Improved Confidence-Interval Estimations Using Uncertainty Measure and Weighted Feature Decisions for Cuff-Less Blood-Pressure Measurements

This paper presents a method to improve confidence-interval (CI) estimation using individual uncertainty measures and weighted feature decisions for cuff-less blood-pressure (BP) measurement. We obtained uncertainty using Gaussian process regression (GPR). The CI obtained from the GPR model is compu...

Full description

Saved in:
Bibliographic Details
Published in:Bioengineering (Basel) Vol. 12; no. 2; p. 131
Main Authors: Lee, Soojeong, Al-antari, Mugahed A., Joshi, Gyanendra Prasad
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 01.02.2025
MDPI
Subjects:
ISSN:2306-5354, 2306-5354
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents a method to improve confidence-interval (CI) estimation using individual uncertainty measures and weighted feature decisions for cuff-less blood-pressure (BP) measurement. We obtained uncertainty using Gaussian process regression (GPR). The CI obtained from the GPR model is computed using the distribution of BP estimates, which provides relatively wide CIs. Thus, we proposed a method to obtain improved CIs for individual subjects by applying bootstrap and uncertainty methods using the cuff-less BP estimates of each subject obtained through GPR. This study also introduced a novel method to estimate cuff-less BP with high fidelity by determining highly weighted features using weighted feature decisions. The standard deviation of the proposed method’s mean error is 2.94 mmHg and 1.50 mmHg for systolic blood pressure (SBP) and (DBP), respectively. The mean absolute error results were obtained by weighted feature determination combining GPR and gradient boosting algorithms (GBA) for SBP (1.46 mmHg) and DBP (0.69 mmHg). The study confirmed that the BP estimates were within the CI based on the test samples of almost all subjects. The weighted feature decisions combining GPR and GBA were more accurate and reliable for cuff-less BP estimation.
AbstractList This paper presents a method to improve confidence-interval (CI) estimation using individual uncertainty measures and weighted feature decisions for cuff-less blood-pressure (BP) measurement. We obtained uncertainty using Gaussian process regression (GPR). The CI obtained from the GPR model is computed using the distribution of BP estimates, which provides relatively wide CIs. Thus, we proposed a method to obtain improved CIs for individual subjects by applying bootstrap and uncertainty methods using the cuff-less BP estimates of each subject obtained through GPR. This study also introduced a novel method to estimate cuff-less BP with high fidelity by determining highly weighted features using weighted feature decisions. The standard deviation of the proposed method’s mean error is 2.94 mmHg and 1.50 mmHg for systolic blood pressure (SBP) and (DBP), respectively. The mean absolute error results were obtained by weighted feature determination combining GPR and gradient boosting algorithms (GBA) for SBP (1.46 mmHg) and DBP (0.69 mmHg). The study confirmed that the BP estimates were within the CI based on the test samples of almost all subjects. The weighted feature decisions combining GPR and GBA were more accurate and reliable for cuff-less BP estimation.
This paper presents a method to improve confidence-interval (CI) estimation using individual uncertainty measures and weighted feature decisions for cuff-less blood-pressure (BP) measurement. We obtained uncertainty using Gaussian process regression (GPR). The CI obtained from the GPR model is computed using the distribution of BP estimates, which provides relatively wide CIs. Thus, we proposed a method to obtain improved CIs for individual subjects by applying bootstrap and uncertainty methods using the cuff-less BP estimates of each subject obtained through GPR. This study also introduced a novel method to estimate cuff-less BP with high fidelity by determining highly weighted features using weighted feature decisions. The standard deviation of the proposed method's mean error is 2.94 mmHg and 1.50 mmHg for systolic blood pressure (SBP) and (DBP), respectively. The mean absolute error results were obtained by weighted feature determination combining GPR and gradient boosting algorithms (GBA) for SBP (1.46 mmHg) and DBP (0.69 mmHg). The study confirmed that the BP estimates were within the CI based on the test samples of almost all subjects. The weighted feature decisions combining GPR and GBA were more accurate and reliable for cuff-less BP estimation.This paper presents a method to improve confidence-interval (CI) estimation using individual uncertainty measures and weighted feature decisions for cuff-less blood-pressure (BP) measurement. We obtained uncertainty using Gaussian process regression (GPR). The CI obtained from the GPR model is computed using the distribution of BP estimates, which provides relatively wide CIs. Thus, we proposed a method to obtain improved CIs for individual subjects by applying bootstrap and uncertainty methods using the cuff-less BP estimates of each subject obtained through GPR. This study also introduced a novel method to estimate cuff-less BP with high fidelity by determining highly weighted features using weighted feature decisions. The standard deviation of the proposed method's mean error is 2.94 mmHg and 1.50 mmHg for systolic blood pressure (SBP) and (DBP), respectively. The mean absolute error results were obtained by weighted feature determination combining GPR and gradient boosting algorithms (GBA) for SBP (1.46 mmHg) and DBP (0.69 mmHg). The study confirmed that the BP estimates were within the CI based on the test samples of almost all subjects. The weighted feature decisions combining GPR and GBA were more accurate and reliable for cuff-less BP estimation.
Audience Academic
Author Joshi, Gyanendra Prasad
Lee, Soojeong
Al-antari, Mugahed A.
AuthorAffiliation 1 Department of Computer Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea; leesoo86@sejong.ac.kr
2 Department of Artificial Intelligence and Data Science, Sejong University, Seoul 05006, Republic of Korea
3 Department of AI Software, Kangwon National University, Kangwon State, Samcheok 10587, Republic of Korea
AuthorAffiliation_xml – name: 1 Department of Computer Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea; leesoo86@sejong.ac.kr
– name: 2 Department of Artificial Intelligence and Data Science, Sejong University, Seoul 05006, Republic of Korea
– name: 3 Department of AI Software, Kangwon National University, Kangwon State, Samcheok 10587, Republic of Korea
Author_xml – sequence: 1
  givenname: Soojeong
  surname: Lee
  fullname: Lee, Soojeong
– sequence: 2
  givenname: Mugahed A.
  orcidid: 0000-0002-4457-4407
  surname: Al-antari
  fullname: Al-antari, Mugahed A.
– sequence: 3
  givenname: Gyanendra Prasad
  orcidid: 0000-0002-5446-288X
  surname: Joshi
  fullname: Joshi, Gyanendra Prasad
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40001651$$D View this record in MEDLINE/PubMed
BookMark eNptktFu2yAUhq2p09p1fYXK0m524w4MGPtq6rJ2i5Rpu1i0S4TxwSWyIQMcqc-wlx5usq6ZKl8Ah48P_fi8zk6ss5BllxhdEdKg961xYHtjAbyxPS5RiTDBL7KzkqCqYITRkyfz0-wihA1CiSlZWdFX2SmdVxXDZ9nv5bj1bgddvnBWmw6sgmJpI_idHPKbEM0oo3E25OuQ7srXad9HaWy8z7-CDJOHXNou_wmmv4tJcwsyzsVPoEx4OKidzxeT1sUKQsg_Ds51xXef5jN2cIxgY3iTvdRyCHBxGM-z9e3Nj8WXYvXt83JxvSoUK0ksNK-4RK1qFXDF0tBwYKpEmmrJVMNqjBAHVXUVwYyjrkatRkwCb4Eg0JqcZ8u9t3NyI7Y-RfT3wkkjHgrO90L6aNQAQlFok6nhZUcoYFQzKNuWSdrUTCJZJdeHvWs7tSN0KuXwcjiSHu9Ycyd6txMY12z-Rcnw7mDw7tcEIYrRBAXDIC24KQiCOSa8akqa0Lf_oRs3eZveaqZQQxmvyT-qlymBsdqli9UsFdd1WTeUcjpTV89Q6etgNCr1mzapfnTg8mnSx4h_eykB1R5Q3oXgQT8iGIm5b8XzfUv-ALih5is
Cites_doi 10.1109/TCE.2022.3174689
10.1161/01.CIR.101.23.e215
10.1109/LSENS.2023.3285135
10.1109/JTEHM.2022.3209754
10.1016/j.bspc.2024.106860
10.1093/eurheartj/ehac432
10.1093/abm/16.3.210
10.1161/HYP.0000000000000067
10.3390/diagnostics12112886
10.1016/j.bspc.2024.106662
10.1049/htl.2016.0100
10.1161/HYPERTENSIONAHA.117.10237
10.7551/mitpress/3206.001.0001
10.1155/2018/7804243
10.1038/s41598-024-66514-y
10.1038/s41598-022-22205-0
10.1016/j.bspc.2023.105287
10.3390/app12168265
10.7763/IJCTE.2017.V9.1138
10.1109/TBME.2016.2580904
10.1016/j.compbiomed.2019.103392
10.1016/j.aej.2021.04.035
10.1109/ACCESS.2017.2787980
10.3390/sym13040686
10.1109/JBHI.2024.3395445
10.1016/j.jcmds.2024.100102
10.1109/MIM.2002.1005654
10.1214/aos/1013203451
10.21037/atm.2017.03.34
10.4304/jcp.7.1.161-168
10.1016/j.compbiomed.2015.11.008
10.1109/TIM.2011.2161926
10.1109/ACCESS.2023.3234597
10.3390/info15070394
10.3390/diagnostics13040736
10.1109/EMBC48229.2022.9871777
10.1038/s41440-022-01123-8
10.1109/SMARTCOMP.2016.7501681
10.2307/2530926
10.1016/j.bspc.2020.101942
10.1097/HJH.0000000000003483
10.1142/S0219720005001004
10.1016/j.bspc.2021.103404
10.1016/j.bspc.2024.106741
10.1109/JBHI.2021.3128383
10.1038/sj.jhh.1001683
10.1007/978-3-319-68415-4_1
10.1109/ICoSNIKOM60230.2023.10364417
10.3390/s20072108
10.1109/JBHI.2022.3172514
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/bioengineering12020131
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Biological Science Collection
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database
PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2306-5354
ExternalDocumentID oai_doaj_org_article_c4ebc6d972d34e1085e2bb5a4985a0a6
PMC11852306
A828944743
40001651
10_3390_bioengineering12020131
Genre Journal Article
GrantInformation_xml – fundername: Korean government (MSIT)
  grantid: RS-2022- 00166402; RS-2023-00256517
GroupedDBID 53G
5VS
8FE
8FG
8FH
AAFWJ
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
KQ8
L6V
LK8
M7P
M7S
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RPM
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c523t-f767a0bcbce7c5cbc97e5c20f4fa5c9581007ec6d631570d80bf05ae7be30eff3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001430388900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2306-5354
IngestDate Fri Oct 03 12:40:14 EDT 2025
Tue Nov 04 02:05:26 EST 2025
Sun Nov 09 13:23:35 EST 2025
Fri Jul 25 11:56:33 EDT 2025
Tue Nov 11 10:51:32 EST 2025
Tue Nov 04 18:11:47 EST 2025
Sat Mar 01 01:25:52 EST 2025
Sat Nov 29 07:13:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords gradient boosting algorithm
Gaussian processes regression
confidence intervals
uncertainty
cuff-less blood-pressure estimation
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-f767a0bcbce7c5cbc97e5c20f4fa5c9581007ec6d631570d80bf05ae7be30eff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4457-4407
0000-0002-5446-288X
OpenAccessLink https://doaj.org/article/c4ebc6d972d34e1085e2bb5a4985a0a6
PMID 40001651
PQID 3170945783
PQPubID 2055440
ParticipantIDs doaj_primary_oai_doaj_org_article_c4ebc6d972d34e1085e2bb5a4985a0a6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11852306
proquest_miscellaneous_3171376924
proquest_journals_3170945783
gale_infotracmisc_A828944743
gale_infotracacademiconefile_A828944743
pubmed_primary_40001651
crossref_primary_10_3390_bioengineering12020131
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Bioengineering (Basel)
PublicationTitleAlternate Bioengineering (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Liu (ref_54) 2024; 28
Lee (ref_6) 2011; 60
Lee (ref_35) 2023; 11
ref_58
ref_13
ref_57
Schwartz (ref_2) 1994; 16
ref_55
Wang (ref_41) 2021; 26
Williams (ref_49) 2004; 18
ref_53
ref_52
ref_51
ref_18
Guo (ref_11) 2022; 11
Gunasekaran (ref_27) 2024; 13
ref_15
Qiu (ref_10) 2022; 68
Wang (ref_47) 2018; 2018
Maher (ref_16) 2021; 60
Nagai (ref_26) 2017; 4
ref_22
ref_20
Goldberger (ref_21) 2000; 101
Ding (ref_14) 2005; 3
Buckland (ref_37) 1984; 40
Stergiou (ref_36) 2018; 71
Stergiou (ref_48) 2023; 41
Friedman (ref_33) 2001; 29
ref_34
Reboussin (ref_24) 2018; 71
ref_32
ref_31
Yang (ref_12) 2012; 7
ref_30
ref_39
ref_38
Efron (ref_19) 1986; 1
Kim (ref_45) 2022; 26
Kachuee (ref_29) 2016; 64
Zhang (ref_40) 2018; 6
Tomitani (ref_1) 2023; 46
Ahmed (ref_28) 2023; 7
Whelton (ref_23) 2022; 43
ref_46
Liu (ref_17) 2017; 9
ref_44
ref_43
ref_42
Aronow (ref_25) 2017; 5
ref_3
ref_9
ref_8
ref_4
Parvis (ref_5) 2002; 5
ref_7
Lee (ref_56) 2017; 85
References_xml – volume: 68
  start-page: 236
  year: 2022
  ident: ref_10
  article-title: Joint regression network and window function-based piecewise neural network for cuffless continuous blood pressure estimation only using single photoplethesmogram
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2022.3174689
– volume: 1
  start-page: 54
  year: 1986
  ident: ref_19
  article-title: Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy
  publication-title: Stat. Sci.
– volume: 101
  start-page: e215
  year: 2000
  ident: ref_21
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 7
  start-page: 6003504
  year: 2023
  ident: ref_28
  article-title: A Deep Learning and Fast Wavelet Transform-Based Hybrid Approach for Denoising of PPG Signals
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2023.3285135
– volume: 11
  start-page: 318
  year: 2022
  ident: ref_11
  article-title: Assessment of a calibration-free method of cuffless blood pressure measurement: A pilot study
  publication-title: IEEE J. Transl. Eng. Health Med.
  doi: 10.1109/JTEHM.2022.3209754
– ident: ref_8
  doi: 10.1016/j.bspc.2024.106860
– volume: 43
  start-page: 3302
  year: 2022
  ident: ref_23
  article-title: Harmonization of the American College of Cardiology/American Heart Association and European Society of Cardiology/European Society of Hypertension blood pressure/hypertension guidelines: Comparisons, reflections, and recommendations
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehac432
– volume: 16
  start-page: 210
  year: 1994
  ident: ref_2
  article-title: Mood, location and physical position as predictors of ambulatory blood pressure and heart rate: Application of a multi-level random effects model
  publication-title: Ann. Behav. Med.
  doi: 10.1093/abm/16.3.210
– volume: 71
  start-page: e116
  year: 2018
  ident: ref_24
  article-title: Systematic review for the 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines
  publication-title: Hypertension
  doi: 10.1161/HYP.0000000000000067
– ident: ref_22
  doi: 10.3390/diagnostics12112886
– ident: ref_50
  doi: 10.1016/j.bspc.2024.106662
– volume: 4
  start-page: 138
  year: 2017
  ident: ref_26
  article-title: Motion artefact removals for wearable ECG using stationary wavelet transform
  publication-title: Healthc. Technol. Lett.
  doi: 10.1049/htl.2016.0100
– volume: 71
  start-page: 368
  year: 2018
  ident: ref_36
  article-title: A universal standard for the validation of blood pressure measuring devices: Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) Collaboration Statement
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.117.10237
– ident: ref_15
  doi: 10.7551/mitpress/3206.001.0001
– volume: 2018
  start-page: 7804243
  year: 2018
  ident: ref_47
  article-title: A novel neural network model for blood pressure estimation using photoplethesmography without electrocardiogram
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2018/7804243
– ident: ref_58
– ident: ref_53
  doi: 10.1038/s41598-024-66514-y
– ident: ref_42
  doi: 10.1038/s41598-022-22205-0
– ident: ref_52
  doi: 10.1016/j.bspc.2023.105287
– ident: ref_13
  doi: 10.3390/app12168265
– ident: ref_31
– volume: 9
  start-page: 202
  year: 2017
  ident: ref_17
  article-title: Cuffless blood pressure estimation based on photoplethysmography signal and its second derivative
  publication-title: Int. J. Comput. Theory Eng.
  doi: 10.7763/IJCTE.2017.V9.1138
– volume: 64
  start-page: 859
  year: 2016
  ident: ref_29
  article-title: Cuffless blood pressure estimation algorithms for continuous health-care monitoring
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2580904
– ident: ref_38
  doi: 10.1016/j.compbiomed.2019.103392
– volume: 60
  start-page: 5779
  year: 2021
  ident: ref_16
  article-title: Enhancement of blood pressure estimation method via machine learning
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.04.035
– ident: ref_20
– volume: 6
  start-page: 21758
  year: 2018
  ident: ref_40
  article-title: An empirical study on predicting blood pressure using classification and regression trees
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2787980
– ident: ref_39
  doi: 10.3390/sym13040686
– volume: 28
  start-page: 3882
  year: 2024
  ident: ref_54
  article-title: HGCTNet: Handcrafted Feature-Guided CNN and Transformer Network for Wearable Cuffless Blood Pressure Measurement
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2024.3395445
– volume: 13
  start-page: 100102
  year: 2024
  ident: ref_27
  article-title: Artifact removal from ECG signals using online recursive independent component analysis
  publication-title: J. Comput. Math. Data Sci.
  doi: 10.1016/j.jcmds.2024.100102
– volume: 5
  start-page: 12
  year: 2002
  ident: ref_5
  article-title: Medical measurements and uncertainties
  publication-title: IEEE Instrum. Meas. Mag.
  doi: 10.1109/MIM.2002.1005654
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_33
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 5
  start-page: S5
  year: 2017
  ident: ref_25
  article-title: Treatment of hypertensive emergencies
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm.2017.03.34
– ident: ref_3
– volume: 7
  start-page: 161
  year: 2012
  ident: ref_12
  article-title: Neighborhood component feature selection for high-dimensional data
  publication-title: J. Comput.
  doi: 10.4304/jcp.7.1.161-168
– ident: ref_34
– volume: 85
  start-page: 112
  year: 2017
  ident: ref_56
  article-title: Oscillometric blood pressure estimation by combining nonparametric bootstrap with Gaussian mixture model
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.11.008
– volume: 60
  start-page: 3405
  year: 2011
  ident: ref_6
  article-title: Confidence interval estimation for oscillometric blood pressure measurements using bootstrap approaches
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2011.2161926
– volume: 11
  start-page: 2754
  year: 2023
  ident: ref_35
  article-title: Automatic features extraction integrated with exact Gaussian process for respiratory rate and uncertainty estimations
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3234597
– ident: ref_44
  doi: 10.3390/info15070394
– ident: ref_7
  doi: 10.3390/diagnostics13040736
– ident: ref_18
  doi: 10.1109/EMBC48229.2022.9871777
– volume: 46
  start-page: 916
  year: 2023
  ident: ref_1
  article-title: The effect of psychological stress and physical activity on ambulatory blood pressure variability detected by a multisensor ambulatory blood pressure monitoring device
  publication-title: Hypertens. Res.
