Deep-Learning-Based Multispectral Image Reconstruction from Single Natural Color RGB Image—Enhancing UAV-Based Phenotyping

Multispectral images (MSIs) are valuable for precision agriculture due to the extra spectral information acquired compared to natural color RGB (ncRGB) images. In this paper, we thus aim to generate high spatial MSIs through a robust, deep-learning-based reconstruction method using ncRGB images. Usi...

Full description

Saved in:
Bibliographic Details
Published in:Remote Sensing Vol. 14; no. 5; p. 1272
Main Authors: Zhao, Jiangsan, Kumar, Ajay, Banoth, Balaji Naik, Marathi, Balram, Rajalakshmi, Pachamuthu, Rewald, Boris, Ninomiya, Seishi, Guo, Wei
Format: Journal Article
Language:English
Published: Basel MDPI AG 05.03.2022
MDPI
Subjects:
ISSN:2072-4292, 2072-4292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multispectral images (MSIs) are valuable for precision agriculture due to the extra spectral information acquired compared to natural color RGB (ncRGB) images. In this paper, we thus aim to generate high spatial MSIs through a robust, deep-learning-based reconstruction method using ncRGB images. Using the data from the agronomic research trial for maize and breeding research trial for rice, we first reproduced ncRGB images from MSIs through a rendering model, Model-True to natural color image (Model-TN), which was built using a benchmark hyperspectral image dataset. Subsequently, an MSI reconstruction model, Model-Natural color to Multispectral image (Model-NM), was trained based on prepared ncRGB (ncRGB-Con) images and MSI pairs, ensuring the model can use widely available ncRGB images as input. The integrated loss function of mean relative absolute error (MRAEloss) and spectral information divergence (SIDloss) were most effective during the building of both models, while models using the MRAEloss function were more robust towards variability between growing seasons and species. The reliability of the reconstructed MSIs was demonstrated by high coefficients of determination compared to ground truth values, using the Normalized Difference Vegetation Index (NDVI) as an example. The advantages of using “reconstructed” NDVI over Triangular Greenness Index (TGI), as calculated directly from RGB images, were illustrated by their higher capabilities in differentiating three levels of irrigation treatments on maize plants. This study emphasizes that the performance of MSI reconstruction models could benefit from an optimized loss function and the intermediate step of ncRGB image preparation. The ability of the developed models to reconstruct high-quality MSIs from low-cost ncRGB images will, in particular, promote the application for plant phenotyping in precision agriculture.
AbstractList Multispectral images (MSIs) are valuable for precision agriculture due to the extra spectral information acquired compared to natural color RGB (ncRGB) images. In this paper, we thus aim to generate high spatial MSIs through a robust, deep-learning-based reconstruction method using ncRGB images. Using the data from the agronomic research trial for maize and breeding research trial for rice, we first reproduced ncRGB images from MSIs through a rendering model, Model-True to natural color image (Model-TN), which was built using a benchmark hyperspectral image dataset. Subsequently, an MSI reconstruction model, Model-Natural color to Multispectral image (Model-NM), was trained based on prepared ncRGB (ncRGB-Con) images and MSI pairs, ensuring the model can use widely available ncRGB images as input. The integrated loss function of mean relative absolute error (MRAEloss) and spectral information divergence (SIDloss) were most effective during the building of both models, while models using the MRAEloss function were more robust towards variability between growing seasons and species. The reliability of the reconstructed MSIs was demonstrated by high coefficients of determination compared to ground truth values, using the Normalized Difference Vegetation Index (NDVI) as an example. The advantages of using “reconstructed” NDVI over Triangular Greenness Index (TGI), as calculated directly from RGB images, were illustrated by their higher capabilities in differentiating three levels of irrigation treatments on maize plants. This study emphasizes that the performance of MSI reconstruction models could benefit from an optimized loss function and the intermediate step of ncRGB image preparation. The ability of the developed models to reconstruct high-quality MSIs from low-cost ncRGB images will, in particular, promote the application for plant phenotyping in precision agriculture.
Multispectral images (MSIs) are valuable for precision agriculture due to the extra spectral information acquired compared to natural color RGB (ncRGB) images. In this paper, we thus aim to generate high spatial MSIs through a robust, deep-learning-based reconstruction method using ncRGB images. Using the data from the agronomic research trial for maize and breeding research trial for rice, we first reproduced ncRGB images from MSIs through a rendering model, Model-True to natural color image (Model-TN), which was built using a benchmark hyperspectral image dataset. Subsequently, an MSI reconstruction model, Model-Natural color to Multispectral image (Model-NM), was trained based on prepared ncRGB (ncRGB-Con) images and MSI pairs, ensuring the model can use widely available ncRGB images as input. The integrated loss function of mean relative absolute error (MRAEₗₒₛₛ) and spectral information divergence (SIDₗₒₛₛ) were most effective during the building of both models, while models using the MRAEₗₒₛₛ function were more robust towards variability between growing seasons and species. The reliability of the reconstructed MSIs was demonstrated by high coefficients of determination compared to ground truth values, using the Normalized Difference Vegetation Index (NDVI) as an example. The advantages of using “reconstructed” NDVI over Triangular Greenness Index (TGI), as calculated directly from RGB images, were illustrated by their higher capabilities in differentiating three levels of irrigation treatments on maize plants. This study emphasizes that the performance of MSI reconstruction models could benefit from an optimized loss function and the intermediate step of ncRGB image preparation. The ability of the developed models to reconstruct high-quality MSIs from low-cost ncRGB images will, in particular, promote the application for plant phenotyping in precision agriculture.
Author Balram Marathi
Seishi Ninomiya
Wei Guo
Balaji Naik Banoth
Pachamuthu Rajalakshmi
Jiangsan Zhao
Ajay Kumar
Boris Rewald
Author_xml – sequence: 1
  givenname: Jiangsan
  orcidid: 0000-0003-3916-7388
  surname: Zhao
  fullname: Zhao, Jiangsan
– sequence: 2
  givenname: Ajay
  surname: Kumar
  fullname: Kumar, Ajay
– sequence: 3
  givenname: Balaji Naik
  surname: Banoth
  fullname: Banoth, Balaji Naik
– sequence: 4
  givenname: Balram
  surname: Marathi
  fullname: Marathi, Balram
– sequence: 5
  givenname: Pachamuthu
  surname: Rajalakshmi
  fullname: Rajalakshmi, Pachamuthu
– sequence: 6
  givenname: Boris
  orcidid: 0000-0001-8098-0616
  surname: Rewald
  fullname: Rewald, Boris
– sequence: 7
  givenname: Seishi
  orcidid: 0000-0002-2123-4354
  surname: Ninomiya
  fullname: Ninomiya, Seishi
– sequence: 8
  givenname: Wei
  orcidid: 0000-0002-3017-5464
  surname: Guo
  fullname: Guo, Wei
BackLink https://cir.nii.ac.jp/crid/1872555066364209024$$DView record in CiNii
https://hal.science/hal-03653571$$DView record in HAL
BookMark eNptks1u1DAUhSNUJErbDU8QCRaAlOLf2FlOh9KONPyoULaWx76Z8ShjT-0EqRILHoIn5ElwSBFQ4YWvdfSdI9v3Pi4OfPBQFE8wOqW0Qa9iwgxxTAR5UBwSJEjFSEMO_jo_Kk5S2qK8KMUNYofF19cA-2oJOnrn19WZTmDLt0PXu7QH00fdlYudXkN5BSb41MfB9C74so1hV37Mlg7Kd7ofRnAeuhDLq4uzyfLj2_dzv9HeZKq8nn2-C_-wAR_6231Wj4uHre4SnNzVo-L6zfmn-WW1fH-xmM-WleGE9hXIWsiVEWCFIJJbbKFlqMVYWmKlJgYw1y0WIMiKWWmEzFUYgbilmWzoUbGYcm3QW7WPbqfjrQraqV9CiGulY-9MB4rXHKS02kq0YgwayRreWrFqG2QlFiRnvZiyNrr7J-pytlSjhmjNKRf4C87s84ndx3AzQOrVziUDXac9hCEpUjMpKWeSZfTpPXQbhujzr2SKCiEZr8eHoIkyMaQUoVXG9XpsSO6U6xRGapwE9WcSsuXlPcvvS_8XfjbB3rkcPe5YCsI5R3VNa0ZQgwijPwHe7776
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3587226
crossref_primary_10_1109_LGRS_2023_3245095
crossref_primary_10_1016_j_biosystemseng_2024_07_002
crossref_primary_10_1371_journal_pone_0307329
crossref_primary_10_3390_plants14010032
crossref_primary_10_3390_s23021000
crossref_primary_10_1016_j_optlastec_2025_112787
crossref_primary_10_3390_electronics11233887
crossref_primary_10_1016_j_atech_2025_100976
crossref_primary_10_1016_j_plaphe_2025_100021
crossref_primary_10_3390_rs17111901
crossref_primary_10_3389_fpls_2024_1425310
crossref_primary_10_1007_s00122_025_04984_y
