Dynamical System Modulation for Robot Learning via Kinesthetic Demonstrations

We present a system for robust robot skill acquisition from kinesthetic demonstrations. This system allows a robot to learn a simple goal-directed gesture and correctly reproduce it despite changes in the initial conditions and perturbations in the environment. It combines a dynamical system control...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on robotics Vol. 24; no. 6; pp. 1463 - 1467
Main Authors: Hersch, M., Guenter, F., Calinon, S., Billard, A.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.12.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1552-3098, 1941-0468
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present a system for robust robot skill acquisition from kinesthetic demonstrations. This system allows a robot to learn a simple goal-directed gesture and correctly reproduce it despite changes in the initial conditions and perturbations in the environment. It combines a dynamical system control approach with tools of statistical learning theory and provides a solution to the inverse kinematics problem when dealing with a redundant manipulator. The system is validated on two experiments involving a humanoid robot: putting an object into a box and reaching for and grasping an object.
AbstractList We present a system for robust robot skill acquisition from kinesthetic demonstrations. This system allows a robot to learn a simple goal-directed gesture and correctly reproduce it despite changes in the initial conditions and perturbations in the environment. It combines a dynamical system control approach with tools of statistical learning theory and provides a solution to the inverse kinematics problem when dealing with a redundant manipulator. The system is validated on two experiments involving a humanoid robot: putting an object into a box and reaching for and grasping an object.
We present a system for robust robot skill acquisition from kinesthetic demonstrations. This system allows a robot to learn a simple goal-directed gesture and correctly reproduce it despite changes in the initial conditions and perturbations in the environment. It combines a dynamical system control approach with tools of statistical learning theory and provides a solution to the inverse kinematics problem when dealing with a redundant manipulator. The system is validated on two experiments involving a humanoid robot: putting an object into a box and reaching for and grasping an object. [PUBLICATION ABSTRACT]
We present a system for robust robot skill acquisition from kinesthetic demonstrations. This system allows a robot to learn a simple goal-directed gesture and correctly reproduce it despite changes in the initial conditions and perturbations [abstract truncated by publisher].
Author Hersch, M.
Guenter, F.
Billard, A.
Calinon, S.
Author_xml – sequence: 1
  givenname: M.
  surname: Hersch
  fullname: Hersch, M.
  organization: Learning Algorithms & Syst. Lab., Ecole Polytech. Fed. de Lausanne, Lausanne
– sequence: 2
  givenname: F.
  surname: Guenter
  fullname: Guenter, F.
  organization: Learning Algorithms & Syst. Lab., Ecole Polytech. Fed. de Lausanne, Lausanne
– sequence: 3
  givenname: S.
  surname: Calinon
  fullname: Calinon, S.
  organization: Learning Algorithms & Syst. Lab., Ecole Polytech. Fed. de Lausanne, Lausanne
– sequence: 4
  givenname: A.
  surname: Billard
  fullname: Billard, A.
  organization: Learning Algorithms & Syst. Lab., Ecole Polytech. Fed. de Lausanne, Lausanne
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21002834$$DView record in Pascal Francis
BookMark eNqFkT1PHDEQhq0IpPDVR0qzihRSHYw_1y4jSALKISRCasvrnU2Mdm1i70W6fx8fd6KgIM3YxfPaM_Mckr2YIhLyjsIZpWDO7-9uzxiA3hTVAn9DDqgRdAFC6b16l5ItOBj9lhyW8gDAhAF-QG4u19FNwbux-bEuM07NTepXo5tDis2QcnOXujQ3S3Q5hvir-Rtc8z1ELPNvnINvLnFKscz5KVCOyf7gxoInu_OI_Pz65f7iarG8_XZ98Xm58JLxuVZEp6juDBdegHDM90oZMfBeKuHMIDvPmRCik9D1vdEClR8ctLwd2hYNPyKftu8-5vRnVZuxUygex9FFTKti62iKMSb5f0mtDdd1gaqSp6-SXAiqmZQV_PACfEirHOu8lgGVyrSKVejjDnKlLnfILvpQ7GMOk8try2g1oLmoHGw5n1MpGYdnhILdiLVVrN2ItTuxNaJeRHyYn_ZfNYTxteD7bTAg4vM_QrVCMeD_AJPEsII
CODEN ITREAE
CitedBy_id crossref_primary_10_1016_j_bica_2017_02_004
crossref_primary_10_1016_j_cam_2022_114523
crossref_primary_10_1007_s43154_022_00082_9
crossref_primary_10_5772_10575
crossref_primary_10_1049_ccs2_12025
crossref_primary_10_1109_THMS_2022_3184051
crossref_primary_10_1016_j_robot_2023_104427
crossref_primary_10_1016_j_isatra_2022_02_041
crossref_primary_10_1109_TASE_2021_3139096
crossref_primary_10_20965_jrm_2017_p0919
crossref_primary_10_1109_TRO_2011_2159412
crossref_primary_10_1016_j_trit_2016_03_010
crossref_primary_10_1007_s10514_015_9435_2
crossref_primary_10_1007_s12369_010_0060_0
crossref_primary_10_1007_s10514_013_9361_0
crossref_primary_10_1177_1729881417703930
crossref_primary_10_1016_j_robot_2011_07_004
crossref_primary_10_1016_j_robot_2012_09_012
crossref_primary_10_1002_rcs_1774
crossref_primary_10_1080_02533839_2025_2517354
crossref_primary_10_1016_j_mechatronics_2020_102418
crossref_primary_10_1007_s10514_009_9121_3
crossref_primary_10_1007_s12369_015_0318_7
crossref_primary_10_1080_01691864_2013_808305
crossref_primary_10_1109_TSMCA_2012_2207108
crossref_primary_10_1109_TIE_2011_2126530
crossref_primary_10_1007_s10514_017_9635_z
crossref_primary_10_1016_j_rcim_2024_102748
crossref_primary_10_1016_j_robot_2011_07_009
crossref_primary_10_1109_MRA_2010_936947
crossref_primary_10_1007_s10514_012_9284_1
crossref_primary_10_1007_s11370_015_0187_9
crossref_primary_10_5772_61036
crossref_primary_10_1016_j_ifacol_2023_01_141
crossref_primary_10_1109_LRA_2016_2525827
crossref_primary_10_1007_s40747_021_00533_4
crossref_primary_10_1109_TAMD_2014_2319861
crossref_primary_10_1145_3209045
crossref_primary_10_1109_TAMD_2012_2208962
crossref_primary_10_1007_s10514_009_9118_y
crossref_primary_10_1007_s10514_016_9601_1
crossref_primary_10_1109_LRA_2019_2932610
crossref_primary_10_1007_s10458_019_09430_0
crossref_primary_10_1007_s11370_015_0190_1
crossref_primary_10_3390_app9245279
crossref_primary_10_1016_j_robot_2020_103692
crossref_primary_10_1109_TNNLS_2019_2892207
crossref_primary_10_3390_agriculture14030394
crossref_primary_10_1109_TMECH_2015_2510165
crossref_primary_10_1108_AA_11_2018_0236
crossref_primary_10_1007_s13218_021_00704_y
crossref_primary_10_1007_s11071_024_10149_1
crossref_primary_10_1108_IR_12_2019_0258
crossref_primary_10_1109_TIE_2016_2613843
crossref_primary_10_3389_frobt_2017_00045
crossref_primary_10_1007_s12369_012_0160_0
crossref_primary_10_1177_0278364913482016
crossref_primary_10_1109_THMS_2022_3207699
crossref_primary_10_12677_AIRR_2012_11001
crossref_primary_10_1007_s10015_012_0039_z
