Dynamical System Modulation for Robot Learning via Kinesthetic Demonstrations

We present a system for robust robot skill acquisition from kinesthetic demonstrations. This system allows a robot to learn a simple goal-directed gesture and correctly reproduce it despite changes in the initial conditions and perturbations in the environment. It combines a dynamical system control...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on robotics Vol. 24; no. 6; pp. 1463 - 1467
Main Authors: Hersch, M., Guenter, F., Calinon, S., Billard, A.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.12.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1552-3098, 1941-0468
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a system for robust robot skill acquisition from kinesthetic demonstrations. This system allows a robot to learn a simple goal-directed gesture and correctly reproduce it despite changes in the initial conditions and perturbations in the environment. It combines a dynamical system control approach with tools of statistical learning theory and provides a solution to the inverse kinematics problem when dealing with a redundant manipulator. The system is validated on two experiments involving a humanoid robot: putting an object into a box and reaching for and grasping an object.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2008.2006703