  doi: 10.1038/s41440-022-01123-8
– ident: ref_9
  doi: 10.1109/SMARTCOMP.2016.7501681
– volume: 40
  start-page: 811
  year: 1984
  ident: ref_37
  article-title: Monte Carlo confidence intervals
  publication-title: Biometrics
  doi: 10.2307/2530926
– ident: ref_32
  doi: 10.1016/j.bspc.2020.101942
– volume: 41
  start-page: 2074
  year: 2023
  ident: ref_48
  article-title: European Society of Hypertension recommendations for the validation of cuffless blood pressure measuring devices: European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability
  publication-title: J. Hypertens.
  doi: 10.1097/HJH.0000000000003483
– volume: 3
  start-page: 185
  year: 2005
  ident: ref_14
  article-title: Minimum redundancy feature selection from microarray gene expression data
  publication-title: J. Bioinform. Comput. Biol.
  doi: 10.1142/S0219720005001004
– ident: ref_46
– ident: ref_51
  doi: 10.1016/j.bspc.2021.103404
– ident: ref_55
  doi: 10.1016/j.bspc.2024.106741
– volume: 26
  start-page: 2075
  year: 2021
  ident: ref_41
  article-title: Cuff-less blood pressure estimation from photoplethysmography via visibility graph and transfer learning
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3128383
– volume: 18
  start-page: 139
  year: 2004
  ident: ref_49
  article-title: Guidelines for management of hypertension: Report of the fourth working party of the British Hypertension Society, 2004—BHS IV
  publication-title: J. Hum. Hypertens.
  doi: 10.1038/sj.jhh.1001683
– ident: ref_30
  doi: 10.1007/978-3-319-68415-4_1
– ident: ref_43
  doi: 10.1109/ICoSNIKOM60230.2023.10364417
– ident: ref_57
– ident: ref_4
  doi: 10.3390/s20072108
– volume: 26
  start-page: 3697
  year: 2022
  ident: ref_45
  article-title: Deepcnap: A deep learning approach for continuous noninvasive arterial blood pressure monitoring using photoplethysmography
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3172514
SSID ssj0001325264
Score 2.281916
Snippet This paper presents a method to improve confidence-interval (CI) estimation using individual uncertainty measures and weighted feature decisions for cuff-less...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 131
SubjectTerms Algorithms
Blood pressure
Confidence intervals
cuff-less blood-pressure estimation
Decisions
Electrocardiography
Estimates
Exercise
Gaussian process
Gaussian processes regression
gradient boosting algorithm
Hypertension
Measurement
Monitoring systems
Neighborhoods
Neural networks
Physiology
Statistical analysis
Uncertainty
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4QAH3tBAQUZC4hStE9txckJtacWBVj1Q0VtkOzbsJSmb3Ur8Bv40M072EYG4cIoUeyNb_jyvnfkG4B0a8ZbaB6RFsDm1MOOp9XmRorJtilCgQRJ4bDahz8_Lq6vqYgy49WNa5VomRkHddI5i5DPUc-iJIL7Eh-sfKXWNon9XxxYat-EOsSSImLp3sY2xiFyhwh8KgwV69zM77_yW5y9Dz5_4ZiY6KVL3_ymgdzTUNHtyRx2dPvzfjTyCB6Mhyg4H5DyGW759Avd36Amfwq8h4uAbRnWBQ_fRNIYQEZ7sBIXDUPfYs5h4wC5xPCYYLH-ysyH2yEzbsK8x_IqfIXuTXn4cG_v0DE1mdrwKIf2MEpcdxSz6oWIRp51t45f9M7g8Pfly_CkdmzekDn3bZRp0oQ23zjqvncJHpb1yOQ8yGOUqVVJ6hndFU4hMad6U3AaujNfWC-5DEM9hr-1avw_MyZxbabTPMoPurq6UQCtWFJZXomlklsBsfXz19cDRUaNvQwde__3AEziiU97MJo7t-KJbfKvHK1s76S2ur9J5I6SnKg2fW6uMrEpluCkSeE8YqUkSIBCcGQsacNHEqVUfkjMrJZpoCRxMZuINdtPhNVLqUYL09RYmCbzdDNMvKSuu9d0qzslQQaALncCLAZSbLclozSvcajmB62TP05F2_j3yi2dUUI-u5Mt_r-sV3MupGXJMYT-AveVi5V_DXXeznPeLN_Em_gYYakG8
  priority: 102
  providerName: ProQuest
Title Improved Confidence-Interval Estimations Using Uncertainty Measure and Weighted Feature Decisions for Cuff-Less Blood-Pressure Measurements
URI https://www.ncbi.nlm.nih.gov/pubmed/40001651
https://www.proquest.com/docview/3170945783
https://www.proquest.com/docview/3171376924
https://pubmed.ncbi.nlm.nih.gov/PMC11852306
https://doaj.org/article/c4ebc6d972d34e1085e2bb5a4985a0a6
Volume 12
WOSCitedRecordID wos001430388900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M7P
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M7S
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: BENPR
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: PIMPY
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagcIBDVf5Dy8pISJyidRI7To7ddiuQ2FUEVCynyHZsdS9Z1OwiceEFeGlm7HSbCCQuXBIp40SxZ8aeGX0zQ8gbMOI1tg-Ic6dTbGHGYm3TPIbDtsldDgaJY77ZhFwui9WqrAatvhATFsoDh4WbGm61yZtSpk3GLWLlbaq1ULwshGLKF9sGq2fgTPnoSpYKOOpDSnAGfv1Urzf2tsJfAj4_VpoZnUa-aP-fW_PgbBrjJgcH0cUROewtSHoa_vwRuWPbx-ThoK7gE_IrhApsQzGhL7QNjX3sD-SKzkGrQ8JiRz1igF4C3SMDtj_oIgQNqWob-sXHTeEzaCjiw_O-I09HwdalZzvn4g-wVdKZh7-HVEMYtrgNPHZPyeXF_PPZu7jvuhAbcEq3sZO5VEwbbaw0Am6ltMKkzHGnhClFgbgKCyzJs0RI1hRMOyaUldpmzDqXPSMH7aa1Lwg1PGWaK2mTRIGfKkuRgfmZ5ZqVWdPwJCLTm9Wvv4XiGjU4Jciv-u_8isgMmbQfjcWx_QMQmboXmfpfIhORt8jiGlUY-GhUn4kAP43FsOpT9EI5B9sqIiejkaB6Zky-EZK6V_2uBoMMXGbYCIH8ek_GNxHO1trNzo9JYGcH3zciz4NM7afEvRkuYKrFSNpGcx5T2vWVLwyeYCY8-IAv_8cqHZMHKfY69gj1E3Kwvd7ZV-S--b5dd9cTcleuigm5N5svq48Tr3wTxM1W_voJrz_nQK_eL6qvvwGFbTtW
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKQQIO7EuggJFAnKJxvGQ5INRVrToz6qEVvaWxY8NckjKZAfU38F_4jbznZJYIxK0HTpFiJ7Izn982772PkHdgxGukDwhjpzlSmLFQWx6HoGzL2MVgkDjmySaS8Tg9P89ONsivRS0MplUuZKIX1GVtMEY-AD0HngjgS3y6_BYiaxT-u7qg0GhhcWyvfoDL1nw82oPf9z3nB_unu4dhxyoQGnC6ZqFL4qRg2mhjE6PgkiVWGc6cdIUymUoxb8CauIxFpBJWpkw7pgqbaCuYdU7Ae2-Qm2BG8NSnCp6sYjqCKzAw2kJkITI20JParvoKRhyMs0hEPR3oqQL-VAhrGrGfrbmm_g7u_28f7gG51xnadLs9GQ_Jhq0ekbtr7Rcfk59tRMWWFOseW3bV0IdI4fjRfRB-bV1nQ31iBT2DcZ9AMbuioza2SouqpJ99eBleg_Y03tzriIsaCi4B3Z07Fw5Bo9AdXyXQVmTCtNEqPts8IWfX8jWeks2qruxzQo3kTMsisVFUgDufZEqAlS5izTJRljIKyGABl_yy7UGSg--GAMv_DrCA7CCqlrOxh7i_UU-_5J1Iyo20GtaXJbwU0mIViuVaq0JmqSpYEQfkA2IyR0kHwDNFV7ABi8aeYfk2OutSggkakK3eTJBQpj-8QGbeScgmX8EyIG-Xw_gkZv1Vtp77OREowIzLgDxrD8FyS9J7Kwq2mvaOR2_P_ZFq8tX3T4-wYQC4yi_-va435Pbh6WiYD4_Gxy_JHY7Ezz5df4tszqZz-4rcMt9nk2b62ksBSi6u-_T8Bspmoac
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VghAceD8MBRYJxMnKeh_e-IBQ2zSiahvlQEVvrne9C7k4JU5A_Q38I34dM2vnYYG49cApkndjeZ1vnpmZj5A34MQbpA-IU284Upix2DiexmBsy9Sn4JB4Fsgm9GjUPzvLxlvk17IXBssqlzoxKOpyajFH3gM7B5EI4Ev0fFsWMR4MP1x8i5FBCv9pXdJpNBA5cpc_IHyr3x8O4Ld-y_nw4NP-x7hlGIgtBGDz2OtUF8xYY522Cj4y7ZTlzEtfKJupPtYQOJuWqUiUZmWfGc9U4bRxgjnvBdz3GrmucWh5KBscr_M7gitwNpqmZCEy1jOTqVvPGEw4OGqJSDr2MNAG_GkcNqxjt3JzwxQO7_7PL_EeudM64HS3kZj7ZMtVD8jtjbGMD8nPJtPiSor9kA3rahxSpyCW9ACUYtPvWdNQcEFPYT0UVswv6UmTc6VFVdLPIe0Mt0E_Gy8OWkKjmkKoQPcX3sfHYGnoXugeaDo1YdvJOm9bPyKnV_I2HpPtalq5p4RayZmRhXZJUkCYrzMlwHsXqWGZKEuZRKS3hE5-0cwmySGmQ7DlfwdbRPYQYavdOFs8XJjOvuStqsqtdAaeL9O8FNJhd4rjxqhCZn1VsCKNyDvEZ44aEEBoi7aRAx4aZ4nluxjESwmuaUR2OjtBc9nu8hKleas563wN0Yi8Xi3jN7EasHLTRdiTgGHMuIzIk0YgVkeSIYpRcNR-R1Q6Z-6uVJOvYa56goMEIIR-9u_nekVugtDkx4ejo-fkFkc-6FDFv0O257OFe0Fu2O_zST17GRQCJedXLTy_AfscqmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Confidence-Interval+Estimations+Using+Uncertainty+Measure+and+Weighted+Feature+Decisions+for+Cuff-Less+Blood-Pressure+Measurements&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Lee%2C+Soojeong&rft.au=Al-antari%2C+Mugahed+A.&rft.au=Joshi%2C+Gyanendra+Prasad&rft.date=2025-02-01&rft.pub=MDPI&rft.eissn=2306-5354&rft.volume=12&rft.issue=2&rft_id=info:doi/10.3390%2Fbioengineering12020131&rft.externalDocID=PMC11852306
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon