoelectric control
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2003.813539
– volume: 55
  issue: 8
  year: 2008
  ident: 10.1016/j.neunet.2014.03.010_br000230
  article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2008.919734
– ident: 10.1016/j.neunet.2014.03.010_br000050
– volume: 7
  issue: 21
  year: 2010
  ident: 10.1016/j.neunet.2014.03.010_br000300
  article-title: Study of stability of time-domain features for electromyographic pattern recognition
  publication-title: Journal of NeuroEngineering and Rehabilitation
– year: 2007
  ident: 10.1016/j.neunet.2014.03.010_br000290
– volume: 41
  start-page: 119
  issue: 2
  year: 1979
  ident: 10.1016/j.neunet.2014.03.010_br000305
  article-title: Factors influencing quantified surface EMGs
  publication-title: European Journal of Applied Physiology and Occupational Physiology
  doi: 10.1007/BF00421659
– volume: 76
  start-page: 197
  issue: 3
  year: 1990
  ident: 10.1016/j.neunet.2014.03.010_br000110
  article-title: Changes in EEG mean frequency and spectral purity during spontaneous alpha blocking
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/0013-4694(90)90015-C
– ident: 10.1016/j.neunet.2014.03.010_br000035
  doi: 10.1109/IEMBS.2006.4397932
– ident: 10.1016/j.neunet.2014.03.010_br000265
  doi: 10.1145/1753326.1753451
– ident: 10.1016/j.neunet.2014.03.010_br000060
– volume: 55
  start-page: 1128
  issue: 3
  year: 2008
  ident: 10.1016/j.neunet.2014.03.010_br000285
  article-title: Online electromyographic control of a robotic prosthesis
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2007.909536
– volume: 39
  start-page: 7420
  issue: 8
  year: 2012
  ident: 10.1016/j.neunet.2014.03.010_br000245
  article-title: Feature reduction and selection for EMG signal classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.01.102
SSID ssj0006843
Score 2.5232747
Snippet Recent studies in Electromyogram (EMG) pattern recognition reveal a gap between research findings and a viable clinical implementation of myoelectric control...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 42
SubjectTerms Adult
Applied sciences
Artificial Limbs
Biological and medical sciences
Computer science; control theory; systems
Data processing. List processing. Character string processing
Electrodiagnosis. Electric activity recording
Electromyogram (EMG)
Electromyography - methods
Exact sciences and technology
Feature extraction
Female
Humans
Invariants
Investigative techniques, diagnostic techniques (general aspects)
Limbs
Male
Medical sciences
Memory organisation. Data processing
Movement - physiology
Movements
Myoelectric control
Pattern recognition
Pattern Recognition, Automated - methods
Posture - physiology
Segments
Signal processing
Signal Processing, Computer-Assisted
Software
Spectra
Spectral moments
Time Factors
User-Computer Interface
Young Adult
Title Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features
URI https://dx.doi.org/10.1016/j.neunet.2014.03.010
https://www.ncbi.nlm.nih.gov/pubmed/24721224
https://www.proquest.com/docview/1530951806
https://www.proquest.com/docview/1540224464
https://www.proquest.com/docview/1671607353
Volume 55
WOSCitedRecordID wos000337860600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb5swFLbSdg-Tpt0v2SXypL0hJoKNMY_V1Gmr1GoP2ZQ3ZMBW6AiJQoi6f79jjIGsSrs97AVFxsaE7-P4HHMuCH1IYJGR0yaihwqXwgILcpBELuEpkxzsgzRKmmIT4eUln8-jb6PRzsbC7IqwLPn1dbT-r1BDG4CtQ2f_Ae7uotAAvwF0OALscPw74BtH2Mop8mXiWJ8sJy93YBXDY3SWv1am9k2e6qyqekPQ6dyIoGfd7B7omvOurZC7dZqATB3Lr2STCbQaKrU6wQecKo1Hef91aFFXC5EY7VQs8_6rz0z83NQmxP1C9LFoF7kJujkXMLnzQxRFf61VJsCCFnYTe7sYbldMaefaCquNEbE8jFw_5HsyOAgGQtSk27oh2802w9XHUtbwh7RXHm3y0xq32AGy62UDrU_BuvVNhPYfObXtqSN04odBBNLw5PTr2fy8W8MZp8QGWjbegDcn1Wmk28sc0mkerEUFb5oyJVIO2zCNLjN7jB62Rgg-NeR5gkayfIoe2QIfuJX3z5BquYQ1l7DlEu64hAdcwi2X8IBLuOES3ucStlzClkvP0ffPZ7NPX9y2MIebBj7dusxLpZIsAdnvkUB5oe8p5uu8Qxmbskj6ivI0USk0hSxIlJhKJZQSGclgeYky8gIdl6tSvkKYZ7pUFoPh8ByJZBEMIQmj0MJFRtkYEfto47TNWq-LpxSxdU-8ig02scYm9kgM2IyR241am6wtd_QPLWpxq3kajTIG8t0xcrIHcjedD6aMTm43Ru8t6jFIbv05TpRyVVcx6BravuHerX2oVrIpo7f0YaHOEkkCMkYvDa36u2gZ-vrgmTfofv-avkXH200t36F76W6bV5sJOgrnfNK-Hb8BeUfbiA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+limb+position+invariant+myoelectric+pattern+recognition+using+time-dependent+spectral+features&rft.jtitle=Neural+networks&rft.au=Khushaba%2C+Rami+N&rft.au=Takruri%2C+Maen&rft.au=Miro%2C+Jaime+Valls&rft.au=Kodagoda%2C+Sarath&rft.date=2014-07-01&rft.eissn=1879-2782&rft.volume=55&rft.spage=42&rft_id=info:doi/10.1016%2Fj.neunet.2014.03.010&rft_id=info%3Apmid%2F24721224&rft.externalDocID=24721224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon