Anomaly Detection in Embryo Development and Morphology Using Medical Computer Vision-Aided Swin Transformer with Boosted Dipper-Throated Optimization Algorithm
Infertility affects a significant number of humans. A supported reproduction technology was verified to ease infertility problems. In vitro fertilization (IVF) is one of the best choices, and its success relies on the preference for a higher-quality embryo for transmission. These have been normally...
Gespeichert in:
| Veröffentlicht in: | Bioengineering (Basel) Jg. 11; H. 10; S. 1044 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
01.10.2024
MDPI |
| Schlagworte: | |
| ISSN: | 2306-5354, 2306-5354 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Infertility affects a significant number of humans. A supported reproduction technology was verified to ease infertility problems. In vitro fertilization (IVF) is one of the best choices, and its success relies on the preference for a higher-quality embryo for transmission. These have been normally completed physically by testing embryos in a microscope. The traditional morphological calculation of embryos shows predictable disadvantages, including effort- and time-consuming and expected risks of bias related to individual estimations completed by specific embryologists. Different computer vision (CV) and artificial intelligence (AI) techniques and devices have been recently applied in fertility hospitals to improve efficacy. AI addresses the imitation of intellectual performance and the capability of technologies to simulate cognitive learning, thinking, and problem-solving typically related to humans. Deep learning (DL) and machine learning (ML) are advanced AI algorithms in various fields and are considered the main algorithms for future human assistant technology. This study presents an Embryo Development and Morphology Using a Computer Vision-Aided Swin Transformer with a Boosted Dipper-Throated Optimization (EDMCV-STBDTO) technique. The EDMCV-STBDTO technique aims to accurately and efficiently detect embryo development, which is critical for improving fertility treatments and advancing developmental biology using medical CV techniques. Primarily, the EDMCV-STBDTO method performs image preprocessing using a bilateral filter (BF) model to remove the noise. Next, the swin transformer method is implemented for the feature extraction technique. The EDMCV-STBDTO model employs the variational autoencoder (VAE) method to classify human embryo development. Finally, the hyperparameter selection of the VAE method is implemented using the boosted dipper-throated optimization (BDTO) technique. The efficiency of the EDMCV-STBDTO method is validated by comprehensive studies using a benchmark dataset. The experimental result shows that the EDMCV-STBDTO method performs better than the recent techniques. |
|---|---|
| AbstractList | Infertility affects a significant number of humans. A supported reproduction technology was verified to ease infertility problems. In vitro fertilization (IVF) is one of the best choices, and its success relies on the preference for a higher-quality embryo for transmission. These have been normally completed physically by testing embryos in a microscope. The traditional morphological calculation of embryos shows predictable disadvantages, including effort- and time-consuming and expected risks of bias related to individual estimations completed by specific embryologists. Different computer vision (CV) and artificial intelligence (AI) techniques and devices have been recently applied in fertility hospitals to improve efficacy. AI addresses the imitation of intellectual performance and the capability of technologies to simulate cognitive learning, thinking, and problem-solving typically related to humans. Deep learning (DL) and machine learning (ML) are advanced AI algorithms in various fields and are considered the main algorithms for future human assistant technology. This study presents an Embryo Development and Morphology Using a Computer Vision-Aided Swin Transformer with a Boosted Dipper-Throated Optimization (EDMCV-STBDTO) technique. The EDMCV-STBDTO technique aims to accurately and efficiently detect embryo development, which is critical for improving fertility treatments and advancing developmental biology using medical CV techniques. Primarily, the EDMCV-STBDTO method performs image preprocessing using a bilateral filter (BF) model to remove the noise. Next, the swin transformer method is implemented for the feature extraction technique. The EDMCV-STBDTO model employs the variational autoencoder (VAE) method to classify human embryo development. Finally, the hyperparameter selection of the VAE method is implemented using the boosted dipper-throated optimization (BDTO) technique. The efficiency of the EDMCV-STBDTO method is validated by comprehensive studies using a benchmark dataset. The experimental result shows that the EDMCV-STBDTO method performs better than the recent techniques. Infertility affects a significant number of humans. A supported reproduction technology was verified to ease infertility problems. In vitro fertilization (IVF) is one of the best choices, and its success relies on the preference for a higher-quality embryo for transmission. These have been normally completed physically by testing embryos in a microscope. The traditional morphological calculation of embryos shows predictable disadvantages, including effort- and time-consuming and expected risks of bias related to individual estimations completed by specific embryologists. Different computer vision (CV) and artificial intelligence (AI) techniques and devices have been recently applied in fertility hospitals to improve efficacy. AI addresses the imitation of intellectual performance and the capability of technologies to simulate cognitive learning, thinking, and problem-solving typically related to humans. Deep learning (DL) and machine learning (ML) are advanced AI algorithms in various fields and are considered the main algorithms for future human assistant technology. This study presents an Embryo Development and Morphology Using a Computer Vision-Aided Swin Transformer with a Boosted Dipper-Throated Optimization (EDMCV-STBDTO) technique. The EDMCV-STBDTO technique aims to accurately and efficiently detect embryo development, which is critical for improving fertility treatments and advancing developmental biology using medical CV techniques. Primarily, the EDMCV-STBDTO method performs image preprocessing using a bilateral filter (BF) model to remove the noise. Next, the swin transformer method is implemented for the feature extraction technique. The EDMCV-STBDTO model employs the variational autoencoder (VAE) method to classify human embryo development. Finally, the hyperparameter selection of the VAE method is implemented using the boosted dipper-throated optimization (BDTO) technique. The efficiency of the EDMCV-STBDTO method is validated by comprehensive studies using a benchmark dataset. The experimental result shows that the EDMCV-STBDTO method performs better than the recent techniques.Infertility affects a significant number of humans. A supported reproduction technology was verified to ease infertility problems. In vitro fertilization (IVF) is one of the best choices, and its success relies on the preference for a higher-quality embryo for transmission. These have been normally completed physically by testing embryos in a microscope. The traditional morphological calculation of embryos shows predictable disadvantages, including effort- and time-consuming and expected risks of bias related to individual estimations completed by specific embryologists. Different computer vision (CV) and artificial intelligence (AI) techniques and devices have been recently applied in fertility hospitals to improve efficacy. AI addresses the imitation of intellectual performance and the capability of technologies to simulate cognitive learning, thinking, and problem-solving typically related to humans. Deep learning (DL) and machine learning (ML) are advanced AI algorithms in various fields and are considered the main algorithms for future human assistant technology. This study presents an Embryo Development and Morphology Using a Computer Vision-Aided Swin Transformer with a Boosted Dipper-Throated Optimization (EDMCV-STBDTO) technique. The EDMCV-STBDTO technique aims to accurately and efficiently detect embryo development, which is critical for improving fertility treatments and advancing developmental biology using medical CV techniques. Primarily, the EDMCV-STBDTO method performs image preprocessing using a bilateral filter (BF) model to remove the noise. Next, the swin transformer method is implemented for the feature extraction technique. The EDMCV-STBDTO model employs the variational autoencoder (VAE) method to classify human embryo development. Finally, the hyperparameter selection of the VAE method is implemented using the boosted dipper-throated optimization (BDTO) technique. The efficiency of the EDMCV-STBDTO method is validated by comprehensive studies using a benchmark dataset. The experimental result shows that the EDMCV-STBDTO method performs better than the recent techniques. |
| Audience | Academic |
| Author | Maashi, Mashael Maray, Mohammed Alzahrani, Ahmad A. Mazroa, Alanoud Al Al-Sharafi, Ali M. Alkharashi, Abdulwhab Said, Yahia |
| AuthorAffiliation | 1 Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh 11671, Saudi Arabia; asalmazroa@pnu.edu.sa 7 Department of Computer Science and Artificial Intelligence, College of Computing and Information Technology, University of Bisha, Bisha 67714, Saudi Arabia 3 Department of Electrical Engineering, College of Engineering, Northern Border University, Arar 91431, Saudi Arabia 5 Department of Computer Science and Artificial Intelligence, College of Computing, Umm-AlQura University, Makkah 24382, Saudi Arabia 6 Department of Computer Science, College of Computing and Informatics, Saudi Electronic University, Riyadh 11673, Saudi Arabia 4 Department of Information Systems, College of Computer Science, King Khalid University, Abha 62521, Saudi Arabia 2 Department of Software Engineering, College of Computer and Information Sciences, King Saud University, P.O. Box 103786, Riyadh 11543, Saudi Arabia |
| AuthorAffiliation_xml | – name: 2 Department of Software Engineering, College of Computer and Information Sciences, King Saud University, P.O. Box 103786, Riyadh 11543, Saudi Arabia – name: 7 Department of Computer Science and Artificial Intelligence, College of Computing and Information Technology, University of Bisha, Bisha 67714, Saudi Arabia – name: 6 Department of Computer Science, College of Computing and Informatics, Saudi Electronic University, Riyadh 11673, Saudi Arabia – name: 3 Department of Electrical Engineering, College of Engineering, Northern Border University, Arar 91431, Saudi Arabia – name: 1 Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh 11671, Saudi Arabia; asalmazroa@pnu.edu.sa – name: 5 Department of Computer Science and Artificial Intelligence, College of Computing, Umm-AlQura University, Makkah 24382, Saudi Arabia – name: 4 Department of Information Systems, College of Computer Science, King Khalid University, Abha 62521, Saudi Arabia |
| Author_xml | – sequence: 1 givenname: Alanoud Al orcidid: 0000-0002-6201-0410 surname: Mazroa fullname: Mazroa, Alanoud Al – sequence: 2 givenname: Mashael orcidid: 0000-0003-0446-5430 surname: Maashi fullname: Maashi, Mashael – sequence: 3 givenname: Yahia orcidid: 0000-0003-0613-4037 surname: Said fullname: Said, Yahia – sequence: 4 givenname: Mohammed orcidid: 0000-0002-7066-2945 surname: Maray fullname: Maray, Mohammed – sequence: 5 givenname: Ahmad A. orcidid: 0000-0003-1573-0367 surname: Alzahrani fullname: Alzahrani, Ahmad A. – sequence: 6 givenname: Abdulwhab surname: Alkharashi fullname: Alkharashi, Abdulwhab – sequence: 7 givenname: Ali M. orcidid: 0009-0000-0938-4969 surname: Al-Sharafi fullname: Al-Sharafi, Ali M. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39451419$$D View this record in MEDLINE/PubMed |
| BookMark | eNptksFu1DAQhiNUREvpK1SRuHBJsWMnuzmhZVugUqse2HKNJvY46yrxBDvbankZXhVvdyldVOXgZObLZ4_1v00OHDlMklPOzoSo2MfGErrWOkRvXcs5Z5xJ-So5ygUrs0IU8uDZ-2FyEsIdY4yLvMhL-SY5FJUsuOTVUfJ75qiHbp2e44hqtORS69KLvvFrirV77Gjo0Y0pOJ1ekx-W1FG7Tm9D3Dm9Rm0VdOmc-mE1ok9_2BAV2cxq1On3h6haeHDBkO9j98GOy_QzURhj99wOA_pssfQEm--bYbS9_QWPZ5h1LflI9--S1wa6gCe79Ti5_XKxmH_Lrm6-Xs5nV5kqcjFmALksJsCa3EjFwJiy0bzJp1BJKTQ3ykwRDVdqUkGp9USgEohCaqYNx6kRx8nl1qsJ7urB2x78uiaw9WOBfFuDH63qsJaNAAlcTRVIyYFViFAAK5kqsSpzHl2ftq5h1fSoVbw-D92edL_j7LJu6b7mvGCSsSoaPuwMnn6uMIx1b4PCrgOHtAq14DkrqopNNuj7_9A7WnkX72pHsRiPf1QLcQLrDMWN1UZaz6ZcilLmlYzU2QtUfDT2VsUMGhvrez-cPp_0acS_-YpAuQWUpxA8mieEs3qT5frlLIs_YBPuRA |
| Cites_doi | 10.1016/j.media.2024.103229 10.1016/j.compbiomed.2024.109000 10.1016/j.compbiomed.2023.107741 10.1038/s41598-020-61357-9 10.1038/s41556-024-01367-1 10.1109/JBHI.2023.3328954 10.1038/s42003-021-01937-1 10.1016/j.artmed.2024.102773 10.1016/j.ptlrs.2024.07.001 10.1109/TMI.2021.3116986 10.1016/j.rbmo.2020.07.003 10.7554/eLife.55301 10.1002/aisy.202300366 10.3934/math.2024500 10.3389/fendo.2023.1238251 10.1016/j.sasc.2024.200110 10.4018/979-8-3693-2105-8.ch015 10.1016/j.xhgg.2024.100312 10.1093/biolre/ioae056 10.1109/ICAPAI61893.2024.10541175 10.1093/humrep/deaa013 10.3390/ijerph20032377 10.1371/journal.pone.0262661 10.1101/2024.03.04.583269 10.1016/j.rbmo.2021.11.003 10.1109/ACCESS.2019.2937765 10.1016/j.heliyon.2024.e26415 10.1038/s41556-023-01341-3 10.1016/j.bspc.2021.102943 10.1109/TUFFC.2023.3311879 10.1007/978-981-99-8141-0_10 10.1016/j.heliyon.2021.e06298 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
| DOI | 10.3390/bioengineering11101044 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection ProQuest Biological Science Collection Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2306-5354 |
| ExternalDocumentID | oai_doaj_org_article_4b3a4a1c8ca441a09eea5a060c6e9621 PMC11504009 A814364294 39451419 10_3390_bioengineering11101044 |
| Genre | Journal Article |
| GeographicLocations | Saudi Arabia |
| GeographicLocations_xml | – name: Saudi Arabia |
| GrantInformation_xml | – fundername: Northern Border University grantid: NBU-FFR-2024-3030-XX – fundername: Deanship of Scientific Research at Northern Border University grantid: NBU-FFR-2024-3030-06 – fundername: Deanship of Graduate Studies and Scientific Research at University of Bisha – fundername: Princess Nourah bint Abdulrahman University grantid: PNURSP2024R719 – fundername: Deanship of Research and Graduate Studies at King Khalid University grantid: RGP1/160/44 – fundername: King Saud University grantid: RSPD2024R787 |
| GroupedDBID | 53G 5VS 8FE 8FG 8FH AAFWJ AAYXX ABDBF ABJCF ACUHS ADBBV AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC KQ8 L6V LK8 M7P M7S MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RPM NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c523t-aa2457a0b2f4c0aff6bd1b28a9443d1fcf8eef1cc79a6dd73ec3ee34d0df1e8f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001342817000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2306-5354 |
| IngestDate | Fri Oct 03 12:41:08 EDT 2025 Tue Nov 04 02:04:58 EST 2025 Fri Sep 05 14:13:36 EDT 2025 Fri Jul 25 11:56:36 EDT 2025 Tue Nov 11 10:55:14 EST 2025 Tue Nov 04 18:27:09 EST 2025 Thu Jan 02 22:29:20 EST 2025 Sat Nov 29 07:11:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | boosted dipper-throated optimization embryo development image preprocessing swin transformer computer vision |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c523t-aa2457a0b2f4c0aff6bd1b28a9443d1fcf8eef1cc79a6dd73ec3ee34d0df1e8f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0000-0938-4969 0000-0003-0446-5430 0000-0002-7066-2945 0000-0003-0613-4037 0000-0002-6201-0410 0000-0003-1573-0367 |
| OpenAccessLink | https://doaj.org/article/4b3a4a1c8ca441a09eea5a060c6e9621 |
| PMID | 39451419 |
| PQID | 3120590110 |
| PQPubID | 2055440 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4b3a4a1c8ca441a09eea5a060c6e9621 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11504009 proquest_miscellaneous_3120599079 proquest_journals_3120590110 gale_infotracmisc_A814364294 gale_infotracacademiconefile_A814364294 pubmed_primary_39451419 crossref_primary_10_3390_bioengineering11101044 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Bioengineering (Basel) |
| PublicationTitleAlternate | Bioengineering (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Singh (ref_19) 2024; 6 Yang (ref_21) 2024; 97 Kragh (ref_2) 2022; 41 Mahmoudinia (ref_1) 2024; 18 ref_14 Dimitriadis (ref_3) 2022; 44 ref_12 ref_33 ref_32 ref_30 Einy (ref_15) 2023; 2023 Zhao (ref_22) 2024; 28 Abirami (ref_28) 2024; 6 ref_16 Thirumalaraju (ref_34) 2021; 7 Bormann (ref_8) 2020; 9 Aburass (ref_36) 2024; 6 Liu (ref_35) 2019; 7 Zhang (ref_18) 2024; 26 Sindhu (ref_23) 2024; Volume 1 Weatherbee (ref_17) 2024; 26 Khadidos (ref_29) 2024; 9 Liao (ref_11) 2024; 149 Sarker (ref_20) 2023; 70 ref_25 ref_24 Drakeley (ref_10) 2020; 41 Tang (ref_31) 2024; 10 VerMilyea (ref_4) 2020; 35 ref_27 ref_26 ref_9 ref_5 ref_7 Yang (ref_13) 2024; 110 ref_6 Dai (ref_37) 2024; 5 |
| References_xml | – volume: 97 start-page: 103229 year: 2024 ident: ref_21 article-title: Hierarchical online contrastive anomaly detection for fetal arrhythmia diagnosis in ultrasound publication-title: Med. Image Anal. doi: 10.1016/j.media.2024.103229 – ident: ref_25 doi: 10.1016/j.compbiomed.2024.109000 – ident: ref_27 doi: 10.1016/j.compbiomed.2023.107741 – ident: ref_7 doi: 10.1038/s41598-020-61357-9 – volume: 26 start-page: 353 year: 2024 ident: ref_17 article-title: Distinct pathways drive anterior hypoblast specification in the implanting human embryo publication-title: Nat. Cell Biol. doi: 10.1038/s41556-024-01367-1 – ident: ref_32 – volume: 28 start-page: 285 year: 2024 ident: ref_22 article-title: TransFSM: Fetal anatomy segmentation and biometric measurement in ultrasound images using a hybrid transformer publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2023.3328954 – ident: ref_5 doi: 10.1038/s42003-021-01937-1 – volume: 2023 start-page: 2426601 year: 2023 ident: ref_15 article-title: Local Binary Convolutional Neural Networks’ Long Short-Term Memory Model for Human Embryos’ Anomaly Detection publication-title: Sci. Program. – volume: 149 start-page: 102773 year: 2024 ident: ref_11 article-title: A clinical consensus-compliant deep learning approach to quantitatively evaluate human in vitro fertilization early embryonic development with optical microscope images publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2024.102773 – ident: ref_30 doi: 10.1016/j.ptlrs.2024.07.001 – volume: 41 start-page: 465 year: 2022 ident: ref_2 article-title: Predicting Embryo Viability Based on Self-Supervised Alignment of Time-Lapse Videos publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3116986 – volume: 41 start-page: 585 year: 2020 ident: ref_10 article-title: Embryo Ranking Intelligent Classification Algorithm (ERICA): Artificial intelligence clinical assistant predicting embryo ploidy and implantation publication-title: Reprod. Biomed. Online doi: 10.1016/j.rbmo.2020.07.003 – volume: 9 start-page: e55301 year: 2020 ident: ref_8 article-title: Performance of a deep learning based neural network in the selection of human blastocysts for implantation publication-title: eLife doi: 10.7554/eLife.55301 – volume: 6 start-page: 2300366 year: 2024 ident: ref_19 article-title: Advancing Predictive Risk Assessment of Chemicals via Integrating Machine Learning, Computational Modeling, and Chemical/Nano-Quantitative Structure-Activity Relationship Approaches publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.202300366 – volume: 9 start-page: 10235 year: 2024 ident: ref_29 article-title: Advancements in remote sensing: Harnessing the power of artificial intelligence for scene image classification publication-title: AIMS Math. doi: 10.3934/math.2024500 – ident: ref_9 doi: 10.3389/fendo.2023.1238251 – volume: 6 start-page: 193 year: 2024 ident: ref_28 article-title: Detection of tuberculosis using optimized deep learning approach with enhanced selective median (esmf) filter publication-title: Afr. J. Biol. Sci. – volume: 6 start-page: 200110 year: 2024 ident: ref_36 article-title: A hybrid machine learning model for classifying gene mutations in cancer using LSTM, BiLSTM, CNN, GRU, and GloVe publication-title: Syst. Soft Comput. doi: 10.1016/j.sasc.2024.200110 – ident: ref_14 doi: 10.4018/979-8-3693-2105-8.ch015 – volume: 18 start-page: 10 year: 2024 ident: ref_1 article-title: Live Birth after Cleavage-Stage versus Blastocyst-Stage Embryo Transfer in Assisted Reproductive Technology: A Randomised Controlled Study publication-title: Int. J. Fertil. Steril. – volume: 5 start-page: 100312 year: 2024 ident: ref_37 article-title: DeepFace: Deep learning-based framework to contextualize orofacial cleft-related variants during human embryonic craniofacial development publication-title: Hum. Genet. Genom. Adv. doi: 10.1016/j.xhgg.2024.100312 – volume: 110 start-page: 1115 year: 2024 ident: ref_13 article-title: Machine learning in time-lapse imaging to differentiate embryos from young vs old mice publication-title: Biol. Reprod. doi: 10.1093/biolre/ioae056 – ident: ref_12 doi: 10.1109/ICAPAI61893.2024.10541175 – volume: 35 start-page: 770 year: 2020 ident: ref_4 article-title: Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF publication-title: Hum. Reprod. doi: 10.1093/humrep/deaa013 – ident: ref_24 doi: 10.3390/ijerph20032377 – ident: ref_6 doi: 10.1371/journal.pone.0262661 – ident: ref_16 doi: 10.1101/2024.03.04.583269 – volume: 44 start-page: 435 year: 2022 ident: ref_3 article-title: Artificial intelligence in the embryology laboratory: A review publication-title: Reprod. Biomed. Online doi: 10.1016/j.rbmo.2021.11.003 – volume: 7 start-page: 122153 year: 2019 ident: ref_35 article-title: Multi-task deep learning with dynamic programming for embryo early development stage classification from time-lapse videos publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2937765 – volume: 10 start-page: e26415 year: 2024 ident: ref_31 article-title: Boosted dipper throated optimization algorithm-based Xception neural network for skin cancer diagnosis: An optimal approach publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e26415 – volume: 26 start-page: 278 year: 2024 ident: ref_18 article-title: Low-input lipidomics reveals lipid metabolism remodelling during early mammalian embryo development publication-title: Nat. Cell Biol. doi: 10.1038/s41556-023-01341-3 – ident: ref_33 doi: 10.1016/j.bspc.2021.102943 – volume: 70 start-page: 1417 year: 2023 ident: ref_20 article-title: COMFormer: Classification of maternal-fetal and brain anatomy using a residual cross-covariance attention guided transformer in ultrasound publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2023.3311879 – ident: ref_26 doi: 10.1007/978-981-99-8141-0_10 – volume: 7 start-page: e06298 year: 2021 ident: ref_34 article-title: Evaluation of deep convolutional neural networks in classifying human embryo images based on their morphological quality publication-title: Heliyon doi: 10.1016/j.heliyon.2021.e06298 – volume: Volume 1 start-page: 1 year: 2024 ident: ref_23 article-title: Enhanced Multi-Class Fetal Plane Detection with Limb Localization in Ultrasound Images publication-title: Proceedings of the 2024 IEEE International Conference on Contemporary Computing and Communications (InC4) |
| SSID | ssj0001325264 |
| Score | 2.276803 |
| Snippet | Infertility affects a significant number of humans. A supported reproduction technology was verified to ease infertility problems. In vitro fertilization (IVF)... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 1044 |
| SubjectTerms | Accuracy Algorithms Analysis Anomalies Art techniques Artificial intelligence boosted dipper-throated optimization Classification Computer vision Deep learning Developmental biology embryo development Embryonic development Embryos Fertility Health aspects Image filters image preprocessing In vitro fertilization Infertility Machine learning Mathematical optimization Methods Morphology Neural networks Observational learning Optimization Prevention Problem solving Reproductive technologies Risk factors swin transformer |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIAD70egICMhcYrWjr1JfEJb2ooDlEosVW-Rn91I3WTJpqD-Gv4qYyfZ3QjEhWMyzmPkb8Yz45kxQm_1VBEttIm9bRtzLaexhKmPHeGaK2WIDbvnZ5-yk5P8_Fyc9gG3dZ9WOejEoKhNrX2MfMJo0tVJkver77E_NcrvrvZHaNxEt3yXhCSk7p1uYywsmcKC3xUGM_DuJ6qs7bbPH8i5d0f4aE0Krfv_VNA7K9Q4e3JnOTq-_7-MPED3ekMUzzrkPEQ3bPUI3d1pT_gY_ZpV9VJeXuND24aMrQqXFT5aqua6xjvZRlhWBn-uYcZCjB6HNATcbwHh4dwIfBbK2ONZaazBX3_Cq-aD1QxUHxDGB3WoOcGH5Wplm3i-aGrpr7-AYlv2FaN4dnkB_LSL5RP07fho_uFj3B_oEGvwd9tYyoRPM0lU4rgm0rlUGaqSXArOmaFOu9xaR7XOhEyNyZjVzFrGDTGO2tyxp2ivqiv7HGFnslxlmSNUOS4Jlc4YmfiqWeMs1SxCk2FKi1XXt6MAf8eDoPg7CCJ04Gd-M9r33Q436uai6MW44IpJLqnOtQQ7UhJhrZxKkhKdWpEmNELvPG4Krx0AHFr2RQ7w077PVjHLwT4FsRDwuf3RSJBqPSYP6Cl6rbIuttCJ0JsN2T_pM-UqW18NYwTJRISedUDdsMQEB_uYAiUfQXjE85hSlYvQc9w7DqDuxYt__9dLdCcBq6_LdtxHe21zZV-h2_pHW66b10E6fwNyN0wR priority: 102 providerName: ProQuest |
| Title | Anomaly Detection in Embryo Development and Morphology Using Medical Computer Vision-Aided Swin Transformer with Boosted Dipper-Throated Optimization Algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39451419 https://www.proquest.com/docview/3120590110 https://www.proquest.com/docview/3120599079 https://pubmed.ncbi.nlm.nih.gov/PMC11504009 https://doaj.org/article/4b3a4a1c8ca441a09eea5a060c6e9621 |
| Volume | 11 |
| WOSCitedRecordID | wos001342817000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: M7P dateStart: 20140301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: M7S dateStart: 20140301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: BENPR dateStart: 20140301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: PIMPY dateStart: 20140301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LjtMw0IKFAxwQbwJLZSQkTlGd2Hn42LJdgcSWii2rcor8ZCNtkyrbBe2FX-FXGTtpSQQSFy6RkpkktmfGM2PPjBF6rRJJFFc6dLZtyJRIQgGkDy1hikmpifG752cfsvk8X634onfUl4sJa8sDtwM3ZpIKJiKVKwGaWxBujEgESYlKDU99CnlMMt5zpvzqCo0TUPVtSjAFv34sy9r8rvAHEu4cETbQRr5o_59Tc083DeMme4ro-D6611mQeNK2_AG6YaqH6G6vruAj9BOc-rW4uMZHZutDrSpcVni2ls11jXthQlhUGp_UMNR-cR37-AHc7d3g3YEP-Mznn4eTUhuNT7_Dp5Y7cxegbiUXT2ufLIKPys3GNOHyvKmFu_8IM9K6S_XEk4uvdQPY68fo8_Fs-fZd2J3EECpwVLehEDFLMkFkbJkiwtpU6kjGueCMUR1ZZXNjbKRUxkWqdUaNosZQpom2kcktfYIOqroyzxC2OstlllkSScsEiYTVWsQu3VVbEykaoPGOIsWmLbhRgKPiaFj8nYYBmjrC7bFdwWz_ANio6Nio-BcbBeiNI3vhxBpoq0SXnQCNdgWyikkOhiXwM4ffHQ4wQRzVELxjnKKbDi4LGsVtki8J0Ks92L3pQtwqU1_tcDjwcoCetny27xLlDAzbCCD5gAMHfR5CqvLcFwt3Fj_M0_z5_xilF-hODEZdG8x4iA62zZV5iW6rb9vyshmhm9kqH6Fb09l88WnkBXLkYmkX_nrqrj9mAF-8P1l8-QUrDkXV |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFB6VFAk4sC-BAoME4mRl7JnEngNCKWnVqEmIRKjakxnP0lhq7OCkVPk1_AN-I2-8JLFA3HrgaL_xNv7eNvMWhN7KdkQkl8qxtq3DpGg7An69YwiTLIoU0fnu-cnAH42C01M-3kG_qlwYG1ZZycRcUKtU2jXyFnW9Ik-SfJx_d2zXKLu7WrXQKGBxrFdX4LItPvR78H_fed7hweTTkVN2FXAkOF1LRwiPtX1BIs8wSYQxnUi5kRcIzhhVrpEm0Nq4UvpcdJTyqZZUa8oUUcbVgaFw3xtol1mwN9DuuD8cn21WdajXBhOjSEWmlJNWFKd6U1kQJIt1gFhNC-bNAv5UCVs6sR6vuaUAD-_9b1N3H90tTW3cLXjjAdrRyUN0Z6sA4yP0s5ukM3Gxwj29zGPSEhwn-GAWZasUb8VTYZEoPEwBk_kuBM4DLXC5yYWrzhj4JE_Ud7qx0gp_uYJbTSq_AKh2yRvvp3lWDe7F87nOnMk0S4U9_gyie1bmxOLuxTnM33I6e4y-XssMPUGNJE30M4SN8oPI9w1xI8MEcYVRSng2L1gZ7UraRK0KQuG8qEwSgkdnQRf-HXRNtG-Rth5tK4vnJ9LsPCwFVcgiKphwZSAFWMqCcK1FW5AOkR3NO57bRO8tTkMr_wCMUpRpHPDStpJY2A3AAgfG5_C4vdpIkFuyTq7QGpZycxFuoNpEb9Zke6WNBUx0elmN4cTnTfS0YIz1J1HOwANwgRLUWKb2zXVKEk_zqurWNQKFxp__-71eo1tHk-EgHPRHxy_QbQ9s3CK2cw81ltmlfoluyh_LeJG9KmUDRt-um6d-A92Or6s |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhxA8cL8UBhgJxFNUJ3aT-AGhjq6i2lYqUabxFBxf1khrUtKOqb-G_8Gv4ziXthGItz3w2NpNE-c73znHPheEXstuTCSXyrG2rcOk6DoCXr1jCJMsjhXRxen5yVEwGoWnp3y8g37VuTA2rLLmxIKoVSbtHnmHul6ZJ0k6pgqLGPcH7-ffHdtByp601u00Sogc6tUluG-Ld8M-vOs3njc4mHz46FQdBhwJDtjSEcJj3UCQ2DNMEmGMHys39kLBGaPKNdKEWhtXyoALX6mAakm1pkwRZVwdGgrXvYZ2wSRnXgvtjofH46-bHR7qdcHcKNOSKeWkEyeZ3lQZBJaxzhBraMSiccCf6mFLPzZjN7eU4eDO_7yMd9HtygTHvVJm7qEdnd5Ht7YKMz5AP3tpNhPnK9zXyyJWLcVJig9mcb7K8FacFRapwscZYLU4ncBFAAauDr9w3TEDnxQJ_E4vUVrhz5dwqUntL8Co3QrH-1mRbYP7yXyuc2cyzTNhP38CSp9VubK4d34G67eczh6iL1eyQo9QK81S_QRho4IwDgJD3NgwQVxhlBKezRdWRruStlGnhlM0LyuWRODpWQBGfwdgG-1b1K1n24rjxRdZfhZVBBaxmAomXBlKARa0IFxr0RXEJ9LX3PfcNnprMRtZXgRgSlGld8BN2wpjUS8EyxwIgcPf7TVmAp_J5nCN3Kji00W0gW0bvVoP21_aGMFUZxf1HE4C3kaPSyFZPxLlDDwDF0bChvg0nrk5kibTotq6dZlA0fGn_76vl-gGCFJ0NBwdPkM3PTB9y5DPPdRa5hf6OboufyyTRf6iogmMvl21SP0GCDO4aw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+Detection+in+Embryo+Development+and+Morphology+Using+Medical+Computer+Vision-Aided+Swin+Transformer+with+Boosted+Dipper-Throated+Optimization+Algorithm&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Mazroa%2C+Alanoud+Al&rft.au=Maashi%2C+Mashael&rft.au=Said%2C+Yahia&rft.au=Maray%2C+Mohammed&rft.date=2024-10-01&rft.issn=2306-5354&rft.eissn=2306-5354&rft.volume=11&rft.issue=10&rft.spage=1044&rft_id=info:doi/10.3390%2Fbioengineering11101044&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_bioengineering11101044 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon |