Parallel MR imaging

Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of MR imaging. Parallel imaging works by acquiring a reduced amount of k‐space data with an array of receiver coils. These undersampled data can...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of magnetic resonance imaging Ročník 36; číslo 1; s. 55 - 72
Hlavní autoři: Deshmane, Anagha, Gulani, Vikas, Griswold, Mark A., Seiberlich, Nicole
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.07.2012
Témata:
ISSN:1053-1807, 1522-2586, 1522-2586
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of MR imaging. Parallel imaging works by acquiring a reduced amount of k‐space data with an array of receiver coils. These undersampled data can be acquired more quickly, but the undersampling leads to aliased images. One of several parallel imaging algorithms can then be used to reconstruct artifact‐free images from either the aliased images (SENSE‐type reconstruction) or from the undersampled data (GRAPPA‐type reconstruction). The advantages of parallel imaging in a clinical setting include faster image acquisition, which can be used, for instance, to shorten breath‐hold times resulting in fewer motion‐corrupted examinations. In this article the basic concepts behind parallel imaging are introduced. The relationship between undersampling and aliasing is discussed and two commonly used parallel imaging methods, SENSE and GRAPPA, are explained in detail. Examples of artifacts arising from parallel imaging are shown and ways to detect and mitigate these artifacts are described. Finally, several current applications of parallel imaging are presented and recent advancements and promising research in parallel imaging are briefly reviewed. J. Magn. Reson. Imaging 2012;36:55–72. © 2012 Wiley Periodicals, Inc.
AbstractList Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of MR imaging. Parallel imaging works by acquiring a reduced amount of k ‐space data with an array of receiver coils. These undersampled data can be acquired more quickly, but the undersampling leads to aliased images. One of several parallel imaging algorithms can then be used to reconstruct artifact‐free images from either the aliased images (SENSE‐type reconstruction) or from the undersampled data (GRAPPA‐type reconstruction). The advantages of parallel imaging in a clinical setting include faster image acquisition, which can be used, for instance, to shorten breath‐hold times resulting in fewer motion‐corrupted examinations. In this article the basic concepts behind parallel imaging are introduced. The relationship between undersampling and aliasing is discussed and two commonly used parallel imaging methods, SENSE and GRAPPA, are explained in detail. Examples of artifacts arising from parallel imaging are shown and ways to detect and mitigate these artifacts are described. Finally, several current applications of parallel imaging are presented and recent advancements and promising research in parallel imaging are briefly reviewed. J. Magn. Reson. Imaging 2012;36:55–72. © 2012 Wiley Periodicals, Inc.
Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of MR imaging. Parallel imaging works by acquiring a reduced amount of k-space data with an array of receiver coils. These undersampled data can be acquired more quickly, but the undersampling leads to aliased images. One of several parallel imaging algorithms can then be used to reconstruct artifact-free images from either the aliased images (SENSE-type reconstruction) or from the undersampled data (GRAPPA-type reconstruction). The advantages of parallel imaging in a clinical setting include faster image acquisition, which can be used, for instance, to shorten breath-hold times resulting in fewer motion-corrupted examinations. In this article the basic concepts behind parallel imaging are introduced. The relationship between undersampling and aliasing is discussed and two commonly used parallel imaging methods, SENSE and GRAPPA, are explained in detail. Examples of artifacts arising from parallel imaging are shown and ways to detect and mitigate these artifacts are described. Finally, several current applications of parallel imaging are presented and recent advancements and promising research in parallel imaging are briefly reviewed.
Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of MR imaging. Parallel imaging works by acquiring a reduced amount of k-space data with an array of receiver coils. These undersampled data can be acquired more quickly, but the undersampling leads to aliased images. One of several parallel imaging algorithms can then be used to reconstruct artifact-free images from either the aliased images (SENSE-type reconstruction) or from the undersampled data (GRAPPA-type reconstruction). The advantages of parallel imaging in a clinical setting include faster image acquisition, which can be used, for instance, to shorten breath-hold times resulting in fewer motion-corrupted examinations. In this article the basic concepts behind parallel imaging are introduced. The relationship between undersampling and aliasing is discussed and two commonly used parallel imaging methods, SENSE and GRAPPA, are explained in detail. Examples of artifacts arising from parallel imaging are shown and ways to detect and mitigate these artifacts are described. Finally, several current applications of parallel imaging are presented and recent advancements and promising research in parallel imaging are briefly reviewed.Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of MR imaging. Parallel imaging works by acquiring a reduced amount of k-space data with an array of receiver coils. These undersampled data can be acquired more quickly, but the undersampling leads to aliased images. One of several parallel imaging algorithms can then be used to reconstruct artifact-free images from either the aliased images (SENSE-type reconstruction) or from the undersampled data (GRAPPA-type reconstruction). The advantages of parallel imaging in a clinical setting include faster image acquisition, which can be used, for instance, to shorten breath-hold times resulting in fewer motion-corrupted examinations. In this article the basic concepts behind parallel imaging are introduced. The relationship between undersampling and aliasing is discussed and two commonly used parallel imaging methods, SENSE and GRAPPA, are explained in detail. Examples of artifacts arising from parallel imaging are shown and ways to detect and mitigate these artifacts are described. Finally, several current applications of parallel imaging are presented and recent advancements and promising research in parallel imaging are briefly reviewed.
Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of MR imaging. Parallel imaging works by acquiring a reduced amount of k-space data with an array of receiver coils. These undersampled data can be acquired more quickly, but the undersampling leads to aliased images. One of several parallel imaging algorithms can then be used to reconstruct artifact-free images from either the aliased images (SENSE-type reconstruction) or from the under-sampled data (GRAPPA-type reconstruction). The advantages of parallel imaging in a clinical setting include faster image acquisition, which can be used, for instance, to shorten breath-hold times resulting in fewer motion-corrupted examinations. In this article the basic concepts behind parallel imaging are introduced. The relationship between undersampling and aliasing is discussed and two commonly used parallel imaging methods, SENSE and GRAPPA, are explained in detail. Examples of artifacts arising from parallel imaging are shown and ways to detect and mitigate these artifacts are described. Finally, several current applications of parallel imaging are presented and recent advancements and promising research in parallel imaging are briefly reviewed.
Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of MR imaging. Parallel imaging works by acquiring a reduced amount of k‐space data with an array of receiver coils. These undersampled data can be acquired more quickly, but the undersampling leads to aliased images. One of several parallel imaging algorithms can then be used to reconstruct artifact‐free images from either the aliased images (SENSE‐type reconstruction) or from the undersampled data (GRAPPA‐type reconstruction). The advantages of parallel imaging in a clinical setting include faster image acquisition, which can be used, for instance, to shorten breath‐hold times resulting in fewer motion‐corrupted examinations. In this article the basic concepts behind parallel imaging are introduced. The relationship between undersampling and aliasing is discussed and two commonly used parallel imaging methods, SENSE and GRAPPA, are explained in detail. Examples of artifacts arising from parallel imaging are shown and ways to detect and mitigate these artifacts are described. Finally, several current applications of parallel imaging are presented and recent advancements and promising research in parallel imaging are briefly reviewed. J. Magn. Reson. Imaging 2012;36:55–72. © 2012 Wiley Periodicals, Inc.
Author Gulani, Vikas
Griswold, Mark A.
Seiberlich, Nicole
Deshmane, Anagha
AuthorAffiliation 1 Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
2 Department of Radiology, University Hospitals of Cleveland, Cleveland, Ohio, USA
AuthorAffiliation_xml – name: 1 Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
– name: 2 Department of Radiology, University Hospitals of Cleveland, Cleveland, Ohio, USA
Author_xml – sequence: 1
  givenname: Anagha
  surname: Deshmane
  fullname: Deshmane, Anagha
  organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
– sequence: 2
  givenname: Vikas
  surname: Gulani
  fullname: Gulani, Vikas
  organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
– sequence: 3
  givenname: Mark A.
  surname: Griswold
  fullname: Griswold, Mark A.
  organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
– sequence: 4
  givenname: Nicole
  surname: Seiberlich
  fullname: Seiberlich, Nicole
  email: Nicole.Seiberlich@case.edu
  organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22696125$$D View this record in MEDLINE/PubMed
BookMark eNp9kM1Lw0AQxRep2Fq96F08ihDdj-wmexGkaq2YKsWP47JNZutqmtRsqva_d2utqIinGZjfe29466hRlAUgtEXwAcGYHj6OK3tAmWByBbUIpzSgPBYNv2POAhLjqInWnXvEGEsZ8jXUpFRIQShvoe1rXek8h3w3GezasR7ZYrSBVo3OHWx-zja6PTu96ZwHl1fdXuf4Mkg5DWVAIWNYA-hYUs2IYMZwmfrMWGdMA5ViGMlUGDA8IwAYuOYhYcTgKB0aA6yNjha-k-lwDFkKRe1_UZPK_1HNVKmt-nkp7IMalS8qDLmMKPEGe58GVfk8BVersXUp5LkuoJw6RTDFMWNSRh7d-Z71FbJswgN4AaRV6VwFRqW21rUt59E2915qXraal60-yvaS_V-SpeufMFnArzaH2T-kukgGvaUmWGisq-HtS6OrJyUiFnF13-8qkgySu2txovrsHSPunkM
CitedBy_id crossref_primary_10_1016_j_jmr_2022_107321
crossref_primary_10_1109_TMI_2024_3364911
crossref_primary_10_1016_j_clinimag_2023_07_004
crossref_primary_10_1007_s00296_020_04780_5
crossref_primary_10_1007_s11604_025_01830_5
crossref_primary_10_1002_mrm_30130
crossref_primary_10_1016_j_neuroimage_2022_119199
crossref_primary_10_1007_s10334_020_00834_8
crossref_primary_10_1097_MD_0000000000033234
crossref_primary_10_1016_j_eswa_2025_127703
crossref_primary_10_1371_journal_pone_0214887
crossref_primary_10_1016_j_asjsur_2024_09_156
crossref_primary_10_3390_jcm9103124
crossref_primary_10_1016_j_mri_2025_110463
crossref_primary_10_1007_s10439_025_03766_3
crossref_primary_10_1016_j_neuroimage_2017_12_095
crossref_primary_10_1016_j_ejrad_2020_109273
crossref_primary_10_3390_jimaging8060160
crossref_primary_10_1007_s00723_017_0874_0
crossref_primary_10_3389_fninf_2022_919779
crossref_primary_10_3389_fphy_2021_684184
crossref_primary_10_1016_j_mri_2025_110465
crossref_primary_10_1007_s00723_025_01771_2
crossref_primary_10_3390_s23010093
crossref_primary_10_1097_RLI_0000000000001156
crossref_primary_10_1016_j_ejmp_2025_104899
crossref_primary_10_1016_j_crad_2017_12_003
crossref_primary_10_1097_RLI_0000000000001158
crossref_primary_10_1159_000510476
crossref_primary_10_1097_RLI_0000000000001150
crossref_primary_10_1007_s00429_018_1750_x
crossref_primary_10_1007_s00723_019_01153_5
crossref_primary_10_1007_s00330_014_3451_z
crossref_primary_10_1002_mrm_29281
crossref_primary_10_1016_j_mri_2024_04_023
crossref_primary_10_1055_a_2683_6482
crossref_primary_10_1007_s00723_018_1062_6
crossref_primary_10_1016_j_mri_2025_110445
crossref_primary_10_3390_app14219764
crossref_primary_10_1002_hbm_25630
crossref_primary_10_1016_j_neucom_2019_12_011
crossref_primary_10_1155_2012_203538
crossref_primary_10_1109_ACCESS_2023_3254136
crossref_primary_10_3390_diagnostics13061105
crossref_primary_10_1002_mp_16479
crossref_primary_10_1016_j_mri_2024_110252
crossref_primary_10_1007_s10334_024_01173_8
crossref_primary_10_1097_BRS_0000000000001075
crossref_primary_10_1016_j_compmedimag_2024_102435
crossref_primary_10_1055_s_0041_1730401
crossref_primary_10_1002_mrm_26808
crossref_primary_10_1109_TRPMS_2021_3063260
crossref_primary_10_1016_j_mri_2017_12_001
crossref_primary_10_1016_j_jmr_2020_106720
crossref_primary_10_1053_j_semperi_2015_01_002
crossref_primary_10_1148_radiol_230427
crossref_primary_10_1002_mp_17675
crossref_primary_10_1177_02841851241245104
crossref_primary_10_1016_j_radphyschem_2025_113147
crossref_primary_10_1016_j_ejrad_2021_109729
crossref_primary_10_1111_jon_12859
crossref_primary_10_1002_mp_16256
crossref_primary_10_3390_s24030753
crossref_primary_10_3174_ajnr_A8864
crossref_primary_10_1002_mrm_25854
crossref_primary_10_1088_2057_1976_ab944c
crossref_primary_10_1016_j_crad_2023_12_018
crossref_primary_10_1016_j_bspc_2025_108291
crossref_primary_10_1371_journal_pone_0202673
crossref_primary_10_1007_s11426_015_0512_0
crossref_primary_10_1097_RLI_0000000000000274
crossref_primary_10_1016_j_acra_2023_05_010
crossref_primary_10_1109_TCI_2024_3394770
crossref_primary_10_1016_j_mri_2022_01_011
crossref_primary_10_1007_s00429_019_01877_x
crossref_primary_10_1016_j_jmir_2022_04_048
crossref_primary_10_1007_s12021_024_09663_9
crossref_primary_10_1002_jmri_24521
crossref_primary_10_1016_j_neuroimage_2023_120074
crossref_primary_10_1002_jmri_24880
crossref_primary_10_3390_diagnostics14171841
crossref_primary_10_1002_mrm_27371
crossref_primary_10_1002_nbm_4297
crossref_primary_10_1016_j_acra_2025_03_018
crossref_primary_10_1016_j_mri_2017_11_011
crossref_primary_10_1002_mrm_29313
crossref_primary_10_1002_mrm_29314
crossref_primary_10_1097_RLI_0000000000000910
crossref_primary_10_1109_TMI_2017_2785879
crossref_primary_10_1186_s12968_014_0063_3
crossref_primary_10_1088_1361_6560_ab2ba8
crossref_primary_10_1007_s10278_025_01617_0
crossref_primary_10_1002_nbm_5130
crossref_primary_10_1186_s13244_024_01797_3
crossref_primary_10_1016_j_mric_2018_03_009
crossref_primary_10_3389_fnins_2021_642808
crossref_primary_10_1016_j_ejrad_2020_109430
crossref_primary_10_1007_s40042_023_01004_4
crossref_primary_10_1088_2057_1976_ac9f4e
crossref_primary_10_1002_mp_16425
crossref_primary_10_1016_j_jocmr_2025_101934
crossref_primary_10_1002_mp_14006
crossref_primary_10_1136_jitc_2022_004708
crossref_primary_10_1016_j_nic_2020_04_002
crossref_primary_10_1186_s13244_022_01195_7
crossref_primary_10_1016_j_engappai_2025_110359
crossref_primary_10_1097_RLI_0000000000000801
crossref_primary_10_1016_j_bspc_2024_107364
crossref_primary_10_1259_dmfr_20150177
crossref_primary_10_3390_diagnostics13101786
crossref_primary_10_1002_mrm_25097
crossref_primary_10_1259_bjr_20220074
crossref_primary_10_1155_2019_3706581
crossref_primary_10_1007_s13246_023_01268_x
crossref_primary_10_1016_j_mri_2025_110396
crossref_primary_10_1098_rsta_2020_0203
crossref_primary_10_1016_j_bspc_2023_104800
crossref_primary_10_1038_s41598_023_44248_7
crossref_primary_10_1055_a_1346_0028
crossref_primary_10_1109_TIP_2022_3228172
crossref_primary_10_1016_j_mric_2015_05_006
crossref_primary_10_1016_j_mri_2021_10_037
crossref_primary_10_1007_s10334_019_00794_8
crossref_primary_10_1186_s12880_023_00962_2
crossref_primary_10_1002_jmri_27801
crossref_primary_10_1007_s00330_022_08984_0
crossref_primary_10_1109_JBHI_2024_3404225
crossref_primary_10_1016_j_media_2022_102701
crossref_primary_10_1002_mrm_27143
crossref_primary_10_1002_mrm_29684
crossref_primary_10_1002_jmri_25749
crossref_primary_10_1148_radiol_2020192173
crossref_primary_10_1177_02841851231222607
crossref_primary_10_1007_s00330_023_09703_z
crossref_primary_10_1155_2021_6638588
crossref_primary_10_1097_RLI_0000000000000900
crossref_primary_10_1002_jmri_24687
crossref_primary_10_1118_1_4906247
crossref_primary_10_1002_mrm_30585
crossref_primary_10_1016_j_cmpb_2023_107463
crossref_primary_10_1016_j_mri_2012_12_003
crossref_primary_10_1002_mrm_29236
crossref_primary_10_1007_s00247_023_05760_0
crossref_primary_10_1007_s00330_015_3780_6
crossref_primary_10_1016_j_ins_2022_05_061
crossref_primary_10_1007_s00330_022_08877_2
crossref_primary_10_1002_mrm_27045
crossref_primary_10_1016_j_mri_2020_09_022
crossref_primary_10_1007_s00723_017_0951_4
crossref_primary_10_1007_s00247_022_05447_y
crossref_primary_10_1016_j_mri_2025_110381
crossref_primary_10_1016_j_mri_2023_06_020
crossref_primary_10_1111_1754_9485_12968
crossref_primary_10_1002_jmri_24105
crossref_primary_10_1016_j_mri_2013_07_007
crossref_primary_10_1007_s12975_020_00843_8
crossref_primary_10_1016_j_acra_2023_07_013
crossref_primary_10_1002_mrm_30484
crossref_primary_10_1007_s00247_015_3420_y
crossref_primary_10_1016_j_mri_2021_02_002
crossref_primary_10_1007_s10334_024_01165_8
crossref_primary_10_1016_j_yacr_2022_04_001
crossref_primary_10_1111_jon_12453
crossref_primary_10_1002_mrm_30489
crossref_primary_10_1038_s41584_021_00719_7
crossref_primary_10_1016_j_acra_2022_12_042
crossref_primary_10_1016_j_mri_2019_08_009
crossref_primary_10_1038_s41467_023_43966_w
crossref_primary_10_1002_mrm_28270
crossref_primary_10_1002_mrm_30591
crossref_primary_10_1002_mrm_30114
crossref_primary_10_1007_s00261_017_1325_y
crossref_primary_10_1016_j_bspc_2023_105810
crossref_primary_10_1016_j_jfma_2024_10_017
crossref_primary_10_1002_jmri_24338
crossref_primary_10_1002_mrm_28158
crossref_primary_10_1109_JSTSP_2020_3001525
crossref_primary_10_1016_j_ejro_2024_100617
crossref_primary_10_1002_jmri_26991
crossref_primary_10_1111_1754_9485_13714
crossref_primary_10_1118_1_4883882
crossref_primary_10_1007_s00330_023_09781_z
crossref_primary_10_3390_e22020220
crossref_primary_10_1016_j_compbiomed_2025_110224
crossref_primary_10_3348_jksr_2022_0156
crossref_primary_10_1109_JBHI_2024_3357784
crossref_primary_10_1186_s41747_024_00470_0
crossref_primary_10_1097_RLI_0b013e3182a56678
crossref_primary_10_1371_journal_pone_0286123
crossref_primary_10_1016_j_neuroimage_2016_05_079
crossref_primary_10_1002_jmri_28602
crossref_primary_10_52294_001c_91292
crossref_primary_10_1002_mrm_70047
crossref_primary_10_3390_diagnostics11081484
crossref_primary_10_3348_jksr_2016_75_2_113
crossref_primary_10_1002_ima_23191
crossref_primary_10_2174_1573405620666230524151816
crossref_primary_10_1002_jmri_27865
crossref_primary_10_3390_diagnostics11010061
crossref_primary_10_1093_pm_pnad035
crossref_primary_10_1109_TCI_2017_2707979
crossref_primary_10_1016_j_mri_2018_03_005
crossref_primary_10_1177_2058460120956644
crossref_primary_10_1016_j_acra_2024_12_055
crossref_primary_10_1097_RCT_0000000000001700
crossref_primary_10_1002_jmri_28836
crossref_primary_10_1097_RLI_0000000000000409
crossref_primary_10_1002_nbm_3116
crossref_primary_10_1371_journal_pone_0094531
crossref_primary_10_1007_s10334_025_01274_y
crossref_primary_10_1002_mrm_28738
crossref_primary_10_1007_s10489_024_06008_6
crossref_primary_10_1371_journal_pone_0288529
crossref_primary_10_1016_j_acha_2022_04_003
crossref_primary_10_1109_TBME_2024_3420174
crossref_primary_10_3390_math11132963
crossref_primary_10_3390_sym12040681
crossref_primary_10_1371_journal_pone_0163618
crossref_primary_10_1002_mrm_28526
crossref_primary_10_3390_jimaging6090086
crossref_primary_10_1162_imag_a_00060
crossref_primary_10_1109_TMI_2023_3314008
crossref_primary_10_1111_1754_9485_13649
crossref_primary_10_3389_fcvm_2023_1285206
crossref_primary_10_1063_PT_3_4408
crossref_primary_10_3389_fphy_2020_00183
crossref_primary_10_1016_j_media_2021_101959
crossref_primary_10_1016_j_neurobiolaging_2014_05_039
crossref_primary_10_1002_mrm_27789
crossref_primary_10_1371_journal_pone_0274396
crossref_primary_10_1016_j_acra_2025_05_020
crossref_primary_10_1053_j_ro_2016_05_016
crossref_primary_10_1053_j_ro_2016_05_015
crossref_primary_10_3390_sym17071020
crossref_primary_10_1016_j_clinimag_2025_110581
crossref_primary_10_3389_fneur_2022_796271
crossref_primary_10_1002_ima_23027
crossref_primary_10_1016_j_ejro_2021_100327
crossref_primary_10_1007_s00723_017_0932_7
crossref_primary_10_1016_j_ejrad_2020_109501
crossref_primary_10_1002_mrm_30624
crossref_primary_10_1007_s00723_016_0767_7
crossref_primary_10_1088_1361_6560_aad008
crossref_primary_10_1021_acs_analchem_5c00955
crossref_primary_10_1038_s41551_018_0278_y
crossref_primary_10_1016_j_jmr_2019_04_018
crossref_primary_10_3389_fphar_2023_1177421
crossref_primary_10_1016_j_ejrad_2020_109515
crossref_primary_10_3390_bioengineering10091012
crossref_primary_10_1177_08465371251357790
crossref_primary_10_1002_ima_23131
crossref_primary_10_1137_15M1033964
crossref_primary_10_1016_j_mri_2018_09_007
crossref_primary_10_3390_cancers16101827
crossref_primary_10_1109_TMI_2023_3251734
crossref_primary_10_1002_mrm_29507
crossref_primary_10_1109_TMI_2023_3297851
crossref_primary_10_1186_s12968_015_0162_9
crossref_primary_10_1007_s00330_022_08753_z
crossref_primary_10_1016_j_media_2024_103414
crossref_primary_10_1016_j_jmr_2018_02_011
crossref_primary_10_1109_TASC_2014_2332232
crossref_primary_10_1016_j_rcl_2015_01_003
crossref_primary_10_1093_neuros_nyx325
crossref_primary_10_1016_j_crad_2022_03_008
crossref_primary_10_3233_JND_160145
crossref_primary_10_1002_acm2_13919
crossref_primary_10_1186_s12880_025_01838_3
crossref_primary_10_1016_j_media_2020_101747
crossref_primary_10_1002_mrm_28201
crossref_primary_10_1002_jmri_29750
crossref_primary_10_1002_mrm_27357
crossref_primary_10_4329_wjr_v15_i9_256
crossref_primary_10_1016_j_radi_2016_01_001
crossref_primary_10_1142_S0218001425520111
crossref_primary_10_1007_s00234_025_03776_x
crossref_primary_10_1002_jmri_28653
crossref_primary_10_1002_nbm_4347
crossref_primary_10_1016_j_pnmrs_2018_06_001
crossref_primary_10_1097_RCT_0000000000001762
crossref_primary_10_1186_s12968_019_0579_7
crossref_primary_10_1016_j_mri_2021_04_009
crossref_primary_10_3390_diagnostics13203241
crossref_primary_10_1097_RCT_0000000000001648
crossref_primary_10_1002_mrm_29403
crossref_primary_10_1016_j_bspc_2025_107509
crossref_primary_10_1002_jmri_25140
crossref_primary_10_1016_j_rcl_2019_10_003
crossref_primary_10_1097_RLI_0000000000000940
crossref_primary_10_1016_j_pediatrneurol_2019_03_001
crossref_primary_10_1097_RLI_0000000000000481
crossref_primary_10_1002_jmri_24088
crossref_primary_10_1016_j_compbiomed_2019_103598
crossref_primary_10_1002_uog_22090
crossref_primary_10_1016_j_ejmp_2014_05_001
crossref_primary_10_1016_j_ejrad_2024_111633
crossref_primary_10_1109_JBHI_2024_3432139
crossref_primary_10_1016_j_bspc_2025_108071
crossref_primary_10_1097_RLI_0000000000000011
crossref_primary_10_3934_ammc_2025006
crossref_primary_10_1016_j_compbiomed_2021_104504
crossref_primary_10_1109_TCI_2024_3477329
crossref_primary_10_1016_j_mri_2024_03_022
crossref_primary_10_1227_NEU_0000000000001256
crossref_primary_10_1016_j_ejro_2025_100656
crossref_primary_10_1109_TBME_2024_3466929
crossref_primary_10_1148_rg_2020190112
crossref_primary_10_1016_j_mri_2020_06_002
crossref_primary_10_1007_s00261_024_04369_7
crossref_primary_10_1016_j_mri_2020_06_008
crossref_primary_10_1016_j_bspc_2025_108181
crossref_primary_10_1016_j_ejmp_2018_05_017
crossref_primary_10_1148_rg_210110
crossref_primary_10_1615_CritRevBiomedEng_2024056909
crossref_primary_10_3390_bioengineering10010022
crossref_primary_10_1016_j_neuroimage_2020_116876
crossref_primary_10_1002_mrm_27955
crossref_primary_10_1186_s12880_020_00505_z
crossref_primary_10_1002_jmri_28462
crossref_primary_10_1155_2017_3872783
crossref_primary_10_1002_mrm_26984
crossref_primary_10_1002_hbm_70176
crossref_primary_10_1002_mrm_25659
crossref_primary_10_1016_j_clon_2018_08_004
crossref_primary_10_1016_j_dsp_2023_104277
crossref_primary_10_1016_j_clon_2018_08_005
crossref_primary_10_1007_s13244_018_0668_4
crossref_primary_10_1016_j_radi_2023_11_010
crossref_primary_10_31159_ksmrt_2024_34_4_45
crossref_primary_10_1186_s13244_020_00868_5
crossref_primary_10_1002_mrm_28912
crossref_primary_10_1007_s11936_017_0504_z
crossref_primary_10_1002_jmri_28573
crossref_primary_10_1016_j_ejrad_2022_110191
crossref_primary_10_1038_s41583_024_00867_1
crossref_primary_10_1002_jmri_27485
crossref_primary_10_1109_TIM_2025_3546402
crossref_primary_10_1007_s00330_023_09740_8
crossref_primary_10_1038_s41598_020_70551_8
crossref_primary_10_1016_j_jocmr_2024_101051
crossref_primary_10_1016_j_mric_2022_05_005
crossref_primary_10_4187_respcare_12061
crossref_primary_10_3389_fnins_2022_919186
crossref_primary_10_3390_app13042281
crossref_primary_10_1007_s10334_023_01061_7
crossref_primary_10_1002_nbm_4416
crossref_primary_10_1007_s00256_024_04634_2
crossref_primary_10_1016_j_acra_2025_06_022
crossref_primary_10_1038_s41598_023_39533_4
crossref_primary_10_1097_RLI_0000000000000678
crossref_primary_10_1097_MD_0000000000040239
crossref_primary_10_1088_0031_9155_60_21_R297
crossref_primary_10_1002_mrm_29916
crossref_primary_10_3390_diagnostics13071306
crossref_primary_10_1371_journal_pone_0299925
crossref_primary_10_1007_s00256_021_03876_8
crossref_primary_10_1016_j_mri_2019_04_006
crossref_primary_10_1371_journal_pone_0136961
crossref_primary_10_7759_cureus_54203
crossref_primary_10_1002_jmri_29205
crossref_primary_10_1109_ACCESS_2020_3004731
crossref_primary_10_3348_jksr_2025_0004
crossref_primary_10_3389_fphys_2021_759888
crossref_primary_10_1002_mrm_28812
crossref_primary_10_1148_rg_220070
crossref_primary_10_1109_TCI_2019_2904882
crossref_primary_10_1002_nbm_4887
crossref_primary_10_1155_2013_605632
crossref_primary_10_1051_myolog_201613009
crossref_primary_10_1097_RMR_0000000000000313
crossref_primary_10_1016_j_media_2022_102479
crossref_primary_10_1162_imag_a_00306
crossref_primary_10_1002_jmri_28029
crossref_primary_10_1007_s11220_022_00377_3
crossref_primary_10_1016_j_addr_2014_07_010
crossref_primary_10_1007_s00371_020_02054_6
crossref_primary_10_3938_jkps_66_1822
crossref_primary_10_1007_s00415_018_9149_4
crossref_primary_10_1016_j_mri_2020_04_008
crossref_primary_10_1016_j_mri_2020_11_010
crossref_primary_10_7759_cureus_66205
crossref_primary_10_1007_s00234_015_1500_1
crossref_primary_10_1016_j_redii_2025_100059
crossref_primary_10_1088_1361_6579_ac067c
crossref_primary_10_3390_s21041043
crossref_primary_10_1016_j_nicl_2015_08_017
crossref_primary_10_1007_s00330_023_10226_w
crossref_primary_10_1002_mrm_26899
crossref_primary_10_1016_j_compbiomed_2019_04_028
crossref_primary_10_1007_s00330_023_09742_6
crossref_primary_10_1097_RMR_0000000000000216
crossref_primary_10_1177_0284185118796673
crossref_primary_10_1016_j_clinimag_2021_11_031
crossref_primary_10_1097_RLI_0000000000000548
Cites_doi 10.1007/978-3-540-68879-2
10.1002/mrm.1113
10.1177/1358863X09104224
10.1002/mrm.20249
10.1253/circj.CJ-09-0524
10.1016/j.mri.2010.06.008
10.1002/mrm.20401
10.1186/1532-429X-11-41
10.1002/jmri.22151
10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G
10.1148/radiol.2533081744
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1002/mrm.20641
10.1002/mrm.1910140226
10.1002/mrm.20951
10.1016/j.neuroimage.2009.07.044
10.1002/mrm.22153
10.1016/j.clinimag.2009.09.007
10.1002/mrm.10718
10.1002/jmri.22127
10.1002/mrm.22222
10.1002/mrm.1241
10.1016/j.mri.2009.05.028
10.1007/s00247-009-1438-8
10.1002/mrm.22952
10.1002/mrm.10171
10.1002/mrm.1910030509
10.1002/(SICI)1522-2594(200004)43:4<534::AID-MRM7>3.0.CO;2-J
10.1016/j.jmr.2009.06.013
10.1002/mrm.22742
10.1002/nbm.1585
10.1016/j.acra.2009.05.013
10.1016/j.mri.2009.05.042
10.1016/j.mri.2009.05.012
10.1002/1522-2594(200010)44:4<602::AID-MRM14>3.0.CO;2-5
10.1002/jmri.21964
10.1002/mrm.22115
10.1002/mrm.22456
10.1002/jmri.22557
10.1097/RLI.0b013e3181d8df32
10.1002/mrm.22618
10.1002/mrm.20490
10.3233/CH-2009-1222
10.1002/jmri.22002
10.1002/jmri.10451
10.1002/mrm.21598
10.1002/mrm.20787
10.1002/jmri.21882
10.1007/s00330-010-1797-4
10.1002/mrm.21901
10.1002/mrm.20811
10.1002/mrm.21602
10.1002/mrm.22444
10.1002/jmri.20015
10.1007/s00330-006-0259-5
10.1007/s00330-008-0993-y
10.1186/1471-2342-9-15
10.1002/jmri.22112
10.1259/bjr/26121475
10.1259/bjr/62779246
10.1002/mrm.22453
10.1002/jmri.22023
10.3748/wjg.15.5805
10.1007/s11547-010-0603-3
10.1002/mrm.20430
10.1016/j.jcmg.2010.03.009
10.1002/jmri.1880070524
10.1002/mrm.22066
10.1002/mrm.21675
10.1002/mrm.21227
10.1016/j.mri.2006.10.012
10.1002/mrm.21466
10.1002/jmri.22123
10.1002/mrm.1910180206
10.1002/hbm.10109
10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L
10.3174/ajnr.A2295
10.1016/j.ejrad.2008.11.023
10.1016/j.mri.2008.05.005
10.1097/RLI.0b013e3181aaf429
10.1186/1532-429X-13-7
10.4103/0971-6203.48719
10.1002/mrm.22387
10.1002/mrm.22114
10.1016/j.mri.2010.07.007
10.1002/jmri.20204
10.1002/mrm.21643
10.1097/RLI.0b013e3181b4c1fe
10.1002/mrm.22028
10.1148/radiol.2413042056
10.1148/radiol.2401050727
10.1002/mrm.1910160203
10.1002/mrm.10611
ContentType Journal Article
Copyright Copyright © 2012 Wiley Periodicals, Inc.
2012 Wiley Periodicals, Inc. 2012
Copyright_xml – notice: Copyright © 2012 Wiley Periodicals, Inc.
– notice: 2012 Wiley Periodicals, Inc. 2012
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/jmri.23639
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 72
ExternalDocumentID PMC4459721
22696125
10_1002_jmri_23639
JMRI23639
ark_67375_WNG_1MRMVP6D_N
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R00 EB011527
– fundername: NIBIB NIH HHS
  grantid: T32 EB007509
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c5249-2ed30aeea892a3163ff59c1058ad3ae296b79c6fef5d1ee0e5a54131f07cbffe3
IEDL.DBID WIN
ISICitedReferencesCount 464
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000305185700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-1807
1522-2586
IngestDate Tue Sep 30 16:42:35 EDT 2025
Fri Jul 11 12:30:25 EDT 2025
Thu Apr 03 07:08:22 EDT 2025
Tue Nov 18 22:13:48 EST 2025
Sat Nov 29 06:08:06 EST 2025
Wed Jan 22 16:24:33 EST 2025
Sun Sep 21 06:16:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2012 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5249-2ed30aeea892a3163ff59c1058ad3ae296b79c6fef5d1ee0e5a54131f07cbffe3
Notes istex:5C79CFC4996AB71C7BA431BE52306AA7339EA877
ArticleID:JMRI23639
ark:/67375/WNG-1MRMVP6D-N
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.23639
PMID 22696125
PQID 1020833997
PQPubID 23479
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4459721
proquest_miscellaneous_1020833997
pubmed_primary_22696125
crossref_citationtrail_10_1002_jmri_23639
crossref_primary_10_1002_jmri_23639
wiley_primary_10_1002_jmri_23639_JMRI23639
istex_primary_ark_67375_WNG_1MRMVP6D_N
PublicationCentury 2000
PublicationDate July 2012
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: July 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J. Magn. Reson. Imaging
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References McGee KP, Debbins JP, Boskamp EB, Blawat L, Angelos L, King KF. Cardiac magnetic resonance parallel imaging at 3.0 Tesla: technical feasibility and advantages. J Magn Reson Imaging 2004; 19: 291-297.
Bhat H, Yang Q, Zuehlsdorff S, Li K, Li D. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3 T using interleaved echo planar imaging. Invest Radiol 2010; 45: 458-464.
Ozturk-Isik E, Chen AP, Crane JC, et al. 3D sensitivity encoded ellipsoidal MR spectroscopic imaging of gliomas at 3T. Magn Reson Imaging 2009; 27: 1249-1257.
Gardener AG, Francis ST. Multislice perfusion of the kidneys using parallel imaging: Image acquisition and analysis strategies. Magn Reson Med 2010; 63: 1627-1636.
Dickson JD, Ash TW, Williams GB, et al. Quantitative BOLD: the effect of diffusion. J Magn Reson Imaging 2010; 32: 953-961.
Hochhegger B, Ley-Zaporozhan J, Marchiori E, et al. Magnetic resonance imaging findings in acute pulmonary embolism. Br Radiol 2011; 84: 282-287.
Uecker M, Zhang S, Frahm J. Nonlinear inverse reconstruction for real-time MRI of the human heart using undersampled radial FLASH. Magn Reson Med 2010; 63: 1456-1462.
Hoffmann A, Faber SC, Werhahn KJ, Jäger L, Reiser M. Electromyography in MRI - first recordings of peripheral nerve activation caused by fast magnetic field gradients. Magn Reson Med 2000; 43: 534-539.
Wiggins GC, Polimeni JR, Potthast A, Schmitt M, Alagappan V, Wald LL. 96-Channel receive-only head coil for 3 Tesla: design optimization and evaluation. Magn Reson Med 2009; 62: 754-762.
Muthupillai R, Douglas E, Huber S, et al. Direct comparison of sensitivity encoding (SENSE) accelerated and conventional 3D contrast enhanced magnetic resonance angiography (CE-MRA) of renal arteries: effect of increasing spatial resolution. J Magn Reson Imaging 2010; 31: 149-159.
Saam T, Raya JG, Cyran CC, et al. High resolution carotid black-blood 3T MR with parallel imaging and dedicated 4-channel surface coils. J Cardiovasc Magn Reson 2009; 11: 41.
Schmitt M, Potthast A, Sosnovik DE, et al. A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla. Magn Reson Med 2008; 59: 1431-1439.
Hoult DI, Chen CN, Sank VJ. The field dependence of NMR imaging. II. Arguments concerning an optimal field strength. Magn Reson Med 1986; 3: 730-746.
Lew C, Alley MT, Spielman DM, Bammer R, Chan FP. Breathheld autocalibrated phase-contrast imaging. J Magn Reson Imaging 2010; 31: 1004-1014.
Theisen D, Sandner TA, Bauner K, et al. Unsupervised fully automated inline analysis of global left ventricular function in CINE MR imaging. Invest Radiol 2009; 44: 463-468.
Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990; 16: 192-225.
Wintersperger BJ, Sincleair S, Runge VM, et al. Dual breath-hold magnetic resonance cine evaluation of global and regional cardiac function. Eur Radiol 2007; 17: 73-80.
Song T, Laine AF, Chen Q, et al. Optimal k-space sampling for dynamic contrast-enhanced MRI with an application to MR renography. Magn Reson Med 2009; 61: 1242-1248.
Han M, Beatty PJ, Daniel BL, Hargreaves BA. Independent slab-phase modulation combined with parallel imaging in bilateral breast MRI. Magn Reson Med 2009; 62: 1221-1231.
Heidemann RM, Griswold MA, Seiberlich N, et al. Fast method for 1D non-Cartesian parallel imaging using GRAPPA. Magn Reson Med 2007; 57: 1037-1046.
Plathow C, Schoebinger M, Fink C, et al. Quantification of lung tumor volume and rotation at 3D dynamic parallel MR imaging with view sharing: preliminary results. Radiology 2006; 240: 537-545.
Ying L, Xu D, Liang ZP. On Tikhonov regularization for image reconstruction in parallel MRI. Conf Proc IEEE Eng Med Biol Soc 2004; 2: 1056-1059.
Sandrasegaran K, Akisik FM, Lin C, Tahir B, Rajan J, Aisen AM. The value of diffusion-weighted imaging in characterizing focal liver masses. Acad Radiol 2009; 16: 1208-1214.
Wiener E, Pfirrmann CW, Hodler J. Spatial variation in T1 of healthy human articular cartilage of the knee joint. Br J Radiol 2010; 83: 476-485.
Hargreaves BA, Chen W, Lu W, et al. Accelerated slice encoding for metal artifact correction. J Magn Reson Imaging 2010; 31: 987-996.
Boujraf S, Summers P, Belahsen F, Prüssmann K, Kollias S. Ultrafast bold fMRI using single-shot spin-echo echo planar imaging. J Med Phys 2009; 34: 37-42.
Ham CL, Engels JM, van de Wiel GT, Machielsen A. Peripheral nerve stimulation during MRI: effects of high gradient amplitudes and switching rates. J Magn Reson Imaging 1997; 7: 933-937.
Guarise A, Faccioli N, Foti G, Da Pozzo S, Meneghetti P, Morana G. Role of echocardiography and cardiac MRI in depicting morphological and functional imaging findings useful for diagnosing hypertrophic cardiomyopathy. Radiol Med 2011; 116: 197-210.
Bydder M, Jung Y. A nonlinear regularization strategy for GRAPPA calibration. Magn Reson Imaging 2009; 27: 137-141.
Paolantonio P, Ferrari R, Vecchietti F, Cucchiara S, Laghi A. Current status of MR imaging in the evaluation of IBD in a pediatric population of patients. Eur J Radiol 2009; 69: 418-424.
Haider CR, Hu HH, Campeau NG, Huston J3rd, Riederer SJ. 3D high temporal and spatial resolution contrast-enhanced MR angiography of the whole brain. Magn Reson Med 2008; 60: 749-760.
Heberlein K, Xiaoping H. Auto-calibrated parallel spiral imaging. Magn Reson Med 2006; 55: 619-625.
Sander TA, Houck P, Runge VM, et al. Accuracy of accelerated cine MR imaging at 3 Tesla in longitudinal follow-up of cardiac function. Eur Radiol 2008; 18: 2095-2101.
Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med 2001; 45: 846-852.
Hayes CE, Hattes N, Roemer PB. Volume imaging with MR phased arrays. Magn Reson Med 1991; 18: 309-319.
Kukuk GM, Hadizadeh DR, Gieseke J, et al. Highly undersampled supraaortic MRA at 3.0T: initial results with parallel imaging in two directions using a 16-channel neurovascular coil and parallel imaging factors up to 16. Magn Reson Imaging 2010; 28: 1311-1318.
Chappell M, Haberg AK, Kristoffersen A. Balanced stead-state free precession with parallel imaging gives distortion-free fMRI with high temporal resolution. Magn Reson Imaging 2011; 29: 1-8.
Lowry M, Zelhof B, Liney GP, Gibbs P, Pickles MD, Turnbull LW. Analysis of prostate DCE-MRI: comparison of fast exchange limit and fast exchange regimen pharmacokinetic models in the discrimination of malignant from normal tissue. Invest Radiol 2009; 44: 577-84.
Pruessmann KP, Weiger M, Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001; 46: 638-651.
Manka R, Vitanis V, Boesiger P, Flammer AJ, Plein S, Kozerke S. Clinical feasibility of accelerated, high spatial resolution myocardial perfusion imaging. JACC Cardiovasc Imaging 2010; 3: 718-719.
Lindholm TL, Botes L, Engman EL, et al. Parallel imaging: is GRAPPA a useful acquisition tool for MR imaging intended for volumetric brain analysis? BMC Med Imaging 2009; 9: 15.
Breuer FA, Blaimer M, Mueller MF, et al. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med 2006; 55: 549-556.
Breuer FA, Kannengiesser SAR, Blaimer M, Seiberlich N, Jakob PM, Griswold MA. General formulation for quantitative G-factor calculation in GRAPPA reconstructions. Magn Reson Med 2009; 62: 739-746.
Yu J, Schär M, Vonken EJ, Kelle S, Stuber M. Improved SNR efficiency in gradient echo coronary MRA with high temporal resolution using parallel imaging. Magn Reson Med 2009; 62: 1211-1220.
Breuer FA, Kellman P, Griswold MA, Jakob PM. Dynamic autocalibrated parallel imaging using temporal GRAPPA (TGRAPPA). Magn Reson Med 2005; 53: 981-985.
Krishnamurthy R, Pednekar A, Cheong B, Muthupillai R. High temporal resolution SSFP cine MRI for estimation of left ventricular diastolic parameters. J Magn Reson Imaging 2010; 31: 872-880.
Griswold MA, Kannengiesser S, Heidemann RM, Wang J, Jakob PM. Field-of-view limitations in parallel imaging. Magn Reson Med 2004; 52: 1118-1126.
Lin J, Li D, Yan F. High-resolution 3D contrast-enhanced MRA with parallel imaging techniques before endovascular interventional treatment of arterial stenosis. Vasc Med 2009; 14: 305-311.
Breuer F, Moriguchi H, Seiberlich N, et al. Zigzag sampling for improved parallel imaging. Magn Reson Med 2008; 60: 474-478.
Ishida M, Kato S, Sakuma H. Cardiac MRI in ischemic heart disease. Circ J 2009; 73: 1577-1588.
Macarini L, Stoppino LP, Milillo P, Ciuffreda P, Fortunato F, Vinci R. Diffusion-weighted MRI with parallel imaging technique: apparent diffusion coefficient determination in normal kidneys and in nonmalignant renal diseases. Clin Imaging 2010; 34: 432-440.
Ye Y, Zhuo Y, Xue R, Zhou XJ. BOLD fMRI using a modified HASTE sequence. Neuroimage 2010; 49: 457-466.
Tan ET, Huston J3rd, Campeau NG, Riederer SJ. Fast inversion recovery magnetic resonance angiography of the intracranial arteries. Magn Reson Med 2010; 63: 1648-1658.
Goldfarb JW. The SENSE ghost: field-of-view restrictions for SENSE imaging. J Magn Reson Imaging 2004; 20: 1046-1051.
Ritter CO, Wilke A, Wichmann T, Beer M, Hahn D, Köstler H. Comparison of intravascular and extracellular contrast media for absolute quantification of myocardial rest-perfusion using high-resolution MRI. J Magn Reson Imaging 2011; 33: 1047-1051.
Paschal CB, Morris CB. K-space in the clinic. J Magn Reson Imaging 2004; 19: 145-159.
Hope TA, Hope MD, Purcell DD, et al. Evaluation of intracranial stenosis and aneurysms with accelerated 4D flow. Magn Reson Imaging 2010; 28: 41-46.
Carmichael DW, Thomas DL, Ordidge RJ. Reducing ghosting due to k-space discontinuities in fast spin echo (FSE) imaging by a new combination of k-space ordering and parallel imaging. J Magn Reson 2009; 200: 119-125.
Cohen MS, Weisskoff RM, Rzedzian RR, Kantor HL. Sensory stimulation by time-varying magnetic fields. Magn Reson Med 1990; 14: 409-414.
Markl M, Kilner PJ, Ebbers T. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardio
2011; 116
2009; 44
1991; 18
2004; 20
2009; 43
1990; 14
1990; 16
2000; 43
2000; 44
1999; 42
2011; 13
2003; 19
2004; 2
2001; 45
2003; 50
2001; 46
2010; 63
1997; 7
2010; 23
2009; 11
2002; 47
2009; 14
2010; 20
2010; 64
2001
2010; 28
1986; 3
2006; 240
2009; 122
2009; 200
2011; 66
2011; 65
2006; 241
2010; 3
2008; 60
2011; 29
2009; 16
2007; 25
2009; 15
2007; 17
2010; 34
2009; 69
2010; 32
2010; 31
2009; 62
2006; 56
2009; 61
2006; 55
2008; 18
2011; 84
2009; 253
2008; 59
2007
2011; 33
2011; 32
2004
2003
2009; 27
2007; 57
2010; 40
2010; 83
2010; 45
2009; 34
2004; 52
2009; 30
2010; 49
2004; 51
2009; 73
2004; 19
2005; 53
2009; 9
2005; 54
e_1_2_12_2_2
e_1_2_12_17_2
e_1_2_12_59_2
e_1_2_12_20_2
e_1_2_12_43_2
e_1_2_12_62_2
e_1_2_12_85_2
e_1_2_12_24_2
e_1_2_12_47_2
e_1_2_12_66_2
e_1_2_12_89_2
e_1_2_12_81_2
e_1_2_12_100_2
e_1_2_12_28_2
Fellner C (e_1_2_12_56_2) 2009; 43
e_1_2_12_31_2
e_1_2_12_54_2
e_1_2_12_73_2
e_1_2_12_96_2
e_1_2_12_35_2
e_1_2_12_58_2
e_1_2_12_77_2
e_1_2_12_12_2
e_1_2_12_6_2
e_1_2_12_50_2
e_1_2_12_92_2
e_1_2_12_3_2
e_1_2_12_18_2
e_1_2_12_37_2
e_1_2_12_40_2
e_1_2_12_86_2
e_1_2_12_21_2
e_1_2_12_63_2
e_1_2_12_44_2
e_1_2_12_25_2
e_1_2_12_67_2
e_1_2_12_82_2
e_1_2_12_48_2
e_1_2_12_29_2
e_1_2_12_51_2
e_1_2_12_97_2
e_1_2_12_32_2
e_1_2_12_74_2
e_1_2_12_55_2
e_1_2_12_36_2
e_1_2_12_78_2
e_1_2_12_13_2
e_1_2_12_7_2
e_1_2_12_93_2
e_1_2_12_70_2
e_1_2_12_4_2
e_1_2_12_19_2
e_1_2_12_15_2
e_1_2_12_38_2
e_1_2_12_41_2
e_1_2_12_64_2
e_1_2_12_87_2
Ying L (e_1_2_12_26_2) 2004; 2
e_1_2_12_22_2
e_1_2_12_45_2
Yang J (e_1_2_12_52_2) 2009; 122
e_1_2_12_68_2
e_1_2_12_60_2
e_1_2_12_83_2
e_1_2_12_49_2
e_1_2_12_102_2
e_1_2_12_75_2
e_1_2_12_98_2
e_1_2_12_33_2
e_1_2_12_79_2
e_1_2_12_14_2
e_1_2_12_90_2
e_1_2_12_10_2
e_1_2_12_71_2
e_1_2_12_94_2
e_1_2_12_8_2
e_1_2_12_5_2
e_1_2_12_16_2
e_1_2_12_39_2
e_1_2_12_65_2
e_1_2_12_42_2
e_1_2_12_84_2
e_1_2_12_23_2
e_1_2_12_69_2
e_1_2_12_46_2
e_1_2_12_88_2
e_1_2_12_61_2
e_1_2_12_80_2
e_1_2_12_27_2
e_1_2_12_101_2
e_1_2_12_30_2
e_1_2_12_76_2
e_1_2_12_53_2
e_1_2_12_95_2
e_1_2_12_34_2
e_1_2_12_57_2
e_1_2_12_99_2
e_1_2_12_11_2
e_1_2_12_72_2
e_1_2_12_9_2
e_1_2_12_91_2
20099345 - J Magn Reson Imaging. 2010 Feb;31(2):328-38
18583080 - Magn Reson Imaging. 2009 Jan;27(1):137-41
2046514 - Magn Reson Med. 1991 Apr;18(2):309-19
20981502 - Radiol Med. 2011 Mar;116(2):197-210
10748428 - Magn Reson Med. 2000 Apr;43(4):534-9
21235751 - J Cardiovasc Magn Reson. 2011;13:7
19230014 - Magn Reson Med. 2009 May;61(5):1242-8
19650898 - BMC Med Imaging. 2009;9:15
20373397 - Magn Reson Med. 2010 Apr;63(4):959-69
20512866 - Magn Reson Med. 2010 Jun;63(6):1627-36
19608435 - Acad Radiol. 2009 Oct;16(10):1208-14
14587014 - Magn Reson Med. 2003 Nov;50(5):1031-42
19949945 - Pediatr Radiol. 2010 Feb;40(2):223-7
20882626 - J Magn Reson Imaging. 2010 Oct;32(4):953-61
17540280 - Magn Reson Imaging. 2007 Jun;25(5):678-83
16826608 - Magn Reson Med. 2006 Aug;56(2):317-26
9307922 - J Magn Reson Imaging. 1997 Sep-Oct;7(5):933-7
20864288 - Magn Reson Imaging. 2011 Jan;29(1):1-8
20665794 - Magn Reson Med. 2010 Aug;64(2):501-13
2345521 - Magn Reson Med. 1990 May;14(2):409-14
20872865 - Magn Reson Med. 2011 Feb;65(2):492-505
20432039 - Eur Radiol. 2010 Sep;20(9):2194-9
16801367 - Radiology. 2006 Aug;240(2):537-45
18463873 - Eur Radiol. 2008 Oct;18(10):2095-101
19723767 - Br J Radiol. 2010 Jun;83(990):476-85
17534925 - Magn Reson Med. 2007 Jun;57(6):1037-46
15723404 - Magn Reson Med. 2005 Mar;53(3):684-91
20027583 - J Magn Reson Imaging. 2010 Jan;31(1):149-59
18506789 - Magn Reson Med. 2008 Jun;59(6):1431-9
19668002 - Invest Radiol. 2009 Sep;44(9):577-84
12111967 - Magn Reson Med. 2002 Jun;47(6):1202-10
11323811 - Magn Reson Med. 2001 May;45(5):846-52
19144484 - Eur J Radiol. 2009 Mar;69(3):418-24
19713602 - Clin Hemorheol Microcirc. 2009;43(1-2):71-82
10542355 - Magn Reson Med. 1999 Nov;42(5):952-62
21092872 - Clin Imaging. 2010 Nov-Dec;34(6):432-40
19860875 - J Cardiovasc Magn Reson. 2009;11:41
19789238 - Radiology. 2009 Dec;253(3):831-43
18727101 - Magn Reson Med. 2008 Sep;60(3):749-60
20479653 - Invest Radiol. 2010 Aug;45(8):458-64
20692783 - Magn Reson Imaging. 2010 Nov;28(9):1311-8
11590639 - Magn Reson Med. 2001 Oct;46(4):638-51
19561514 - Invest Radiol. 2009 Aug;44(8):463-8
18058935 - Magn Reson Med. 2008 Jan;59(1):156-64
16453323 - Magn Reson Med. 2006 Mar;55(3):619-25
19781294 - Chin Med J (Engl). 2009 Sep 20;122(18):2111-6
20126564 - J Med Phys. 2009 Jan;34(1):37-42
10800033 - Magn Reson Med. 2000 May;43(5):682-90
15906283 - Magn Reson Med. 2005 Jun;53(6):1383-92
19577400 - Magn Reson Imaging. 2010 Jan;28(1):41-6
10542356 - Magn Reson Med. 1999 Nov;42(5):963-9
2266841 - Magn Reson Med. 1990 Nov;16(2):192-225
19780151 - Magn Reson Med. 2009 Nov;62(5):1211-20
19667487 - Circ J. 2009 Sep;73(9):1577-88
14745747 - J Magn Reson Imaging. 2004 Feb;19(2):145-59
11025516 - Magn Reson Med. 2000 Oct;44(4):602-9
20373447 - J Magn Reson Imaging. 2010 Apr;31(4):1004-14
21509860 - J Magn Reson Imaging. 2011 May;33(5):1047-51
15508164 - Magn Reson Med. 2004 Nov;52(5):1118-26
17271864 - Conf Proc IEEE Eng Med Biol Soc. 2004;2:1056-9
20373431 - J Magn Reson Imaging. 2010 Apr;31(4):872-80
21087938 - AJNR Am J Neuroradiol. 2011 Feb;32(2):331-8
20512847 - Magn Reson Med. 2010 Jun;63(6):1456-62
14994296 - J Magn Reson Imaging. 2004 Mar;19(3):291-7
18666134 - Magn Reson Med. 2008 Aug;60(2):474-8
19623621 - Magn Reson Med. 2009 Sep;62(3):754-62
15799044 - Magn Reson Med. 2005 Apr;53(4):981-5
21590804 - Magn Reson Med. 2011 Jun;65(6):1711-7
20373445 - J Magn Reson Imaging. 2010 Apr;31(4):987-96
17032908 - Radiology. 2006 Dec;241(3):880-91
21224294 - Br J Radiol. 2011 Mar;84(999):282-7
19585608 - Magn Reson Med. 2009 Sep;62(3):739-46
12768534 - Hum Brain Mapp. 2003 Jun;19(2):96-111
20799371 - NMR Biomed. 2010 Oct;23(8):986-94
15558553 - J Magn Reson Imaging. 2004 Dec;20(6):1046-51
20633848 - JACC Cardiovasc Imaging. 2010 Jul;3(7):710-7
16633789 - Eur Radiol. 2007 Jan;17(1):73-80
19766422 - Magn Reson Imaging. 2009 Nov;27(9):1249-57
21523823 - Magn Reson Med. 2011 Dec;66(6):1682-8
16193468 - Magn Reson Med. 2005 Nov;54(5):1172-84
19998501 - World J Gastroenterol. 2009 Dec 14;15(46):5805-12
19780156 - Magn Reson Med. 2009 Nov;62(5):1221-31
19608444 - J Magn Reson. 2009 Sep;200(1):119-25
19711408 - J Magn Reson Imaging. 2009 Sep;30(3):541-6
18429026 - Magn Reson Med. 2008 May;59(5):1127-37
19643187 - Neuroimage. 2010 Jan 1;49(1):457-66
16408271 - Magn Reson Med. 2006 Mar;55(3):549-56
19808715 - Vasc Med. 2009 Nov;14(4):305-11
19553054 - Magn Reson Imaging. 2009 Nov;27(9):1242-8
19856443 - J Magn Reson Imaging. 2009 Nov;30(5):1093-100
3784890 - Magn Reson Med. 1986 Oct;3(5):730-46
15004798 - Magn Reson Med. 2004 Mar;51(3):559-67
20512868 - Magn Reson Med. 2010 Jun;63(6):1648-58
19780155 - Magn Reson Med. 2009 Dec;62(6):1557-64
References_xml – reference: Paolantonio P, Ferrari R, Vecchietti F, Cucchiara S, Laghi A. Current status of MR imaging in the evaluation of IBD in a pediatric population of patients. Eur J Radiol 2009; 69: 418-424.
– reference: Uecker M, Zhang S, Voit D, Karaus A, Merboldt KD, Frahm J. Real-time MRI at a resolution of 20 ms. NMR Biomed 2010; 23: 986-994.
– reference: Plathow C, Schoebinger M, Fink C, et al. Quantification of lung tumor volume and rotation at 3D dynamic parallel MR imaging with view sharing: preliminary results. Radiology 2006; 240: 537-545.
– reference: Manka R, Vitanis V, Boesiger P, Flammer AJ, Plein S, Kozerke S. Clinical feasibility of accelerated, high spatial resolution myocardial perfusion imaging. JACC Cardiovasc Imaging 2010; 3: 718-719.
– reference: Hayes CE, Hattes N, Roemer PB. Volume imaging with MR phased arrays. Magn Reson Med 1991; 18: 309-319.
– reference: Gardener AG, Francis ST. Multislice perfusion of the kidneys using parallel imaging: Image acquisition and analysis strategies. Magn Reson Med 2010; 63: 1627-1636.
– reference: Saam T, Raya JG, Cyran CC, et al. High resolution carotid black-blood 3T MR with parallel imaging and dedicated 4-channel surface coils. J Cardiovasc Magn Reson 2009; 11: 41.
– reference: Breuer FA, Kellman P, Griswold MA, Jakob PM. Dynamic autocalibrated parallel imaging using temporal GRAPPA (TGRAPPA). Magn Reson Med 2005; 53: 981-985.
– reference: Sharif B, Derbyshire JA, Faranesh AZ, Bresler Y. Patient-adaptive reconstruction and acquisition in dynamic imaging with sensitivity encoding (PARADISE). Magn Reson Med 2010; 64: 501-513.
– reference: Ishida M, Kato S, Sakuma H. Cardiac MRI in ischemic heart disease. Circ J 2009; 73: 1577-1588.
– reference: Filippi CG, Andrews T, Gonyea JV, Linnell G, Cauley KA. Magnetic resonance diffusion tensor imaging and tractography of the lower spinal cord: application to diastematomyelia and tethered cord. Eur Radiol 2010; 20: 2194-2199.
– reference: Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47: 1202-1210.
– reference: Kellman P, Chefd'hotel C, Lorenz CH, Mancini C, Arai AE, McVeign ER. High spatial and temporal resolution cardiac cine MRI from retrospective reconstruction of data acquired in real time using motion correction and resorting. Magn Reson Med 2009; 62: 1557-1564.
– reference: Hoffmann A, Faber SC, Werhahn KJ, Jäger L, Reiser M. Electromyography in MRI - first recordings of peripheral nerve activation caused by fast magnetic field gradients. Magn Reson Med 2000; 43: 534-539.
– reference: Krishnamurthy R, Pednekar A, Cheong B, Muthupillai R. High temporal resolution SSFP cine MRI for estimation of left ventricular diastolic parameters. J Magn Reson Imaging 2010; 31: 872-880.
– reference: Markl M, Kilner PJ, Ebbers T. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2011; 13: 7.
– reference: Bhat H, Yang Q, Zuehlsdorff S, Li K, Li D. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3 T using interleaved echo planar imaging. Invest Radiol 2010; 45: 458-464.
– reference: Griswold MA, Jakob PM, Nittka M, Goldfarb JW, Haase A. Partially parallel imaging with localized sensitivities (PILS). Magn Reson Med 2000; 44: 602-609.
– reference: Hochhegger B, Ley-Zaporozhan J, Marchiori E, et al. Magnetic resonance imaging findings in acute pulmonary embolism. Br Radiol 2011; 84: 282-287.
– reference: Yu J, Schär M, Vonken EJ, Kelle S, Stuber M. Improved SNR efficiency in gradient echo coronary MRA with high temporal resolution using parallel imaging. Magn Reson Med 2009; 62: 1211-1220.
– reference: Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med 2001; 45: 846-852.
– reference: Goldfarb JW. The SENSE ghost: field-of-view restrictions for SENSE imaging. J Magn Reson Imaging 2004; 20: 1046-1051.
– reference: Uecker M, Zhang S, Frahm J. Nonlinear inverse reconstruction for real-time MRI of the human heart using undersampled radial FLASH. Magn Reson Med 2010; 63: 1456-1462.
– reference: Guarise A, Faccioli N, Foti G, Da Pozzo S, Meneghetti P, Morana G. Role of echocardiography and cardiac MRI in depicting morphological and functional imaging findings useful for diagnosing hypertrophic cardiomyopathy. Radiol Med 2011; 116: 197-210.
– reference: Han M, Beatty PJ, Daniel BL, Hargreaves BA. Independent slab-phase modulation combined with parallel imaging in bilateral breast MRI. Magn Reson Med 2009; 62: 1221-1231.
– reference: Lin FH, Kwong KK, Belliveau JW, Wald LL. Parallel imaging reconstruction using automatic regularization. Magn Reson Med 2004; 51: 559-567.
– reference: Ritter CO, Wilke A, Wichmann T, Beer M, Hahn D, Köstler H. Comparison of intravascular and extracellular contrast media for absolute quantification of myocardial rest-perfusion using high-resolution MRI. J Magn Reson Imaging 2011; 33: 1047-1051.
– reference: Henzler T, Dietrich O, Krissak R, et al. Half-Fourier-acquisition single-shot turbo spin-echo (HASTE) MRI of the lung at 3 Tesla using parallel imaging with 32-receiver channel technology. J Magn Reson Imaging 2009; 30: 541-546.
– reference: Lew C, Alley MT, Spielman DM, Bammer R, Chan FP. Breathheld autocalibrated phase-contrast imaging. J Magn Reson Imaging 2010; 31: 1004-1014.
– reference: McGee KP, Debbins JP, Boskamp EB, Blawat L, Angelos L, King KF. Cardiac magnetic resonance parallel imaging at 3.0 Tesla: technical feasibility and advantages. J Magn Reson Imaging 2004; 19: 291-297.
– reference: Hayat TTA, Nihat A, Martinez-Biarge M, et al. Optimization and initial experience of a multisection balanced steady-state free precession cine sequence for the assessment of fetal behavior in utero. AJNR Am J Neuroradiol 2011; 32: 331-338.
– reference: Breuer FA, Blaimer M, Mueller MF, et al. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med 2006; 55: 549-556.
– reference: Carmichael DW, Thomas DL, Ordidge RJ. Reducing ghosting due to k-space discontinuities in fast spin echo (FSE) imaging by a new combination of k-space ordering and parallel imaging. J Magn Reson 2009; 200: 119-125.
– reference: Pruessmann KP, Weiger M, Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001; 46: 638-651.
– reference: Fellner C, Doenitz C, Finkenzeller T, Jung EM, Rennert J, Schlaier J. Improving the spatial accuracy in functional magnetic resonance imaging (fMRI) based on the blood oxygenation level dependent (BOLD) effect: benefits from parallel imaging and a 32-channel head array coil at 1.5 Tesla. Clin Hemorheol Microcirc 2009; 43: 71-82.
– reference: Hargreaves BA, Chen W, Lu W, et al. Accelerated slice encoding for metal artifact correction. J Magn Reson Imaging 2010; 31: 987-996.
– reference: Haider CR, Hu HH, Campeau NG, Huston J3rd, Riederer SJ. 3D high temporal and spatial resolution contrast-enhanced MR angiography of the whole brain. Magn Reson Med 2008; 60: 749-760.
– reference: Lin J, Li D, Yan F. High-resolution 3D contrast-enhanced MRA with parallel imaging techniques before endovascular interventional treatment of arterial stenosis. Vasc Med 2009; 14: 305-311.
– reference: Griswold MA, Kannengiesser S, Heidemann RM, Wang J, Jakob PM. Field-of-view limitations in parallel imaging. Magn Reson Med 2004; 52: 1118-1126.
– reference: Seiberlich N, Lee G, Ehses P, Duerk JL, Gilkeson R, Griswold M. Improved temporal resolution in cardiac imaging using through-time spiral GRAPPA. Magn Reson Med 2011; 66: 1682-1688.
– reference: Sander TA, Houck P, Runge VM, et al. Accuracy of accelerated cine MR imaging at 3 Tesla in longitudinal follow-up of cardiac function. Eur Radiol 2008; 18: 2095-2101.
– reference: Kukuk GM, Hadizadeh DR, Gieseke J, et al. Highly undersampled supraaortic MRA at 3.0T: initial results with parallel imaging in two directions using a 16-channel neurovascular coil and parallel imaging factors up to 16. Magn Reson Imaging 2010; 28: 1311-1318.
– reference: Irwan R, Lubbers DD, van der Vleuten PA, Kappert P, Götte MJ, Sijens PE. Parallel imaging for first-pass myocardial perfusion. Magn Reson Imaging 2007; 25: 678-83.
– reference: Dickson JD, Ash TW, Williams GB, et al. Quantitative BOLD: the effect of diffusion. J Magn Reson Imaging 2010; 32: 953-961.
– reference: Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-962.
– reference: Lowry M, Zelhof B, Liney GP, Gibbs P, Pickles MD, Turnbull LW. Analysis of prostate DCE-MRI: comparison of fast exchange limit and fast exchange regimen pharmacokinetic models in the discrimination of malignant from normal tissue. Invest Radiol 2009; 44: 577-84.
– reference: Ying L, Xu D, Liang ZP. On Tikhonov regularization for image reconstruction in parallel MRI. Conf Proc IEEE Eng Med Biol Soc 2004; 2: 1056-1059.
– reference: Schmiedeskamp H, Newbould RD, Pisani LJ, et al. Improvements in parallel imaging accelerated functional MRI using multi-echo echo-planar imaging. Magn Reson Med 2010; 63: 959-969.
– reference: Muthupillai R, Douglas E, Huber S, et al. Direct comparison of sensitivity encoding (SENSE) accelerated and conventional 3D contrast enhanced magnetic resonance angiography (CE-MRA) of renal arteries: effect of increasing spatial resolution. J Magn Reson Imaging 2010; 31: 149-159.
– reference: Chappell M, Haberg AK, Kristoffersen A. Balanced stead-state free precession with parallel imaging gives distortion-free fMRI with high temporal resolution. Magn Reson Imaging 2011; 29: 1-8.
– reference: Lindholm TL, Botes L, Engman EL, et al. Parallel imaging: is GRAPPA a useful acquisition tool for MR imaging intended for volumetric brain analysis? BMC Med Imaging 2009; 9: 15.
– reference: Seiberlich N, Ehses P, Duerk J, Gilkeson R, Griswold M. Improved radial GRAPPA calibration for real-time free-breathing cardiac imaging. Magn Reson Med 2011; 65: 492-505.
– reference: Cohen MS, Weisskoff RM, Rzedzian RR, Kantor HL. Sensory stimulation by time-varying magnetic fields. Magn Reson Med 1990; 14: 409-414.
– reference: Hope TA, Hope MD, Purcell DD, et al. Evaluation of intracranial stenosis and aneurysms with accelerated 4D flow. Magn Reson Imaging 2010; 28: 41-46.
– reference: Yeh EN, McKenzie CA, Ohliger MA, Sodickson DK. Parallel magnetic resonance imaging with adaptive radius in k-space (PARS): constrained image reconstruction using k-space locality in radiofrequency coil encoded data. Magn Reson Med 2005; 53: 1383-1392.
– reference: Schmitt M, Potthast A, Sosnovik DE, et al. A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla. Magn Reson Med 2008; 59: 1431-1439.
– reference: Wiggins GC, Polimeni JR, Potthast A, Schmitt M, Alagappan V, Wald LL. 96-Channel receive-only head coil for 3 Tesla: design optimization and evaluation. Magn Reson Med 2009; 62: 754-762.
– reference: Ye Y, Zhuo Y, Xue R, Zhou XJ. BOLD fMRI using a modified HASTE sequence. Neuroimage 2010; 49: 457-466.
– reference: Breuer F, Moriguchi H, Seiberlich N, et al. Zigzag sampling for improved parallel imaging. Magn Reson Med 2008; 60: 474-478.
– reference: Sandrasegaran K, Akisik FM, Lin C, Tahir B, Rajan J, Aisen AM. The value of diffusion-weighted imaging in characterizing focal liver masses. Acad Radiol 2009; 16: 1208-1214.
– reference: Azuma T, Nakai R, Takizawa O, Tsutsumi S. In vivo structural analysis of articular cartilage using diffusion tensor magnetic resonance imaging. Magn Reson Imaging 2009; 27: 1242-1248.
– reference: Breuer FA, Kannengiesser SAR, Blaimer M, Seiberlich N, Jakob PM, Griswold MA. General formulation for quantitative G-factor calculation in GRAPPA reconstructions. Magn Reson Med 2009; 62: 739-746.
– reference: Marshall H, Devine PM, Shanmugaratnam N, et al. Evaluation of multicoil breast arrays for parallel imaging. J Magn Reson Imaging 2010; 31: 328-338.
– reference: Schönberg SO, Dietrich O, Reisner MF, editors. Parallel imaging in clinical MR applications. Berlin: Springer; 2007.
– reference: Pipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999; 42: 963-969.
– reference: Seiberlich N, Breuer F, Heidemann R, Blaimer M, Griswold M, Jakob P. Reconstruction of undersampled non-Cartesian data sets using pseudo-Cartesian GRAPPA in conjunction with GROG. Magn Reson Med 2008; 59: 1127-1137.
– reference: Lin FH, Chen YJ, Belliveau JW, Wald LL. A wavelet-based approximation of surface coil sensitivity profiles for correction of image intensity inhomogeneity and parallel imaging reconstruction. Hum Brain Mapp 2003; 19: 96-111.
– reference: Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 2003; 50: 1031-1042.
– reference: Hoult DI, Chen CN, Sank VJ. The field dependence of NMR imaging. II. Arguments concerning an optimal field strength. Magn Reson Med 1986; 3: 730-746.
– reference: Tan ET, Huston J3rd, Campeau NG, Riederer SJ. Fast inversion recovery magnetic resonance angiography of the intracranial arteries. Magn Reson Med 2010; 63: 1648-1658.
– reference: Theisen D, Sandner TA, Bauner K, et al. Unsupervised fully automated inline analysis of global left ventricular function in CINE MR imaging. Invest Radiol 2009; 44: 463-468.
– reference: Walsh DO, Gmitro AF, Marcellin MW. Adaptive reconstruction of phased array MR imagery. Magn Reson Med 2000; 43: 682-690.
– reference: Huang F, Akao J, Vijayakumar S, Duensing GR, Limkeman M. k-t GRAPPA: a k-space implementation for dynamic MRI with high reduction factor. Magn Reson Med 2005; 54: 1172-1184.
– reference: Haider CR, Glockner JF, Stanson AW, Riederer SJ. Peripheral vasculature: high-temporal- and high-spatial-resolution three-dimensional contrast-enhanced MR angiography. Radiology 2009; 253: 831-843.
– reference: Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990; 16: 192-225.
– reference: Samsonov AA. On optimality of parallel MRI reconstruction in k-space. Magn Reson Med 2008; 59: 156-164.
– reference: Bydder M, Jung Y. A nonlinear regularization strategy for GRAPPA calibration. Magn Reson Imaging 2009; 27: 137-141.
– reference: Yang J, Wang W, Wang YR, Niu G, Jin CW, Wu EX. A free-breathing non-contrast-enhanced pulmonary magnetic resonance angiography at 3 Tesla. Chin Med J (Engl) 2009; 122: 2111-2116.
– reference: Breuer FA, Blaimer M, Heidemann RM, Mueller MF, Griswold MA, Jakob PM. Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med 2005; 53: 684-691.
– reference: Lum DP, Busse RF, Francois CJ, et al. Increased volume coverage for abdominal contrast-enhanced MR angiography with two-dimensional autocalibrating parallel imaging: initial experience at 3.0 Tesla. J Magn Reson Imaging 2009; 30: 1093-1100.
– reference: Heberlein K, Xiaoping H. Auto-calibrated parallel spiral imaging. Magn Reson Med 2006; 55: 619-625.
– reference: Paschal CB, Morris CB. K-space in the clinic. J Magn Reson Imaging 2004; 19: 145-159.
– reference: Heidemann RM, Griswold MA, Seiberlich N, et al. Fast method for 1D non-Cartesian parallel imaging using GRAPPA. Magn Reson Med 2007; 57: 1037-1046.
– reference: Ham CL, Engels JM, van de Wiel GT, Machielsen A. Peripheral nerve stimulation during MRI: effects of high gradient amplitudes and switching rates. J Magn Reson Imaging 1997; 7: 933-937.
– reference: Wintersperger BJ, Sincleair S, Runge VM, et al. Dual breath-hold magnetic resonance cine evaluation of global and regional cardiac function. Eur Radiol 2007; 17: 73-80.
– reference: Ozturk-Isik E, Chen AP, Crane JC, et al. 3D sensitivity encoded ellipsoidal MR spectroscopic imaging of gliomas at 3T. Magn Reson Imaging 2009; 27: 1249-1257.
– reference: Kumar A, Goenka AH, Chaudhary A, Sahu JK, Gulati S. Disseminated cysticercosis in a child: whole-body MR diagnosis with the use of parallel imaging. Pediatr Radiol 2010; 40: 223-227.
– reference: Song T, Laine AF, Chen Q, et al. Optimal k-space sampling for dynamic contrast-enhanced MRI with an application to MR renography. Magn Reson Med 2009; 61: 1242-1248.
– reference: Boujraf S, Summers P, Belahsen F, Prüssmann K, Kollias S. Ultrafast bold fMRI using single-shot spin-echo echo planar imaging. J Med Phys 2009; 34: 37-42.
– reference: Eibel R, Herzog P, Dietrich O, et al. Pulmonary abnormalities in immunocompromised patients: comparative detection with parallel acquisition MR imaging and thin-section helical CT. Radiology 2006; 241: 880-891.
– reference: Wiener E, Pfirrmann CW, Hodler J. Spatial variation in T1 of healthy human articular cartilage of the knee joint. Br J Radiol 2010; 83: 476-485.
– reference: Macarini L, Stoppino LP, Milillo P, Ciuffreda P, Fortunato F, Vinci R. Diffusion-weighted MRI with parallel imaging technique: apparent diffusion coefficient determination in normal kidneys and in nonmalignant renal diseases. Clin Imaging 2010; 34: 432-440.
– reference: Koike N, Cho A, Nasu K, et al. Role of diffusion-weighted magnetic resonance imaging in the differential diagnosis of focal hepatic lesions. World J Gastroenterol 2009; 15: 5805-5812.
– reference: Heidemann RM, Griswold MA, Seiberlich N, et al. Direct parallel image reconstructions for spiral trajectories using GRAPPA. Magn Reson Med 2006; 56: 317-326.
– reference: Kim YC, Hayes CE, Narayanan SS, Nayak KS. Novel 16-channel receive coil array for accelerated upper airway MRI at 3 Tesla. Magn Reson Med 2011; 65: 1711-1717.
– volume: 59
  start-page: 156
  year: 2008
  end-page: 164
  article-title: On optimality of parallel MRI reconstruction in k‐space
  publication-title: Magn Reson Med
– volume: 32
  start-page: 331
  year: 2011
  end-page: 338
  article-title: Optimization and initial experience of a multisection balanced steady‐state free precession cine sequence for the assessment of fetal behavior in utero
  publication-title: AJNR Am J Neuroradiol
– volume: 51
  start-page: 559
  year: 2004
  end-page: 567
  article-title: Parallel imaging reconstruction using automatic regularization
  publication-title: Magn Reson Med
– volume: 27
  start-page: 137
  year: 2009
  end-page: 141
  article-title: A nonlinear regularization strategy for GRAPPA calibration
  publication-title: Magn Reson Imaging
– volume: 7
  start-page: 933
  year: 1997
  end-page: 937
  article-title: Peripheral nerve stimulation during MRI: effects of high gradient amplitudes and switching rates
  publication-title: J Magn Reson Imaging
– volume: 31
  start-page: 328
  year: 2010
  end-page: 338
  article-title: Evaluation of multicoil breast arrays for parallel imaging
  publication-title: J Magn Reson Imaging
– volume: 59
  start-page: 1431
  year: 2008
  end-page: 1439
  article-title: A 128‐channel receive‐only cardiac coil for highly accelerated cardiac MRI at 3 Tesla
  publication-title: Magn Reson Med
– volume: 32
  start-page: 953
  year: 2010
  end-page: 961
  article-title: Quantitative BOLD: the effect of diffusion
  publication-title: J Magn Reson Imaging
– volume: 84
  start-page: 282
  year: 2011
  end-page: 287
  article-title: Magnetic resonance imaging findings in acute pulmonary embolism
  publication-title: Br Radiol
– volume: 34
  start-page: 432
  year: 2010
  end-page: 440
  article-title: Diffusion‐weighted MRI with parallel imaging technique: apparent diffusion coefficient determination in normal kidneys and in nonmalignant renal diseases
  publication-title: Clin Imaging
– volume: 57
  start-page: 1037
  year: 2007
  end-page: 1046
  article-title: Fast method for 1D non‐Cartesian parallel imaging using GRAPPA
  publication-title: Magn Reson Med
– volume: 43
  start-page: 534
  year: 2000
  end-page: 539
  article-title: Electromyography in MRI — first recordings of peripheral nerve activation caused by fast magnetic field gradients
  publication-title: Magn Reson Med
– volume: 31
  start-page: 1004
  year: 2010
  end-page: 1014
  article-title: Breathheld autocalibrated phase‐contrast imaging
  publication-title: J Magn Reson Imaging
– volume: 63
  start-page: 1627
  year: 2010
  end-page: 1636
  article-title: Multislice perfusion of the kidneys using parallel imaging: Image acquisition and analysis strategies
  publication-title: Magn Reson Med
– volume: 18
  start-page: 309
  year: 1991
  end-page: 319
  article-title: Volume imaging with MR phased arrays
  publication-title: Magn Reson Med
– volume: 17
  start-page: 73
  year: 2007
  end-page: 80
  article-title: Dual breath‐hold magnetic resonance cine evaluation of global and regional cardiac function
  publication-title: Eur Radiol
– volume: 33
  start-page: 1047
  year: 2011
  end-page: 1051
  article-title: Comparison of intravascular and extracellular contrast media for absolute quantification of myocardial rest‐perfusion using high‐resolution MRI
  publication-title: J Magn Reson Imaging
– volume: 11
  start-page: 41
  year: 2009
  article-title: High resolution carotid black‐blood 3T MR with parallel imaging and dedicated 4‐channel surface coils
  publication-title: J Cardiovasc Magn Reson
– volume: 43
  start-page: 682
  year: 2000
  end-page: 690
  article-title: Adaptive reconstruction of phased array MR imagery
  publication-title: Magn Reson Med
– volume: 20
  start-page: 1046
  year: 2004
  end-page: 1051
  article-title: The SENSE ghost: field‐of‐view restrictions for SENSE imaging
  publication-title: J Magn Reson Imaging
– volume: 29
  start-page: 1
  year: 2011
  end-page: 8
  article-title: Balanced stead‐state free precession with parallel imaging gives distortion‐free fMRI with high temporal resolution
  publication-title: Magn Reson Imaging
– volume: 44
  start-page: 463
  year: 2009
  end-page: 468
  article-title: Unsupervised fully automated inline analysis of global left ventricular function in CINE MR imaging
  publication-title: Invest Radiol
– start-page: 539
  year: 2004
– volume: 63
  start-page: 959
  year: 2010
  end-page: 969
  article-title: Improvements in parallel imaging accelerated functional MRI using multi‐echo echo‐planar imaging
  publication-title: Magn Reson Med
– volume: 55
  start-page: 549
  year: 2006
  end-page: 556
  article-title: Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA)
  publication-title: Magn Reson Med
– volume: 30
  start-page: 1093
  year: 2009
  end-page: 1100
  article-title: Increased volume coverage for abdominal contrast‐enhanced MR angiography with two‐dimensional autocalibrating parallel imaging: initial experience at 3.0 Tesla
  publication-title: J Magn Reson Imaging
– volume: 31
  start-page: 987
  year: 2010
  end-page: 996
  article-title: Accelerated slice encoding for metal artifact correction
  publication-title: J Magn Reson Imaging
– volume: 60
  start-page: 474
  year: 2008
  end-page: 478
  article-title: Zigzag sampling for improved parallel imaging
  publication-title: Magn Reson Med
– volume: 43
  start-page: 71
  year: 2009
  end-page: 82
  article-title: Improving the spatial accuracy in functional magnetic resonance imaging (fMRI) based on the blood oxygenation level dependent (BOLD) effect: benefits from parallel imaging and a 32‐channel head array coil at 1.5 Tesla
  publication-title: Clin Hemorheol Microcirc
– volume: 46
  start-page: 638
  year: 2001
  end-page: 651
  article-title: Advances in sensitivity encoding with arbitrary space trajectories
  publication-title: Magn Reson Med
– volume: 65
  start-page: 1711
  year: 2011
  end-page: 1717
  article-title: Novel 16‐channel receive coil array for accelerated upper airway MRI at 3 Tesla
  publication-title: Magn Reson Med
– volume: 27
  start-page: 1242
  year: 2009
  end-page: 1248
  article-title: In vivo structural analysis of articular cartilage using diffusion tensor magnetic resonance imaging
  publication-title: Magn Reson Imaging
– start-page: 737
  year: 2004
– volume: 31
  start-page: 149
  year: 2010
  end-page: 159
  article-title: Direct comparison of sensitivity encoding (SENSE) accelerated and conventional 3D contrast enhanced magnetic resonance angiography (CE‐MRA) of renal arteries: effect of increasing spatial resolution
  publication-title: J Magn Reson Imaging
– start-page: 1749
  year: 2007
– volume: 61
  start-page: 1242
  year: 2009
  end-page: 1248
  article-title: Optimal k‐space sampling for dynamic contrast‐enhanced MRI with an application to MR renography
  publication-title: Magn Reson Med
– volume: 9
  start-page: 15
  year: 2009
  article-title: Parallel imaging: is GRAPPA a useful acquisition tool for MR imaging intended for volumetric brain analysis?
  publication-title: BMC Med Imaging
– volume: 83
  start-page: 476
  year: 2010
  end-page: 485
  article-title: Spatial variation in T1 of healthy human articular cartilage of the knee joint
  publication-title: Br J Radiol
– volume: 240
  start-page: 537
  year: 2006
  end-page: 545
  article-title: Quantification of lung tumor volume and rotation at 3D dynamic parallel MR imaging with view sharing: preliminary results
  publication-title: Radiology
– volume: 14
  start-page: 409
  year: 1990
  end-page: 414
  article-title: Sensory stimulation by time‐varying magnetic fields
  publication-title: Magn Reson Med
– year: 2007
– volume: 2
  start-page: 1056
  year: 2004
  end-page: 1059
  article-title: On Tikhonov regularization for image reconstruction in parallel MRI
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 66
  start-page: 1682
  year: 2011
  end-page: 1688
  article-title: Improved temporal resolution in cardiac imaging using through‐time spiral GRAPPA
  publication-title: Magn Reson Med
– volume: 62
  start-page: 1221
  year: 2009
  end-page: 1231
  article-title: Independent slab‐phase modulation combined with parallel imaging in bilateral breast MRI
  publication-title: Magn Reson Med
– volume: 200
  start-page: 119
  year: 2009
  end-page: 125
  article-title: Reducing ghosting due to k‐space discontinuities in fast spin echo (FSE) imaging by a new combination of k‐space ordering and parallel imaging
  publication-title: J Magn Reson
– volume: 53
  start-page: 684
  year: 2005
  end-page: 691
  article-title: Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi‐slice imaging
  publication-title: Magn Reson Med
– volume: 16
  start-page: 1208
  year: 2009
  end-page: 1214
  article-title: The value of diffusion‐weighted imaging in characterizing focal liver masses
  publication-title: Acad Radiol
– volume: 54
  start-page: 1172
  year: 2005
  end-page: 1184
  article-title: GRAPPA: a ‐space implementation for dynamic MRI with high reduction factor
  publication-title: Magn Reson Med
– volume: 14
  start-page: 305
  year: 2009
  end-page: 311
  article-title: High‐resolution 3D contrast‐enhanced MRA with parallel imaging techniques before endovascular interventional treatment of arterial stenosis
  publication-title: Vasc Med
– volume: 19
  start-page: 145
  year: 2004
  end-page: 159
  article-title: K‐space in the clinic
  publication-title: J Magn Reson Imaging
– start-page: 2349
  year: 2003
– volume: 25
  start-page: 678
  year: 2007
  end-page: 83
  article-title: Parallel imaging for first‐pass myocardial perfusion
  publication-title: Magn Reson Imaging
– volume: 44
  start-page: 577
  year: 2009
  end-page: 84
  article-title: Analysis of prostate DCE‐MRI: comparison of fast exchange limit and fast exchange regimen pharmacokinetic models in the discrimination of malignant from normal tissue
  publication-title: Invest Radiol
– volume: 65
  start-page: 492
  year: 2011
  end-page: 505
  article-title: Improved radial GRAPPA calibration for real‐time free‐breathing cardiac imaging
  publication-title: Magn Reson Med
– volume: 122
  start-page: 2111
  year: 2009
  end-page: 2116
  article-title: A free‐breathing non‐contrast‐enhanced pulmonary magnetic resonance angiography at 3 Tesla
  publication-title: Chin Med J (Engl)
– volume: 60
  start-page: 749
  year: 2008
  end-page: 760
  article-title: 3D high temporal and spatial resolution contrast‐enhanced MR angiography of the whole brain
  publication-title: Magn Reson Med
– volume: 42
  start-page: 963
  year: 1999
  end-page: 969
  article-title: Motion correction with PROPELLER MRI: application to head motion and free‐breathing cardiac imaging
  publication-title: Magn Reson Med
– volume: 253
  start-page: 831
  year: 2009
  end-page: 843
  article-title: Peripheral vasculature: high‐temporal‐ and high‐spatial‐resolution three‐dimensional contrast‐enhanced MR angiography
  publication-title: Radiology
– volume: 47
  start-page: 1202
  year: 2002
  end-page: 1210
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
– volume: 55
  start-page: 619
  year: 2006
  end-page: 625
  article-title: Auto‐calibrated parallel spiral imaging
  publication-title: Magn Reson Med
– start-page: 89
  year: 2001
– volume: 45
  start-page: 458
  year: 2010
  end-page: 464
  article-title: Contrast‐enhanced whole‐heart coronary magnetic resonance angiography at 3 T using interleaved echo planar imaging
  publication-title: Invest Radiol
– volume: 62
  start-page: 754
  year: 2009
  end-page: 762
  article-title: 96‐Channel receive‐only head coil for 3 Tesla: design optimization and evaluation
  publication-title: Magn Reson Med
– volume: 23
  start-page: 986
  year: 2010
  end-page: 994
  article-title: Real‐time MRI at a resolution of 20 ms
  publication-title: NMR Biomed
– volume: 31
  start-page: 872
  year: 2010
  end-page: 880
  article-title: High temporal resolution SSFP cine MRI for estimation of left ventricular diastolic parameters
  publication-title: J Magn Reson Imaging
– volume: 241
  start-page: 880
  year: 2006
  end-page: 891
  article-title: Pulmonary abnormalities in immunocompromised patients: comparative detection with parallel acquisition MR imaging and thin‐section helical CT
  publication-title: Radiology
– volume: 30
  start-page: 541
  year: 2009
  end-page: 546
  article-title: Half‐Fourier‐acquisition single‐shot turbo spin‐echo (HASTE) MRI of the lung at 3 Tesla using parallel imaging with 32‐receiver channel technology
  publication-title: J Magn Reson Imaging
– volume: 73
  start-page: 1577
  year: 2009
  end-page: 1588
  article-title: Cardiac MRI in ischemic heart disease
  publication-title: Circ J
– volume: 49
  start-page: 457
  year: 2010
  end-page: 466
  article-title: BOLD fMRI using a modified HASTE sequence
  publication-title: Neuroimage
– volume: 13
  start-page: 7
  year: 2011
  article-title: Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance
  publication-title: J Cardiovasc Magn Reson
– volume: 3
  start-page: 718
  year: 2010
  end-page: 719
  article-title: Clinical feasibility of accelerated, high spatial resolution myocardial perfusion imaging
  publication-title: JACC Cardiovasc Imaging
– volume: 53
  start-page: 981
  year: 2005
  end-page: 985
  article-title: Dynamic autocalibrated parallel imaging using temporal GRAPPA (TGRAPPA)
  publication-title: Magn Reson Med
– volume: 16
  start-page: 192
  year: 1990
  end-page: 225
  article-title: The NMR phased array
  publication-title: Magn Reson Med
– volume: 40
  start-page: 223
  year: 2010
  end-page: 227
  article-title: Disseminated cysticercosis in a child: whole‐body MR diagnosis with the use of parallel imaging
  publication-title: Pediatr Radiol
– volume: 3
  start-page: 730
  year: 1986
  end-page: 746
  article-title: The field dependence of NMR imaging. II. Arguments concerning an optimal field strength
  publication-title: Magn Reson Med
– volume: 15
  start-page: 5805
  year: 2009
  end-page: 5812
  article-title: Role of diffusion‐weighted magnetic resonance imaging in the differential diagnosis of focal hepatic lesions
  publication-title: World J Gastroenterol
– volume: 56
  start-page: 317
  year: 2006
  end-page: 326
  article-title: Direct parallel image reconstructions for spiral trajectories using GRAPPA
  publication-title: Magn Reson Med
– volume: 62
  start-page: 739
  year: 2009
  end-page: 746
  article-title: General formulation for quantitative G‐factor calculation in GRAPPA reconstructions
  publication-title: Magn Reson Med
– volume: 53
  start-page: 1383
  year: 2005
  end-page: 1392
  article-title: Parallel magnetic resonance imaging with adaptive radius in k‐space (PARS): constrained image reconstruction using k‐space locality in radiofrequency coil encoded data
  publication-title: Magn Reson Med
– volume: 52
  start-page: 1118
  year: 2004
  end-page: 1126
  article-title: Field‐of‐view limitations in parallel imaging
  publication-title: Magn Reson Med
– volume: 20
  start-page: 2194
  year: 2010
  end-page: 2199
  article-title: Magnetic resonance diffusion tensor imaging and tractography of the lower spinal cord: application to diastematomyelia and tethered cord
  publication-title: Eur Radiol
– volume: 19
  start-page: 96
  year: 2003
  end-page: 111
  article-title: A wavelet‐based approximation of surface coil sensitivity profiles for correction of image intensity inhomogeneity and parallel imaging reconstruction
  publication-title: Hum Brain Mapp
– volume: 44
  start-page: 602
  year: 2000
  end-page: 609
  article-title: Partially parallel imaging with localized sensitivities (PILS)
  publication-title: Magn Reson Med
– volume: 28
  start-page: 1311
  year: 2010
  end-page: 1318
  article-title: Highly undersampled supraaortic MRA at 3.0T: initial results with parallel imaging in two directions using a 16‐channel neurovascular coil and parallel imaging factors up to 16
  publication-title: Magn Reson Imaging
– volume: 63
  start-page: 1456
  year: 2010
  end-page: 1462
  article-title: Nonlinear inverse reconstruction for real‐time MRI of the human heart using undersampled radial FLASH
  publication-title: Magn Reson Med
– volume: 59
  start-page: 1127
  year: 2008
  end-page: 1137
  article-title: Reconstruction of undersampled non‐Cartesian data sets using pseudo‐Cartesian GRAPPA in conjunction with GROG
  publication-title: Magn Reson Med
– volume: 63
  start-page: 1648
  year: 2010
  end-page: 1658
  article-title: Fast inversion recovery magnetic resonance angiography of the intracranial arteries
  publication-title: Magn Reson Med
– volume: 28
  start-page: 41
  year: 2010
  end-page: 46
  article-title: Evaluation of intracranial stenosis and aneurysms with accelerated 4D flow
  publication-title: Magn Reson Imaging
– volume: 64
  start-page: 501
  year: 2010
  end-page: 513
  article-title: Patient‐adaptive reconstruction and acquisition in dynamic imaging with sensitivity encoding (PARADISE)
  publication-title: Magn Reson Med
– volume: 69
  start-page: 418
  year: 2009
  end-page: 424
  article-title: Current status of MR imaging in the evaluation of IBD in a pediatric population of patients
  publication-title: Eur J Radiol
– volume: 19
  start-page: 291
  year: 2004
  end-page: 297
  article-title: Cardiac magnetic resonance parallel imaging at 3.0 Tesla: technical feasibility and advantages
  publication-title: J Magn Reson Imaging
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 62
  start-page: 1557
  year: 2009
  end-page: 1564
  article-title: High spatial and temporal resolution cardiac cine MRI from retrospective reconstruction of data acquired in real time using motion correction and resorting
  publication-title: Magn Reson Med
– volume: 50
  start-page: 1031
  year: 2003
  end-page: 1042
  article-title: BLAST and SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations
  publication-title: Magn Reson Med
– start-page: 335
  year: 2007
– volume: 62
  start-page: 1211
  year: 2009
  end-page: 1220
  article-title: Improved SNR efficiency in gradient echo coronary MRA with high temporal resolution using parallel imaging
  publication-title: Magn Reson Med
– volume: 27
  start-page: 1249
  year: 2009
  end-page: 1257
  article-title: 3D sensitivity encoded ellipsoidal MR spectroscopic imaging of gliomas at 3T
  publication-title: Magn Reson Imaging
– volume: 34
  start-page: 37
  year: 2009
  end-page: 42
  article-title: Ultrafast bold fMRI using single‐shot spin‐echo echo planar imaging
  publication-title: J Med Phys
– volume: 116
  start-page: 197
  year: 2011
  end-page: 210
  article-title: Role of echocardiography and cardiac MRI in depicting morphological and functional imaging findings useful for diagnosing hypertrophic cardiomyopathy
  publication-title: Radiol Med
– volume: 18
  start-page: 2095
  year: 2008
  end-page: 2101
  article-title: Accuracy of accelerated cine MR imaging at 3 Tesla in longitudinal follow‐up of cardiac function
  publication-title: Eur Radiol
– volume: 45
  start-page: 846
  year: 2001
  end-page: 852
  article-title: Adaptive sensitivity encoding incorporating temporal filtering (TSENSE)
  publication-title: Magn Reson Med
– ident: e_1_2_12_87_2
– ident: e_1_2_12_29_2
  doi: 10.1007/978-3-540-68879-2
– ident: e_1_2_12_82_2
  doi: 10.1002/mrm.1113
– ident: e_1_2_12_48_2
  doi: 10.1177/1358863X09104224
– ident: e_1_2_12_16_2
  doi: 10.1002/mrm.20249
– ident: e_1_2_12_39_2
  doi: 10.1253/circj.CJ-09-0524
– ident: e_1_2_12_46_2
  doi: 10.1016/j.mri.2010.06.008
– ident: e_1_2_12_18_2
  doi: 10.1002/mrm.20401
– ident: e_1_2_12_71_2
  doi: 10.1186/1532-429X-11-41
– ident: e_1_2_12_62_2
  doi: 10.1002/jmri.22151
– ident: e_1_2_12_11_2
  doi: 10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G
– ident: e_1_2_12_54_2
  doi: 10.1148/radiol.2533081744
– ident: e_1_2_12_2_2
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: e_1_2_12_84_2
  doi: 10.1002/mrm.20641
– ident: e_1_2_12_5_2
  doi: 10.1002/mrm.1910140226
– ident: e_1_2_12_88_2
– ident: e_1_2_12_90_2
  doi: 10.1002/mrm.20951
– ident: e_1_2_12_58_2
  doi: 10.1016/j.neuroimage.2009.07.044
– ident: e_1_2_12_32_2
  doi: 10.1002/mrm.22153
– ident: e_1_2_12_45_2
  doi: 10.1016/j.clinimag.2009.09.007
– ident: e_1_2_12_25_2
  doi: 10.1002/mrm.10718
– ident: e_1_2_12_40_2
  doi: 10.1002/jmri.22127
– ident: e_1_2_12_60_2
  doi: 10.1002/mrm.22222
– ident: e_1_2_12_86_2
  doi: 10.1002/mrm.1241
– ident: e_1_2_12_73_2
  doi: 10.1016/j.mri.2009.05.028
– ident: e_1_2_12_80_2
  doi: 10.1007/s00247-009-1438-8
– ident: e_1_2_12_14_2
– volume: 2
  start-page: 1056
  year: 2004
  ident: e_1_2_12_26_2
  article-title: On Tikhonov regularization for image reconstruction in parallel MRI
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– ident: e_1_2_12_95_2
  doi: 10.1002/mrm.22952
– ident: e_1_2_12_3_2
  doi: 10.1002/mrm.10171
– ident: e_1_2_12_8_2
  doi: 10.1002/mrm.1910030509
– ident: e_1_2_12_97_2
– ident: e_1_2_12_7_2
  doi: 10.1002/(SICI)1522-2594(200004)43:4<534::AID-MRM7>3.0.CO;2-J
– ident: e_1_2_12_59_2
  doi: 10.1016/j.jmr.2009.06.013
– ident: e_1_2_12_23_2
  doi: 10.1002/mrm.22742
– ident: e_1_2_12_98_2
  doi: 10.1002/nbm.1585
– ident: e_1_2_12_64_2
  doi: 10.1016/j.acra.2009.05.013
– ident: e_1_2_12_42_2
  doi: 10.1016/j.mri.2009.05.042
– ident: e_1_2_12_74_2
  doi: 10.1016/j.mri.2009.05.012
– ident: e_1_2_12_9_2
  doi: 10.1002/1522-2594(200010)44:4<602::AID-MRM14>3.0.CO;2-5
– ident: e_1_2_12_65_2
– ident: e_1_2_12_49_2
  doi: 10.1002/jmri.21964
– ident: e_1_2_12_79_2
  doi: 10.1002/mrm.22115
– volume: 122
  start-page: 2111
  year: 2009
  ident: e_1_2_12_52_2
  article-title: A free‐breathing non‐contrast‐enhanced pulmonary magnetic resonance angiography at 3 Tesla
  publication-title: Chin Med J (Engl)
– ident: e_1_2_12_51_2
  doi: 10.1002/mrm.22456
– ident: e_1_2_12_37_2
  doi: 10.1002/jmri.22557
– ident: e_1_2_12_43_2
  doi: 10.1097/RLI.0b013e3181d8df32
– ident: e_1_2_12_94_2
  doi: 10.1002/mrm.22618
– ident: e_1_2_12_96_2
  doi: 10.1002/mrm.20490
– volume: 43
  start-page: 71
  year: 2009
  ident: e_1_2_12_56_2
  article-title: Improving the spatial accuracy in functional magnetic resonance imaging (fMRI) based on the blood oxygenation level dependent (BOLD) effect: benefits from parallel imaging and a 32‐channel head array coil at 1.5 Tesla
  publication-title: Clin Hemorheol Microcirc
  doi: 10.3233/CH-2009-1222
– ident: e_1_2_12_47_2
  doi: 10.1002/jmri.22002
– ident: e_1_2_12_4_2
  doi: 10.1002/jmri.10451
– ident: e_1_2_12_21_2
  doi: 10.1002/mrm.21598
– ident: e_1_2_12_19_2
  doi: 10.1002/mrm.20787
– ident: e_1_2_12_67_2
  doi: 10.1002/jmri.21882
– ident: e_1_2_12_72_2
  doi: 10.1007/s00330-010-1797-4
– ident: e_1_2_12_55_2
  doi: 10.1002/mrm.21901
– ident: e_1_2_12_89_2
  doi: 10.1002/mrm.20811
– ident: e_1_2_12_93_2
  doi: 10.1002/mrm.21602
– ident: e_1_2_12_100_2
  doi: 10.1002/mrm.22444
– ident: e_1_2_12_66_2
  doi: 10.1002/jmri.20015
– ident: e_1_2_12_34_2
  doi: 10.1007/s00330-006-0259-5
– ident: e_1_2_12_35_2
  doi: 10.1007/s00330-008-0993-y
– ident: e_1_2_12_31_2
  doi: 10.1186/1471-2342-9-15
– ident: e_1_2_12_76_2
  doi: 10.1002/jmri.22112
– ident: e_1_2_12_70_2
  doi: 10.1259/bjr/26121475
– ident: e_1_2_12_75_2
  doi: 10.1259/bjr/62779246
– ident: e_1_2_12_99_2
  doi: 10.1002/mrm.22453
– ident: e_1_2_12_24_2
  doi: 10.1002/jmri.22023
– ident: e_1_2_12_63_2
  doi: 10.3748/wjg.15.5805
– ident: e_1_2_12_38_2
  doi: 10.1007/s11547-010-0603-3
– ident: e_1_2_12_81_2
  doi: 10.1002/mrm.20430
– ident: e_1_2_12_102_2
  doi: 10.1016/j.jcmg.2010.03.009
– ident: e_1_2_12_6_2
  doi: 10.1002/jmri.1880070524
– ident: e_1_2_12_17_2
  doi: 10.1002/mrm.22066
– ident: e_1_2_12_53_2
  doi: 10.1002/mrm.21675
– ident: e_1_2_12_92_2
  doi: 10.1002/mrm.21227
– ident: e_1_2_12_36_2
  doi: 10.1016/j.mri.2006.10.012
– ident: e_1_2_12_27_2
  doi: 10.1002/mrm.21466
– ident: e_1_2_12_101_2
  doi: 10.1002/jmri.22123
– ident: e_1_2_12_12_2
  doi: 10.1002/mrm.1910180206
– ident: e_1_2_12_20_2
  doi: 10.1002/hbm.10109
– ident: e_1_2_12_85_2
  doi: 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L
– ident: e_1_2_12_78_2
  doi: 10.3174/ajnr.A2295
– ident: e_1_2_12_30_2
  doi: 10.1016/j.ejrad.2008.11.023
– ident: e_1_2_12_28_2
  doi: 10.1016/j.mri.2008.05.005
– ident: e_1_2_12_33_2
  doi: 10.1097/RLI.0b013e3181aaf429
– ident: e_1_2_12_41_2
  doi: 10.1186/1532-429X-13-7
– ident: e_1_2_12_61_2
  doi: 10.4103/0971-6203.48719
– ident: e_1_2_12_44_2
  doi: 10.1002/mrm.22387
– ident: e_1_2_12_50_2
  doi: 10.1002/mrm.22114
– ident: e_1_2_12_57_2
  doi: 10.1016/j.mri.2010.07.007
– ident: e_1_2_12_15_2
  doi: 10.1002/jmri.20204
– ident: e_1_2_12_91_2
  doi: 10.1002/mrm.21643
– ident: e_1_2_12_77_2
  doi: 10.1097/RLI.0b013e3181b4c1fe
– ident: e_1_2_12_22_2
  doi: 10.1002/mrm.22028
– ident: e_1_2_12_68_2
  doi: 10.1148/radiol.2413042056
– ident: e_1_2_12_13_2
– ident: e_1_2_12_69_2
  doi: 10.1148/radiol.2401050727
– ident: e_1_2_12_10_2
  doi: 10.1002/mrm.1910160203
– ident: e_1_2_12_83_2
  doi: 10.1002/mrm.10611
– reference: 2345521 - Magn Reson Med. 1990 May;14(2):409-14
– reference: 15723404 - Magn Reson Med. 2005 Mar;53(3):684-91
– reference: 19144484 - Eur J Radiol. 2009 Mar;69(3):418-24
– reference: 20512866 - Magn Reson Med. 2010 Jun;63(6):1627-36
– reference: 20373445 - J Magn Reson Imaging. 2010 Apr;31(4):987-96
– reference: 19668002 - Invest Radiol. 2009 Sep;44(9):577-84
– reference: 20692783 - Magn Reson Imaging. 2010 Nov;28(9):1311-8
– reference: 19577400 - Magn Reson Imaging. 2010 Jan;28(1):41-6
– reference: 12111967 - Magn Reson Med. 2002 Jun;47(6):1202-10
– reference: 20126564 - J Med Phys. 2009 Jan;34(1):37-42
– reference: 11025516 - Magn Reson Med. 2000 Oct;44(4):602-9
– reference: 20872865 - Magn Reson Med. 2011 Feb;65(2):492-505
– reference: 14745747 - J Magn Reson Imaging. 2004 Feb;19(2):145-59
– reference: 2266841 - Magn Reson Med. 1990 Nov;16(2):192-225
– reference: 20373397 - Magn Reson Med. 2010 Apr;63(4):959-69
– reference: 18727101 - Magn Reson Med. 2008 Sep;60(3):749-60
– reference: 17534925 - Magn Reson Med. 2007 Jun;57(6):1037-46
– reference: 14587014 - Magn Reson Med. 2003 Nov;50(5):1031-42
– reference: 21235751 - J Cardiovasc Magn Reson. 2011;13:7
– reference: 20665794 - Magn Reson Med. 2010 Aug;64(2):501-13
– reference: 16453323 - Magn Reson Med. 2006 Mar;55(3):619-25
– reference: 15906283 - Magn Reson Med. 2005 Jun;53(6):1383-92
– reference: 19711408 - J Magn Reson Imaging. 2009 Sep;30(3):541-6
– reference: 20373431 - J Magn Reson Imaging. 2010 Apr;31(4):872-80
– reference: 20882626 - J Magn Reson Imaging. 2010 Oct;32(4):953-61
– reference: 10542356 - Magn Reson Med. 1999 Nov;42(5):963-9
– reference: 19780151 - Magn Reson Med. 2009 Nov;62(5):1211-20
– reference: 18666134 - Magn Reson Med. 2008 Aug;60(2):474-8
– reference: 19608444 - J Magn Reson. 2009 Sep;200(1):119-25
– reference: 20027583 - J Magn Reson Imaging. 2010 Jan;31(1):149-59
– reference: 19998501 - World J Gastroenterol. 2009 Dec 14;15(46):5805-12
– reference: 20864288 - Magn Reson Imaging. 2011 Jan;29(1):1-8
– reference: 20799371 - NMR Biomed. 2010 Oct;23(8):986-94
– reference: 19789238 - Radiology. 2009 Dec;253(3):831-43
– reference: 20512868 - Magn Reson Med. 2010 Jun;63(6):1648-58
– reference: 20512847 - Magn Reson Med. 2010 Jun;63(6):1456-62
– reference: 19780156 - Magn Reson Med. 2009 Nov;62(5):1221-31
– reference: 19713602 - Clin Hemorheol Microcirc. 2009;43(1-2):71-82
– reference: 19860875 - J Cardiovasc Magn Reson. 2009;11:41
– reference: 21590804 - Magn Reson Med. 2011 Jun;65(6):1711-7
– reference: 11323811 - Magn Reson Med. 2001 May;45(5):846-52
– reference: 19723767 - Br J Radiol. 2010 Jun;83(990):476-85
– reference: 17271864 - Conf Proc IEEE Eng Med Biol Soc. 2004;2:1056-9
– reference: 15558553 - J Magn Reson Imaging. 2004 Dec;20(6):1046-51
– reference: 19780155 - Magn Reson Med. 2009 Dec;62(6):1557-64
– reference: 19650898 - BMC Med Imaging. 2009;9:15
– reference: 10748428 - Magn Reson Med. 2000 Apr;43(4):534-9
– reference: 11590639 - Magn Reson Med. 2001 Oct;46(4):638-51
– reference: 21523823 - Magn Reson Med. 2011 Dec;66(6):1682-8
– reference: 17032908 - Radiology. 2006 Dec;241(3):880-91
– reference: 19230014 - Magn Reson Med. 2009 May;61(5):1242-8
– reference: 14994296 - J Magn Reson Imaging. 2004 Mar;19(3):291-7
– reference: 18429026 - Magn Reson Med. 2008 May;59(5):1127-37
– reference: 20633848 - JACC Cardiovasc Imaging. 2010 Jul;3(7):710-7
– reference: 21224294 - Br J Radiol. 2011 Mar;84(999):282-7
– reference: 19856443 - J Magn Reson Imaging. 2009 Nov;30(5):1093-100
– reference: 15508164 - Magn Reson Med. 2004 Nov;52(5):1118-26
– reference: 16193468 - Magn Reson Med. 2005 Nov;54(5):1172-84
– reference: 19766422 - Magn Reson Imaging. 2009 Nov;27(9):1249-57
– reference: 21509860 - J Magn Reson Imaging. 2011 May;33(5):1047-51
– reference: 19643187 - Neuroimage. 2010 Jan 1;49(1):457-66
– reference: 2046514 - Magn Reson Med. 1991 Apr;18(2):309-19
– reference: 18583080 - Magn Reson Imaging. 2009 Jan;27(1):137-41
– reference: 20099345 - J Magn Reson Imaging. 2010 Feb;31(2):328-38
– reference: 19553054 - Magn Reson Imaging. 2009 Nov;27(9):1242-8
– reference: 19667487 - Circ J. 2009 Sep;73(9):1577-88
– reference: 19949945 - Pediatr Radiol. 2010 Feb;40(2):223-7
– reference: 15799044 - Magn Reson Med. 2005 Apr;53(4):981-5
– reference: 19623621 - Magn Reson Med. 2009 Sep;62(3):754-62
– reference: 18058935 - Magn Reson Med. 2008 Jan;59(1):156-64
– reference: 20479653 - Invest Radiol. 2010 Aug;45(8):458-64
– reference: 16633789 - Eur Radiol. 2007 Jan;17(1):73-80
– reference: 20981502 - Radiol Med. 2011 Mar;116(2):197-210
– reference: 20432039 - Eur Radiol. 2010 Sep;20(9):2194-9
– reference: 18506789 - Magn Reson Med. 2008 Jun;59(6):1431-9
– reference: 21092872 - Clin Imaging. 2010 Nov-Dec;34(6):432-40
– reference: 19585608 - Magn Reson Med. 2009 Sep;62(3):739-46
– reference: 19561514 - Invest Radiol. 2009 Aug;44(8):463-8
– reference: 3784890 - Magn Reson Med. 1986 Oct;3(5):730-46
– reference: 19781294 - Chin Med J (Engl). 2009 Sep 20;122(18):2111-6
– reference: 10542355 - Magn Reson Med. 1999 Nov;42(5):952-62
– reference: 18463873 - Eur Radiol. 2008 Oct;18(10):2095-101
– reference: 12768534 - Hum Brain Mapp. 2003 Jun;19(2):96-111
– reference: 17540280 - Magn Reson Imaging. 2007 Jun;25(5):678-83
– reference: 16801367 - Radiology. 2006 Aug;240(2):537-45
– reference: 21087938 - AJNR Am J Neuroradiol. 2011 Feb;32(2):331-8
– reference: 16408271 - Magn Reson Med. 2006 Mar;55(3):549-56
– reference: 20373447 - J Magn Reson Imaging. 2010 Apr;31(4):1004-14
– reference: 16826608 - Magn Reson Med. 2006 Aug;56(2):317-26
– reference: 19808715 - Vasc Med. 2009 Nov;14(4):305-11
– reference: 19608435 - Acad Radiol. 2009 Oct;16(10):1208-14
– reference: 15004798 - Magn Reson Med. 2004 Mar;51(3):559-67
– reference: 10800033 - Magn Reson Med. 2000 May;43(5):682-90
– reference: 9307922 - J Magn Reson Imaging. 1997 Sep-Oct;7(5):933-7
SSID ssj0009945
Score 2.5634441
SecondaryResourceType review_article
Snippet Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 55
SubjectTerms Algorithms
fast imaging
GRAPPA
Image Enhancement - methods
Magnetic Resonance Imaging - methods
parallel imaging
SENSE
Subtraction Technique
Title Parallel MR imaging
URI https://api.istex.fr/ark:/67375/WNG-1MRMVP6D-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.23639
https://www.ncbi.nlm.nih.gov/pubmed/22696125
https://www.proquest.com/docview/1020833997
https://pubmed.ncbi.nlm.nih.gov/PMC4459721
Volume 36
WOSCitedRecordID wos000305185700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2586
  dateEnd: 20201209
  omitProxy: false
  ssIdentifier: ssj0009945
  issn: 1053-1807
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2586
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009945
  issn: 1053-1807
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB5qK9IX-0OtsfY4UQSF2GSTvc2CL2I9WzHhOKy9t2WzP_C0TSXXSv_8zm5yuR4tgvgWyGRhdnZ2vmQn3wfwipdpRmxqQluqLMQKzUPJmApVHCmtdKQl0V5sghVFNpnw0Qq8n_8L0_BDdB_cXGb4_doluCxn-wvS0J9n9fQdSbDC4gYcp7GTLzg5KhaMu9wrFCN-SMI4i1jHTUr2F48uVaM1N7FXd0HN2x2TN5GsL0XDjf9zYhMethC0_6FZM1uwYqpteJC3h-yPYHska6ewctrPx_3pmZcxegzHw0_fPh6GrXZCqCi-UYXE6CSSxsiME5kg6LKWcgwAzaROpCF8UDKuBtZYqmNjIkMlxXoW24ip0lqTPIHV6rwyT6GvVYKwRSGu1DotHfsNLRXCDi0t4bE0AbyZz6FQLbG407c4FQ0lMhHOS-G9DOBlZ_u7odO40-q1D0VnIutfrgGNUXFSfBZxPs6_jwYHogjgxTxWAtPCnXXIypxfznBEguAS0RcLYKeJXTcaIk7ugF0AbCmqnYGj3F6-U01_eOrtNKWO7iiAtz6qf_FBfMnHR_7q2b8Y78I6QrK2Ifg5rF7Ul2YP7qs_F9NZ3YN7bJL1YO1gPDz-2vPr_Rpg8QE_
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9RAEJ4oEPVFBVGrIkc0JJoU2m33tvto5NcBbS4X5HjbbPdHPIViChj_fGe3pcdFQkJ8a9LpJrOz0_m6O_0-gI-8TDNiUxPaUmUhVmgeSsZUqOJIaaUjLYn2YhOsKLKTEz5se3PcvzANP0S34eYyw7-vXYK7DenNKWvoj7N6skESLLEPYT5FpOGUG8aDYsq5y71GMSKIJIyziHXspGRz-uxMPZp3U_vnNrD5b8_kTSzri9HOs_904zk8bVFo70uzbBbhgamW4FHenrO_gKWhrJ3IymkvH_UmZ17JaBm-7Wwffd0LW_mEUFH8qAqJ0UkkjZEZJzJB3GUt5RgDmkmdSEN4v2Rc9a2xVMfGRIZKiiUtthFTpbUmeQlz1XllXkNPqwSRi0JoqXVaOgIcWipEHlpawmNpAvh0PYlCtdziTuLiVDSsyEQ4L4X3MoAPne2vhlHjVqt1H4vORNY_XQ8ao2Jc7Io4H-XHw_6WKAJYuw6WwMxwxx2yMudXFzgiQXyJAIwF8KoJXjcagk7usF0AbCasnYFj3Z69U02-e_btNKWO8SiAzz6sd_gg9vPRwF-9uY_xKjzeO8oPxeGgOHgLTxChtf3B72Dusr4yK7Cgfl9OLur3frn_BUcrAtU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD60uyJ90aq9pDdXFMFCajJJdjKPpdtVWxOWxcu-DZO50K0aJWrpz_fMJGa7KIXSt0BOBs6cMznfZE6-D2CLFXFKTKx9U8jUxwrNfEGp9GUYSCVVoARRTmyC5nk6mbBR05tj_4Wp-SHaD252Zbj3tV3g-kqZ3Rlr6M-LavqJRFhin0I3tioyHegOxsPjwxnrLnMqxYghIj9MA9ryk5Ld2dNzFalrJ_f3Y3DzYdfkn2jWlaPh8n868hyWGhza-1wnzgo80eUqLGbNSfsarI5EZWVWznvZuDe9cFpGL-B4-PXoy77fCCj4MsFtlU-0igKhtUgZEREiL2MShlFIUqEioQnrF5TJvtEmUaHWgU5EgkUtNAGVhTE6egmd8rLUr6GnZITYRSK4VCouLAVOUkjEHkoYwkKhPdi5n0QuG3ZxK3JxzmteZMKtl9x56cFma3tVc2o8arXtYtGaiOrMdqHRhJ_mezzMxtnJqD_guQcb98HiuDbsgYco9eXtNY5IEGEiBKMevKqD146GsJNZdOcBnQtra2B5t-fvlNMfjn87xmTDjbMHH11Y_-ID_5aND9zVm38xXofF0WDIDw_y72_hGUK0pkH4HXRuqlv9Hhbkr5vpdfWhyfc77BYDfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+MR+imaging&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Deshmane%2C+Anagha&rft.au=Gulani%2C+Vikas&rft.au=Griswold%2C+Mark+A.&rft.au=Seiberlich%2C+Nicole&rft.date=2012-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=36&rft.issue=1&rft.spage=55&rft.epage=72&rft_id=info:doi/10.1002%2Fjmri.23639&rft.externalDBID=10.1002%252Fjmri.23639&rft.externalDocID=JMRI23639
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon