Parallel Extragradient-Proximal Methods for Split Equilibrium Problems
In this paper, we introduce two parallel extragradient-proximal methods for solving split equilibrium problems. The algorithms combine the extragradient method, the proximal method and the shrinking projection method. The weak and strong convergence theorems for iterative sequences generated by the...
Uložené v:
| Vydané v: | Mathematical modelling and analysis Ročník 21; číslo 4; s. 478 - 501 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Taylor & Francis
03.07.2016
Vilnius Gediminas Technical University |
| Predmet: | |
| ISSN: | 1392-6292, 1648-3510 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we introduce two parallel extragradient-proximal methods for solving split equilibrium problems. The algorithms combine the extragradient method, the proximal method and the shrinking projection method. The weak and strong convergence theorems for iterative sequences generated by the algorithms are established under widely used assumptions for equilibrium bifunctions. We also present an application to split variational inequality problems and a numerical example to illustrate the convergence of the proposed algorithms. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1392-6292 1648-3510 |
| DOI: | 10.3846/13926292.2016.1183527 |