The now and future of ChatGPT and GPT in psychiatry

ChatGPT has sparked extensive discussions within the healthcare community since its November 2022 release. However, potential applications in the field of psychiatry have received limited attention. Deep learning has proven beneficial to psychiatry, and GPT is a powerful deep learning‐based language...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Psychiatry and Clinical Neurosciences Ročník 77; číslo 11; s. 592 - 596
Hlavní autori: Cheng, Szu‐Wei, Chang, Chung‐Wen, Chang, Wan‐Jung, Wang, Hao‐Wei, Liang, Chih‐Sung, Kishimoto, Taishiro, Chang, Jane Pei‐Chen, Kuo, John S., Su, Kuan‐Pin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Australia Wiley 01.11.2023
Wiley Subscription Services, Inc
John Wiley & Sons Australia, Ltd
Predmet:
ISSN:1323-1316, 1440-1819, 1440-1819
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract ChatGPT has sparked extensive discussions within the healthcare community since its November 2022 release. However, potential applications in the field of psychiatry have received limited attention. Deep learning has proven beneficial to psychiatry, and GPT is a powerful deep learning‐based language model with immense potential for this field. Despite the convenience of ChatGPT, this advanced chatbot currently has limited practical applications in psychiatry. It may be used to support psychiatrists in routine tasks such as completing medical records, facilitating communications between clinicians and with patients, polishing academic writings and presentations, and programming and performing analyses for research. The current training and application of ChatGPT require using appropriate prompts to maximize appropriate outputs and minimize deleterious inaccuracies and phantom errors. Moreover, future GPT advances that incorporate empathy, emotion recognition, personality assessment, and detection of mental health warning signs are essential for its effective integration into psychiatric care. In the near future, developing a fully‐automated psychotherapy system trained for expert communication (such as psychotherapy verbatim) is conceivable by building on foundational GPT technology. This dream system should integrate practical ‘real world’ inputs and friendly AI user and patient interfaces via clinically validated algorithms, voice comprehension/generation modules, and emotion discrimination algorithms based on facial expressions and physiological inputs from wearable devices. In addition to the technology challenges, we believe it is critical to establish generally accepted ethical standards for applying ChatGPT‐related tools in all mental healthcare environments, including telemedicine and academic/training settings.
AbstractList ChatGPT has sparked extensive discussions within the healthcare community since its November 2022 release. However, potential applications in the field of psychiatry have received limited attention. Deep learning has proven beneficial to psychiatry, and GPT is a powerful deep learning‐based language model with immense potential for this field. Despite the convenience of ChatGPT, this advanced chatbot currently has limited practical applications in psychiatry. It may be used to support psychiatrists in routine tasks such as completing medical records, facilitating communications between clinicians and with patients, polishing academic writings and presentations, and programming and performing analyses for research. The current training and application of ChatGPT require using appropriate prompts to maximize appropriate outputs and minimize deleterious inaccuracies and phantom errors. Moreover, future GPT advances that incorporate empathy, emotion recognition, personality assessment, and detection of mental health warning signs are essential for its effective integration into psychiatric care. In the near future, developing a fully‐automated psychotherapy system trained for expert communication (such as psychotherapy verbatim) is conceivable by building on foundational GPT technology. This dream system should integrate practical ‘real world’ inputs and friendly AI user and patient interfaces via clinically validated algorithms, voice comprehension/generation modules, and emotion discrimination algorithms based on facial expressions and physiological inputs from wearable devices. In addition to the technology challenges, we believe it is critical to establish generally accepted ethical standards for applying ChatGPT‐related tools in all mental healthcare environments, including telemedicine and academic/training settings.
ChatGPT has sparked extensive discussions within the healthcare community since its November 2022 release. However, potential applications in the field of psychiatry have received limited attention. Deep learning has proven beneficial to psychiatry, and GPT is a powerful deep learning-based language model with immense potential for this field. Despite the convenience of ChatGPT, this advanced chatbot currently has limited practical applications in psychiatry. It may be used to support psychiatrists in routine tasks such as completing medical records, facilitating communications between clinicians and with patients, polishing academic writings and presentations, and programming and performing analyses for research. The current training and application of ChatGPT require using appropriate prompts to maximize appropriate outputs and minimize deleterious inaccuracies and phantom errors. Moreover, future GPT advances that incorporate empathy, emotion recognition, personality assessment, and detection of mental health warning signs are essential for its effective integration into psychiatric care. In the near future, developing a fully-automated psychotherapy system trained for expert communication (such as psychotherapy verbatim) is conceivable by building on foundational GPT technology. This dream system should integrate practical 'real world' inputs and friendly AI user and patient interfaces via clinically validated algorithms, voice comprehension/generation modules, and emotion discrimination algorithms based on facial expressions and physiological inputs from wearable devices. In addition to the technology challenges, we believe it is critical to establish generally accepted ethical standards for applying ChatGPT-related tools in all mental healthcare environments, including telemedicine and academic/training settings.ChatGPT has sparked extensive discussions within the healthcare community since its November 2022 release. However, potential applications in the field of psychiatry have received limited attention. Deep learning has proven beneficial to psychiatry, and GPT is a powerful deep learning-based language model with immense potential for this field. Despite the convenience of ChatGPT, this advanced chatbot currently has limited practical applications in psychiatry. It may be used to support psychiatrists in routine tasks such as completing medical records, facilitating communications between clinicians and with patients, polishing academic writings and presentations, and programming and performing analyses for research. The current training and application of ChatGPT require using appropriate prompts to maximize appropriate outputs and minimize deleterious inaccuracies and phantom errors. Moreover, future GPT advances that incorporate empathy, emotion recognition, personality assessment, and detection of mental health warning signs are essential for its effective integration into psychiatric care. In the near future, developing a fully-automated psychotherapy system trained for expert communication (such as psychotherapy verbatim) is conceivable by building on foundational GPT technology. This dream system should integrate practical 'real world' inputs and friendly AI user and patient interfaces via clinically validated algorithms, voice comprehension/generation modules, and emotion discrimination algorithms based on facial expressions and physiological inputs from wearable devices. In addition to the technology challenges, we believe it is critical to establish generally accepted ethical standards for applying ChatGPT-related tools in all mental healthcare environments, including telemedicine and academic/training settings.
ChatGPT has sparked extensive discussions within the healthcare community since its November 2022 release. However, potential applications in the field of psychiatry have received limited attention. Deep learning has proven beneficial to psychiatry, and GPT is a powerful deep learning‐based language model with immense potential for this field. Despite the convenience of ChatGPT, this advanced chatbot currently has limited practical applications in psychiatry. It may be used to support psychiatrists in routine tasks such as completing medical records, facilitating communications between clinicians and with patients, polishing academic writings and presentations, and programming and performing analyses for research. The current training and application of ChatGPT require using appropriate prompts to maximize appropriate outputs and minimize deleterious inaccuracies and phantom errors. Moreover, future GPT advances that incorporate empathy, emotion recognition, personality assessment, and detection of mental health warning signs are essential for its effective integration into psychiatric care. In the near future, developing a fully‐automated psychotherapy system trained for expert communication (such as psychotherapy verbatim) is conceivable by building on foundational GPT technology. This dream system should integrate practical ‘real world’ inputs and friendly AI user and patient interfaces via clinically validated algorithms, voice comprehension/generation modules, and emotion discrimination algorithms based on facial expressions and physiological inputs from wearable devices. In addition to the technology challenges, we believe it is critical to establish generally accepted ethical standards for applying ChatGPT‐related tools in all mental healthcare environments, including telemedicine and academic/training settings.
Author Chung‐Wen Chang
Hao‐Wei Wang
Chih‐Sung Liang
Szu‐Wei Cheng
Jane Pei‐Chen Chang
John S. Kuo
Wan‐Jung Chang
Taishiro Kishimoto
Kuan‐Pin Su
AuthorAffiliation 9 Neuroscience and Brain Disease Center China Medical University Taichung Taiwan
7 Department of Psychiatry Beitou Branch, Tri‐Service General Hospital, National Defense Medical Center Taipei Taiwan
8 Hills Joint Research Laboratory for Future Preventive Medicine and Wellness Keio University School of Medicine Tokyo Japan
5 Internet of Things Laboratory (IOT Lab) Medical and Intelligent Technology Research Center (MIT Center), Southern Taiwan University of Science and Technology Tainan Taiwan
1 College of Medicine China Medical University Taichung Taiwan
4 Department of Electronic Engineering Southern Taiwan University of Science and Technology Tainan Taiwan
11 An‐Nan Hospital, China Medical University Tainan Taiwan
2 Mind‐Body Interface Laboratory (MBI‐Lab) and Department of Psychiatry China Medical University Hospital Taichung Taiwan
6 Department of Family Studies and Child Development Shih Chien University Taipei Taiwan
3 Department of Information Management Chia‐Nan University of Pharmacy &
AuthorAffiliation_xml – name: 6 Department of Family Studies and Child Development Shih Chien University Taipei Taiwan
– name: 4 Department of Electronic Engineering Southern Taiwan University of Science and Technology Tainan Taiwan
– name: 9 Neuroscience and Brain Disease Center China Medical University Taichung Taiwan
– name: 5 Internet of Things Laboratory (IOT Lab) Medical and Intelligent Technology Research Center (MIT Center), Southern Taiwan University of Science and Technology Tainan Taiwan
– name: 8 Hills Joint Research Laboratory for Future Preventive Medicine and Wellness Keio University School of Medicine Tokyo Japan
– name: 11 An‐Nan Hospital, China Medical University Tainan Taiwan
– name: 10 Graduate Institute of Biomedical Sciences China Medical University Taichung Taiwan
– name: 7 Department of Psychiatry Beitou Branch, Tri‐Service General Hospital, National Defense Medical Center Taipei Taiwan
– name: 3 Department of Information Management Chia‐Nan University of Pharmacy & Science Tainan Taiwan
– name: 1 College of Medicine China Medical University Taichung Taiwan
– name: 2 Mind‐Body Interface Laboratory (MBI‐Lab) and Department of Psychiatry China Medical University Hospital Taichung Taiwan
Author_xml – sequence: 1
  givenname: Szu‐Wei
  orcidid: 0000-0002-4460-5517
  surname: Cheng
  fullname: Cheng, Szu‐Wei
  organization: College of Medicine China Medical University Taichung Taiwan, Mind‐Body Interface Laboratory (MBI‐Lab) and Department of Psychiatry China Medical University Hospital Taichung Taiwan
– sequence: 2
  givenname: Chung‐Wen
  surname: Chang
  fullname: Chang, Chung‐Wen
  organization: Department of Information Management Chia‐Nan University of Pharmacy & Science Tainan Taiwan
– sequence: 3
  givenname: Wan‐Jung
  orcidid: 0000-0002-7478-7315
  surname: Chang
  fullname: Chang, Wan‐Jung
  organization: Department of Electronic Engineering Southern Taiwan University of Science and Technology Tainan Taiwan, Internet of Things Laboratory (IOT Lab) Medical and Intelligent Technology Research Center (MIT Center), Southern Taiwan University of Science and Technology Tainan Taiwan
– sequence: 4
  givenname: Hao‐Wei
  surname: Wang
  fullname: Wang, Hao‐Wei
  organization: Department of Family Studies and Child Development Shih Chien University Taipei Taiwan
– sequence: 5
  givenname: Chih‐Sung
  orcidid: 0000-0003-1138-5586
  surname: Liang
  fullname: Liang, Chih‐Sung
  organization: Department of Psychiatry Beitou Branch, Tri‐Service General Hospital, National Defense Medical Center Taipei Taiwan
– sequence: 6
  givenname: Taishiro
  orcidid: 0000-0003-0557-8648
  surname: Kishimoto
  fullname: Kishimoto, Taishiro
  organization: Hills Joint Research Laboratory for Future Preventive Medicine and Wellness Keio University School of Medicine Tokyo Japan
– sequence: 7
  givenname: Jane Pei‐Chen
  orcidid: 0000-0001-5582-0928
  surname: Chang
  fullname: Chang, Jane Pei‐Chen
  organization: College of Medicine China Medical University Taichung Taiwan, Mind‐Body Interface Laboratory (MBI‐Lab) and Department of Psychiatry China Medical University Hospital Taichung Taiwan
– sequence: 8
  givenname: John S.
  orcidid: 0000-0001-6809-4806
  surname: Kuo
  fullname: Kuo, John S.
  organization: Neuroscience and Brain Disease Center China Medical University Taichung Taiwan, Graduate Institute of Biomedical Sciences China Medical University Taichung Taiwan
– sequence: 9
  givenname: Kuan‐Pin
  orcidid: 0000-0002-4501-2502
  surname: Su
  fullname: Su, Kuan‐Pin
  organization: College of Medicine China Medical University Taichung Taiwan, Mind‐Body Interface Laboratory (MBI‐Lab) and Department of Psychiatry China Medical University Hospital Taichung Taiwan, Neuroscience and Brain Disease Center China Medical University Taichung Taiwan, An‐Nan Hospital, China Medical University Tainan Taiwan
BackLink https://cir.nii.ac.jp/crid/1870302167801769984$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/37612880$$D View this record in MEDLINE/PubMed
BookMark eNptkU1PxCAQhonRuK568A-YJnrQQ5UpLaUnYza6mpho4t4JpeBiurBCq9l_L_uhUSMHhsAzw8z7DtG2dVYhdAT4AuK6nEt7AaRgbAvtQZ7jFBhU2_FMMpICATpAwxBeMcaEUNhFA1JSyBjDe4hMpiqx7iMRtkl03_VeJU4no6noxk-T1e0yGpvMw0JOjej84gDtaNEGdbiJ--j59mYyuksfHsf3o-uHVBYZ6VKBK8ZqXau6qEXDFBU61xo3olZ5pnQjNZBc5xQqRXDGqKY1xaIsCZFNo8g-ulpXnff1TDVS2c6Lls-9mQm_4E4Y_vvFmil_ce8ccFVkVVHFCmebCt699Sp0fGaCVG0rrHJ94PHPKESBoYzoyR_01fXexukixfKCUJbRSB3_bOm7ly85I3C-BqR3IXilvxHAfGkVj1bxlVWRvfzDStOJzrjlNKb9N-N0nWGNifByB1biKB7QksUxaFWxnHwCpcafaA
CitedBy_id crossref_primary_10_5817_CP2024_1_6
crossref_primary_10_1016_j_pec_2025_108663
crossref_primary_10_1177_09760016241259851
crossref_primary_10_3390_bioengineering11040342
crossref_primary_10_1016_j_ajp_2024_104168
crossref_primary_10_1016_j_copsyc_2024_101872
crossref_primary_10_1016_j_evopsy_2024_09_003
crossref_primary_10_1016_j_ejon_2025_102930
crossref_primary_10_1177_09593543251319738
crossref_primary_10_1109_ACCESS_2024_3386362
crossref_primary_10_3389_frai_2024_1407905
crossref_primary_10_1007_s12195_024_00820_3
crossref_primary_10_1093_schbul_sbae105
crossref_primary_10_1108_OIR_06_2024_0407
crossref_primary_10_1016_j_ijnss_2025_04_010
crossref_primary_10_1177_03400352251342331
crossref_primary_10_3389_fpubh_2024_1399702
crossref_primary_10_1177_10398562251344470
crossref_primary_10_3389_feduc_2025_1594572
crossref_primary_10_1007_s44230_025_00099_1
crossref_primary_10_1007_s40596_024_02036_z
crossref_primary_10_1016_j_ajp_2025_104605
crossref_primary_10_1016_j_compbiomed_2025_110789
crossref_primary_10_3390_healthcare12222305
crossref_primary_10_3390_info15120768
crossref_primary_10_1002_pcn5_70159
crossref_primary_10_1016_j_etdah_2025_100170
crossref_primary_10_1590_0102_311xen028824
crossref_primary_10_3389_fdgth_2025_1543543
crossref_primary_10_1111_pcn_13595
crossref_primary_10_1016_j_ajp_2025_104596
crossref_primary_10_1186_s12912_024_02655_9
crossref_primary_10_1007_s10389_024_02373_1
crossref_primary_10_2196_56569
crossref_primary_10_2196_63494
crossref_primary_10_1007_s41347_025_00544_9
crossref_primary_10_1016_j_ijmedinf_2025_105906
crossref_primary_10_2196_73337
crossref_primary_10_7717_peerj_cs_2954
crossref_primary_10_7759_cureus_46548
crossref_primary_10_7759_cureus_67347
crossref_primary_10_2196_69910
crossref_primary_10_3389_fpsyg_2024_1533053
crossref_primary_10_1057_s41599_025_04604_6
crossref_primary_10_1186_s40359_025_03071_7
crossref_primary_10_3389_fpsyt_2024_1422807
crossref_primary_10_31363_2313_7053_2025_3_1087
crossref_primary_10_3923_ijp_2025_155_163
crossref_primary_10_1017_SJP_2024_32
crossref_primary_10_1038_s41598_024_54242_2
crossref_primary_10_1080_09540261_2024_2405174
crossref_primary_10_1111_pcn_13781
crossref_primary_10_1371_journal_pone_0306639
crossref_primary_10_2196_59225
crossref_primary_10_1002_hsr2_1912
crossref_primary_10_1007_s10639_024_12677_0
crossref_primary_10_1080_09540261_2025_2559108
crossref_primary_10_21926_obm_neurobiol_2403241
crossref_primary_10_2196_58418
crossref_primary_10_2196_54617
crossref_primary_10_3390_children12030359
crossref_primary_10_2478_jdis_2024_0013
crossref_primary_10_1057_s41599_025_04725_y
crossref_primary_10_1038_s41598_025_17242_4
crossref_primary_10_1177_00033197241238403
crossref_primary_10_2196_78410
crossref_primary_10_1177_10398562251346075
crossref_primary_10_1111_joes_12696
crossref_primary_10_1109_ACCESS_2025_3586502
crossref_primary_10_1186_s12909_025_07550_8
crossref_primary_10_1111_pcn_13816
crossref_primary_10_1093_iwc_iwae049
crossref_primary_10_1080_10447318_2023_2300015
crossref_primary_10_1145_3700142
crossref_primary_10_1177_00207640251358071
crossref_primary_10_3390_buildings14123712
crossref_primary_10_1007_s10639_025_13619_0
crossref_primary_10_1007_s11831_024_10115_5
crossref_primary_10_1016_j_conb_2024_102881
crossref_primary_10_1111_pcn_13656
crossref_primary_10_1007_s41809_024_00151_9
crossref_primary_10_3390_app15126417
crossref_primary_10_1016_j_ipm_2025_104152
crossref_primary_10_3390_healthcare12020125
crossref_primary_10_19090_pp_v18i3_2572
crossref_primary_10_1093_jamia_ocae035
crossref_primary_10_5498_wjp_v14_i3_334
crossref_primary_10_2196_81204
crossref_primary_10_1177_02601060241281906
crossref_primary_10_3389_fmed_2024_1512824
crossref_primary_10_1080_15309576_2024_2447352
crossref_primary_10_4103_indianjpsychiatry_indianjpsychiatry_919_23
Cites_doi 10.1016/j.jad.2022.04.005
10.1038/s41746-022-00589-7
10.1016/j.nicl.2021.102584
10.1016/j.biopsycho.2021.108117
10.3389/fdgth.2021.689736
10.1016/j.fmre.2021.11.011
10.1038/s41746-021-00464-x
10.1162/153244303322533223
10.3390/ijerph20021514
10.1016/S2589-7500(23)00019-5
10.1016/j.eij.2021.05.004
10.3389/fpsyt.2022.1025517
10.2196/17204
10.1037/0022-3514.56.3.339
10.1016/S2589-7500(23)00023-7
10.1145/365153.365168
10.1016/0004-3702(71)90002-6
10.31219/osf.io/m6gcn
10.1111/j.1467-6494.2008.00534.x
10.1007/s11023-020-09548-1
10.1126/science.adh2586
10.1001/jamapsychiatry.2022.4076
10.1016/S2589-7500(23)00048-1
10.1016/S2589-7500(23)00021-3
10.1037/pst0000175
10.1176/appi.ps.202100692
ContentType Journal Article
Copyright 2023 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.
Copyright_xml – notice: 2023 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.
DBID RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
DOI 10.1111/pcn.13588
DatabaseName CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
CrossRef
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate ChatGPT and GPT in Psychiatry
EISSN 1440-1819
EndPage 596
ExternalDocumentID PMC10952959
37612880
10_1111_pcn_13588
Genre Journal Article
Review
GrantInformation_xml – fundername: National Science and Technology Council
  grantid: 110-2314-B-039-029-MY3
– fundername: Tainan Municipal An-Nan Hospital
  grantid: 111-47
– fundername: National Science and Technology Council
  grantid: NSTC 111-2314-B-039-041-MY3
– fundername: China Medical University Hospital
  grantid: 106-227
– fundername: National Science and Technology Council
  grantid: 110-2321-B-006-004
– fundername: National Science and Technology Council
  grantid: 110-2811-B-039-507
– fundername: Tainan Municipal An-Nan Hospital
  grantid: 111-48
– fundername: Tainan Municipal An-Nan Hospital
  grantid: 109-40
– fundername: Tainan Municipal An-Nan Hospital
  grantid: 111-28
– fundername: China Medical University Hospital
  grantid: 110-124
– fundername: Ministry of Education (MOE), Taiwan
  grantid: CMRC‐CMA‐2
– fundername: Tainan Municipal An‐Nan Hospital
  grantid: 109‐40; 110‐13; 110‐26; 110‐44; 110‐45; 111‐27; 111‐28; 111‐47; 111‐48; 111‐52; ANHRF 109‐31
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1OB
1OC
29P
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
7.U
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACUHS
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EBC
EBD
EBS
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FUBAC
G-S
G.N
GODZA
H.X
HGLYW
HZI
HZ~
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
RYH
SUPJJ
SV3
TEORI
TR2
TUS
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~02
~IA
~WT
.55
.Y3
31~
3O-
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AGQPQ
AHEFC
AZFZN
CAG
CITATION
COF
DUUFO
EJD
FEDTE
HF~
HVGLF
IHE
LW6
O8X
PALCI
RIWAO
RJQFR
SAMSI
TKC
X7M
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
ID FETCH-LOGICAL-c523t-a0988bfbeb5bad8e6af4ff0dabe42efdcf134f4619e30286f6b60a7733cdde3
ISICitedReferencesCount 120
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001066394000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1323-1316
1440-1819
IngestDate Tue Sep 30 17:09:44 EDT 2025
Fri Sep 05 08:31:51 EDT 2025
Sat Nov 29 14:52:28 EST 2025
Mon Jul 21 05:57:09 EDT 2025
Tue Nov 18 22:19:00 EST 2025
Sat Nov 29 06:00:02 EST 2025
Mon Nov 10 09:09:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords deep learning
GPT
ChatGPT
artificial intelligence
informatics and telecommunications in psychiatry
Language English
License 2023 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c523t-a0988bfbeb5bad8e6af4ff0dabe42efdcf134f4619e30286f6b60a7733cdde3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6809-4806
0000-0002-4501-2502
0000-0003-0557-8648
0000-0002-7478-7315
0000-0002-4460-5517
0000-0003-1138-5586
0000-0001-5582-0928
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10952959
PMID 37612880
PQID 2884536826
PQPubID 1106347
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10952959
proquest_miscellaneous_2863765017
proquest_journals_2884536826
pubmed_primary_37612880
crossref_primary_10_1111_pcn_13588
crossref_citationtrail_10_1111_pcn_13588
nii_cinii_1870302167801769984
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Australia
PublicationPlace_xml – name: Australia
– name: Tokyo
– name: Melbourne
PublicationTitle Psychiatry and Clinical Neurosciences
PublicationTitleAlternate Psychiatry Clin Neurosci
PublicationYear 2023
Publisher Wiley
Wiley Subscription Services, Inc
John Wiley & Sons Australia, Ltd
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
– name: John Wiley & Sons Australia, Ltd
References e_1_2_10_23_1
Aboraya A (e_1_2_10_35_1) 2006; 3
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_22_1
e_1_2_10_43_1
Radford A (e_1_2_10_16_1) 2019; 1
e_1_2_10_42_1
Ouyang L (e_1_2_10_19_1) 2022; 35
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
(e_1_2_10_6_1) 1949
Amin MM (e_1_2_10_38_1) 2023; 38
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
Brown T (e_1_2_10_17_1) 2020; 33
e_1_2_10_36_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
Kosinski M (e_1_2_10_37_1) 2023
Kumar S (e_1_2_10_28_1) 2007; 6
Sutskever I (e_1_2_10_10_1) 2014; 27
Vaswani A (e_1_2_10_12_1) 2017; 30
e_1_2_10_29_1
Chintagunta B (e_1_2_10_30_1) 2021; 2021
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – ident: e_1_2_10_27_1
  doi: 10.1016/j.jad.2022.04.005
– ident: e_1_2_10_33_1
– ident: e_1_2_10_34_1
  doi: 10.1038/s41746-022-00589-7
– ident: e_1_2_10_13_1
– ident: e_1_2_10_21_1
  doi: 10.1016/j.nicl.2021.102584
– volume: 2021
  start-page: 66
  year: 2021
  ident: e_1_2_10_30_1
  article-title: Medically aware GPT‐3 as a data generator for medical dialogue summarization
  publication-title: NLPMC
– ident: e_1_2_10_22_1
  doi: 10.1016/j.biopsycho.2021.108117
– ident: e_1_2_10_31_1
  doi: 10.3389/fdgth.2021.689736
– ident: e_1_2_10_24_1
  doi: 10.1016/j.fmre.2021.11.011
– ident: e_1_2_10_32_1
  doi: 10.1038/s41746-021-00464-x
– volume: 35
  start-page: 27730
  year: 2022
  ident: e_1_2_10_19_1
  article-title: Training language models to follow instructions with human feedback
  publication-title: Adv. Neural Inf. Process. Syst
– ident: e_1_2_10_9_1
  doi: 10.1162/153244303322533223
– ident: e_1_2_10_42_1
  doi: 10.3390/ijerph20021514
– ident: e_1_2_10_2_1
  doi: 10.1016/S2589-7500(23)00019-5
– ident: e_1_2_10_40_1
  doi: 10.1016/j.eij.2021.05.004
– volume: 38
  start-page: 23
  year: 2023
  ident: e_1_2_10_38_1
  article-title: Will affective computing emerge from foundation models and general AI? A first evaluation on ChatGPT
  publication-title: ArXiv
– ident: e_1_2_10_44_1
  doi: 10.3389/fpsyt.2022.1025517
– start-page: 15
  volume-title: Machine Translation of Languages
  year: 1949
  ident: e_1_2_10_6_1
– ident: e_1_2_10_45_1
  doi: 10.2196/17204
– volume: 33
  start-page: 1877
  year: 2020
  ident: e_1_2_10_17_1
  article-title: Language models are few‐shot learners
  publication-title: Adv. Neural Inf. Process. Syst
– ident: e_1_2_10_43_1
  doi: 10.1037/0022-3514.56.3.339
– ident: e_1_2_10_5_1
  doi: 10.1016/S2589-7500(23)00023-7
– ident: e_1_2_10_7_1
  doi: 10.1145/365153.365168
– ident: e_1_2_10_8_1
  doi: 10.1016/0004-3702(71)90002-6
– ident: e_1_2_10_25_1
  doi: 10.31219/osf.io/m6gcn
– ident: e_1_2_10_26_1
– ident: e_1_2_10_20_1
– ident: e_1_2_10_39_1
  doi: 10.1111/j.1467-6494.2008.00534.x
– ident: e_1_2_10_18_1
  doi: 10.1007/s11023-020-09548-1
– year: 2023
  ident: e_1_2_10_37_1
  article-title: Theory of mind may have spontaneously emerged in large language models
  publication-title: ArXiv
– ident: e_1_2_10_29_1
  doi: 10.1126/science.adh2586
– ident: e_1_2_10_23_1
  doi: 10.1001/jamapsychiatry.2022.4076
– volume: 6
  start-page: 186
  year: 2007
  ident: e_1_2_10_28_1
  article-title: Burnout in psychiatrists
  publication-title: World Psychiatry
– ident: e_1_2_10_3_1
  doi: 10.1016/S2589-7500(23)00048-1
– ident: e_1_2_10_15_1
– volume: 1
  start-page: 9
  year: 2019
  ident: e_1_2_10_16_1
  article-title: Language models are unsupervised multitask learners
  publication-title: OpenAI Blog
– volume: 30
  start-page: 6000
  year: 2017
  ident: e_1_2_10_12_1
  article-title: Attention is all you need
  publication-title: Adv. Neural. Inf. Process Sys
– ident: e_1_2_10_14_1
– ident: e_1_2_10_4_1
  doi: 10.1016/S2589-7500(23)00021-3
– volume: 27
  start-page: 3104
  year: 2014
  ident: e_1_2_10_10_1
  article-title: Sequence to sequence learning with neural networks
  publication-title: Adv. Neural. Inf. Process Sys
– volume: 3
  start-page: 41
  year: 2006
  ident: e_1_2_10_35_1
  article-title: The reliability of psychiatric diagnosis revisited: The Clinician's guide to improve the reliability of psychiatric diagnosis
  publication-title: Psychiatry (Edgmont)
– ident: e_1_2_10_36_1
  doi: 10.1037/pst0000175
– ident: e_1_2_10_41_1
  doi: 10.1176/appi.ps.202100692
– ident: e_1_2_10_11_1
SSID ssj0003361
ssib053845405
ssib006547352
ssib020716636
ssib058494145
Score 2.6583662
SecondaryResourceType review_article
Snippet ChatGPT has sparked extensive discussions within the healthcare community since its November 2022 release. However, potential applications in the field of...
SourceID pubmedcentral
proquest
pubmed
crossref
nii
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 592
SubjectTerms Algorithms
Chatbots
Deep learning
Emotions
Empathy
Health care
Humans
Language
Medical records
Patients
Psychiatry
Psychotherapy
Timely Review
Title The now and future of ChatGPT and GPT in psychiatry
URI https://cir.nii.ac.jp/crid/1870302167801769984
https://www.ncbi.nlm.nih.gov/pubmed/37612880
https://www.proquest.com/docview/2884536826
https://www.proquest.com/docview/2863765017
https://pubmed.ncbi.nlm.nih.gov/PMC10952959
Volume 77
WOSCitedRecordID wos001066394000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1440-1819
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003361
  issn: 1323-1316
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1440-1819
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003361
  issn: 1323-1316
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0Go3hHhBfJOxTQHxwEukJnYc5xEVxoTGVEFhfYscx1YjTW61tdPEX9mf5Rw7TrMOaTzw4lR3Z6fxXe58zvkOofdgkiqSCRYJTnFEsKIRw4JEtKwwJZxL3uTp_nWSnZ6y2SyfDAY37VmYq_NMa3Z9nS__K6sBBsw2R2f_gd1-UADAb2A6tMB2aO_NeHPAzeyI24whNuSCr75Mpg3UXE3weC_QuV2hTjzUHnlrT05uJL7swg7Hc-m2m3-vfdjEmaw3ggYsfjw3SqWj0FsUZ1x7_Ne1s6fNTr_FH_PF1h3cbkWC3bG9TsFiA8OxS39tYfb7slOdTiu74i5O-uINHZva4nnOXKe2IO5fLMFSaFPZw1YO7GfbvmUFfWxi6xVB16LpOkS7SZbmoDJ3P30_-nniDT3G1Pnz9pFc4ioTKObv21vuDHVd3-XJ3A7I3VjhTJ-gx841CT9akXqKBlI_Qw-_ueCL5wiDZIUgWSHIRWglK1yo0ElWAzXXWoedZL1AP44-T8fHkau5EYk0wauIj3LGSlXKMi15xSTliig1qngpSSJVJVSMiSLgdksMS1OqaElHPMswFmAo8Uu0oxdavkZhXFUjlZS0FLHpyVmGY6JopUiWs1zwAH1oJ6YQLh29qYpyXmwxIEDvPOnS5mC5i-gAZheGMm3MjCFLYliJgcWhec5IgPbbeS_c23pZJIyRFFNwsQP01qNBwZqvZlzLxdrQUDDCKYwToFeWTf5fAALWd2wUINZjoCcwydv7GF3PmyTuMfg2SZ7me_d5uDfoUfcy7aOd1cVaHqAH4mpVX14comE2Y4dOOv8A4zSyiw
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+now+and+future+of+ChatGPT+and+GPT+in+psychiatry&rft.jtitle=Psychiatry+and+clinical+neurosciences&rft.au=Cheng%2C+Szu%E2%80%90Wei&rft.au=Chang%2C+Chung%E2%80%90Wen&rft.au=Chang%2C+Wan%E2%80%90Jung&rft.au=Wang%2C+Hao%E2%80%90Wei&rft.date=2023-11-01&rft.issn=1323-1316&rft.eissn=1440-1819&rft.volume=77&rft.issue=11&rft.spage=592&rft.epage=596&rft_id=info:doi/10.1111%2Fpcn.13588&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_pcn_13588
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1323-1316&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1323-1316&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1323-1316&client=summon