crossref_primary_10_1016_j_optlaseng_2024_108202
crossref_primary_10_1007_s11104_025_07306_9
crossref_primary_10_1007_s10462_024_11090_w
crossref_primary_10_1109_JSTARS_2024_3463432
crossref_primary_10_1016_j_atech_2023_100323
crossref_primary_10_32604_cmc_2023_033449
crossref_primary_10_1109_ACCESS_2023_3261129
crossref_primary_10_1002_agg2_70047
crossref_primary_10_1016_j_tplants_2023_09_001
crossref_primary_10_3390_s23094179
crossref_primary_10_1016_j_compag_2023_108577
crossref_primary_10_3389_fpls_2023_1124939
crossref_primary_10_3390_app14083313
Cites_doi 10.1109/TCI.2020.3014451
10.3390/rs13040729
10.1109/ICCV.2019.00867
10.1109/IS.2018.8710471
10.3390/s19235250
10.1016/j.rse.2020.112012
10.1109/VAST.2017.8585482
10.3390/s19204453
10.3390/app10186467
10.1016/j.ijforecast.2015.03.008
10.1109/ICCV.2017.342
10.1109/LSP.2021.3074082
10.3390/jimaging6090097
10.3390/rs13071260
10.1109/TGRS.2019.2963364
10.1109/CVPRW.2018.00139
10.1109/18.857802
10.2134/agronj2010.0395
10.3390/rs12193258
10.1016/j.rse.2019.01.036
10.1109/JSTARS.2010.2086435
10.3390/rs8121014
10.1109/CVPR.2017.248
10.1080/01431161.2021.1942575
10.1117/1.1766301
10.1109/IGARSS.2018.8518414
10.3354/cr030079
10.3390/rs10071119
10.1109/ICA-ACCA.2018.8609861
10.1007/s12518-019-00292-5
10.3390/rs10010144
10.1016/j.compag.2018.10.017
10.1109/ICCVW.2017.68
10.1007/s11263-021-01539-8
10.1109/ICCV.2015.123
10.1080/01431161.2016.1171929
10.3390/rs11070864
10.1080/01431161.2010.484431
10.1088/1361-6560/ab843e
10.3390/rs13040593
10.1007/978-3-319-46478-7_2
10.3390/s151025663
10.1016/j.rse.2018.04.050
10.1109/WACV.2013.6475015
10.3390/s20216399
10.1007/978-3-030-01249-6_17
10.1145/3449257
10.1016/j.compag.2020.105621
10.1109/TPAMI.2020.3009999
10.1128/aem.56.11.3298-3303.1990
10.1109/CVPRW.2018.00129
10.1002/(SICI)1520-6378(199702)22:1<11::AID-COL4>3.0.CO;2-7
10.3390/rs13071367
10.1002/ppj2.20004
10.1109/HNICEM48295.2019.9072796
10.1109/IGARSS.2008.4780067
10.1016/j.jfoodeng.2016.06.010
10.3390/s20205789
10.3390/rs12233985
10.1007/3-540-47979-1_55
10.5121/ijsc.2015.6101
10.1080/014311697217558
10.1016/0034-4257(74)90003-0
10.1007/978-3-030-03335-4_18
ContentType Journal Article
Contributor The University of Tokyo (UTokyo)
Universität für Bodenkultur Wien = University of Natural Resources and Life [Vienne, Autriche] (BOKU)
Universität für Bodenkultur Wien = University of Natural Resources and Life Sciences [Vienne, Autriche] (BOKU)
Professor Jayashankar Telangana State Agricultural University (PJTSAU)
Indian Institute of Technology [Hyderabad] (IIT Hyderabad)
Contributor_xml – sequence: 1
  fullname: The University of Tokyo (UTokyo)
– sequence: 2
  fullname: Indian Institute of Technology [Hyderabad] (IIT Hyderabad)
– sequence: 3
  fullname: Professor Jayashankar Telangana State Agricultural University (PJTSAU)
– sequence: 4
  fullname: Universität für Bodenkultur Wien = University of Natural Resources and Life Sciences [Vienne, Autriche] (BOKU)
– sequence: 5
  fullname: Universität für Bodenkultur Wien = University of Natural Resources and Life [Vienne, Autriche] (BOKU)
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID RYH
AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
1XC
VOOES
DOA
DOI 10.3390/rs14051272
DatabaseName CiNii Complete
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
AGRICOLA
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Agriculture
Computer Science
Environmental Sciences
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_565e88dad80b44e98495fd7bf90d8172
oai:HAL:hal-03653571v1
10_3390_rs14051272
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RYH
TR2
TUS
AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
1XC
C1A
IPNFZ
RIG
VOOES
ID FETCH-LOGICAL-c523t-e8678bc7ed77285d1def40f118d2d8a2ce15af17e72b4d8c782b47c705d3ef493
IEDL.DBID BENPR
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000771420000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Tue Oct 14 19:04:31 EDT 2025
Tue Oct 14 20:12:25 EDT 2025
Thu Oct 02 06:34:50 EDT 2025
Fri Jul 25 09:30:33 EDT 2025
Sat Nov 29 07:18:14 EST 2025
Tue Nov 18 22:12:12 EST 2025
Mon Nov 10 09:08:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords precision agriculture
deep learning
natural color RGB image
loss function optimization
multispectral image reconstruction
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-e8678bc7ed77285d1def40f118d2d8a2ce15af17e72b4d8c782b47c705d3ef493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2170-2995
0000-0002-2123-4354
0000-0003-3916-7388
0000-0002-2824-1266
0000-0003-1747-6438
0000-0001-8098-0616
0000-0002-3017-5464
OpenAccessLink https://www.proquest.com/docview/2637784569?pq-origsite=%requestingapplication%
PQID 2637784569
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_565e88dad80b44e98495fd7bf90d8172
hal_primary_oai_HAL_hal_03653571v1
proquest_miscellaneous_2648835484
proquest_journals_2637784569
crossref_citationtrail_10_3390_rs14051272
crossref_primary_10_3390_rs14051272
nii_cinii_1872555066364209024
PublicationCentury 2000
PublicationDate 20220305
PublicationDateYYYYMMDD 2022-03-05
PublicationDate_xml – month: 03
  year: 2022
  text: 20220305
  day: 05
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote Sensing
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Hunt (ref_70) 2011; 103
Liu (ref_43) 2022; 130
Liu (ref_72) 2020; 175
ref_58
ref_13
ref_57
ref_12
Loayza (ref_4) 2020; 12
ref_10
ref_54
ref_53
ref_52
Somasegaran (ref_3) 1990; 56
Fu (ref_23) 2020; 65
ref_51
Sovdat (ref_14) 2019; 225
Morales (ref_37) 2020; 3
ref_19
Nidamanuri (ref_33) 2010; 4
Lowe (ref_5) 2015; 6
ref_18
ref_17
ref_16
DeJonge (ref_2) 2016; 37
ref_59
Willmott (ref_27) 2005; 30
Winkens (ref_60) 2019; 2019
Wei (ref_56) 2020; 6
Seshasai (ref_32) 2011; 32
ref_25
ref_69
ref_22
ref_21
ref_65
ref_64
ref_63
ref_62
Rau (ref_68) 2002; 68
He (ref_74) 2021; 28
ref_29
Zhong (ref_35) 2020; 250
Scepanovic (ref_55) 2021; 5
Hua (ref_41) 2020; 58
Kumar (ref_36) 2021; 23
ref_71
Du (ref_31) 2004; 43
Fu (ref_11) 2022; 44
Huang (ref_73) 2018; 214
ref_34
ref_75
ref_30
Colwell (ref_66) 1974; 3
ref_39
ref_38
Su (ref_15) 2018; 155
Nansen (ref_61) 2016; 190
Gitelson (ref_49) 1997; 18
ref_47
ref_46
ref_45
ref_44
ref_42
Franses (ref_28) 2016; 32
ref_40
ref_1
Fairman (ref_24) 1997; 22
Haichao (ref_67) 2011; 40
ref_48
ref_9
ref_8
Woerd (ref_20) 2015; 15
Chang (ref_26) 2000; 46
Tian (ref_7) 2021; 42
ref_6
References_xml – volume: 6
  start-page: 1233
  year: 2020
  ident: ref_56
  article-title: Deep Recursive Network for Hyperspectral Image Super-Resolution
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2020.3014451
– ident: ref_8
  doi: 10.3390/rs13040729
– ident: ref_64
  doi: 10.1109/ICCV.2019.00867
– ident: ref_16
  doi: 10.1109/IS.2018.8710471
– ident: ref_1
  doi: 10.3390/s19235250
– volume: 250
  start-page: 112012
  year: 2020
  ident: ref_35
  article-title: WHU-Hi: UAV-borne hyperspdectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112012
– ident: ref_51
– ident: ref_17
  doi: 10.1109/VAST.2017.8585482
– ident: ref_58
  doi: 10.3390/s19204453
– ident: ref_75
  doi: 10.3390/app10186467
– volume: 32
  start-page: 20
  year: 2016
  ident: ref_28
  article-title: A note on the mean absolute scaled error
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2015.03.008
– ident: ref_54
  doi: 10.1109/ICCV.2017.342
– ident: ref_65
– volume: 28
  start-page: 957
  year: 2021
  ident: ref_74
  article-title: Mask-ShadowNet: Toward Shadow Removal via Masked Adaptive Instance Normalization
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2021.3074082
– ident: ref_10
  doi: 10.3390/jimaging6090097
– ident: ref_57
  doi: 10.3390/rs13071260
– volume: 58
  start-page: 4558
  year: 2020
  ident: ref_41
  article-title: Relation network for multilabel aerial image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2963364
– ident: ref_13
  doi: 10.1109/CVPRW.2018.00139
– volume: 46
  start-page: 1927
  year: 2000
  ident: ref_26
  article-title: An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.857802
– volume: 103
  start-page: 1090
  year: 2011
  ident: ref_70
  article-title: Remote sensing leaf chlorophyll content using a visible band index
  publication-title: Agron. J.
  doi: 10.2134/agronj2010.0395
– ident: ref_39
  doi: 10.3390/rs12193258
– volume: 225
  start-page: 392
  year: 2019
  ident: ref_14
  article-title: Natural color representation of Sentinel-2 data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.01.036
– volume: 4
  start-page: 226
  year: 2010
  ident: ref_33
  article-title: Normalized Spectral Similarity Score (NS3) as an Efficient Spectral Library Searching Method for Hyperspectral Image Classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2010.2086435
– ident: ref_25
  doi: 10.3390/rs8121014
– ident: ref_52
– ident: ref_63
  doi: 10.1109/CVPR.2017.248
– volume: 42
  start-page: 8840
  year: 2021
  ident: ref_7
  article-title: Assessing rice lodging using UAV visible and multispectral image
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2021.1942575
– volume: 43
  start-page: 1777
  year: 2004
  ident: ref_31
  article-title: New hyperspectral discrimination measure for spectral characterization
  publication-title: Opt. Eng.
  doi: 10.1117/1.1766301
– ident: ref_19
  doi: 10.1109/IGARSS.2018.8518414
– volume: 40
  start-page: 1381
  year: 2011
  ident: ref_67
  article-title: Fast seamless mosaic algorithm for multiple remote sensing images
  publication-title: Infrared Laser Eng.
– volume: 30
  start-page: 79
  year: 2005
  ident: ref_27
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Clim. Res.
  doi: 10.3354/cr030079
– ident: ref_18
  doi: 10.3390/rs10071119
– ident: ref_71
  doi: 10.1109/ICA-ACCA.2018.8609861
– volume: 12
  start-page: 247
  year: 2020
  ident: ref_4
  article-title: Development of low-cost remote sensing tools and methods for supporting smallholder agriculture
  publication-title: Appl. Geomat.
  doi: 10.1007/s12518-019-00292-5
– ident: ref_40
  doi: 10.3390/rs10010144
– volume: 2019
  start-page: 31
  year: 2019
  ident: ref_60
  article-title: Automatic shadow detection using hyperspectral data for terrain classification
  publication-title: Electron. Imaging
– volume: 68
  start-page: 581
  year: 2002
  ident: ref_68
  article-title: True orthophoto generation of built-up areas using multi-view images
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 155
  start-page: 157
  year: 2018
  ident: ref_15
  article-title: Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.10.017
– ident: ref_22
  doi: 10.1109/ICCVW.2017.68
– volume: 130
  start-page: 179
  year: 2022
  ident: ref_43
  article-title: Semantic edge detection with diverse deep supervision
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-021-01539-8
– ident: ref_45
  doi: 10.1109/ICCV.2015.123
– volume: 37
  start-page: 2294
  year: 2016
  ident: ref_2
  article-title: Assessing corn water stress using spectral reflectance
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1171929
– ident: ref_30
  doi: 10.3390/rs11070864
– ident: ref_34
– volume: 32
  start-page: 4041
  year: 2011
  ident: ref_32
  article-title: A new hybrid spectral similarity measure for discrimination among Vigna species
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.484431
– volume: 65
  start-page: 20TR01
  year: 2020
  ident: ref_23
  article-title: Deep learning in medical image registration: A review
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab843e
– ident: ref_38
  doi: 10.3390/rs13040593
– ident: ref_12
  doi: 10.1007/978-3-319-46478-7_2
– volume: 15
  start-page: 25663
  year: 2015
  ident: ref_20
  article-title: True color classification of natural waters with medium-spectral resolution satellites: SeaWiFS, MODIS, MERIS and OLCI
  publication-title: Sensors
  doi: 10.3390/s151025663
– volume: 214
  start-page: 73
  year: 2018
  ident: ref_73
  article-title: Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.050
– ident: ref_69
  doi: 10.1109/WACV.2013.6475015
– ident: ref_44
– ident: ref_21
  doi: 10.3390/s20216399
– ident: ref_42
  doi: 10.1007/978-3-030-01249-6_17
– volume: 5
  start-page: 1
  year: 2021
  ident: ref_55
  article-title: Jane Jacobs in the Sky: Predicting Urban Vitality with Open Satellite Data
  publication-title: Proc. ACM Hum. Comput. Interact.
  doi: 10.1145/3449257
– volume: 175
  start-page: 105621
  year: 2020
  ident: ref_72
  article-title: Hyperspectral imaging and 3D technologies for plant phenotyping: From satellite to close-range sensing
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105621
– ident: ref_6
– volume: 44
  start-page: 256
  year: 2022
  ident: ref_11
  article-title: Joint camera spectral response selection and hyperspectral image recovery
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3009999
– volume: 23
  start-page: 100549
  year: 2021
  ident: ref_36
  article-title: Efficient Maize Tassel-Detection Method using UAV based Remote Sensing
  publication-title: Remote Sens. Appl. Soc. Environ.
– volume: 56
  start-page: 3298
  year: 1990
  ident: ref_3
  article-title: Ben Single-strain versus multistrain inoculation: Effect of soil mineral N availability on rhizobial strain effectiveness and competition for nodulation on chick-pea, soybean, and dry bean
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.56.11.3298-3303.1990
– ident: ref_29
– ident: ref_46
  doi: 10.1109/CVPRW.2018.00129
– volume: 22
  start-page: 11
  year: 1997
  ident: ref_24
  article-title: How the CIE 1931 color-matching functions were derived from Wright-Guild data
  publication-title: Color Res. Appl.
  doi: 10.1002/(SICI)1520-6378(199702)22:1<11::AID-COL4>3.0.CO;2-7
– ident: ref_9
  doi: 10.3390/rs13071367
– volume: 3
  start-page: e20004
  year: 2020
  ident: ref_37
  article-title: ImageBreed: Open-access plant breeding web–database for image-based phenotyping
  publication-title: Plant Phenome J.
  doi: 10.1002/ppj2.20004
– ident: ref_50
  doi: 10.1109/HNICEM48295.2019.9072796
– ident: ref_48
  doi: 10.1109/IGARSS.2008.4780067
– volume: 190
  start-page: 34
  year: 2016
  ident: ref_61
  article-title: Using hyperspectral imaging to characterize consistency of coffee brands and their respective roasting classes
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2016.06.010
– ident: ref_53
  doi: 10.3390/s20205789
– ident: ref_62
  doi: 10.3390/rs12233985
– ident: ref_59
  doi: 10.1007/3-540-47979-1_55
– volume: 6
  start-page: 1
  year: 2015
  ident: ref_5
  article-title: Multispectral image analysis using random forest
  publication-title: Int. J. Soft Comput. Sci.
  doi: 10.5121/ijsc.2015.6101
– volume: 18
  start-page: 2691
  year: 1997
  ident: ref_49
  article-title: Remote estimation of chlorophyll content in higher plant leaves
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311697217558
– volume: 3
  start-page: 175
  year: 1974
  ident: ref_66
  article-title: Vegetation canopy reflectance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(74)90003-0
– ident: ref_47
  doi: 10.1007/978-3-030-03335-4_18
SSID ssj0000331904
Score 2.457861
Snippet Multispectral images (MSIs) are valuable for precision agriculture due to the extra spectral information acquired compared to natural color RGB (ncRGB) images....
SourceID doaj
hal
proquest
crossref
nii
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1272
SubjectTerms [INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
[SDE.IE]Environmental Sciences/Environmental Engineering
[SDV.SA.STA]Life Sciences [q-bio]/Agricultural sciences/Sciences and technics of agriculture
Agricultural engineering
Agricultural sciences
Agriculture
Color
Color imagery
Computer Science
Corn
data collection
Datasets
Deep learning
Digital cameras
Divergence
Electrical Engineering
Environmental Engineering
Environmental Sciences
Experiments
Growing season
hyperspectral imagery
Hyperspectral imaging
Image acquisition
Image enhancement
Image Processing
Image quality
Image reconstruction
Life Sciences
loss function optimization
Machine Learning
multispectral image reconstruction
multispectral image reconstruction; natural color RGB image; deep learning; loss function optimization; precision agriculture
multispectral imagery
natural color RGB image
normalized difference vegetation index
Normalized difference vegetative index
phenotype
Phenotyping
Plant breeding
Precision agriculture
Q
Rice
Robustness
Science
Sciences and technics of agriculture
Sensors
unmanned aerial vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgQoIL4lMEWmQ-LhysJrGzdo67paVI1aoCWvUW-SvdSiVbbUulShz4EfxCfglvnHTbCiQuXPaQHUdZz3jevKznmbG3RUDcADdEbgsjVBWkMLWLQpcjb4vc5iG9zNnf0dOpOTiod68d9UV7wnp54H7i1lFwRGOCDSZ3SsXaoKJvg3ZtnQcD9KXsi6rnGplKOVgitHLV65FK8Pr1xSmoBNBNlzcQKAn1A1dmtA3ydnd09EdOTkCz9YDdHypEPu6f7CG7FbtH7O5wWPns4jH7_j7GEzEIox6KCXAo8NRIm9omFxj88SvSBCdqeSUQy6mThH_GkOPIpzbpbfAN5L4F__Rh0g_59ePnZjcjCY7ukO-N94eb785iNz-7oNaqJ2xva_PLxrYYDlEQHhzzTEQDOHJex4A62lShCLFVeQteEcpgbOljUdm20FGXTgXjUTE4pb3O4TZY1vIpW-nmXXzGuG69DPXIKalK1TrnMJmgQ8apSlpf64y9u5zYxg8K43TQxXEDpkFOaK6ckLE3S9uTXlfjr1YT8s_SgrSw0wVESDNESPOvCMnYa3j3xj22xzsNXQN8V7LSxXmRsTU4H49Nn4XRYFoVVWOgZ7RzVWVs9TIsmmGVnzblSGptUILWGXu1_Brrk_50sV2cfyMbpEgJXqie_48f84LdK6kBg3bBVatsBTEU19gdf44YW7xMi-A3kq0Ikw
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep-Learning-Based Multispectral Image Reconstruction from Single Natural Color RGB Image—Enhancing UAV-Based Phenotyping
URI https://cir.nii.ac.jp/crid/1872555066364209024
https://www.proquest.com/docview/2637784569
https://www.proquest.com/docview/2648835484
https://hal.science/hal-03653571
https://doaj.org/article/565e88dad80b44e98495fd7bf90d8172
Volume 14
WOSCitedRecordID wos000771420000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELboFgk48CggAu3KPC4crMaJs3ZOaLdsaaWyilpaFS5R_MhupZIs2VKpEkL8CH4hv4SZrHdXFYgLFx8Sx4rkzzPzje1vCHnFLeAG_AYLC66YSGzMVKodk1HPFDwsQtsmc04O5GikTk_TzCfcZv5Y5cImtoba1gZz5NtRL5ZSgbtP30y_MKwahburvoTGGllHpTLRIeuD4Sg7XGZZwhggFoq5LmkM_H67mQGlAC8no2ueqBXsB_8yweOQa9XZ2R-2uXU4u_f-91fvk7s-1KT9OTYekBuu2iB3-uPGy224DXLL10CfXD0k3946N2Veb3XMBuDeLG3v57a3MRsYav8zWB-KjHWlO0vxggo9gk_OHR0VrYwH3QGT2tDDd4P5J79-_BxWE1T2qMb0uH_iB88mrqovrvDG1iNyvDv8sLPHfG0GZoC6XjCnwMtpI52F8FwllltXirAEumIjq4rIOJ4UJZdORlpYZSAQ0UIaGQIaoGcaPyadqq7cE0JlaWKb9rSIRSRKrTXMDbAspUUSFyaVAXm9mKfceOFyrJ9xngOBwTnNV3MakJfLvtO5XMdfew1wupc9UGK7fVA349yv2BwiXaeULawKtRAuVUAlSyt1mYZWcRzkBYDl2hh7_YMcn0FUkMSJ5Jc8IFuAJfhtbLmSQOASDPKA9eGBWBGQzQWEcm88ZvkKPwF5vnwNyx73corK1V-xD1jeGOimePrvIZ6R2xHe2MBjc8km6QA63Ba5aS4BPU3Xr5dum4ro4sHXI2y_D6HNkk_wPtt_n338DYY-Iqk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNQEB2VFKllwaOAGmjh8lp0YdWP69zrBUJJHyRqGkXQVmVlfB9OKhUnOKUoEgs-gu_go_gSZmwnUQVi1wWbLJzxKHaO58y5vjMD8NIziBvkDcdNPOnw0ASOjJR1hN_QiecmrikWc066oteTp6dRfwl-zmphaFvlLCYWgdqMNK2Rb_uNQAiJdB-9GX92aGoUvV2djdAoYXFgp19Rsk1ed3bx_33l-_t7Rzttp5oq4GgUXReOlRiflRbWYGIpQ-MZm3I3xUTb-EYmvrZemKSesMJX3EiNFKq40MLF60BLar6EIX-ZI9hlDZb7ncP-h_mqjhsgpF1e9kENgsjdzicoYZBVhX-F-YoBAchnQ9p-eSM7O_uDCwqC27_zv92au3C7SqVZs8T-PViy2Rrcag7yqp2IXYOVasb7cHofvu1aO3aqfrIDp4X0bVhRf1xUm-boqvMJoysjRb7oq8uoAIe9x1POLeslRZsStoOUkbN3b1vlKb--_9jLhtS5JBuw4-ZJ5bw_tNnoYkoVaQ_g-FpuxUOoZaPMrgMTqQ5M1FA84D5PlVKIBVSRUvEwSHQk6rA1w0Wsq8bsNB_kPEaBRhiKFxiqw4u57bhsR_JXqxbBa25BLcSLA6N8EFcRKcZM3kppEiNdxbmNJErl1AiVRq6RHjl5juC84qPd7MZ0DLOeMAiFd-nVYROxiz-bPj0pUKCGlMSiqqUNv7wOGzPIxlVwnMQLvNbh2fxrDGv0rirJ7OgL2SCzBCin-aN_u3gKK-2jw27c7fQOHsOqT9UptEUw3IAaIsVuwk19iUjKn1TPKoOP1_0M_AYspHsK
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFPE48CggDC2Y14GDlfV6nV0fEMqjoVGjKCq06s14H04qFSc4pSgSB34Ev4afwy9hxtkkqkDceuCSgzMe-fHtfDPreRDyMjSAG-CNgGahDHhsokAmygaCNXQW0oyaajPnqC8GA3l8nAw3yM9lLQymVS5tYmWozUTjHnmdNSIhJNB9Us9dWsSw0307_RzgBCn80rocp7GAyL6df4Xwbfam14F3_Yqx7u6H9l7gJgwEGgKws8BKsNVKC2vAyZSxCY3NOc3B6TbMyIxpG8ZZHgormOJGaqBTxYUWFO4JJLERE5j_TdBCWY1sDtut5sFqh4dGAG_KFz1Royih9XIG4QwwrGAXWLAaFgDcNsZUzCvFyckfvFCRXff2__yY7pBbzsX2m4s1cZds2GKL3GyOStdmxG6R6272-3h-j3zrWDsNXJ_ZUdACWjd-VZdcVaGWoKr3Cayuj5H6ut-uj4U5_ns45dT6g6xqX-K3gUpK_-Bda3HKr-8_dosxdjQpRv5h88gpH45tMTmbY6XafXJ4KY_iAakVk8I-JL7IdWSShuIRZzxXSgEuILqUisdRphPhkddLjKTaNWzHuSGnKQRuiKd0jSePvFjJThdtSv4q1UKorSSwtXh1YFKOUmepUvDwrZQmM5Iqzm0iIYTOjVB5Qo0MUclzAOoFHXvNforHwBuKo1iE56FHdgDHcNn4G0oBgWuMzi1Eu5gIzD2yvYRv6ozmLF1j1yPPVn-DucNvWFlhJ19QBhgngjCbP_q3iqfkGgA_7fcG-4_JDYZFK5g5GG-TGgDF7pCr-hyAVD5xy9YnHy97CfwGtJeDeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning-Based+Multispectral+Image+Reconstruction+from+Single+Natural+Color+RGB+Image%E2%80%94Enhancing+UAV-Based+Phenotyping&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhao%2C+Jiangsan&rft.au=Kumar%2C+Ajay&rft.au=Balaji+Naik+Banoth&rft.au=Marathi%2C+Balram&rft.date=2022-03-05&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=5&rft.spage=1272&rft_id=info:doi/10.3390%2Frs14051272&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon