The now and future of ChatGPT and GPT in psychiatry
ChatGPT has sparked extensive discussions within the healthcare community since its November 2022 release. However, potential applications in the field of psychiatry have received limited attention. Deep learning has proven beneficial to psychiatry, and GPT is a powerful deep learning‐based language...
Uložené v:
| Vydané v: | Psychiatry and Clinical Neurosciences Ročník 77; číslo 11; s. 592 - 596 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Australia
Wiley
01.11.2023
Wiley Subscription Services, Inc John Wiley & Sons Australia, Ltd |
| Predmet: | |
| ISSN: | 1323-1316, 1440-1819, 1440-1819 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | ChatGPT has sparked extensive discussions within the healthcare community since its November 2022 release. However, potential applications in the field of psychiatry have received limited attention. Deep learning has proven beneficial to psychiatry, and GPT is a powerful deep learning‐based language model with immense potential for this field. Despite the convenience of ChatGPT, this advanced chatbot currently has limited practical applications in psychiatry. It may be used to support psychiatrists in routine tasks such as completing medical records, facilitating communications between clinicians and with patients, polishing academic writings and presentations, and programming and performing analyses for research. The current training and application of ChatGPT require using appropriate prompts to maximize appropriate outputs and minimize deleterious inaccuracies and phantom errors. Moreover, future GPT advances that incorporate empathy, emotion recognition, personality assessment, and detection of mental health warning signs are essential for its effective integration into psychiatric care. In the near future, developing a fully‐automated psychotherapy system trained for expert communication (such as psychotherapy verbatim) is conceivable by building on foundational GPT technology. This dream system should integrate practical ‘real world’ inputs and friendly AI user and patient interfaces
via
clinically validated algorithms, voice comprehension/generation modules, and emotion discrimination algorithms based on facial expressions and physiological inputs from wearable devices. In addition to the technology challenges, we believe it is critical to establish generally accepted ethical standards for applying ChatGPT‐related tools in all mental healthcare environments, including telemedicine and academic/training settings. |
|---|---|
| AbstractList | ChatGPT has sparked extensive discussions within the healthcare community since its November 2022 release. However, potential applications in the field of psychiatry have received limited attention. Deep learning has proven beneficial to psychiatry, and GPT is a powerful deep learning‐based language model with immense potential for this field. Despite the convenience of ChatGPT, this advanced chatbot currently has limited practical applications in psychiatry. It may be used to support psychiatrists in routine tasks such as completing medical records, facilitating communications between clinicians and with patients, polishing academic writings and presentations, and programming and performing analyses for research. The current training and application of ChatGPT require using appropriate prompts to maximize appropriate outputs and minimize deleterious inaccuracies and phantom errors. Moreover, future GPT advances that incorporate empathy, emotion recognition, personality assessment, and detection of mental health warning signs are essential for its effective integration into psychiatric care. In the near future, developing a fully‐automated psychotherapy system trained for expert communication (such as psychotherapy verbatim) is conceivable by building on foundational GPT technology. This dream system should integrate practical ‘real world’ inputs and friendly AI user and patient interfaces via clinically validated algorithms, voice comprehension/generation modules, and emotion discrimination algorithms based on facial expressions and physiological inputs from wearable devices. In addition to the technology challenges, we believe it is critical to establish generally accepted ethical standards for applying ChatGPT‐related tools in all mental healthcare environments, including telemedicine and academic/training settings. ChatGPT has sparked extensive discussions within the healthcare community since its November 2022 release. However, potential applications in the field of psychiatry have received limited attention. Deep learning has proven beneficial to psychiatry, and GPT is a powerful deep learning-based language model with immense potential for this field. Despite the convenience of ChatGPT, this advanced chatbot currently has limited practical applications in psychiatry. It may be used to support psychiatrists in routine tasks such as completing medical records, facilitating communications between clinicians and with patients, polishing academic writings and presentations, and programming and performing analyses for research. The current training and application of ChatGPT require using appropriate prompts to maximize appropriate outputs and minimize deleterious inaccuracies and phantom errors. Moreover, future GPT advances that incorporate empathy, emotion recognition, personality assessment, and detection of mental health warning signs are essential for its effective integration into psychiatric care. In the near future, developing a fully-automated psychotherapy system trained for expert communication (such as psychotherapy verbatim) is conceivable by building on foundational GPT technology. This dream system should integrate practical 'real world' inputs and friendly AI user and patient interfaces via clinically validated algorithms, voice comprehension/generation modules, and emotion discrimination algorithms based on facial expressions and physiological inputs from wearable devices. In addition to the technology challenges, we believe it is critical to establish generally accepted ethical standards for applying ChatGPT-related tools in all mental healthcare environments, including telemedicine and academic/training settings.ChatGPT has sparked extensive discussions within the healthcare community since its November 2022 release. However, potential applications in the field of psychiatry have received limited attention. Deep learning has proven beneficial to psychiatry, and GPT is a powerful deep learning-based language model with immense potential for this field. Despite the convenience of ChatGPT, this advanced chatbot currently has limited practical applications in psychiatry. It may be used to support psychiatrists in routine tasks such as completing medical records, facilitating communications between clinicians and with patients, polishing academic writings and presentations, and programming and performing analyses for research. The current training and application of ChatGPT require using appropriate prompts to maximize appropriate outputs and minimize deleterious inaccuracies and phantom errors. Moreover, future GPT advances that incorporate empathy, emotion recognition, personality assessment, and detection of mental health warning signs are essential for its effective integration into psychiatric care. In the near future, developing a fully-automated psychotherapy system trained for expert communication (such as psychotherapy verbatim) is conceivable by building on foundational GPT technology. This dream system should integrate practical 'real world' inputs and friendly AI user and patient interfaces via clinically validated algorithms, voice comprehension/generation modules, and emotion discrimination algorithms based on facial expressions and physiological inputs from wearable devices. In addition to the technology challenges, we believe it is critical to establish generally accepted ethical standards for applying ChatGPT-related tools in all mental healthcare environments, including telemedicine and academic/training settings. ChatGPT has sparked extensive discussions within the healthcare community since its November 2022 release. However, potential applications in the field of psychiatry have received limited attention. Deep learning has proven beneficial to psychiatry, and GPT is a powerful deep learning‐based language model with immense potential for this field. Despite the convenience of ChatGPT, this advanced chatbot currently has limited practical applications in psychiatry. It may be used to support psychiatrists in routine tasks such as completing medical records, facilitating communications between clinicians and with patients, polishing academic writings and presentations, and programming and performing analyses for research. The current training and application of ChatGPT require using appropriate prompts to maximize appropriate outputs and minimize deleterious inaccuracies and phantom errors. Moreover, future GPT advances that incorporate empathy, emotion recognition, personality assessment, and detection of mental health warning signs are essential for its effective integration into psychiatric care. In the near future, developing a fully‐automated psychotherapy system trained for expert communication (such as psychotherapy verbatim) is conceivable by building on foundational GPT technology. This dream system should integrate practical ‘real world’ inputs and friendly AI user and patient interfaces via clinically validated algorithms, voice comprehension/generation modules, and emotion discrimination algorithms based on facial expressions and physiological inputs from wearable devices. In addition to the technology challenges, we believe it is critical to establish generally accepted ethical standards for applying ChatGPT‐related tools in all mental healthcare environments, including telemedicine and academic/training settings. |
| Author | Chung‐Wen Chang Hao‐Wei Wang Chih‐Sung Liang Szu‐Wei Cheng Jane Pei‐Chen Chang John S. Kuo Wan‐Jung Chang Taishiro Kishimoto Kuan‐Pin Su |
| AuthorAffiliation | 9 Neuroscience and Brain Disease Center China Medical University Taichung Taiwan 7 Department of Psychiatry Beitou Branch, Tri‐Service General Hospital, National Defense Medical Center Taipei Taiwan 8 Hills Joint Research Laboratory for Future Preventive Medicine and Wellness Keio University School of Medicine Tokyo Japan 5 Internet of Things Laboratory (IOT Lab) Medical and Intelligent Technology Research Center (MIT Center), Southern Taiwan University of Science and Technology Tainan Taiwan 1 College of Medicine China Medical University Taichung Taiwan 4 Department of Electronic Engineering Southern Taiwan University of Science and Technology Tainan Taiwan 11 An‐Nan Hospital, China Medical University Tainan Taiwan 2 Mind‐Body Interface Laboratory (MBI‐Lab) and Department of Psychiatry China Medical University Hospital Taichung Taiwan 6 Department of Family Studies and Child Development Shih Chien University Taipei Taiwan 3 Department of Information Management Chia‐Nan University of Pharmacy & |
| AuthorAffiliation_xml | – name: 6 Department of Family Studies and Child Development Shih Chien University Taipei Taiwan – name: 4 Department of Electronic Engineering Southern Taiwan University of Science and Technology Tainan Taiwan – name: 9 Neuroscience and Brain Disease Center China Medical University Taichung Taiwan – name: 5 Internet of Things Laboratory (IOT Lab) Medical and Intelligent Technology Research Center (MIT Center), Southern Taiwan University of Science and Technology Tainan Taiwan – name: 8 Hills Joint Research Laboratory for Future Preventive Medicine and Wellness Keio University School of Medicine Tokyo Japan – name: 11 An‐Nan Hospital, China Medical University Tainan Taiwan – name: 10 Graduate Institute of Biomedical Sciences China Medical University Taichung Taiwan – name: 7 Department of Psychiatry Beitou Branch, Tri‐Service General Hospital, National Defense Medical Center Taipei Taiwan – name: 3 Department of Information Management Chia‐Nan University of Pharmacy & Science Tainan Taiwan – name: 1 College of Medicine China Medical University Taichung Taiwan – name: 2 Mind‐Body Interface Laboratory (MBI‐Lab) and Department of Psychiatry China Medical University Hospital Taichung Taiwan |
| Author_xml | – sequence: 1 givenname: Szu‐Wei orcidid: 0000-0002-4460-5517 surname: Cheng fullname: Cheng, Szu‐Wei organization: College of Medicine China Medical University Taichung Taiwan, Mind‐Body Interface Laboratory (MBI‐Lab) and Department of Psychiatry China Medical University Hospital Taichung Taiwan – sequence: 2 givenname: Chung‐Wen surname: Chang fullname: Chang, Chung‐Wen organization: Department of Information Management Chia‐Nan University of Pharmacy & Science Tainan Taiwan – sequence: 3 givenname: Wan‐Jung orcidid: 0000-0002-7478-7315 surname: Chang fullname: Chang, Wan‐Jung organization: Department of Electronic Engineering Southern Taiwan University of Science and Technology Tainan Taiwan, Internet of Things Laboratory (IOT Lab) Medical and Intelligent Technology Research Center (MIT Center), Southern Taiwan University of Science and Technology Tainan Taiwan – sequence: 4 givenname: Hao‐Wei surname: Wang fullname: Wang, Hao‐Wei organization: Department of Family Studies and Child Development Shih Chien University Taipei Taiwan – sequence: 5 givenname: Chih‐Sung orcidid: 0000-0003-1138-5586 surname: Liang fullname: Liang, Chih‐Sung organization: Department of Psychiatry Beitou Branch, Tri‐Service General Hospital, National Defense Medical Center Taipei Taiwan – sequence: 6 givenname: Taishiro orcidid: 0000-0003-0557-8648 surname: Kishimoto fullname: Kishimoto, Taishiro organization: Hills Joint Research Laboratory for Future Preventive Medicine and Wellness Keio University School of Medicine Tokyo Japan – sequence: 7 givenname: Jane Pei‐Chen orcidid: 0000-0001-5582-0928 surname: Chang fullname: Chang, Jane Pei‐Chen organization: College of Medicine China Medical University Taichung Taiwan, Mind‐Body Interface Laboratory (MBI‐Lab) and Department of Psychiatry China Medical University Hospital Taichung Taiwan – sequence: 8 givenname: John S. orcidid: 0000-0001-6809-4806 surname: Kuo fullname: Kuo, John S. organization: Neuroscience and Brain Disease Center China Medical University Taichung Taiwan, Graduate Institute of Biomedical Sciences China Medical University Taichung Taiwan – sequence: 9 givenname: Kuan‐Pin orcidid: 0000-0002-4501-2502 surname: Su fullname: Su, Kuan‐Pin organization: College of Medicine China Medical University Taichung Taiwan, Mind‐Body Interface Laboratory (MBI‐Lab) and Department of Psychiatry China Medical University Hospital Taichung Taiwan, Neuroscience and Brain Disease Center China Medical University Taichung Taiwan, An‐Nan Hospital, China Medical University Tainan Taiwan |
| BackLink | https://cir.nii.ac.jp/crid/1870302167801769984$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/37612880$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkU1PxCAQhonRuK568A-YJnrQQ5UpLaUnYza6mpho4t4JpeBiurBCq9l_L_uhUSMHhsAzw8z7DtG2dVYhdAT4AuK6nEt7AaRgbAvtQZ7jFBhU2_FMMpICATpAwxBeMcaEUNhFA1JSyBjDe4hMpiqx7iMRtkl03_VeJU4no6noxk-T1e0yGpvMw0JOjej84gDtaNEGdbiJ--j59mYyuksfHsf3o-uHVBYZ6VKBK8ZqXau6qEXDFBU61xo3olZ5pnQjNZBc5xQqRXDGqKY1xaIsCZFNo8g-ulpXnff1TDVS2c6Lls-9mQm_4E4Y_vvFmil_ce8ccFVkVVHFCmebCt699Sp0fGaCVG0rrHJ94PHPKESBoYzoyR_01fXexukixfKCUJbRSB3_bOm7ly85I3C-BqR3IXilvxHAfGkVj1bxlVWRvfzDStOJzrjlNKb9N-N0nWGNifByB1biKB7QksUxaFWxnHwCpcafaA |
| CitedBy_id | crossref_primary_10_5817_CP2024_1_6 crossref_primary_10_1016_j_pec_2025_108663 crossref_primary_10_1177_09760016241259851 crossref_primary_10_3390_bioengineering11040342 crossref_primary_10_1016_j_ajp_2024_104168 crossref_primary_10_1016_j_copsyc_2024_101872 crossref_primary_10_1016_j_evopsy_2024_09_003 crossref_primary_10_1016_j_ejon_2025_102930 crossref_primary_10_1177_09593543251319738 crossref_primary_10_1109_ACCESS_2024_3386362 crossref_primary_10_3389_frai_2024_1407905 crossref_primary_10_1007_s12195_024_00820_3 crossref_primary_10_1093_schbul_sbae105 crossref_primary_10_1108_OIR_06_2024_0407 crossref_primary_10_1016_j_ijnss_2025_04_010 crossref_primary_10_1177_03400352251342331 crossref_primary_10_3389_fpubh_2024_1399702 crossref_primary_10_1177_10398562251344470 crossref_primary_10_3389_feduc_2025_1594572 crossref_primary_10_1007_s44230_025_00099_1 crossref_primary_10_1007_s40596_024_02036_z crossref_primary_10_1016_j_ajp_2025_104605 crossref_primary_10_1016_j_compbiomed_2025_110789 crossref_primary_10_3390_healthcare12222305 crossref_primary_10_3390_info15120768 crossref_primary_10_1002_pcn5_70159 crossref_primary_10_1016_j_etdah_2025_100170 crossref_primary_10_1590_0102_311xen028824 crossref_primary_10_3389_fdgth_2025_1543543 crossref_primary_10_1111_pcn_13595 crossref_primary_10_1016_j_ajp_2025_104596 crossref_primary_10_1186_s12912_024_02655_9 crossref_primary_10_1007_s10389_024_02373_1 crossref_primary_10_2196_56569 crossref_primary_10_2196_63494 crossref_primary_10_1007_s41347_025_00544_9 crossref_primary_10_1016_j_ijmedinf_2025_105906 crossref_primary_10_2196_73337 crossref_primary_10_7717_peerj_cs_2954 crossref_primary_10_7759_cureus_46548 crossref_primary_10_7759_cureus_67347 crossref_primary_10_2196_69910 crossref_primary_10_3389_fpsyg_2024_1533053 crossref_primary_10_1057_s41599_025_04604_6 crossref_primary_10_1186_s40359_025_03071_7 crossref_primary_10_3389_fpsyt_2024_1422807 crossref_primary_10_31363_2313_7053_2025_3_1087 crossref_primary_10_3923_ijp_2025_155_163 crossref_primary_10_1017_SJP_2024_32 crossref_primary_10_1038_s41598_024_54242_2 crossref_primary_10_1080_09540261_2024_2405174 crossref_primary_10_1111_pcn_13781 crossref_primary_10_1371_journal_pone_0306639 crossref_primary_10_2196_59225 crossref_primary_10_1002_hsr2_1912 crossref_primary_10_1007_s10639_024_12677_0 crossref_primary_10_1080_09540261_2025_2559108 crossref_primary_10_21926_obm_neurobiol_2403241 crossref_primary_10_2196_58418 crossref_primary_10_2196_54617 crossref_primary_10_3390_children12030359 crossref_primary_10_2478_jdis_2024_0013 crossref_primary_10_1057_s41599_025_04725_y crossref_primary_10_1038_s41598_025_17242_4 crossref_primary_10_1177_00033197241238403 crossref_primary_10_2196_78410 crossref_primary_10_1177_10398562251346075 crossref_primary_10_1111_joes_12696 crossref_primary_10_1109_ACCESS_2025_3586502 crossref_primary_10_1186_s12909_025_07550_8 crossref_primary_10_1111_pcn_13816 crossref_primary_10_1093_iwc_iwae049 crossref_primary_10_1080_10447318_2023_2300015 crossref_primary_10_1145_3700142 crossref_primary_10_1177_00207640251358071 crossref_primary_10_3390_buildings14123712 crossref_primary_10_1007_s10639_025_13619_0 crossref_primary_10_1007_s11831_024_10115_5 crossref_primary_10_1016_j_conb_2024_102881 crossref_primary_10_1111_pcn_13656 crossref_primary_10_1007_s41809_024_00151_9 crossref_primary_10_3390_app15126417 crossref_primary_10_1016_j_ipm_2025_104152 crossref_primary_10_3390_healthcare12020125 crossref_primary_10_19090_pp_v18i3_2572 crossref_primary_10_1093_jamia_ocae035 crossref_primary_10_5498_wjp_v14_i3_334 crossref_primary_10_2196_81204 crossref_primary_10_1177_02601060241281906 crossref_primary_10_3389_fmed_2024_1512824 crossref_primary_10_1080_15309576_2024_2447352 crossref_primary_10_4103_indianjpsychiatry_indianjpsychiatry_919_23 |
| Cites_doi | 10.1016/j.jad.2022.04.005 10.1038/s41746-022-00589-7 10.1016/j.nicl.2021.102584 10.1016/j.biopsycho.2021.108117 10.3389/fdgth.2021.689736 10.1016/j.fmre.2021.11.011 10.1038/s41746-021-00464-x 10.1162/153244303322533223 10.3390/ijerph20021514 10.1016/S2589-7500(23)00019-5 10.1016/j.eij.2021.05.004 10.3389/fpsyt.2022.1025517 10.2196/17204 10.1037/0022-3514.56.3.339 10.1016/S2589-7500(23)00023-7 10.1145/365153.365168 10.1016/0004-3702(71)90002-6 10.31219/osf.io/m6gcn 10.1111/j.1467-6494.2008.00534.x 10.1007/s11023-020-09548-1 10.1126/science.adh2586 10.1001/jamapsychiatry.2022.4076 10.1016/S2589-7500(23)00048-1 10.1016/S2589-7500(23)00021-3 10.1037/pst0000175 10.1176/appi.ps.202100692 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology. |
| Copyright_xml | – notice: 2023 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology. |
| DBID | RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 5PM |
| DOI | 10.1111/pcn.13588 |
| DatabaseName | CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| DocumentTitleAlternate | ChatGPT and GPT in Psychiatry |
| EISSN | 1440-1819 |
| EndPage | 596 |
| ExternalDocumentID | PMC10952959 37612880 10_1111_pcn_13588 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: National Science and Technology Council grantid: 110-2314-B-039-029-MY3 – fundername: Tainan Municipal An-Nan Hospital grantid: 111-47 – fundername: National Science and Technology Council grantid: NSTC 111-2314-B-039-041-MY3 – fundername: China Medical University Hospital grantid: 106-227 – fundername: National Science and Technology Council grantid: 110-2321-B-006-004 – fundername: National Science and Technology Council grantid: 110-2811-B-039-507 – fundername: Tainan Municipal An-Nan Hospital grantid: 111-48 – fundername: Tainan Municipal An-Nan Hospital grantid: 109-40 – fundername: Tainan Municipal An-Nan Hospital grantid: 111-28 – fundername: China Medical University Hospital grantid: 110-124 – fundername: Ministry of Education (MOE), Taiwan grantid: CMRC‐CMA‐2 – fundername: Tainan Municipal An‐Nan Hospital grantid: 109‐40; 110‐13; 110‐26; 110‐44; 110‐45; 111‐27; 111‐28; 111‐47; 111‐48; 111‐52; ANHRF 109‐31 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1OB 1OC 29P 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 7.U 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACUHS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AHMBA AIACR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EBC EBD EBS EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FUBAC G-S G.N GODZA H.X HGLYW HZI HZ~ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 RYH SUPJJ SV3 TEORI TR2 TUS UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WVDHM WXI WXSBR XG1 YFH ZZTAW ~02 ~IA ~WT .55 .Y3 31~ 3O- AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADNMO AGQPQ AHEFC AZFZN CAG CITATION COF DUUFO EJD FEDTE HF~ HVGLF IHE LW6 O8X PALCI RIWAO RJQFR SAMSI TKC X7M ZXP CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 5PM |
| ID | FETCH-LOGICAL-c523t-a0988bfbeb5bad8e6af4ff0dabe42efdcf134f4619e30286f6b60a7733cdde3 |
| ISICitedReferencesCount | 120 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001066394000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1323-1316 1440-1819 |
| IngestDate | Tue Sep 30 17:09:44 EDT 2025 Fri Sep 05 08:31:51 EDT 2025 Sat Nov 29 14:52:28 EST 2025 Mon Jul 21 05:57:09 EDT 2025 Tue Nov 18 22:19:00 EST 2025 Sat Nov 29 06:00:02 EST 2025 Mon Nov 10 09:09:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | deep learning GPT ChatGPT artificial intelligence informatics and telecommunications in psychiatry |
| Language | English |
| License | 2023 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c523t-a0988bfbeb5bad8e6af4ff0dabe42efdcf134f4619e30286f6b60a7733cdde3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-6809-4806 0000-0002-4501-2502 0000-0003-0557-8648 0000-0002-7478-7315 0000-0002-4460-5517 0000-0003-1138-5586 0000-0001-5582-0928 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10952959 |
| PMID | 37612880 |
| PQID | 2884536826 |
| PQPubID | 1106347 |
| PageCount | 5 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10952959 proquest_miscellaneous_2863765017 proquest_journals_2884536826 pubmed_primary_37612880 crossref_primary_10_1111_pcn_13588 crossref_citationtrail_10_1111_pcn_13588 nii_cinii_1870302167801769984 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Australia |
| PublicationPlace_xml | – name: Australia – name: Tokyo – name: Melbourne |
| PublicationTitle | Psychiatry and Clinical Neurosciences |
| PublicationTitleAlternate | Psychiatry Clin Neurosci |
| PublicationYear | 2023 |
| Publisher | Wiley Wiley Subscription Services, Inc John Wiley & Sons Australia, Ltd |
| Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc – name: John Wiley & Sons Australia, Ltd |
| References | e_1_2_10_23_1 Aboraya A (e_1_2_10_35_1) 2006; 3 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_22_1 e_1_2_10_43_1 Radford A (e_1_2_10_16_1) 2019; 1 e_1_2_10_42_1 Ouyang L (e_1_2_10_19_1) 2022; 35 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_40_1 (e_1_2_10_6_1) 1949 Amin MM (e_1_2_10_38_1) 2023; 38 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 Brown T (e_1_2_10_17_1) 2020; 33 e_1_2_10_36_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 Kosinski M (e_1_2_10_37_1) 2023 Kumar S (e_1_2_10_28_1) 2007; 6 Sutskever I (e_1_2_10_10_1) 2014; 27 Vaswani A (e_1_2_10_12_1) 2017; 30 e_1_2_10_29_1 Chintagunta B (e_1_2_10_30_1) 2021; 2021 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_26_1 |
| References_xml | – ident: e_1_2_10_27_1 doi: 10.1016/j.jad.2022.04.005 – ident: e_1_2_10_33_1 – ident: e_1_2_10_34_1 doi: 10.1038/s41746-022-00589-7 – ident: e_1_2_10_13_1 – ident: e_1_2_10_21_1 doi: 10.1016/j.nicl.2021.102584 – volume: 2021 start-page: 66 year: 2021 ident: e_1_2_10_30_1 article-title: Medically aware GPT‐3 as a data generator for medical dialogue summarization publication-title: NLPMC – ident: e_1_2_10_22_1 doi: 10.1016/j.biopsycho.2021.108117 – ident: e_1_2_10_31_1 doi: 10.3389/fdgth.2021.689736 – ident: e_1_2_10_24_1 doi: 10.1016/j.fmre.2021.11.011 – ident: e_1_2_10_32_1 doi: 10.1038/s41746-021-00464-x – volume: 35 start-page: 27730 year: 2022 ident: e_1_2_10_19_1 article-title: Training language models to follow instructions with human feedback publication-title: Adv. Neural Inf. Process. Syst – ident: e_1_2_10_9_1 doi: 10.1162/153244303322533223 – ident: e_1_2_10_42_1 doi: 10.3390/ijerph20021514 – ident: e_1_2_10_2_1 doi: 10.1016/S2589-7500(23)00019-5 – ident: e_1_2_10_40_1 doi: 10.1016/j.eij.2021.05.004 – volume: 38 start-page: 23 year: 2023 ident: e_1_2_10_38_1 article-title: Will affective computing emerge from foundation models and general AI? A first evaluation on ChatGPT publication-title: ArXiv – ident: e_1_2_10_44_1 doi: 10.3389/fpsyt.2022.1025517 – start-page: 15 volume-title: Machine Translation of Languages year: 1949 ident: e_1_2_10_6_1 – ident: e_1_2_10_45_1 doi: 10.2196/17204 – volume: 33 start-page: 1877 year: 2020 ident: e_1_2_10_17_1 article-title: Language models are few‐shot learners publication-title: Adv. Neural Inf. Process. Syst – ident: e_1_2_10_43_1 doi: 10.1037/0022-3514.56.3.339 – ident: e_1_2_10_5_1 doi: 10.1016/S2589-7500(23)00023-7 – ident: e_1_2_10_7_1 doi: 10.1145/365153.365168 – ident: e_1_2_10_8_1 doi: 10.1016/0004-3702(71)90002-6 – ident: e_1_2_10_25_1 doi: 10.31219/osf.io/m6gcn – ident: e_1_2_10_26_1 – ident: e_1_2_10_20_1 – ident: e_1_2_10_39_1 doi: 10.1111/j.1467-6494.2008.00534.x – ident: e_1_2_10_18_1 doi: 10.1007/s11023-020-09548-1 – year: 2023 ident: e_1_2_10_37_1 article-title: Theory of mind may have spontaneously emerged in large language models publication-title: ArXiv – ident: e_1_2_10_29_1 doi: 10.1126/science.adh2586 – ident: e_1_2_10_23_1 doi: 10.1001/jamapsychiatry.2022.4076 – volume: 6 start-page: 186 year: 2007 ident: e_1_2_10_28_1 article-title: Burnout in psychiatrists publication-title: World Psychiatry – ident: e_1_2_10_3_1 doi: 10.1016/S2589-7500(23)00048-1 – ident: e_1_2_10_15_1 – volume: 1 start-page: 9 year: 2019 ident: e_1_2_10_16_1 article-title: Language models are unsupervised multitask learners publication-title: OpenAI Blog – volume: 30 start-page: 6000 year: 2017 ident: e_1_2_10_12_1 article-title: Attention is all you need publication-title: Adv. Neural. Inf. Process Sys – ident: e_1_2_10_14_1 – ident: e_1_2_10_4_1 doi: 10.1016/S2589-7500(23)00021-3 – volume: 27 start-page: 3104 year: 2014 ident: e_1_2_10_10_1 article-title: Sequence to sequence learning with neural networks publication-title: Adv. Neural. Inf. Process Sys – volume: 3 start-page: 41 year: 2006 ident: e_1_2_10_35_1 article-title: The reliability of psychiatric diagnosis revisited: The Clinician's guide to improve the reliability of psychiatric diagnosis publication-title: Psychiatry (Edgmont) – ident: e_1_2_10_36_1 doi: 10.1037/pst0000175 – ident: e_1_2_10_41_1 doi: 10.1176/appi.ps.202100692 – ident: e_1_2_10_11_1 |
| SSID | ssj0003361 ssib053845405 ssib006547352 ssib020716636 ssib058494145 |
| Score | 2.6583662 |
| SecondaryResourceType | review_article |
| Snippet | ChatGPT has sparked extensive discussions within the healthcare community since its November 2022 release. However, potential applications in the field of... |
| SourceID | pubmedcentral proquest pubmed crossref nii |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 592 |
| SubjectTerms | Algorithms Chatbots Deep learning Emotions Empathy Health care Humans Language Medical records Patients Psychiatry Psychotherapy Timely Review |
| Title | The now and future of ChatGPT and GPT in psychiatry |
| URI | https://cir.nii.ac.jp/crid/1870302167801769984 https://www.ncbi.nlm.nih.gov/pubmed/37612880 https://www.proquest.com/docview/2884536826 https://www.proquest.com/docview/2863765017 https://pubmed.ncbi.nlm.nih.gov/PMC10952959 |
| Volume | 77 |
| WOSCitedRecordID | wos001066394000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1440-1819 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003361 issn: 1323-1316 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1440-1819 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003361 issn: 1323-1316 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0Go3hHhBfJOxTQHxwEukJnYc5xEVxoTGVEFhfYscx1YjTW61tdPEX9mf5Rw7TrMOaTzw4lR3Z6fxXe58zvkOofdgkiqSCRYJTnFEsKIRw4JEtKwwJZxL3uTp_nWSnZ6y2SyfDAY37VmYq_NMa3Z9nS__K6sBBsw2R2f_gd1-UADAb2A6tMB2aO_NeHPAzeyI24whNuSCr75Mpg3UXE3weC_QuV2hTjzUHnlrT05uJL7swg7Hc-m2m3-vfdjEmaw3ggYsfjw3SqWj0FsUZ1x7_Ne1s6fNTr_FH_PF1h3cbkWC3bG9TsFiA8OxS39tYfb7slOdTiu74i5O-uINHZva4nnOXKe2IO5fLMFSaFPZw1YO7GfbvmUFfWxi6xVB16LpOkS7SZbmoDJ3P30_-nniDT3G1Pnz9pFc4ioTKObv21vuDHVd3-XJ3A7I3VjhTJ-gx841CT9akXqKBlI_Qw-_ueCL5wiDZIUgWSHIRWglK1yo0ElWAzXXWoedZL1AP44-T8fHkau5EYk0wauIj3LGSlXKMi15xSTliig1qngpSSJVJVSMiSLgdksMS1OqaElHPMswFmAo8Uu0oxdavkZhXFUjlZS0FLHpyVmGY6JopUiWs1zwAH1oJ6YQLh29qYpyXmwxIEDvPOnS5mC5i-gAZheGMm3MjCFLYliJgcWhec5IgPbbeS_c23pZJIyRFFNwsQP01qNBwZqvZlzLxdrQUDDCKYwToFeWTf5fAALWd2wUINZjoCcwydv7GF3PmyTuMfg2SZ7me_d5uDfoUfcy7aOd1cVaHqAH4mpVX14comE2Y4dOOv8A4zSyiw |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+now+and+future+of+ChatGPT+and+GPT+in+psychiatry&rft.jtitle=Psychiatry+and+clinical+neurosciences&rft.au=Cheng%2C+Szu%E2%80%90Wei&rft.au=Chang%2C+Chung%E2%80%90Wen&rft.au=Chang%2C+Wan%E2%80%90Jung&rft.au=Wang%2C+Hao%E2%80%90Wei&rft.date=2023-11-01&rft.issn=1323-1316&rft.eissn=1440-1819&rft.volume=77&rft.issue=11&rft.spage=592&rft.epage=596&rft_id=info:doi/10.1111%2Fpcn.13588&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_pcn_13588 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1323-1316&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1323-1316&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1323-1316&client=summon |