Orthogonality of decision boundaries in complex-valued neural networks

This letter presents some results of an analysis on the decision boundaries of complex-valued neural networks whose weights, threshold values, input and output signals are all complex numbers. The main results may be summarized as follows. (1) A decision boundary of a single complex-valued neuron co...

Full description

Saved in:
Bibliographic Details
Published in:Neural computation Vol. 16; no. 1; p. 73
Main Author: Nitta, Tohru
Format: Journal Article
Language:English
Published: United States 01.01.2004
Subjects:
ISSN:0899-7667
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This letter presents some results of an analysis on the decision boundaries of complex-valued neural networks whose weights, threshold values, input and output signals are all complex numbers. The main results may be summarized as follows. (1) A decision boundary of a single complex-valued neuron consists of two hypersurfaces that intersect orthogonally, and divides a decision region into four equal sections. The XOR problem and the detection of symmetry problem that cannot be solved with two-layered real-valued neural networks, can be solved by two-layered complex-valued neural networks with the orthogonal decision boundaries, which reveals a potent computational power of complex-valued neural nets. Furthermore, the fading equalization problem can be successfully solved by the two-layered complex-valued neural network with the highest generalization ability. (2) A decision boundary of a three-layered complex-valued neural network has the orthogonal property as a basic structure, and its two hypersurfaces approach orthogonality as all the net inputs to each hidden neuron grow. In particular, most of the decision boundaries in the three-layered complex-valued neural network inetersect orthogonally when the network is trained using Complex-BP algorithm. As a result, the orthogonality of the decision boundaries improves its generalization ability. (3) The average of the learning speed of the Complex-BP is several times faster than that of the Real-BP. The standard deviation of the learning speed of the Complex-BP is smaller than that of the Real-BP. It seems that the complex-valued neural network and the related algorithm are natural for learning complex-valued patterns for the above reasons.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0899-7667
DOI:10.1162/08997660460734001