Using Computational Fluid Dynamics Software to Estimate Circulation Time Distributions in Bioreactors

Nonideal mixing in many fermentation processes can lead to concentration gradients in nutrients, oxygen, and pH, among others. These gradients are likely to influence cellular behavior, growth, or yield of the fermentation process. Frequency of exposure to these gradients can be defined by the circu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biotechnology progress Ročník 19; číslo 5; s. 1480 - 1486
Hlavní autoři: Davidson, Kyle M., Sushil, Shrinivasan, Eggleton, Charles D., Marten, Mark R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: USA American Chemical Society 2003
American Institute of Chemical Engineers
Témata:
ISSN:8756-7938, 1520-6033
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Nonideal mixing in many fermentation processes can lead to concentration gradients in nutrients, oxygen, and pH, among others. These gradients are likely to influence cellular behavior, growth, or yield of the fermentation process. Frequency of exposure to these gradients can be defined by the circulation time distribution (CTD). There are few examples of CTDs in the literature, and experimental determination of CTD is at best a challenging task. The goal in this study was to determine whether computational fluid dynamics (CFD) software (FLUENT 4 and MixSim) could be used to characterize the CTD in a single‐impeller mixing tank. To accomplish this, CFD software was used to simulate flow fields in three different mixing tanks by meshing the tanks with a grid of elements and solving the Navier‐Stokes equations using the κ‐ϵ turbulence model. Tracer particles were released from a reference zone within the simulated flow fields, particle trajectories were simulated for 30 s, and the time taken for these tracer particles to return to the reference zone was calculated. CTDs determined by experimental measurement, which showed distinct features (log‐normal, bimodal, and unimodal), were compared with CTDs determined using CFD simulation. Reproducing the signal processing procedures used in each of the experiments, CFD simulations captured the characteristic features of the experimentally measured CTDs. The CFD data suggests new signal processing procedures that predict unimodal CTDs for all three tanks.
AbstractList Nonideal mixing in many fermentation processes can lead to concentration gradients in nutrients, oxygen, and pH, among others. These gradients are likely to influence cellular behavior, growth, or yield of the fermentation process. Frequency of exposure to these gradients can be defined by the circulation time distribution (CTD). There are few examples of CTDs in the literature, and experimental determination of CTD is at best a challenging task. The goal in this study was to determine whether computational fluid dynamics (CFD) software (FLUENT 4 and MixSim) could be used to characterize the CTD in a single-impeller mixing tank. To accomplish this, CFD software was used to simulate flow fields in three different mixing tanks by meshing the tanks with a grid of elements and solving the Navier-Stokes equations using the kappa-epsilon turbulence model. Tracer particles were released from a reference zone within the simulated flow fields, particle trajectories were simulated for 30 s, and the time taken for these tracer particles to return to the reference zone was calculated. CTDs determined by experimental measurement, which showed distinct features (log-normal, bimodal, and unimodal), were compared with CTDs determined using CFD simulation. Reproducing the signal processing procedures used in each of the experiments, CFD simulations captured the characteristic features of the experimentally measured CTDs. The CFD data suggests new signal processing procedures that predict unimodal CTDs for all three tanks.Nonideal mixing in many fermentation processes can lead to concentration gradients in nutrients, oxygen, and pH, among others. These gradients are likely to influence cellular behavior, growth, or yield of the fermentation process. Frequency of exposure to these gradients can be defined by the circulation time distribution (CTD). There are few examples of CTDs in the literature, and experimental determination of CTD is at best a challenging task. The goal in this study was to determine whether computational fluid dynamics (CFD) software (FLUENT 4 and MixSim) could be used to characterize the CTD in a single-impeller mixing tank. To accomplish this, CFD software was used to simulate flow fields in three different mixing tanks by meshing the tanks with a grid of elements and solving the Navier-Stokes equations using the kappa-epsilon turbulence model. Tracer particles were released from a reference zone within the simulated flow fields, particle trajectories were simulated for 30 s, and the time taken for these tracer particles to return to the reference zone was calculated. CTDs determined by experimental measurement, which showed distinct features (log-normal, bimodal, and unimodal), were compared with CTDs determined using CFD simulation. Reproducing the signal processing procedures used in each of the experiments, CFD simulations captured the characteristic features of the experimentally measured CTDs. The CFD data suggests new signal processing procedures that predict unimodal CTDs for all three tanks.
Nonideal mixing in many fermentation processes can lead to concentration gradients in nutrients, oxygen, and pH, among others. These gradients are likely to influence cellular behavior, growth, or yield of the fermentation process. Frequency of exposure to these gradients can be defined by the circulation time distribution (CTD). There are few examples of CTDs in the literature, and experimental determination of CTD is at best a challenging task. The goal in this study was to determine whether computational fluid dynamics (CFD) software (FLUENT 4 and MixSim) could be used to characterize the CTD in a single‐impeller mixing tank. To accomplish this, CFD software was used to simulate flow fields in three different mixing tanks by meshing the tanks with a grid of elements and solving the Navier‐Stokes equations using the κ‐ϵ turbulence model. Tracer particles were released from a reference zone within the simulated flow fields, particle trajectories were simulated for 30 s, and the time taken for these tracer particles to return to the reference zone was calculated. CTDs determined by experimental measurement, which showed distinct features (log‐normal, bimodal, and unimodal), were compared with CTDs determined using CFD simulation. Reproducing the signal processing procedures used in each of the experiments, CFD simulations captured the characteristic features of the experimentally measured CTDs. The CFD data suggests new signal processing procedures that predict unimodal CTDs for all three tanks.
Nonideal mixing in many fermentation processes can lead to concentration gradients in nutrients, oxygen, and pH, among others. These gradients are likely to influence cellular behavior, growth, or yield of the fermentation process. Frequency of exposure to these gradients can be defined by the circulation time distribution (CTD). There are few examples of CTDs in the literature, and experimental determination of CTD is at best a challenging task. The goal in this study was to determine whether computational fluid dynamics (CFD) software (FLUENT 4 and MixSim) could be used to characterize the CTD in a single-impeller mixing tank. To accomplish this, CFD software was used to simulate flow fields in three different mixing tanks by meshing the tanks with a grid of elements and solving the Navier-Stokes equations using the kappa-epsilon turbulence model. Tracer particles were released from a reference zone within the simulated flow fields, particle trajectories were simulated for 30 s, and the time taken for these tracer particles to return to the reference zone was calculated. CTDs determined by experimental measurement, which showed distinct features (log-normal, bimodal, and unimodal), were compared with CTDs determined using CFD simulation. Reproducing the signal processing procedures used in each of the experiments, CFD simulations captured the characteristic features of the experimentally measured CTDs. The CFD data suggests new signal processing procedures that predict unimodal CTDs for all three tanks.
Nonideal mixing in many fermentation processes can lead to concentration gradients in nutrients, oxygen, and pH, among others. These gradients are likely to influence cellular behavior, growth, or yield of the fermentation process. Frequency of exposure to these gradients can be defined by the circulation time distribution (CTD). There are few examples of CTDs in the literature, and experimental determination of CTD is at best a challenging task. The goal in this study was to determine whether computational fluid dynamics (CFD) software (FLUENT 4 and MixSim) could be used to characterize the CTD in a single-impeller mixing tank. To accomplish this, CFD software was used to simulate flow fields in three different mixing tanks by meshing the tanks with a grid of elements and solving the Navier--Stokes equations using the Kappa - member of turbulence model. Tracer particles were released from a reference zone within the simulated flow fields, particle trajectories were simulated for 30 s, and the time taken for these tracer particles to return to the reference zone was calculated. CTDs determined by experimental measurement, which showed distinct features (log-normal, bimodal, and unimodal), were compared with CTDs determined using CFD simulation. Reproducing the signal processing procedures used in each of the experiments, CFD simulations captured the characteristic features of the experimentally measured CTDs. The CFD data suggests new signal processing procedures that predict unimodal CTDs for all three tanks.
Author Davidson, Kyle M.
Marten, Mark R.
Sushil, Shrinivasan
Eggleton, Charles D.
Author_xml – sequence: 1
  givenname: Kyle M.
  surname: Davidson
  fullname: Davidson, Kyle M.
  organization: Department of Mechanical Engineering, 1000 Hilltop Circle, University of Maryland, Baltimore County (UMBC), Baltimore, Maryland 21250
– sequence: 2
  givenname: Shrinivasan
  surname: Sushil
  fullname: Sushil, Shrinivasan
  organization: Department of Mechanical Engineering, 1000 Hilltop Circle, University of Maryland, Baltimore County (UMBC), Baltimore, Maryland 21250
– sequence: 3
  givenname: Charles D.
  surname: Eggleton
  fullname: Eggleton, Charles D.
  email: eggleton@umbc.edu
  organization: Department of Mechanical Engineering, 1000 Hilltop Circle, University of Maryland, Baltimore County (UMBC), Baltimore, Maryland 21250
– sequence: 4
  givenname: Mark R.
  surname: Marten
  fullname: Marten, Mark R.
  email: marten@umbc.edu
  organization: Department of Chemical and Biochemical Engineering, 1000 Hilltop Circle, University of Maryland, Baltimore County (UMBC), Baltimore, Maryland 21250
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15198330$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/14524709$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URKeFBS-AvAGJRah_YjtZ0rSdVlRQlalYWo5zgwxJPLUdlXl7Ms0wSAjEypZ1ziff-x2hg8EPgNBLSt5RwuhJvSZMiII0T9CCCkYySTg_QItCCZmpkheH6CjGb4SQgkj2DB3SXLBckXKB4C664SuufL8ek0nOD6bDF93oGny2GUzvbMSffZseTACcPD6PyfUmAa5csGP3aOCV6wGfuZiCq8ftS8RuwKfOBzA2-RCfo6et6SK82J3H6O7ifFVdZtefllfV--vMTv8hWSukILJsVWmMBd6wuuYNL4wtpAFZWNk03ICCtiltA4TnLZXSMlYyZXPJBT9Gb-bcdfD3I8SkexctdJ0ZwI9RK6G4FEr9F6RFKRQlZAJf7cCx7qHR6zCNHzb61wYn4PUOMNGarg1msC7-5gQtC863QSczZ4OPMUCrrZsXnoJxnaZEb7vU-y4n4-0fxj70LyyZ2QfXwebfoD5d3dw-Xiclm5WpN_ixV0z4rqXiSugvH5c6_1Cp2yVf6hv-EzPBvS8
CODEN BIPRET
CitedBy_id crossref_primary_10_1016_j_bej_2007_08_006
crossref_primary_10_1016_j_jbiomech_2008_01_001
crossref_primary_10_1007_s00253_005_0003_0
crossref_primary_10_1016_j_bej_2024_109623
crossref_primary_10_1016_j_cherd_2023_05_038
crossref_primary_10_1016_j_bej_2020_107803
crossref_primary_10_1002_elsc_202200020
crossref_primary_10_3390_bioengineering9050206
crossref_primary_10_1002_biot_201600633
crossref_primary_10_1016_j_jbiosc_2012_07_015
crossref_primary_10_1016_j_ces_2022_117598
crossref_primary_10_1002_bit_20704
crossref_primary_10_1007_s40430_025_05760_1
crossref_primary_10_1016_j_advengsoft_2015_08_008
crossref_primary_10_1002_biot_201300119
crossref_primary_10_1042_BA20070177
crossref_primary_10_1016_j_bej_2008_10_010
crossref_primary_10_1002_bit_21090
crossref_primary_10_1007_s00449_005_0018_z
crossref_primary_10_1016_j_biotechadv_2009_05_022
crossref_primary_10_1007_s00449_011_0659_z
Cites_doi 10.1002/bit.260400207
10.1007/s004490050427
10.1115/1.3098990
ContentType Journal Article
Copyright Copyright © 2003 American Institute of Chemical Engineers (AIChE)
2004 INIST-CNRS
Copyright_xml – notice: Copyright © 2003 American Institute of Chemical Engineers (AIChE)
– notice: 2004 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
DOI 10.1021/bp025580d
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Engineering Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1520-6033
EndPage 1486
ExternalDocumentID 14524709
15198330
10_1021_bp025580d
BTPR25580
ark_67375_WNG_4KC7RG3G_P
Genre article
Validation Studies
Comparative Study
Evaluation Studies
Journal Article
GroupedDBID ---
-~X
.DC
05W
0R~
1L6
1OB
1OC
1WB
23N
31~
33P
3SF
3WU
4.4
52U
52V
53G
55A
5GY
5VS
66C
6J9
8-1
A8Z
AABXI
AAESR
AAEVG
AAHQN
AAIHA
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AAQKV
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABEFU
ABHMW
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACJ
ACMXC
ACPOU
ACPRK
ACRPL
ACS
ACWJJ
ACXBN
ACXQS
ACYXJ
ACZZL
ADBBV
ADBTR
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
ADXAS
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGXLV
AGYGG
AHBTC
AHIFC
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BAANH
BDRZF
BFHJK
BHBCM
BLYAC
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
C45
CS3
DCZOG
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EDH
EJD
EMOBN
ESTFP
F5P
FEDTE
FUBAC
G-S
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IHE
ITG
ITH
IX1
JG~
KBYEO
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
ML0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
NDZJH
NNB
O9-
OIG
OVD
P2P
P2W
PALCI
QRW
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
SV3
TAE
TEORI
TN5
TUS
W99
WBKPD
WIH
WIJ
WIK
WOHZO
WXSBR
XV2
Y6R
ZCA
ZY4
ZZTAW
~02
~KM
~S-
AAYXX
BANNL
CITATION
IQODW
A00
AAHHS
ABTAH
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
P4E
PKN
RWI
WSB
WYJ
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c5240-f565069f79aace3d2bb3d38ac86ae68c6dd3ae7efd9cde034f166c22927c46353
IEDL.DBID DRFUL
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000185816400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 8756-7938
IngestDate Thu Sep 04 20:06:34 EDT 2025
Mon Oct 06 18:06:23 EDT 2025
Wed Feb 19 01:51:11 EST 2025
Mon Jul 21 09:15:03 EDT 2025
Sat Nov 29 07:09:06 EST 2025
Tue Nov 18 21:44:52 EST 2025
Sun Sep 21 06:13:57 EDT 2025
Tue Nov 11 03:31:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Bioreactor
Software
Fluid dynamics
Circulation time
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5240-f565069f79aace3d2bb3d38ac86ae68c6dd3ae7efd9cde034f166c22927c46353
Notes ark:/67375/WNG-4KC7RG3G-P
istex:4D29EBE006FD8889A8ABBDCF95B75ACB82150E91
ArticleID:BTPR25580
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
PMID 14524709
PQID 18957100
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_75736577
proquest_miscellaneous_18957100
pubmed_primary_14524709
pascalfrancis_primary_15198330
crossref_citationtrail_10_1021_bp025580d
crossref_primary_10_1021_bp025580d
wiley_primary_10_1021_bp025580d_BTPR25580
istex_primary_ark_67375_WNG_4KC7RG3G_P
PublicationCentury 2000
PublicationDate 2003
PublicationDateYYYYMMDD 2003-01-01
PublicationDate_xml – year: 2003
  text: 2003
PublicationDecade 2000
PublicationPlace USA
PublicationPlace_xml – name: USA
– name: Washington, DC
– name: New York, NY
– name: United States
PublicationTitle Biotechnology progress
PublicationTitleAlternate Biotechnol Progress
PublicationYear 2003
Publisher American Chemical Society
American Institute of Chemical Engineers
Publisher_xml – name: American Chemical Society
– name: American Institute of Chemical Engineers
References Barneveld, J. v.; Smit, W.; Oosterhuis, N. M. G.; Pragt, H. J. Measuring the liquid circulation time in a large gas-liquid contactor by means of a radio pill. 2. Circulation time distribution.Ind.Eng.Chem. Res. 1987, 26, 2192-2195.
Roberts, R. M.; Gray, M. R.; Thompson, B.; Kresta, S. M. The effect of impeller and tank geometry on circulation time distributions in stirred tanks. Trans.Inst.Chem. Eng. 1995, 73A, 78-86.
Jaworski, Z.; Dyster, K. N.; Nienow, A. W. The effect of size, location and pumping direction of pitched blade turbine impellers on flow patterns: LDA measurements and CFD predictions. Trans. Inst.Chem. Eng. 2001, 79A, 887-893.
Nienow, AW. Hydrodynamics of stirred bioreactors. Appl. Mech. Rev. 1998, 51, 3-31.
Montante, G.; Micale, G.; Magelli, F.; Brucato, A. Experiments and CFD predictions of solid particle distribution in a vessel agitated with four pitched blade turbines. Trans.Inst.Chem. Eng. 2001, 79A, 1005-1010
Namdev, P. K.; Yegneswaran, P. K.; Thompson, B. G.; Gray, M. R. Experimental simulation of large-scale bioreactor environments using a Monte Carlo method. Can.J.Chem. Eng. 1991, 69, 513-519.
Baldyga, J.; Henczka, M.; Makowski, L. Effects of mixing on parallel chemical reactions in a continuous-flow stirred-tank reactor. Trans.Inst.Chem. Eng. 2001, 79A, 895-900.
Funahashi, H.; Harada, H.; Taguchi, H.; Yoshida, T. Circulation time distribution and volume of mixing regions in highly viscous xanthan gum solution in a stirred vessel. J.Chem.Eng. Jpn. 1987, 20, 277-282.
Li, Z. J.; Shukla, V.; Pedersen, A. G.; Wenger, K. S.; Fordyce, A. P.; Marten, M. R. Effects of increased impeller power in a production-scale Aspergillus oryzae fermentation.Biotechnol. Prog. 2002, 18, 437-444.
Mukataka, S.; Kataoka, H.; Takahashi, J. Circulation time degree of fluid exchange between upper and lower circulation regions in a stirred vessel with a dual impeller. J.Ferment. Technol. 1981, 59, 303-307.
Meng, J. S.; Fox, R. O. Validation of CFD simulations of a stirred tank using particle image velocimetry data. Can.J.Chem. Eng. 1998, 76, 611-625.
FLUENT Manual; Fluent Inc.: Lebanon, NH, 1997.
Ferziger, J. H.; Perić, M. Computational Methods for Fluid Dynamics; Springer: New York, 1997; pp 271-282.
Bryant, J. The characterization of mixing in fermentors. Adv.Biochem. Eng. 1977, 5, 101-123.
Namdev, P. K.; Thompson, B. G.; Gray, M. R. Effect of feed zone in fed-batch fermentations of Saccharomyces cerevisiae. Biotechnol. Bioeng. 1992, 40, 235-246.
Bakker, A.; Van den Akker, H. E. A. Single phase flow in stirred reactors. Trans.Inst.Chem. Eng. 1994, 72A, 583-593.
Bylund, F.; Collet, E.; Enfors, S. O.; Larsson, G. Substrate gradient formation in the large-scale bioreactor lowers cell yield and increases byproduct formation. Bioprocess Eng. 1998, 18, 171-180.
Mann, U.; Crosby, E. J. Cycle time distribution in circulating systems. Chem. Eng. Sci. 1973, 28, 623-627.
1998; 18
1995; 73A
1987; 20
1991; 69
2002; 18
1973; 28
1997
1981; 59
1994; 72A
2001; 79A
1998; 51
1998; 76
1977; 5
1992; 40
1987; 26
Montante G. (e_1_2_5_17_2) 2001; 79
e_1_2_5_9_2
(e_1_2_5_24_2) 1997
e_1_2_5_15_2
e_1_2_5_7_2
e_1_2_5_10_2
e_1_2_5_22_2
e_1_2_5_6_2
Roberts R. M. (e_1_2_5_14_2) 1995; 73
e_1_2_5_21_2
Barneveld J. v. (e_1_2_5_11_2) 1987; 26
Jaworski Z. (e_1_2_5_20_2) 2001; 79
Ferziger J. H. (e_1_2_5_23_2) 1997
Li Z. J. (e_1_2_5_4_2) 2002; 18
Bryant J. (e_1_2_5_2_2) 1977; 5
Meng J. S. (e_1_2_5_19_2) 1998; 76
Namdev P. K. (e_1_2_5_3_2) 1991; 69
Mann U. (e_1_2_5_8_2) 1973; 28
Mukataka S. (e_1_2_5_12_2) 1981; 59
Baldyga J. (e_1_2_5_16_2) 2001; 79
Bakker A. (e_1_2_5_18_2) 1994; 72
Marten M. R. (e_1_2_5_5_2) 1997
Funahashi H. (e_1_2_5_13_2) 1987; 20
References_xml – reference: FLUENT Manual; Fluent Inc.: Lebanon, NH, 1997.
– reference: Ferziger, J. H.; Perić, M. Computational Methods for Fluid Dynamics; Springer: New York, 1997; pp 271-282.
– reference: Mukataka, S.; Kataoka, H.; Takahashi, J. Circulation time degree of fluid exchange between upper and lower circulation regions in a stirred vessel with a dual impeller. J.Ferment. Technol. 1981, 59, 303-307.
– reference: Namdev, P. K.; Yegneswaran, P. K.; Thompson, B. G.; Gray, M. R. Experimental simulation of large-scale bioreactor environments using a Monte Carlo method. Can.J.Chem. Eng. 1991, 69, 513-519.
– reference: Montante, G.; Micale, G.; Magelli, F.; Brucato, A. Experiments and CFD predictions of solid particle distribution in a vessel agitated with four pitched blade turbines. Trans.Inst.Chem. Eng. 2001, 79A, 1005-1010
– reference: Mann, U.; Crosby, E. J. Cycle time distribution in circulating systems. Chem. Eng. Sci. 1973, 28, 623-627.
– reference: Bylund, F.; Collet, E.; Enfors, S. O.; Larsson, G. Substrate gradient formation in the large-scale bioreactor lowers cell yield and increases byproduct formation. Bioprocess Eng. 1998, 18, 171-180.
– reference: Namdev, P. K.; Thompson, B. G.; Gray, M. R. Effect of feed zone in fed-batch fermentations of Saccharomyces cerevisiae. Biotechnol. Bioeng. 1992, 40, 235-246.
– reference: Barneveld, J. v.; Smit, W.; Oosterhuis, N. M. G.; Pragt, H. J. Measuring the liquid circulation time in a large gas-liquid contactor by means of a radio pill. 2. Circulation time distribution.Ind.Eng.Chem. Res. 1987, 26, 2192-2195.
– reference: Bakker, A.; Van den Akker, H. E. A. Single phase flow in stirred reactors. Trans.Inst.Chem. Eng. 1994, 72A, 583-593.
– reference: Funahashi, H.; Harada, H.; Taguchi, H.; Yoshida, T. Circulation time distribution and volume of mixing regions in highly viscous xanthan gum solution in a stirred vessel. J.Chem.Eng. Jpn. 1987, 20, 277-282.
– reference: Bryant, J. The characterization of mixing in fermentors. Adv.Biochem. Eng. 1977, 5, 101-123.
– reference: Nienow, AW. Hydrodynamics of stirred bioreactors. Appl. Mech. Rev. 1998, 51, 3-31.
– reference: Meng, J. S.; Fox, R. O. Validation of CFD simulations of a stirred tank using particle image velocimetry data. Can.J.Chem. Eng. 1998, 76, 611-625.
– reference: Li, Z. J.; Shukla, V.; Pedersen, A. G.; Wenger, K. S.; Fordyce, A. P.; Marten, M. R. Effects of increased impeller power in a production-scale Aspergillus oryzae fermentation.Biotechnol. Prog. 2002, 18, 437-444.
– reference: Jaworski, Z.; Dyster, K. N.; Nienow, A. W. The effect of size, location and pumping direction of pitched blade turbine impellers on flow patterns: LDA measurements and CFD predictions. Trans. Inst.Chem. Eng. 2001, 79A, 887-893.
– reference: Roberts, R. M.; Gray, M. R.; Thompson, B.; Kresta, S. M. The effect of impeller and tank geometry on circulation time distributions in stirred tanks. Trans.Inst.Chem. Eng. 1995, 73A, 78-86.
– reference: Baldyga, J.; Henczka, M.; Makowski, L. Effects of mixing on parallel chemical reactions in a continuous-flow stirred-tank reactor. Trans.Inst.Chem. Eng. 2001, 79A, 895-900.
– volume: 73A
  start-page: 78
  year: 1995
  end-page: 86
  article-title: The effect of impeller and tank geometry on circulation time distributions in stirred tanks. . .
  publication-title: Eng
– volume: 59
  start-page: 303
  year: 1981
  end-page: 307
  article-title: Circulation time degree of fluid exchange between upper and lower circulation regions in a stirred vessel with a dual impeller. .
  publication-title: Technol
– volume: 76
  start-page: 611
  year: 1998
  end-page: 625
  article-title: Validation of CFD simulations of a stirred tank using particle image velocimetry data. . .
  publication-title: Eng
– volume: 79A
  start-page: 887
  year: 2001
  end-page: 893
  article-title: The effect of size, location and pumping direction of pitched blade turbine impellers on flow patterns: LDA measurements and CFD predictions. . .
  publication-title: Eng
– volume: 18
  start-page: 437
  year: 2002
  end-page: 444
  article-title: Effects of increased impeller power in a production‐scale fermentation.
  publication-title: Prog
– volume: 79A
  start-page: 895
  year: 2001
  end-page: 900
  article-title: Effects of mixing on parallel chemical reactions in a continuous‐flow stirred‐tank reactor. . .
  publication-title: Eng
– volume: 79A
  start-page: 1005
  year: 2001
  end-page: 1010
  article-title: Experiments and CFD predictions of solid particle distribution in a vessel agitated with four pitched blade turbines. . .
  publication-title: Eng
– volume: 20
  start-page: 277
  year: 1987
  end-page: 282
  article-title: Circulation time distribution and volume of mixing regions in highly viscous xanthan gum solution in a stirred vessel. . .
  publication-title: Jpn
– volume: 5
  start-page: 101
  year: 1977
  end-page: 123
  article-title: The characterization of mixing in fermentors. .
  publication-title: Eng
– volume: 40
  start-page: 235
  year: 1992
  end-page: 246
  article-title: Effect of feed zone in fed‐batch fermentations of .
  publication-title: Bioeng
– volume: 28
  start-page: 623
  year: 1973
  end-page: 627
  article-title: Cycle time distribution in circulating systems. .
  publication-title: Sci.
– volume: 72A
  start-page: 583
  year: 1994
  end-page: 593
  article-title: Single phase flow in stirred reactors. . .
  publication-title: Eng
– start-page: 15
  end-page: 36
– volume: 26
  start-page: 2192
  year: 1987
  end-page: 2195
  article-title: Measuring the liquid circulation time in a large gas‐liquid contactor by means of a radio pill. 2. Circulation time distribution. . .
  publication-title: Res
– year: 1997
– start-page: 295
  year: 1997
  end-page: 313
– start-page: 271
  year: 1997
  end-page: 282
– volume: 51
  start-page: 3
  year: 1998
  end-page: 31
  article-title: Hydrodynamics of stirred bioreactors
  publication-title: Appl. Mech. Rev.
– volume: 18
  start-page: 171
  year: 1998
  end-page: 180
  article-title: Substrate gradient formation in the large‐scale bioreactor lowers cell yield and increases byproduct formation
  publication-title: Bioprocess Eng
– volume: 69
  start-page: 513
  year: 1991
  end-page: 519
  article-title: Experimental simulation of large‐scale bioreactor environments using a Monte Carlo method. . .
  publication-title: Eng
– volume: 79
  start-page: 887
  year: 2001
  ident: e_1_2_5_20_2
  article-title: The effect of size, location and pumping direction of pitched blade turbine impellers on flow patterns: LDA measurements and CFD predictions. Trans. Inst.Chem
  publication-title: Eng
– volume: 18
  start-page: 437
  year: 2002
  ident: e_1_2_5_4_2
  article-title: Effects of increased impeller power in a production‐scale Aspergillus oryzae fermentation.Biotechnol
  publication-title: Prog
– volume: 69
  start-page: 513
  year: 1991
  ident: e_1_2_5_3_2
  article-title: Experimental simulation of large‐scale bioreactor environments using a Monte Carlo method. Can.J.Chem
  publication-title: Eng
– volume: 28
  start-page: 623
  year: 1973
  ident: e_1_2_5_8_2
  article-title: Cycle time distribution in circulating systems. Chem. Eng
  publication-title: Sci.
– start-page: 271
  volume-title: Computational Methods for Fluid Dynamics
  year: 1997
  ident: e_1_2_5_23_2
– ident: e_1_2_5_7_2
  doi: 10.1002/bit.260400207
– volume: 20
  start-page: 277
  year: 1987
  ident: e_1_2_5_13_2
  article-title: Circulation time distribution and volume of mixing regions in highly viscous xanthan gum solution in a stirred vessel. J.Chem.Eng
  publication-title: Jpn
– ident: e_1_2_5_10_2
– volume: 59
  start-page: 303
  year: 1981
  ident: e_1_2_5_12_2
  article-title: Circulation time degree of fluid exchange between upper and lower circulation regions in a stirred vessel with a dual impeller. J.Ferment
  publication-title: Technol
– ident: e_1_2_5_15_2
– ident: e_1_2_5_6_2
  doi: 10.1007/s004490050427
– volume: 79
  start-page: 895
  year: 2001
  ident: e_1_2_5_16_2
  article-title: Effects of mixing on parallel chemical reactions in a continuous‐flow stirred‐tank reactor. Trans.Inst.Chem
  publication-title: Eng
– volume: 79
  start-page: 1005
  year: 2001
  ident: e_1_2_5_17_2
  article-title: Experiments and CFD predictions of solid particle distribution in a vessel agitated with four pitched blade turbines. Trans.Inst.Chem
  publication-title: Eng
– ident: e_1_2_5_9_2
– volume: 26
  start-page: 2192
  year: 1987
  ident: e_1_2_5_11_2
  article-title: Measuring the liquid circulation time in a large gas‐liquid contactor by means of a radio pill. 2. Circulation time distribution.Ind.Eng.Chem
  publication-title: Res
– volume: 73
  start-page: 78
  year: 1995
  ident: e_1_2_5_14_2
  article-title: The effect of impeller and tank geometry on circulation time distributions in stirred tanks. Trans.Inst.Chem
  publication-title: Eng
– ident: e_1_2_5_21_2
– start-page: 295
  volume-title: Bioreactor and Bioprocess Fluid Dynamics
  year: 1997
  ident: e_1_2_5_5_2
– volume: 76
  start-page: 611
  year: 1998
  ident: e_1_2_5_19_2
  article-title: Validation of CFD simulations of a stirred tank using particle image velocimetry data. Can.J.Chem
  publication-title: Eng
– volume-title: FLUENT Manual
  year: 1997
  ident: e_1_2_5_24_2
– volume: 5
  start-page: 101
  year: 1977
  ident: e_1_2_5_2_2
  article-title: The characterization of mixing in fermentors. Adv.Biochem
  publication-title: Eng
– volume: 72
  start-page: 583
  year: 1994
  ident: e_1_2_5_18_2
  article-title: Single phase flow in stirred reactors. Trans.Inst.Chem
  publication-title: Eng
– ident: e_1_2_5_22_2
  doi: 10.1115/1.3098990
SSID ssj0008062
Score 1.8257443
Snippet Nonideal mixing in many fermentation processes can lead to concentration gradients in nutrients, oxygen, and pH, among others. These gradients are likely to...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1480
SubjectTerms Algorithms
Biological and medical sciences
Bioreactors
Biotechnology
Computer Simulation
Fundamental and applied biological sciences. Psychology
Methods. Procedures. Technologies
Models, Theoretical
Motion
Rheology - methods
Software
Stress, Mechanical
Various methods and equipments
Viscosity
Title Using Computational Fluid Dynamics Software to Estimate Circulation Time Distributions in Bioreactors
URI https://api.istex.fr/ark:/67375/WNG-4KC7RG3G-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1021%2Fbp025580d
https://www.ncbi.nlm.nih.gov/pubmed/14524709
https://www.proquest.com/docview/18957100
https://www.proquest.com/docview/75736577
Volume 19
WOSCitedRecordID wos000185816400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1520-6033
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008062
  issn: 8756-7938
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH_aWg7swDcsfBQLIQSHiCRObEecWLsWiamqyiZ6ixzbkSKmdEpa4M_n2UkzKm0HxC2HF0t-X_7Zfn4_gLcqFxo9Rfm5oNSP05D6eU61rwPDOMtpULSsJWd8PherVbo4gE-7tzBtf4j-wM1GhsvXNsBl3nTNBmyQ51cWDotAH8IwQr9NBjCcLKcXZ30iFoHjE0VEznx0Q7FrLBSFH_uf95ajodXsb1seKRvUUNFSW9yEPfehrFuLpvf_axYP4F4HQcnn1mcewoGpHsHRX40JH4NxlQSkpXzojgvJ9HJbajJpKewb8g0T-C9ZG7JZk1NMFAh9DRmXteoIwYh9XUImtjFvx6nVkLIiJ-Uacaoj-XkCF9PT8_EXvyNk8FWCK79fIPoLWFrwVEplqI6sWamQSjBpmFBMayoNN4VOlTYBjYuQMRVFacRVjMiGPoVBta7MMZDQpAqRGm7WYoM7RC5pzDTm2khpjpgu9eD9zi6Z6rqVW9KMy8zdmkdh1mvOgze96FXbouMmoXfOuL2ErH_YmjaeZN_nsyz-OubLGZ1lCw9Ge9a_HhKxLvpz4MHrnTtkGIr2fkVWZr1tslCkiW2WdLsETzhlCecePGv96Hr0GDXMA5z3B-cut88kOzlfLN3n83-QfQF3XRmiOzx6CYNNvTWv4I76uSmbegSHfCVGXfz8ATTIHIs
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD50zWDdw-4X79KKMcb2YGZbtiTDXtakSUezELKU9k3YkgymxSlOsu3n70h23AXah7E3PxwLpPOdo0-38wG8V7nQiBTl54JSP05D6uc51b4ODOMsp0HRqJaM-WQizs_T6Q582byFaepDdBtuNjJcvrYBbjek22oDNsrzK8uHRaDvQC9GGCG-e4PZ8HTcZWIROEFRpOTMRxyKTWWhKPzc_bw1H_Xs0P629yOzJQ5R0Whb3EQ-t7msm4yGD_-vG4_gQUtCydcGNY9hx1RP4P5fpQmfgnF3CUgj-tBuGJLh5brUZNCI2C_JD0zhv7LakNWCHGGqQPJrSL-sVSsJRuz7EjKwpXlbVa0lKStyWC6QqTqZn2dwOjya94_9VpLBVwnO_X6B_C9gacHTLFOG6sg6lopMCZYZJhTTmmaGm0KnSpuAxkXImIqiNOIKfZTQ57BbLSrzEkhoUoVcDZdrscE1Is9ozDRm20hpjqwu9eDjxjFStfXKrWzGpXTn5lEou5Hz4F1netUU6bjJ6IPzbmeR1Rf2VhtP5NlkJOOTPp-N6EhOPdjfcv91k8h2EdGBBwcbPEgMRnvCklVmsV7KUKSJLZd0uwVPOGUJ5x68aIB03XqMI8wD7Pcnh5fbeyIP59OZ-3z1D7YHcO94_n0sx98mJ69hz11KdFtJb2B3Va_NW7irfq7KZb3fhtEffA8fkw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH8aLUJw4JsRPjYLIcQOEUmc2InEhbVLQauqqmxit8ixHSnalFZJC_z5PDtpRqXtgLjl8GLJ78s_28_vB_Be5rFCT5FuHlPqholP3TynylWeZpzl1Cta1pIpn83ii4tkvgeft29h2v4Q_YGbiQybr02A65Uqum4DJsrzlcHDsafuwDA0JDIDGI4X6fm0z8SxZwlFEZIzF_0w3nYWCvxP_c8769HQqPa3qY8UDaqoaLktbgKfu1jWLkbpo_-bxmN42IFQ8qX1miewp6un8OCv1oTPQNtaAtKSPnQHhiS92pSKjFsS-4Z8xxT-S9SarJfkBFMFgl9NRmUtO0owYt6XkLFpzduxajWkrMhxuUSkaml-nsN5enI2-up2lAyujHDtdwvEfx5LCp4IITVVgTEsjYWMmdAslkwpKjTXhUqk0h4NC58xGQRJwGWI2Ia-gEG1rPRLIL5OJGI13K6FGveIXNCQKcy2gVQcUV3iwMetYTLZ9Ss3tBlXmb03D_ys15wD73rRVduk4yahD9a6vYSoL01VG4-yH7NJFp6O-GJCJ9ncgYMd818PiWgXPdpz4HDrDxkGo7lhEZVebprMj5PItEu6XYJHnLKIcwf2W0e6Hj1EDXMP531k_eX2mWTHZ_OF_Xz1D7KHcG8-TrPpt9npa7hvaxLtSdIbGKzrjX4Ld-XPddnUB10U_QHadR8O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+computational+fluid+dynamics+software+to+estimate+circulation+time+distributions+in+bioreactors&rft.jtitle=Biotechnology+progress&rft.au=DAVIDSON%2C+Kyle+M&rft.au=SUSHIL%2C+Shrinivasan&rft.au=EGGLETON%2C+Charles+D&rft.au=MARTEN%2C+Mark+R&rft.date=2003&rft.pub=American+Chemical+Society&rft.issn=8756-7938&rft.volume=19&rft.issue=5&rft.spage=1480&rft.epage=1486&rft_id=info:doi/10.1021%2Fbp025580d&rft.externalDBID=n%2Fa&rft.externalDocID=15198330
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-7938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-7938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-7938&client=summon