crossref_primary_10_1137_22M152373X
crossref_primary_10_1109_JSTSP_2016_2532847
crossref_primary_10_3389_fnbot_2018_00071
crossref_primary_10_1007_s10514_018_9705_x
crossref_primary_10_1109_TSMC_2020_3013904
crossref_primary_10_1007_s12555_012_0114_1
crossref_primary_10_1524_auto_2010_0881
crossref_primary_10_1016_j_heliyon_2024_e33605
crossref_primary_10_1080_01691864_2020_1778523
crossref_primary_10_1109_ACCESS_2019_2953122
crossref_primary_10_1016_j_rcim_2019_03_005
crossref_primary_10_1016_j_neunet_2015_05_005
crossref_primary_10_1177_0278364910376251
crossref_primary_10_1016_j_robot_2017_09_019
crossref_primary_10_1016_j_robot_2017_09_012
crossref_primary_10_1109_ACCESS_2019_2952762
crossref_primary_10_1109_ACCESS_2021_3081449
crossref_primary_10_1017_dsi_2019_363
crossref_primary_10_1016_j_engappai_2016_03_006
crossref_primary_10_1016_j_neucom_2014_12_068
crossref_primary_10_1016_j_rcim_2020_101979
crossref_primary_10_1109_MSMC_2023_3238855
crossref_primary_10_3389_fnins_2021_694914
crossref_primary_10_1007_s10010_016_0208_7
crossref_primary_10_1007_s12369_012_0161_z
crossref_primary_10_1109_LRA_2017_2651368
crossref_primary_10_1080_01691864_2019_1704869
crossref_primary_10_1163_016918609X12529294461843
crossref_primary_10_3389_frobt_2020_580835
crossref_primary_10_1109_TCYB_2015_2414277
crossref_primary_10_1007_s12559_014_9276_x
crossref_primary_10_3390_robotics7020017
crossref_primary_10_1080_01691864_2015_1007084
crossref_primary_10_1007_s00500_015_1981_1
crossref_primary_10_1016_j_robot_2012_05_004
crossref_primary_10_1088_1757_899X_709_2_022092
crossref_primary_10_1109_TRO_2010_2065430
Cites_doi 10.1115/1.3143764
10.1214/aos/1176344136
10.1109/TRO.2005.861485
10.1109/ROBOT.2004.1302393
10.1177/027836499701600102
10.1109/ROBOT.2004.1308798
10.1177/0278364904042199
10.1109/ROBOT.2004.1307247
10.1109/TSMCB.2006.886952
10.1163/156855307782148550
10.1177/02783649922066385
10.1109/TIE.2003.814765
10.1109/TSMC.1986.289285
10.1016/j.robot.2004.03.005
10.1016/j.robot.2006.01.007
10.1109/ROBOT.2007.364200
10.1109/ROBOT.2007.363903
10.1142/S0219843604000320
10.1145/1228716.1228765
10.1109/ROBOT.1997.620064
ContentType Journal Article
Copyright 2009 INIST-CNRS
Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2008
Copyright_xml – notice: 2009 INIST-CNRS
– notice: Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2008
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
F28
DOI 10.1109/TRO.2008.2006703
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Technology Research Database
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0468
EndPage 1467
ExternalDocumentID 1626565411
21002834
10_1109_TRO_2008_2006703
4674620
Genre orig-research
Feature
GroupedDBID .DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
VJK
AAYXX
CITATION
IQODW
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
F28
ID FETCH-LOGICAL-c523t-c5eea618b934c404a2cd6694f3d564a9f5bc32444b50bdd984e6cfa0737f77e93
IEDL.DBID RIE
ISICitedReferencesCount 177
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000262220900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1552-3098
IngestDate Thu Oct 02 05:16:41 EDT 2025
Sun Sep 28 10:24:10 EDT 2025
Sat Sep 27 19:56:27 EDT 2025
Mon Jun 30 06:37:49 EDT 2025
Mon Jul 21 09:17:15 EDT 2025
Tue Nov 18 22:34:46 EST 2025
Sat Nov 29 06:22:27 EST 2025
Tue Aug 26 16:47:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Gaussian mixture regression
Dynamical system control
manipulators
robot programming by demonstration (PbD)
intelligent robots
simple robotic manipulation
hybrid joint and end-effector control
Mixed distribution
Gripping
Redundancy
Intelligent robot
Dynamical system
Robotics
Manipulator
Inverse problem
Robot programming
Humanoid robot
Gripper
Gesture
Probability learning
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-c5eea618b934c404a2cd6694f3d564a9f5bc32444b50bdd984e6cfa0737f77e93
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink http://infoscience.epfl.ch/record/117919
PQID 201569762
PQPubID 23500
PageCount 5
ParticipantIDs pascalfrancis_primary_21002834
proquest_miscellaneous_903622253
proquest_miscellaneous_889381106
crossref_citationtrail_10_1109_TRO_2008_2006703
proquest_journals_201569762
ieee_primary_4674620
crossref_primary_10_1109_TRO_2008_2006703
proquest_miscellaneous_34418255
PublicationCentury 2000
PublicationDate 2008-12-01
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-12-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on robotics
PublicationTitleAbbrev TRO
PublicationYear 2008
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref24
ref12
ref23
ref15
ref20
ref11
ref22
ref10
ref21
ref2
ref17
ref16
guenter (ref18) 2007; 21
ref8
ref7
ref4
grimes (ref14) 2007; 19
ref3
ref6
ref5
billard (ref1) 2008
ghahramani (ref19) 1994; 6
ijspeert (ref9) 2002
References_xml – ident: ref22
  doi: 10.1115/1.3143764
– ident: ref23
  doi: 10.1214/aos/1176344136
– ident: ref17
  doi: 10.1109/TRO.2005.861485
– ident: ref5
  doi: 10.1109/ROBOT.2004.1302393
– ident: ref3
  doi: 10.1177/027836499701600102
– ident: ref8
  doi: 10.1109/ROBOT.2004.1308798
– ident: ref13
  doi: 10.1177/0278364904042199
– ident: ref7
  doi: 10.1109/ROBOT.2004.1307247
– ident: ref24
  doi: 10.1109/TSMCB.2006.886952
– volume: 21
  start-page: 1521
  year: 2007
  ident: ref18
  article-title: reinforcement learning for imitating constrained reaching movements
  publication-title: RSJ Adv Robot
  doi: 10.1163/156855307782148550
– ident: ref2
  doi: 10.1177/02783649922066385
– start-page: 1398
  year: 2002
  ident: ref9
  article-title: movement imitation with nonlinear dynamical systems in humanoid robots
  publication-title: Proc IEEE Int Conf Robot Autom
– ident: ref15
  doi: 10.1109/TIE.2003.814765
– volume: 6
  start-page: 120
  year: 1994
  ident: ref19
  publication-title: Advances in neural information processing systems
– ident: ref21
  doi: 10.1109/TSMC.1986.289285
– ident: ref16
  doi: 10.1016/j.robot.2004.03.005
– ident: ref20
  doi: 10.1016/j.robot.2006.01.007
– ident: ref6
  doi: 10.1109/ROBOT.2007.364200
– ident: ref11
  doi: 10.1109/ROBOT.2007.363903
– volume: 19
  start-page: 521
  year: 2007
  ident: ref14
  article-title: learning nonparametric models for probabilistic imitation
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2008
  ident: ref1
  publication-title: Handbook of Robotics
– ident: ref10
  doi: 10.1142/S0219843604000320
– ident: ref12
  doi: 10.1145/1228716.1228765
– ident: ref4
  doi: 10.1109/ROBOT.1997.620064
SSID ssj0024903
Score 2.3837566
Snippet We present a system for robust robot skill acquisition from kinesthetic demonstrations. This system allows a robot to learn a simple goal-directed gesture and...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1463
SubjectTerms Applied sciences
Artificial intelligence
Computer science; control theory; systems
Control systems
Control theory. Systems
Controllers
Dealing
Dynamical system control
Dynamical systems
Dynamics
Exact sciences and technology
Gaussian mixture regression
Grasping
Hidden Markov models
Humans
hybrid joint and end-effector control
Initial conditions
Intelligent robots
Inverse kinematics
Kinematics
Manipulators
Modelling and identification
Modulation
Robot control
Robot programming
robot programming by demonstration (PbD)
Robot sensing systems
Robotic assembly
Robotics
Robots
simple robotic manipulation
Spatiotemporal phenomena
Title Dynamical System Modulation for Robot Learning via Kinesthetic Demonstrations
URI https://ieeexplore.ieee.org/document/4674620
https://www.proquest.com/docview/201569762
https://www.proquest.com/docview/34418255
https://www.proquest.com/docview/889381106
https://www.proquest.com/docview/903622253
Volume 24
WOSCitedRecordID wos000262220900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0468
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024903
  issn: 1552-3098
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8UwEB5UPOjBXaxrDl4E6-tr0qQ5iguCuCAK3kqSpiLoq9j3_P1Okr6quICXUOg0hJks33Qm8wHsZtxw1a9srCmXMUttEmuE8bFQ1FXf0yYVlSebEJeX-f29vJ6A_e4ujLXWJ5_ZA_foY_llbUbuV1nPMWPwFB30SSF4uKv1UVdPehZkV1EsponMxyHJRPZub65C0mTqb6XQL0eQ51RxGZGqQaVUgc3i28bsT5vT-f-NcwHmWlRJDsM0WIQJO1iC2U-1Bpfh4jhwz6NYqFJOLuqy5e4iiFzJTa3rIWnrrT6Qt0dFzl1OPCJE7JUc22cHJcOEaVbg7vTk9ugsbrkUYoOu5hBbaxXv51pSZljCVGpKziWraJlxpmSVaYPYijGdJbosZc4sN5XCDUBUQlhJV2FqUA_sGhCRYlc5N8KFJPtGqEQrbHJphE1ElUbQG6u3MG2hccd38VR4hyORBRok0F-2Bolgr_viJRTZ-EN22Sm8k2t1HcH2Fwt279O-p2NiEWyMTVq0y7TBPtF9RUCGY97p3uL6ckETNbD1qCko4kX0orMIyC8SOUK-HMfKfxeRDifgzknXfx79Bsz4PBSfJrMJU8PXkd2CafM2fGxet_1EfwcN3fty
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB_EFlof7Ictrraah74Uur1ckk02j6VWFL1rkSv4tiTZbBHaW3Hv_PudJHtrpVXwJSzsbAgz-fjNzmR-AB8K6aQZNz63XOpcME9zizA-V4aH6nvWMdVEsgk1nZbn5_rHGnwa7sJ472Pymf8cHmMsv27dMvwqGwVmDMnQQX9SCMFouq11W1lPRx7kUFMs51SXq6Ak1aPZ2feUNsnivRR-5xCKrCohJ9J0qJYm8Vn8szXH8-bwxeNG-hI2e1xJvqSJ8ArW_Pw1bPxVbXALJgeJfR7FUp1yMmnrnr2LIHYlZ61tF6SvuPqLXF8YchKy4hEjYq_kwP8JYDJNme4N_Dz8Nvt6lPdsCrlDZ3OBrfdGjkuruXCCCsNcLaUWDa8LKYxuCusQXQlhC2rrWpfCS9cY3AJUo5TX_C2sz9u53waiGHZVSqdCUHLslKHWYFNqpzxVDctgtFJv5fpS44Hx4ncVXQ6qKzRIIsDsDZLBx-GLy1Rm4wHZraDwQa7XdQZ7dyw4vGfjSMgkMthdmbTqF2qHfaIDi5AMx7w_vMUVFsImZu7bZVdxRIzoRxcZkHskSgR9JY5V3i-iA1LAvZPv_H_0-_DsaDY5rU6Ppye78DxmpcSkmXewvrha-vfw1F0vLrqrvTjpbwBAWf65
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+System+Modulation+for+Robot+Learning+via+Kinesthetic+Demonstrations&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Hersch%2C+M.&rft.au=Guenter%2C+F.&rft.au=Calinon%2C+S.&rft.au=Billard%2C+A.&rft.date=2008-12-01&rft.pub=IEEE&rft.issn=1552-3098&rft.volume=24&rft.issue=6&rft.spage=1463&rft.epage=1467&rft_id=info:doi/10.1109%2FTRO.2008.2006703&rft.externalDocID=4674620
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon