Orthogonality of decision boundaries in complex-valued neural networks

This letter presents some results of an analysis on the decision boundaries of complex-valued neural networks whose weights, threshold values, input and output signals are all complex numbers. The main results may be summarized as follows. (1) A decision boundary of a single complex-valued neuron co...

Full description

Saved in:
Bibliographic Details
Published in:Neural computation Vol. 16; no. 1; p. 73
Main Author: Nitta, Tohru
Format: Journal Article
Language:English
Published: United States 01.01.2004
Subjects:
ISSN:0899-7667
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This letter presents some results of an analysis on the decision boundaries of complex-valued neural networks whose weights, threshold values, input and output signals are all complex numbers. The main results may be summarized as follows. (1) A decision boundary of a single complex-valued neuron consists of two hypersurfaces that intersect orthogonally, and divides a decision region into four equal sections. The XOR problem and the detection of symmetry problem that cannot be solved with two-layered real-valued neural networks, can be solved by two-layered complex-valued neural networks with the orthogonal decision boundaries, which reveals a potent computational power of complex-valued neural nets. Furthermore, the fading equalization problem can be successfully solved by the two-layered complex-valued neural network with the highest generalization ability. (2) A decision boundary of a three-layered complex-valued neural network has the orthogonal property as a basic structure, and its two hypersurfaces approach orthogonality as all the net inputs to each hidden neuron grow. In particular, most of the decision boundaries in the three-layered complex-valued neural network inetersect orthogonally when the network is trained using Complex-BP algorithm. As a result, the orthogonality of the decision boundaries improves its generalization ability. (3) The average of the learning speed of the Complex-BP is several times faster than that of the Real-BP. The standard deviation of the learning speed of the Complex-BP is smaller than that of the Real-BP. It seems that the complex-valued neural network and the related algorithm are natural for learning complex-valued patterns for the above reasons.
AbstractList This letter presents some results of an analysis on the decision boundaries of complex-valued neural networks whose weights, threshold values, input and output signals are all complex numbers. The main results may be summarized as follows. (1) A decision boundary of a single complex-valued neuron consists of two hypersurfaces that intersect orthogonally, and divides a decision region into four equal sections. The XOR problem and the detection of symmetry problem that cannot be solved with two-layered real-valued neural networks, can be solved by two-layered complex-valued neural networks with the orthogonal decision boundaries, which reveals a potent computational power of complex-valued neural nets. Furthermore, the fading equalization problem can be successfully solved by the two-layered complex-valued neural network with the highest generalization ability. (2) A decision boundary of a three-layered complex-valued neural network has the orthogonal property as a basic structure, and its two hypersurfaces approach orthogonality as all the net inputs to each hidden neuron grow. In particular, most of the decision boundaries in the three-layered complex-valued neural network inetersect orthogonally when the network is trained using Complex-BP algorithm. As a result, the orthogonality of the decision boundaries improves its generalization ability. (3) The average of the learning speed of the Complex-BP is several times faster than that of the Real-BP. The standard deviation of the learning speed of the Complex-BP is smaller than that of the Real-BP. It seems that the complex-valued neural network and the related algorithm are natural for learning complex-valued patterns for the above reasons.
This letter presents some results of an analysis on the decision boundaries of complex-valued neural networks whose weights, threshold values, input and output signals are all complex numbers. The main results may be summarized as follows. (1) A decision boundary of a single complex-valued neuron consists of two hypersurfaces that intersect orthogonally, and divides a decision region into four equal sections. The XOR problem and the detection of symmetry problem that cannot be solved with two-layered real-valued neural networks, can be solved by two-layered complex-valued neural networks with the orthogonal decision boundaries, which reveals a potent computational power of complex-valued neural nets. Furthermore, the fading equalization problem can be successfully solved by the two-layered complex-valued neural network with the highest generalization ability. (2) A decision boundary of a three-layered complex-valued neural network has the orthogonal property as a basic structure, and its two hypersurfaces approach orthogonality as all the net inputs to each hidden neuron grow. In particular, most of the decision boundaries in the three-layered complex-valued neural network inetersect orthogonally when the network is trained using Complex-BP algorithm. As a result, the orthogonality of the decision boundaries improves its generalization ability. (3) The average of the learning speed of the Complex-BP is several times faster than that of the Real-BP. The standard deviation of the learning speed of the Complex-BP is smaller than that of the Real-BP. It seems that the complex-valued neural network and the related algorithm are natural for learning complex-valued patterns for the above reasons.This letter presents some results of an analysis on the decision boundaries of complex-valued neural networks whose weights, threshold values, input and output signals are all complex numbers. The main results may be summarized as follows. (1) A decision boundary of a single complex-valued neuron consists of two hypersurfaces that intersect orthogonally, and divides a decision region into four equal sections. The XOR problem and the detection of symmetry problem that cannot be solved with two-layered real-valued neural networks, can be solved by two-layered complex-valued neural networks with the orthogonal decision boundaries, which reveals a potent computational power of complex-valued neural nets. Furthermore, the fading equalization problem can be successfully solved by the two-layered complex-valued neural network with the highest generalization ability. (2) A decision boundary of a three-layered complex-valued neural network has the orthogonal property as a basic structure, and its two hypersurfaces approach orthogonality as all the net inputs to each hidden neuron grow. In particular, most of the decision boundaries in the three-layered complex-valued neural network inetersect orthogonally when the network is trained using Complex-BP algorithm. As a result, the orthogonality of the decision boundaries improves its generalization ability. (3) The average of the learning speed of the Complex-BP is several times faster than that of the Real-BP. The standard deviation of the learning speed of the Complex-BP is smaller than that of the Real-BP. It seems that the complex-valued neural network and the related algorithm are natural for learning complex-valued patterns for the above reasons.
Author Nitta, Tohru
Author_xml – sequence: 1
  givenname: Tohru
  surname: Nitta
  fullname: Nitta, Tohru
  email: tohru-nitta@aist.go.jp
  organization: National Institute of Advanced Industrial Science and Technology, Tsukuba-shi, Ibaraki, Japan. tohru-nitta@aist.go.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15006024$$D View this record in MEDLINE/PubMed
BookMark eNo1jz1PwzAYhD0U0Q_4ASwoE1vgdezY8YgqCkiVusAc-RMMiV3sBOi_J4gyPae700m3RLMQg0XoAsM1xqy6gUYIzhhQBpxQADxDi1-vnEw-R8uc3wCAYahP0RzXk4SKLtBml4bX-BKD7PxwKKIrjNU--xgKFcdgZPI2Fz4UOvb7zn6Xn7IbrSmCHZPsJgxfMb3nM3TiZJft-ZEr9Ly5e1o_lNvd_eP6dlvquqJDSShprGoUCCKpE0bUzEnmKqk14Q2pG0Udw67hBMA5rQwmwKeYKCpMLUy1Qld_u_sUP0abh7b3Wduuk8HGMbcccywwwVPx8lgcVW9Nu0--l-nQ_j-vfgDKJFuT
CitedBy_id crossref_primary_10_1016_j_neunet_2016_08_008
crossref_primary_10_1007_s00521_024_09917_2
crossref_primary_10_1016_j_neucom_2012_03_003
crossref_primary_10_1186_s12859_016_1209_0
crossref_primary_10_1016_j_artint_2023_103951
crossref_primary_10_1016_j_cmpb_2018_07_015
crossref_primary_10_1109_TCYB_2022_3194059
crossref_primary_10_1109_TSMC_2024_3371164
crossref_primary_10_1007_s13042_012_0112_x
crossref_primary_10_1007_s11571_014_9312_2
crossref_primary_10_1109_TNNLS_2015_2494361
crossref_primary_10_1016_j_cnsns_2022_106581
crossref_primary_10_1007_s11063_016_9563_5
crossref_primary_10_1038_s41467_020_20719_7
crossref_primary_10_1186_s13662_017_1266_3
crossref_primary_10_1016_j_neucom_2013_04_040
crossref_primary_10_1016_j_chaos_2015_08_003
crossref_primary_10_3390_physics3040058
crossref_primary_10_1007_s00521_015_2142_2
crossref_primary_10_1007_s00500_018_3216_8
crossref_primary_10_1016_j_neucom_2023_126358
crossref_primary_10_1109_TSMC_2018_2836952
crossref_primary_10_1080_00207721_2019_1623340
crossref_primary_10_1016_j_eswa_2023_121166
crossref_primary_10_1016_j_neunet_2016_01_007
crossref_primary_10_1155_2009_329173
crossref_primary_10_1002_mma_4434
crossref_primary_10_1007_s13369_020_04692_3
crossref_primary_10_1002_nbm_4312
crossref_primary_10_1016_j_jmgm_2017_07_015
crossref_primary_10_1007_s12190_025_02485_1
crossref_primary_10_1016_j_neunet_2019_09_032
crossref_primary_10_1049_el_2014_3572
crossref_primary_10_3390_math12213345
crossref_primary_10_1016_j_amc_2016_11_027
crossref_primary_10_1016_j_asoc_2024_112682
crossref_primary_10_1109_TBCAS_2017_2719631
crossref_primary_10_1007_s00521_017_3030_8
crossref_primary_10_1186_s13660_017_1490_0
crossref_primary_10_1016_j_amc_2016_08_054
crossref_primary_10_1162_NECO_a_00254
crossref_primary_10_1063_5_0254013
crossref_primary_10_1007_s12200_022_00009_4
crossref_primary_10_1109_JAS_2022_105743
crossref_primary_10_1016_j_neucom_2018_05_074
crossref_primary_10_1016_j_neunet_2015_03_007
crossref_primary_10_1109_TNNLS_2017_2677446
crossref_primary_10_1016_j_neunet_2016_05_003
crossref_primary_10_1007_s11063_017_9626_2
crossref_primary_10_1155_2010_829692
crossref_primary_10_1155_2014_263847
crossref_primary_10_1109_TSMC_2021_3055501
crossref_primary_10_1016_j_neunet_2013_02_002
crossref_primary_10_1109_TNNLS_2018_2801297
crossref_primary_10_1155_2014_397532
crossref_primary_10_1109_TNNLS_2014_2321420
crossref_primary_10_1155_2021_5577675
crossref_primary_10_3390_nano12132171
crossref_primary_10_3390_a17080361
crossref_primary_10_1109_TNNLS_2021_3105901
crossref_primary_10_1007_s11063_013_9305_x
crossref_primary_10_1016_j_jag_2025_104418
crossref_primary_10_1016_j_ins_2014_07_042
crossref_primary_10_1016_j_neunet_2012_02_015
crossref_primary_10_1587_nolta_14_175
crossref_primary_10_1016_j_amc_2017_05_021
crossref_primary_10_1007_s11063_017_9736_x
crossref_primary_10_1109_TNNLS_2021_3129269
crossref_primary_10_1016_j_engappai_2024_108352
crossref_primary_10_1109_TNNLS_2019_2933882
crossref_primary_10_1111_jerd_13079
crossref_primary_10_1109_ACCESS_2020_3025373
crossref_primary_10_1109_TNNLS_2012_2235460
crossref_primary_10_3390_math11183845
crossref_primary_10_1109_TCYB_2019_2946703
crossref_primary_10_1016_j_neunet_2016_10_010
crossref_primary_10_1016_j_neucom_2013_06_009
crossref_primary_10_1016_j_neucom_2014_08_015
crossref_primary_10_1007_s11571_025_10306_1
crossref_primary_10_1016_j_neucom_2015_10_120
crossref_primary_10_1109_ACCESS_2021_3076345
crossref_primary_10_1109_ACCESS_2015_2506601
crossref_primary_10_1016_j_neucom_2022_11_079
crossref_primary_10_1109_TNNLS_2020_2984267
crossref_primary_10_1007_s12555_018_0679_4
crossref_primary_10_1016_j_neunet_2021_01_014
crossref_primary_10_1109_TNNLS_2017_2704286
crossref_primary_10_1007_s11431_017_9284_y
crossref_primary_10_1016_j_neucom_2014_04_075
crossref_primary_10_1007_s11063_018_9805_9
crossref_primary_10_1007_s11071_014_1628_2
crossref_primary_10_1109_JBHI_2014_2387795
crossref_primary_10_1162_0899766053429381
crossref_primary_10_1016_j_neucom_2022_04_010
crossref_primary_10_1016_j_neucom_2025_129412
crossref_primary_10_1186_s13662_018_1666_z
crossref_primary_10_3390_math11102275
crossref_primary_10_17721_1812_5409_2025_1_12
crossref_primary_10_1016_j_neunet_2017_03_006
crossref_primary_10_1007_s11063_018_9790_z
crossref_primary_10_1260_2040_2295_6_3_281
crossref_primary_10_1007_s00521_016_2305_9
crossref_primary_10_1515_bmt_2016_0156
crossref_primary_10_1016_j_asoc_2015_04_022
crossref_primary_10_1109_TNNLS_2021_3070966
crossref_primary_10_1007_s11063_017_9692_5
crossref_primary_10_1007_s00521_018_3920_4
crossref_primary_10_1109_TNNLS_2020_2966031
crossref_primary_10_1155_2022_5759152
crossref_primary_10_1016_j_ins_2011_11_003
crossref_primary_10_1007_s00521_021_06555_w
crossref_primary_10_1186_s13662_018_1521_2
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1162/08997660460734001
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 15006024
Genre Journal Article
GroupedDBID ---
-~X
.4S
.DC
0R~
123
36B
4.4
41~
53G
6IK
AAJGR
AALMD
AAYOK
ABAZT
ABDBF
ABDNZ
ABEFU
ABIVO
ABJNI
ACGFO
ACUHS
ACYGS
ADIYS
ADMLS
AEGXH
AEILP
AENEX
AFHIN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVWKF
AZFZN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
CGR
COF
CS3
CUY
CVF
DU5
EAP
EAS
EBC
EBD
EBS
ECM
ECS
EDO
EIF
EJD
EMB
EMK
EMOBN
EPL
EPS
EST
ESX
F5P
FEDTE
FNEHJ
HVGLF
HZ~
H~9
I-F
IPLJI
JAVBF
MCG
MINIK
MKJ
NPM
O9-
OCL
P2P
PK0
PQQKQ
RMI
SV3
TUS
WG8
WH7
XJE
ZWS
7X8
ABUFD
ABVLG
AMVHM
ID FETCH-LOGICAL-c524t-3438eb8b093a4f9d956fa6f2acc378358b4f61f87300ffcbd1307f2a3b49d59d2
IEDL.DBID 7X8
ISICitedReferencesCount 146
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000187146600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0899-7667
IngestDate Sun Nov 09 10:57:00 EST 2025
Wed Feb 19 01:36:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c524t-3438eb8b093a4f9d956fa6f2acc378358b4f61f87300ffcbd1307f2a3b49d59d2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15006024
PQID 71719131
PQPubID 23479
ParticipantIDs proquest_miscellaneous_71719131
pubmed_primary_15006024
PublicationCentury 2000
PublicationDate 2004-Jan
20040101
PublicationDateYYYYMMDD 2004-01-01
PublicationDate_xml – month: 01
  year: 2004
  text: 2004-Jan
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural computation
PublicationTitleAlternate Neural Comput
PublicationYear 2004
SSID ssj0006105
Score 2.182368
Snippet This letter presents some results of an analysis on the decision boundaries of complex-valued neural networks whose weights, threshold values, input and output...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 73
SubjectTerms Algorithms
Artificial Intelligence
Decision Support Techniques
Neural Networks (Computer)
Title Orthogonality of decision boundaries in complex-valued neural networks
URI https://www.ncbi.nlm.nih.gov/pubmed/15006024
https://www.proquest.com/docview/71719131
Volume 16
WOSCitedRecordID wos000187146600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYKZWChvClPD6xW69h1HAkJIUTFAKUDSN0qP2LokpS2IH4-d4kjJsTAksFRrOhytr_v7nIfIZfeBqO9DEzagWYy055pqzkL2iXK9l0wtWrJQzoa6ckkG7fIVfMvDJZVNntitVH70mGMvAe0A6iF4Nfzd4aaUZhbjQIaa6QtAMigT6eTn17hKhYwAqNgqVJpzGlylfRwDIYwKZgK8GL-O76szplh539vuE22Ir6kN7VD7JBWXuySTqPdQONS3iPDp8XqrXyNOJyWgfqotkNtpbSEFJrOClrVnOdfDLuC555i_0uYv6irx5f75GV493x7z6KmAnODRK6YkELnVtt-JowMmQd6FIwKiXFOYBBIWxkUDxrb2IfgrIczLoXbwsrMDzKfHJD1oizyI0KNzEwiDecOWRl8Vewc7wCA5dwLmKFLLho7TcFnMRFhirz8WE4bS3XJYW3q6bxurTEFeNpXABuO_3z2hGzWRTQYDTkl7QCrNT8jG-5zNVsuzitXgOto_PgNlQu-sg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orthogonality+of+decision+boundaries+in+complex-valued+neural+networks&rft.jtitle=Neural+computation&rft.au=Nitta%2C+Tohru&rft.date=2004-01-01&rft.issn=0899-7667&rft.volume=16&rft.issue=1&rft.spage=73&rft_id=info:doi/10.1162%2F08997660460734001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-7667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-7667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-7667&client=summon