Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare EGFR mutations

Next generation sequencing (NGS)-based tumor profiling identified an overwhelming number of uncharacterized somatic mutations, also known as variants of unknown significance (VUS). The therapeutic significance of mutations outside mutational hotspots, consisting of >50 types, in nonsmall cell lun...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the National Academy of Sciences - PNAS Ročník 116; číslo 20; s. 10025
Hlavní autori: Ikemura, Shinnosuke, Yasuda, Hiroyuki, Matsumoto, Shingo, Kamada, Mayumi, Hamamoto, Junko, Masuzawa, Keita, Kobayashi, Keigo, Manabe, Tadashi, Arai, Daisuke, Nakachi, Ichiro, Kawada, Ichiro, Ishioka, Kota, Nakamura, Morio, Namkoong, Ho, Naoki, Katsuhiko, Ono, Fumie, Araki, Mitsugu, Kanada, Ryo, Ma, Biao, Hayashi, Yuichiro, Mimaki, Sachiyo, Yoh, Kiyotaka, Kobayashi, Susumu S, Kohno, Takashi, Okuno, Yasushi, Goto, Koichi, Tsuchihara, Katsuya, Soejima, Kenzo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 14.05.2019
Predmet:
ISSN:1091-6490, 1091-6490
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Next generation sequencing (NGS)-based tumor profiling identified an overwhelming number of uncharacterized somatic mutations, also known as variants of unknown significance (VUS). The therapeutic significance of mutations outside mutational hotspots, consisting of >50 types, in nonsmall cell lung carcinoma (NSCLC) is largely unknown. In fact, our pan-nation screening of NSCLC without hotspot mutations ( = 3,779) revealed that the majority (>90%) of cases with rare mutations, accounting for 5.5% of the cohort subjects, did not receive EGFR-tyrosine kinase inhibitors (TKIs) as a first-line treatment. To tackle this problem, we applied a molecular dynamics simulation-based model to predict the sensitivity of rare EGFR mutants to EGFR-TKIs. The model successfully predicted the diverse in vitro and in vivo sensitivities of exon 20 insertion mutants, including a singleton, to osimertinib, a third-generation EGFR-TKI ( = 0.72, = 0.0037). Additionally, our model showed a higher consistency with experimentally obtained sensitivity data than other prediction approaches, indicating its robustness in analyzing complex cancer mutations. Thus, the in silico prediction model will be a powerful tool in precision medicine for NSCLC patients carrying rare mutations in the clinical setting. Here, we propose an insight to overcome mutation diversity in lung cancer.
Bibliografia:ObjectType-Case Study-2
SourceType-Scholarly Journals-1
ObjectType-Feature-4
content type line 23
ObjectType-Report-1
ObjectType-Article-3
ISSN:1091-6490
1091-6490
DOI:10.1073/pnas.1819430116