Anomaly Detection in Embryo Development and Morphology Using Medical Computer Vision-Aided Swin Transformer with Boosted Dipper-Throated Optimization Algorithm

Infertility affects a significant number of humans. A supported reproduction technology was verified to ease infertility problems. In vitro fertilization (IVF) is one of the best choices, and its success relies on the preference for a higher-quality embryo for transmission. These have been normally...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioengineering (Basel) Jg. 11; H. 10; S. 1044
Hauptverfasser: Mazroa, Alanoud Al, Maashi, Mashael, Said, Yahia, Maray, Mohammed, Alzahrani, Ahmad A., Alkharashi, Abdulwhab, Al-Sharafi, Ali M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 01.10.2024
MDPI
Schlagworte:
ISSN:2306-5354, 2306-5354
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Infertility affects a significant number of humans. A supported reproduction technology was verified to ease infertility problems. In vitro fertilization (IVF) is one of the best choices, and its success relies on the preference for a higher-quality embryo for transmission. These have been normally completed physically by testing embryos in a microscope. The traditional morphological calculation of embryos shows predictable disadvantages, including effort- and time-consuming and expected risks of bias related to individual estimations completed by specific embryologists. Different computer vision (CV) and artificial intelligence (AI) techniques and devices have been recently applied in fertility hospitals to improve efficacy. AI addresses the imitation of intellectual performance and the capability of technologies to simulate cognitive learning, thinking, and problem-solving typically related to humans. Deep learning (DL) and machine learning (ML) are advanced AI algorithms in various fields and are considered the main algorithms for future human assistant technology. This study presents an Embryo Development and Morphology Using a Computer Vision-Aided Swin Transformer with a Boosted Dipper-Throated Optimization (EDMCV-STBDTO) technique. The EDMCV-STBDTO technique aims to accurately and efficiently detect embryo development, which is critical for improving fertility treatments and advancing developmental biology using medical CV techniques. Primarily, the EDMCV-STBDTO method performs image preprocessing using a bilateral filter (BF) model to remove the noise. Next, the swin transformer method is implemented for the feature extraction technique. The EDMCV-STBDTO model employs the variational autoencoder (VAE) method to classify human embryo development. Finally, the hyperparameter selection of the VAE method is implemented using the boosted dipper-throated optimization (BDTO) technique. The efficiency of the EDMCV-STBDTO method is validated by comprehensive studies using a benchmark dataset. The experimental result shows that the EDMCV-STBDTO method performs better than the recent techniques.
AbstractList Infertility affects a significant number of humans. A supported reproduction technology was verified to ease infertility problems. In vitro fertilization (IVF) is one of the best choices, and its success relies on the preference for a higher-quality embryo for transmission. These have been normally completed physically by testing embryos in a microscope. The traditional morphological calculation of embryos shows predictable disadvantages, including effort- and time-consuming and expected risks of bias related to individual estimations completed by specific embryologists. Different computer vision (CV) and artificial intelligence (AI) techniques and devices have been recently applied in fertility hospitals to improve efficacy. AI addresses the imitation of intellectual performance and the capability of technologies to simulate cognitive learning, thinking, and problem-solving typically related to humans. Deep learning (DL) and machine learning (ML) are advanced AI algorithms in various fields and are considered the main algorithms for future human assistant technology. This study presents an Embryo Development and Morphology Using a Computer Vision-Aided Swin Transformer with a Boosted Dipper-Throated Optimization (EDMCV-STBDTO) technique. The EDMCV-STBDTO technique aims to accurately and efficiently detect embryo development, which is critical for improving fertility treatments and advancing developmental biology using medical CV techniques. Primarily, the EDMCV-STBDTO method performs image preprocessing using a bilateral filter (BF) model to remove the noise. Next, the swin transformer method is implemented for the feature extraction technique. The EDMCV-STBDTO model employs the variational autoencoder (VAE) method to classify human embryo development. Finally, the hyperparameter selection of the VAE method is implemented using the boosted dipper-throated optimization (BDTO) technique. The efficiency of the EDMCV-STBDTO method is validated by comprehensive studies using a benchmark dataset. The experimental result shows that the EDMCV-STBDTO method performs better than the recent techniques.
Infertility affects a significant number of humans. A supported reproduction technology was verified to ease infertility problems. In vitro fertilization (IVF) is one of the best choices, and its success relies on the preference for a higher-quality embryo for transmission. These have been normally completed physically by testing embryos in a microscope. The traditional morphological calculation of embryos shows predictable disadvantages, including effort- and time-consuming and expected risks of bias related to individual estimations completed by specific embryologists. Different computer vision (CV) and artificial intelligence (AI) techniques and devices have been recently applied in fertility hospitals to improve efficacy. AI addresses the imitation of intellectual performance and the capability of technologies to simulate cognitive learning, thinking, and problem-solving typically related to humans. Deep learning (DL) and machine learning (ML) are advanced AI algorithms in various fields and are considered the main algorithms for future human assistant technology. This study presents an Embryo Development and Morphology Using a Computer Vision-Aided Swin Transformer with a Boosted Dipper-Throated Optimization (EDMCV-STBDTO) technique. The EDMCV-STBDTO technique aims to accurately and efficiently detect embryo development, which is critical for improving fertility treatments and advancing developmental biology using medical CV techniques. Primarily, the EDMCV-STBDTO method performs image preprocessing using a bilateral filter (BF) model to remove the noise. Next, the swin transformer method is implemented for the feature extraction technique. The EDMCV-STBDTO model employs the variational autoencoder (VAE) method to classify human embryo development. Finally, the hyperparameter selection of the VAE method is implemented using the boosted dipper-throated optimization (BDTO) technique. The efficiency of the EDMCV-STBDTO method is validated by comprehensive studies using a benchmark dataset. The experimental result shows that the EDMCV-STBDTO method performs better than the recent techniques.Infertility affects a significant number of humans. A supported reproduction technology was verified to ease infertility problems. In vitro fertilization (IVF) is one of the best choices, and its success relies on the preference for a higher-quality embryo for transmission. These have been normally completed physically by testing embryos in a microscope. The traditional morphological calculation of embryos shows predictable disadvantages, including effort- and time-consuming and expected risks of bias related to individual estimations completed by specific embryologists. Different computer vision (CV) and artificial intelligence (AI) techniques and devices have been recently applied in fertility hospitals to improve efficacy. AI addresses the imitation of intellectual performance and the capability of technologies to simulate cognitive learning, thinking, and problem-solving typically related to humans. Deep learning (DL) and machine learning (ML) are advanced AI algorithms in various fields and are considered the main algorithms for future human assistant technology. This study presents an Embryo Development and Morphology Using a Computer Vision-Aided Swin Transformer with a Boosted Dipper-Throated Optimization (EDMCV-STBDTO) technique. The EDMCV-STBDTO technique aims to accurately and efficiently detect embryo development, which is critical for improving fertility treatments and advancing developmental biology using medical CV techniques. Primarily, the EDMCV-STBDTO method performs image preprocessing using a bilateral filter (BF) model to remove the noise. Next, the swin transformer method is implemented for the feature extraction technique. The EDMCV-STBDTO model employs the variational autoencoder (VAE) method to classify human embryo development. Finally, the hyperparameter selection of the VAE method is implemented using the boosted dipper-throated optimization (BDTO) technique. The efficiency of the EDMCV-STBDTO method is validated by comprehensive studies using a benchmark dataset. The experimental result shows that the EDMCV-STBDTO method performs better than the recent techniques.
Audience Academic
Author Maashi, Mashael
Maray, Mohammed
Alzahrani, Ahmad A.
Mazroa, Alanoud Al
Al-Sharafi, Ali M.
Alkharashi, Abdulwhab
Said, Yahia
AuthorAffiliation 1 Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh 11671, Saudi Arabia; asalmazroa@pnu.edu.sa
7 Department of Computer Science and Artificial Intelligence, College of Computing and Information Technology, University of Bisha, Bisha 67714, Saudi Arabia
3 Department of Electrical Engineering, College of Engineering, Northern Border University, Arar 91431, Saudi Arabia
5 Department of Computer Science and Artificial Intelligence, College of Computing, Umm-AlQura University, Makkah 24382, Saudi Arabia
6 Department of Computer Science, College of Computing and Informatics, Saudi Electronic University, Riyadh 11673, Saudi Arabia
4 Department of Information Systems, College of Computer Science, King Khalid University, Abha 62521, Saudi Arabia
2 Department of Software Engineering, College of Computer and Information Sciences, King Saud University, P.O. Box 103786, Riyadh 11543, Saudi Arabia
AuthorAffiliation_xml – name: 2 Department of Software Engineering, College of Computer and Information Sciences, King Saud University, P.O. Box 103786, Riyadh 11543, Saudi Arabia
– name: 7 Department of Computer Science and Artificial Intelligence, College of Computing and Information Technology, University of Bisha, Bisha 67714, Saudi Arabia
– name: 6 Department of Computer Science, College of Computing and Informatics, Saudi Electronic University, Riyadh 11673, Saudi Arabia
– name: 3 Department of Electrical Engineering, College of Engineering, Northern Border University, Arar 91431, Saudi Arabia
– name: 1 Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh 11671, Saudi Arabia; asalmazroa@pnu.edu.sa
– name: 5 Department of Computer Science and Artificial Intelligence, College of Computing, Umm-AlQura University, Makkah 24382, Saudi Arabia
– name: 4 Department of Information Systems, College of Computer Science, King Khalid University, Abha 62521, Saudi Arabia
Author_xml – sequence: 1
  givenname: Alanoud Al
  orcidid: 0000-0002-6201-0410
  surname: Mazroa
  fullname: Mazroa, Alanoud Al
– sequence: 2
  givenname: Mashael
  orcidid: 0000-0003-0446-5430
  surname: Maashi
  fullname: Maashi, Mashael
– sequence: 3
  givenname: Yahia
  orcidid: 0000-0003-0613-4037
  surname: Said
  fullname: Said, Yahia
– sequence: 4
  givenname: Mohammed
  orcidid: 0000-0002-7066-2945
  surname: Maray
  fullname: Maray, Mohammed
– sequence: 5
  givenname: Ahmad A.
  orcidid: 0000-0003-1573-0367
  surname: Alzahrani
  fullname: Alzahrani, Ahmad A.
– sequence: 6
  givenname: Abdulwhab
  surname: Alkharashi
  fullname: Alkharashi, Abdulwhab
– sequence: 7
  givenname: Ali M.
  orcidid: 0009-0000-0938-4969
  surname: Al-Sharafi
  fullname: Al-Sharafi, Ali M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39451419$$D View this record in MEDLINE/PubMed
BookMark eNptksFu1DAQhiNUREvpK1SRuHBJsWMnuzmhZVugUqse2HKNJvY46yrxBDvbankZXhVvdyldVOXgZObLZ4_1v00OHDlMklPOzoSo2MfGErrWOkRvXcs5Z5xJ-So5ygUrs0IU8uDZ-2FyEsIdY4yLvMhL-SY5FJUsuOTVUfJ75qiHbp2e44hqtORS69KLvvFrirV77Gjo0Y0pOJ1ekx-W1FG7Tm9D3Dm9Rm0VdOmc-mE1ok9_2BAV2cxq1On3h6haeHDBkO9j98GOy_QzURhj99wOA_pssfQEm--bYbS9_QWPZ5h1LflI9--S1wa6gCe79Ti5_XKxmH_Lrm6-Xs5nV5kqcjFmALksJsCa3EjFwJiy0bzJp1BJKTQ3ykwRDVdqUkGp9USgEohCaqYNx6kRx8nl1qsJ7urB2x78uiaw9WOBfFuDH63qsJaNAAlcTRVIyYFViFAAK5kqsSpzHl2ftq5h1fSoVbw-D92edL_j7LJu6b7mvGCSsSoaPuwMnn6uMIx1b4PCrgOHtAq14DkrqopNNuj7_9A7WnkX72pHsRiPf1QLcQLrDMWN1UZaz6ZcilLmlYzU2QtUfDT2VsUMGhvrez-cPp_0acS_-YpAuQWUpxA8mieEs3qT5frlLIs_YBPuRA
Cites_doi 10.1016/j.media.2024.103229
10.1016/j.compbiomed.2024.109000
10.1016/j.compbiomed.2023.107741
10.1038/s41598-020-61357-9
10.1038/s41556-024-01367-1
10.1109/JBHI.2023.3328954
10.1038/s42003-021-01937-1
10.1016/j.artmed.2024.102773
10.1016/j.ptlrs.2024.07.001
10.1109/TMI.2021.3116986
10.1016/j.rbmo.2020.07.003
10.7554/eLife.55301
10.1002/aisy.202300366
10.3934/math.2024500
10.3389/fendo.2023.1238251
10.1016/j.sasc.2024.200110
10.4018/979-8-3693-2105-8.ch015
10.1016/j.xhgg.2024.100312
10.1093/biolre/ioae056
10.1109/ICAPAI61893.2024.10541175
10.1093/humrep/deaa013
10.3390/ijerph20032377
10.1371/journal.pone.0262661
10.1101/2024.03.04.583269
10.1016/j.rbmo.2021.11.003
10.1109/ACCESS.2019.2937765
10.1016/j.heliyon.2024.e26415
10.1038/s41556-023-01341-3
10.1016/j.bspc.2021.102943
10.1109/TUFFC.2023.3311879
10.1007/978-981-99-8141-0_10
10.1016/j.heliyon.2021.e06298
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/bioengineering11101044
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Biological Science Collection
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database


MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2306-5354
ExternalDocumentID oai_doaj_org_article_4b3a4a1c8ca441a09eea5a060c6e9621
PMC11504009
A814364294
39451419
10_3390_bioengineering11101044
Genre Journal Article
GeographicLocations Saudi Arabia
GeographicLocations_xml – name: Saudi Arabia
GrantInformation_xml – fundername: Northern Border University
  grantid: NBU-FFR-2024-3030-XX
– fundername: Deanship of Scientific Research at Northern Border University
  grantid: NBU-FFR-2024-3030-06
– fundername: Deanship of Graduate Studies and Scientific Research at University of Bisha
– fundername: Princess Nourah bint Abdulrahman University
  grantid: PNURSP2024R719
– fundername: Deanship of Research and Graduate Studies at King Khalid University
  grantid: RGP1/160/44
– fundername: King Saud University
  grantid: RSPD2024R787
GroupedDBID 53G
5VS
8FE
8FG
8FH
AAFWJ
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
KQ8
L6V
LK8
M7P
M7S
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RPM
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c523t-aa2457a0b2f4c0aff6bd1b28a9443d1fcf8eef1cc79a6dd73ec3ee34d0df1e8f3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001342817000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2306-5354
IngestDate Fri Oct 03 12:41:08 EDT 2025
Tue Nov 04 02:04:58 EST 2025
Fri Sep 05 14:13:36 EDT 2025
Fri Jul 25 11:56:36 EDT 2025
Tue Nov 11 10:55:14 EST 2025
Tue Nov 04 18:27:09 EST 2025
Thu Jan 02 22:29:20 EST 2025
Sat Nov 29 07:11:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords boosted dipper-throated optimization
embryo development
image preprocessing
swin transformer
computer vision
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-aa2457a0b2f4c0aff6bd1b28a9443d1fcf8eef1cc79a6dd73ec3ee34d0df1e8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0000-0938-4969
0000-0003-0446-5430
0000-0002-7066-2945
0000-0003-0613-4037
0000-0002-6201-0410
0000-0003-1573-0367
OpenAccessLink https://doaj.org/article/4b3a4a1c8ca441a09eea5a060c6e9621
PMID 39451419
PQID 3120590110
PQPubID 2055440
ParticipantIDs doaj_primary_oai_doaj_org_article_4b3a4a1c8ca441a09eea5a060c6e9621
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11504009
proquest_miscellaneous_3120599079
proquest_journals_3120590110
gale_infotracmisc_A814364294
gale_infotracacademiconefile_A814364294
pubmed_primary_39451419
crossref_primary_10_3390_bioengineering11101044
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Bioengineering (Basel)
PublicationTitleAlternate Bioengineering (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Singh (ref_19) 2024; 6
Yang (ref_21) 2024; 97
Kragh (ref_2) 2022; 41
Mahmoudinia (ref_1) 2024; 18
ref_14
Dimitriadis (ref_3) 2022; 44
ref_12
ref_33
ref_32
ref_30
Einy (ref_15) 2023; 2023
Zhao (ref_22) 2024; 28
Abirami (ref_28) 2024; 6
ref_16
Thirumalaraju (ref_34) 2021; 7
Bormann (ref_8) 2020; 9
Aburass (ref_36) 2024; 6
Liu (ref_35) 2019; 7
Zhang (ref_18) 2024; 26
Sindhu (ref_23) 2024; Volume 1
Weatherbee (ref_17) 2024; 26
Khadidos (ref_29) 2024; 9
Liao (ref_11) 2024; 149
Sarker (ref_20) 2023; 70
ref_25
ref_24
Drakeley (ref_10) 2020; 41
Tang (ref_31) 2024; 10
VerMilyea (ref_4) 2020; 35
ref_27
ref_26
ref_9
ref_5
ref_7
Yang (ref_13) 2024; 110
ref_6
Dai (ref_37) 2024; 5
References_xml – volume: 97
  start-page: 103229
  year: 2024
  ident: ref_21
  article-title: Hierarchical online contrastive anomaly detection for fetal arrhythmia diagnosis in ultrasound
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2024.103229
– ident: ref_25
  doi: 10.1016/j.compbiomed.2024.109000
– ident: ref_27
  doi: 10.1016/j.compbiomed.2023.107741
– ident: ref_7
  doi: 10.1038/s41598-020-61357-9
– volume: 26
  start-page: 353
  year: 2024
  ident: ref_17
  article-title: Distinct pathways drive anterior hypoblast specification in the implanting human embryo
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-024-01367-1
– ident: ref_32
– volume: 28
  start-page: 285
  year: 2024
  ident: ref_22
  article-title: TransFSM: Fetal anatomy segmentation and biometric measurement in ultrasound images using a hybrid transformer
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2023.3328954
– ident: ref_5
  doi: 10.1038/s42003-021-01937-1
– volume: 2023
  start-page: 2426601
  year: 2023
  ident: ref_15
  article-title: Local Binary Convolutional Neural Networks’ Long Short-Term Memory Model for Human Embryos’ Anomaly Detection
  publication-title: Sci. Program.
– volume: 149
  start-page: 102773
  year: 2024
  ident: ref_11
  article-title: A clinical consensus-compliant deep learning approach to quantitatively evaluate human in vitro fertilization early embryonic development with optical microscope images
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2024.102773
– ident: ref_30
  doi: 10.1016/j.ptlrs.2024.07.001
– volume: 41
  start-page: 465
  year: 2022
  ident: ref_2
  article-title: Predicting Embryo Viability Based on Self-Supervised Alignment of Time-Lapse Videos
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3116986
– volume: 41
  start-page: 585
  year: 2020
  ident: ref_10
  article-title: Embryo Ranking Intelligent Classification Algorithm (ERICA): Artificial intelligence clinical assistant predicting embryo ploidy and implantation
  publication-title: Reprod. Biomed. Online
  doi: 10.1016/j.rbmo.2020.07.003
– volume: 9
  start-page: e55301
  year: 2020
  ident: ref_8
  article-title: Performance of a deep learning based neural network in the selection of human blastocysts for implantation
  publication-title: eLife
  doi: 10.7554/eLife.55301
– volume: 6
  start-page: 2300366
  year: 2024
  ident: ref_19
  article-title: Advancing Predictive Risk Assessment of Chemicals via Integrating Machine Learning, Computational Modeling, and Chemical/Nano-Quantitative Structure-Activity Relationship Approaches
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.202300366
– volume: 9
  start-page: 10235
  year: 2024
  ident: ref_29
  article-title: Advancements in remote sensing: Harnessing the power of artificial intelligence for scene image classification
  publication-title: AIMS Math.
  doi: 10.3934/math.2024500
– ident: ref_9
  doi: 10.3389/fendo.2023.1238251
– volume: 6
  start-page: 193
  year: 2024
  ident: ref_28
  article-title: Detection of tuberculosis using optimized deep learning approach with enhanced selective median (esmf) filter
  publication-title: Afr. J. Biol. Sci.
– volume: 6
  start-page: 200110
  year: 2024
  ident: ref_36
  article-title: A hybrid machine learning model for classifying gene mutations in cancer using LSTM, BiLSTM, CNN, GRU, and GloVe
  publication-title: Syst. Soft Comput.
  doi: 10.1016/j.sasc.2024.200110
– ident: ref_14
  doi: 10.4018/979-8-3693-2105-8.ch015
– volume: 18
  start-page: 10
  year: 2024
  ident: ref_1
  article-title: Live Birth after Cleavage-Stage versus Blastocyst-Stage Embryo Transfer in Assisted Reproductive Technology: A Randomised Controlled Study
  publication-title: Int. J. Fertil. Steril.
– volume: 5
  start-page: 100312
  year: 2024
  ident: ref_37
  article-title: DeepFace: Deep learning-based framework to contextualize orofacial cleft-related variants during human embryonic craniofacial development
  publication-title: Hum. Genet. Genom. Adv.
  doi: 10.1016/j.xhgg.2024.100312
– volume: 110
  start-page: 1115
  year: 2024
  ident: ref_13
  article-title: Machine learning in time-lapse imaging to differentiate embryos from young vs old mice
  publication-title: Biol. Reprod.
  doi: 10.1093/biolre/ioae056
– ident: ref_12
  doi: 10.1109/ICAPAI61893.2024.10541175
– volume: 35
  start-page: 770
  year: 2020
  ident: ref_4
  article-title: Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF
  publication-title: Hum. Reprod.
  doi: 10.1093/humrep/deaa013
– ident: ref_24
  doi: 10.3390/ijerph20032377
– ident: ref_6
  doi: 10.1371/journal.pone.0262661
– ident: ref_16
  doi: 10.1101/2024.03.04.583269
– volume: 44
  start-page: 435
  year: 2022
  ident: ref_3
  article-title: Artificial intelligence in the embryology laboratory: A review
  publication-title: Reprod. Biomed. Online
  doi: 10.1016/j.rbmo.2021.11.003
– volume: 7
  start-page: 122153
  year: 2019
  ident: ref_35
  article-title: Multi-task deep learning with dynamic programming for embryo early development stage classification from time-lapse videos
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2937765
– volume: 10
  start-page: e26415
  year: 2024
  ident: ref_31
  article-title: Boosted dipper throated optimization algorithm-based Xception neural network for skin cancer diagnosis: An optimal approach
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e26415
– volume: 26
  start-page: 278
  year: 2024
  ident: ref_18
  article-title: Low-input lipidomics reveals lipid metabolism remodelling during early mammalian embryo development
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-023-01341-3
– ident: ref_33
  doi: 10.1016/j.bspc.2021.102943
– volume: 70
  start-page: 1417
  year: 2023
  ident: ref_20
  article-title: COMFormer: Classification of maternal-fetal and brain anatomy using a residual cross-covariance attention guided transformer in ultrasound
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2023.3311879
– ident: ref_26
  doi: 10.1007/978-981-99-8141-0_10
– volume: 7
  start-page: e06298
  year: 2021
  ident: ref_34
  article-title: Evaluation of deep convolutional neural networks in classifying human embryo images based on their morphological quality
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2021.e06298
– volume: Volume 1
  start-page: 1
  year: 2024
  ident: ref_23
  article-title: Enhanced Multi-Class Fetal Plane Detection with Limb Localization in Ultrasound Images
  publication-title: Proceedings of the 2024 IEEE International Conference on Contemporary Computing and Communications (InC4)
SSID ssj0001325264
Score 2.276803
Snippet Infertility affects a significant number of humans. A supported reproduction technology was verified to ease infertility problems. In vitro fertilization (IVF)...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1044
SubjectTerms Accuracy
Algorithms
Analysis
Anomalies
Art techniques
Artificial intelligence
boosted dipper-throated optimization
Classification
Computer vision
Deep learning
Developmental biology
embryo development
Embryonic development
Embryos
Fertility
Health aspects
Image filters
image preprocessing
In vitro fertilization
Infertility
Machine learning
Mathematical optimization
Methods
Morphology
Neural networks
Observational learning
Optimization
Prevention
Problem solving
Reproductive technologies
Risk factors
swin transformer
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIAD70egICMhcYrWjr1JfEJb2ooDlEosVW-Rn91I3WTJpqD-Gv4qYyfZ3QjEhWMyzmPkb8Yz45kxQm_1VBEttIm9bRtzLaexhKmPHeGaK2WIDbvnZ5-yk5P8_Fyc9gG3dZ9WOejEoKhNrX2MfMJo0tVJkver77E_NcrvrvZHaNxEt3yXhCSk7p1uYywsmcKC3xUGM_DuJ6qs7bbPH8i5d0f4aE0Krfv_VNA7K9Q4e3JnOTq-_7-MPED3ekMUzzrkPEQ3bPUI3d1pT_gY_ZpV9VJeXuND24aMrQqXFT5aqua6xjvZRlhWBn-uYcZCjB6HNATcbwHh4dwIfBbK2ONZaazBX3_Cq-aD1QxUHxDGB3WoOcGH5Wplm3i-aGrpr7-AYlv2FaN4dnkB_LSL5RP07fho_uFj3B_oEGvwd9tYyoRPM0lU4rgm0rlUGaqSXArOmaFOu9xaR7XOhEyNyZjVzFrGDTGO2tyxp2ivqiv7HGFnslxlmSNUOS4Jlc4YmfiqWeMs1SxCk2FKi1XXt6MAf8eDoPg7CCJ04Gd-M9r33Q436uai6MW44IpJLqnOtQQ7UhJhrZxKkhKdWpEmNELvPG4Krx0AHFr2RQ7w077PVjHLwT4FsRDwuf3RSJBqPSYP6Cl6rbIuttCJ0JsN2T_pM-UqW18NYwTJRISedUDdsMQEB_uYAiUfQXjE85hSlYvQc9w7DqDuxYt__9dLdCcBq6_LdtxHe21zZV-h2_pHW66b10E6fwNyN0wR
  priority: 102
  providerName: ProQuest
Title Anomaly Detection in Embryo Development and Morphology Using Medical Computer Vision-Aided Swin Transformer with Boosted Dipper-Throated Optimization Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/39451419
https://www.proquest.com/docview/3120590110
https://www.proquest.com/docview/3120599079
https://pubmed.ncbi.nlm.nih.gov/PMC11504009
https://doaj.org/article/4b3a4a1c8ca441a09eea5a060c6e9621
Volume 11
WOSCitedRecordID wos001342817000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M7P
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M7S
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: BENPR
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: PIMPY
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LjtMw0IKFAxwQbwJLZSQkTlGd2Hn42LJdgcSWii2rcor8ZCNtkyrbBe2FX-FXGTtpSQQSFy6RkpkktmfGM2PPjBF6rRJJFFc6dLZtyJRIQgGkDy1hikmpifG752cfsvk8X634onfUl4sJa8sDtwM3ZpIKJiKVKwGaWxBujEgESYlKDU99CnlMMt5zpvzqCo0TUPVtSjAFv34sy9r8rvAHEu4cETbQRr5o_59Tc083DeMme4ro-D6611mQeNK2_AG6YaqH6G6vruAj9BOc-rW4uMZHZutDrSpcVni2ls11jXthQlhUGp_UMNR-cR37-AHc7d3g3YEP-Mznn4eTUhuNT7_Dp5Y7cxegbiUXT2ufLIKPys3GNOHyvKmFu_8IM9K6S_XEk4uvdQPY68fo8_Fs-fZd2J3EECpwVLehEDFLMkFkbJkiwtpU6kjGueCMUR1ZZXNjbKRUxkWqdUaNosZQpom2kcktfYIOqroyzxC2OstlllkSScsEiYTVWsQu3VVbEykaoPGOIsWmLbhRgKPiaFj8nYYBmjrC7bFdwWz_ANio6Nio-BcbBeiNI3vhxBpoq0SXnQCNdgWyikkOhiXwM4ffHQ4wQRzVELxjnKKbDi4LGsVtki8J0Ks92L3pQtwqU1_tcDjwcoCetny27xLlDAzbCCD5gAMHfR5CqvLcFwt3Fj_M0_z5_xilF-hODEZdG8x4iA62zZV5iW6rb9vyshmhm9kqH6Fb09l88WnkBXLkYmkX_nrqrj9mAF-8P1l8-QUrDkXV
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFB6VFAk4sC-BAoME4mRl7JnEngNCKWnVqEmIRKjakxnP0lhq7OCkVPk1_AN-I2-8JLFA3HrgaL_xNv7eNvMWhN7KdkQkl8qxtq3DpGg7An69YwiTLIoU0fnu-cnAH42C01M-3kG_qlwYG1ZZycRcUKtU2jXyFnW9Ik-SfJx_d2zXKLu7WrXQKGBxrFdX4LItPvR78H_fed7hweTTkVN2FXAkOF1LRwiPtX1BIs8wSYQxnUi5kRcIzhhVrpEm0Nq4UvpcdJTyqZZUa8oUUcbVgaFw3xtol1mwN9DuuD8cn21WdajXBhOjSEWmlJNWFKd6U1kQJIt1gFhNC-bNAv5UCVs6sR6vuaUAD-_9b1N3H90tTW3cLXjjAdrRyUN0Z6sA4yP0s5ukM3Gxwj29zGPSEhwn-GAWZasUb8VTYZEoPEwBk_kuBM4DLXC5yYWrzhj4JE_Ud7qx0gp_uYJbTSq_AKh2yRvvp3lWDe7F87nOnMk0S4U9_gyie1bmxOLuxTnM33I6e4y-XssMPUGNJE30M4SN8oPI9w1xI8MEcYVRSng2L1gZ7UraRK0KQuG8qEwSgkdnQRf-HXRNtG-Rth5tK4vnJ9LsPCwFVcgiKphwZSAFWMqCcK1FW5AOkR3NO57bRO8tTkMr_wCMUpRpHPDStpJY2A3AAgfG5_C4vdpIkFuyTq7QGpZycxFuoNpEb9Zke6WNBUx0elmN4cTnTfS0YIz1J1HOwANwgRLUWKb2zXVKEk_zqurWNQKFxp__-71eo1tHk-EgHPRHxy_QbQ9s3CK2cw81ltmlfoluyh_LeJG9KmUDRt-um6d-A92Or6s
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhxA8cL8UBhgJxFNUJ3aT-AGhjq6i2lYqUabxFBxf1khrUtKOqb-G_8Gv4ziXthGItz3w2NpNE-c73znHPheEXstuTCSXyrG2rcOk6DoCXr1jCJMsjhXRxen5yVEwGoWnp3y8g37VuTA2rLLmxIKoVSbtHnmHul6ZJ0k6pgqLGPcH7-ffHdtByp601u00Sogc6tUluG-Ld8M-vOs3njc4mHz46FQdBhwJDtjSEcJj3UCQ2DNMEmGMHys39kLBGaPKNdKEWhtXyoALX6mAakm1pkwRZVwdGgrXvYZ2wSRnXgvtjofH46-bHR7qdcHcKNOSKeWkEyeZ3lQZBJaxzhBraMSiccCf6mFLPzZjN7eU4eDO_7yMd9HtygTHvVJm7qEdnd5Ht7YKMz5AP3tpNhPnK9zXyyJWLcVJig9mcb7K8FacFRapwscZYLU4ncBFAAauDr9w3TEDnxQJ_E4vUVrhz5dwqUntL8Co3QrH-1mRbYP7yXyuc2cyzTNhP38CSp9VubK4d34G67eczh6iL1eyQo9QK81S_QRho4IwDgJD3NgwQVxhlBKezRdWRruStlGnhlM0LyuWRODpWQBGfwdgG-1b1K1n24rjxRdZfhZVBBaxmAomXBlKARa0IFxr0RXEJ9LX3PfcNnprMRtZXgRgSlGld8BN2wpjUS8EyxwIgcPf7TVmAp_J5nCN3Kji00W0gW0bvVoP21_aGMFUZxf1HE4C3kaPSyFZPxLlDDwDF0bChvg0nrk5kibTotq6dZlA0fGn_76vl-gGCFJ0NBwdPkM3PTB9y5DPPdRa5hf6OboufyyTRf6iogmMvl21SP0GCDO4aw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+Detection+in+Embryo+Development+and+Morphology+Using+Medical+Computer+Vision-Aided+Swin+Transformer+with+Boosted+Dipper-Throated+Optimization+Algorithm&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Mazroa%2C+Alanoud+Al&rft.au=Maashi%2C+Mashael&rft.au=Said%2C+Yahia&rft.au=Maray%2C+Mohammed&rft.date=2024-10-01&rft.issn=2306-5354&rft.eissn=2306-5354&rft.volume=11&rft.issue=10&rft.spage=1044&rft_id=info:doi/10.3390%2Fbioengineering11101044&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_bioengineering11101044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon