Content-based image retrieval for the diagnosis of myocardial perfusion imaging using a deep convolutional autoencoder

Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) plays a crucial role in the optimal treatment strategy for patients with coronary heart disease. We tested the feasibility of feature extraction from MPI using a deep convolutional autoencoder (CAE) model. Eight hu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Nuclear Cardiology Vol. 30; no. 2; pp. 540 - 549
Main Authors: Higaki, Akinori, Kawaguchi, Naoto, Kurokawa, Tsukasa, Okabe, Hikaru, Kazatani, Takuro, Kido, Shinsuke, Aono, Tetsuya, Matsuda, Kensho, Tanaka, Yuta, Hosokawa, Saki, Kosaki, Tetsuya, Kawamura, Go, Shigematsu, Tatsuya, Kawada, Yoshitaka, Hiasa, Go, Yamada, Tadakatsu, Okayama, Hideki
Format: Journal Article
Language:English
Published: Cham Elsevier Inc 01.04.2023
Elsevier BV
Springer International Publishing
Springer Nature B.V
Subjects:
ISSN:1071-3581, 1532-6551, 1532-6551
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) plays a crucial role in the optimal treatment strategy for patients with coronary heart disease. We tested the feasibility of feature extraction from MPI using a deep convolutional autoencoder (CAE) model. Eight hundred and forty-three pairs of stress and rest myocardial perfusion images were collected from consecutive patients who underwent cardiac scintigraphy in our hospital between December 2019 and February 2022. We trained a CAE model to reproduce the input paired image data, so as the encoder to output a 256-dimensional feature vector. The extracted feature vectors were further dimensionally reduced via principal component analysis (PCA) for data visualization. Content-based image retrieval (CBIR) was performed based on the cosine similarity of the feature vectors between the query and reference images. The agreement of the radiologist’s finding between the query and retrieved MPI was evaluated using binary accuracy, precision, recall, and F1-score. A three-dimensional scatter plot with PCA revealed that feature vectors retained clinical information such as percent summed difference score, presence of ischemia, and the location of scar reported by radiologists. When CBIR was used as a similarity-based diagnostic tool, the binary accuracy was 81.0%. The results indicated the utility of unsupervised feature learning for CBIR in MPI. ▪
AbstractList BackgroundSingle-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) plays a crucial role in the optimal treatment strategy for patients with coronary heart disease. We tested the feasibility of feature extraction from MPI using a deep convolutional autoencoder (CAE) model.MethodsEight hundred and forty-three pairs of stress and rest myocardial perfusion images were collected from consecutive patients who underwent cardiac scintigraphy in our hospital between December 2019 and February 2022. We trained a CAE model to reproduce the input paired image data, so as the encoder to output a 256-dimensional feature vector. The extracted feature vectors were further dimensionally reduced via principal component analysis (PCA) for data visualization. Content-based image retrieval (CBIR) was performed based on the cosine similarity of the feature vectors between the query and reference images. The agreement of the radiologist’s finding between the query and retrieved MPI was evaluated using binary accuracy, precision, recall, and F1-score.ResultsA three-dimensional scatter plot with PCA revealed that feature vectors retained clinical information such as percent summed difference score, presence of ischemia, and the location of scar reported by radiologists. When CBIR was used as a similarity-based diagnostic tool, the binary accuracy was 81.0%.ConclusionThe results indicated the utility of unsupervised feature learning for CBIR in MPI.
Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) plays a crucial role in the optimal treatment strategy for patients with coronary heart disease. We tested the feasibility of feature extraction from MPI using a deep convolutional autoencoder (CAE) model.BACKGROUNDSingle-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) plays a crucial role in the optimal treatment strategy for patients with coronary heart disease. We tested the feasibility of feature extraction from MPI using a deep convolutional autoencoder (CAE) model.Eight hundred and forty-three pairs of stress and rest myocardial perfusion images were collected from consecutive patients who underwent cardiac scintigraphy in our hospital between December 2019 and February 2022. We trained a CAE model to reproduce the input paired image data, so as the encoder to output a 256-dimensional feature vector. The extracted feature vectors were further dimensionally reduced via principal component analysis (PCA) for data visualization. Content-based image retrieval (CBIR) was performed based on the cosine similarity of the feature vectors between the query and reference images. The agreement of the radiologist's finding between the query and retrieved MPI was evaluated using binary accuracy, precision, recall, and F1-score.METHODSEight hundred and forty-three pairs of stress and rest myocardial perfusion images were collected from consecutive patients who underwent cardiac scintigraphy in our hospital between December 2019 and February 2022. We trained a CAE model to reproduce the input paired image data, so as the encoder to output a 256-dimensional feature vector. The extracted feature vectors were further dimensionally reduced via principal component analysis (PCA) for data visualization. Content-based image retrieval (CBIR) was performed based on the cosine similarity of the feature vectors between the query and reference images. The agreement of the radiologist's finding between the query and retrieved MPI was evaluated using binary accuracy, precision, recall, and F1-score.A three-dimensional scatter plot with PCA revealed that feature vectors retained clinical information such as percent summed difference score, presence of ischemia, and the location of scar reported by radiologists. When CBIR was used as a similarity-based diagnostic tool, the binary accuracy was 81.0%.RESULTSA three-dimensional scatter plot with PCA revealed that feature vectors retained clinical information such as percent summed difference score, presence of ischemia, and the location of scar reported by radiologists. When CBIR was used as a similarity-based diagnostic tool, the binary accuracy was 81.0%.The results indicated the utility of unsupervised feature learning for CBIR in MPI.CONCLUSIONThe results indicated the utility of unsupervised feature learning for CBIR in MPI.
Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) plays a crucial role in the optimal treatment strategy for patients with coronary heart disease. We tested the feasibility of feature extraction from MPI using a deep convolutional autoencoder (CAE) model. Eight hundred and forty-three pairs of stress and rest myocardial perfusion images were collected from consecutive patients who underwent cardiac scintigraphy in our hospital between December 2019 and February 2022. We trained a CAE model to reproduce the input paired image data, so as the encoder to output a 256-dimensional feature vector. The extracted feature vectors were further dimensionally reduced via principal component analysis (PCA) for data visualization. Content-based image retrieval (CBIR) was performed based on the cosine similarity of the feature vectors between the query and reference images. The agreement of the radiologist's finding between the query and retrieved MPI was evaluated using binary accuracy, precision, recall, and F1-score. A three-dimensional scatter plot with PCA revealed that feature vectors retained clinical information such as percent summed difference score, presence of ischemia, and the location of scar reported by radiologists. When CBIR was used as a similarity-based diagnostic tool, the binary accuracy was 81.0%. The results indicated the utility of unsupervised feature learning for CBIR in MPI.
Background Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) plays a crucial role in the optimal treatment strategy for patients with coronary heart disease. We tested the feasibility of feature extraction from MPI using a deep convolutional autoencoder (CAE) model. Methods Eight hundred and forty-three pairs of stress and rest myocardial perfusion images were collected from consecutive patients who underwent cardiac scintigraphy in our hospital between December 2019 and February 2022. We trained a CAE model to reproduce the input paired image data, so as the encoder to output a 256-dimensional feature vector. The extracted feature vectors were further dimensionally reduced via principal component analysis (PCA) for data visualization. Content-based image retrieval (CBIR) was performed based on the cosine similarity of the feature vectors between the query and reference images. The agreement of the radiologist’s finding between the query and retrieved MPI was evaluated using binary accuracy, precision, recall, and F1-score. Results A three-dimensional scatter plot with PCA revealed that feature vectors retained clinical information such as percent summed difference score, presence of ischemia, and the location of scar reported by radiologists. When CBIR was used as a similarity-based diagnostic tool, the binary accuracy was 81.0%. Conclusion The results indicated the utility of unsupervised feature learning for CBIR in MPI. Graphical abstract
Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) plays a crucial role in the optimal treatment strategy for patients with coronary heart disease. We tested the feasibility of feature extraction from MPI using a deep convolutional autoencoder (CAE) model. Eight hundred and forty-three pairs of stress and rest myocardial perfusion images were collected from consecutive patients who underwent cardiac scintigraphy in our hospital between December 2019 and February 2022. We trained a CAE model to reproduce the input paired image data, so as the encoder to output a 256-dimensional feature vector. The extracted feature vectors were further dimensionally reduced via principal component analysis (PCA) for data visualization. Content-based image retrieval (CBIR) was performed based on the cosine similarity of the feature vectors between the query and reference images. The agreement of the radiologist’s finding between the query and retrieved MPI was evaluated using binary accuracy, precision, recall, and F1-score. A three-dimensional scatter plot with PCA revealed that feature vectors retained clinical information such as percent summed difference score, presence of ischemia, and the location of scar reported by radiologists. When CBIR was used as a similarity-based diagnostic tool, the binary accuracy was 81.0%. The results indicated the utility of unsupervised feature learning for CBIR in MPI. ▪
Author Kawamura, Go
Aono, Tetsuya
Kurokawa, Tsukasa
Matsuda, Kensho
Kawada, Yoshitaka
Hosokawa, Saki
Shigematsu, Tatsuya
Higaki, Akinori
Okabe, Hikaru
Kosaki, Tetsuya
Kazatani, Takuro
Hiasa, Go
Tanaka, Yuta
Yamada, Tadakatsu
Okayama, Hideki
Kido, Shinsuke
Kawaguchi, Naoto
Author_xml – sequence: 1
  givenname: Akinori
  surname: Higaki
  fullname: Higaki, Akinori
  email: keroplant83@gmail.com
  organization: Department of Cardiology, Ehime Prefectural Central Hospital, 83, Kasuga-machi, 790-0024, Matsuyama, Japan
– sequence: 2
  givenname: Naoto
  surname: Kawaguchi
  fullname: Kawaguchi, Naoto
  organization: Department of Radiology, Ehime University Graduate School of Medicine, Toon, Japan
– sequence: 3
  givenname: Tsukasa
  surname: Kurokawa
  fullname: Kurokawa, Tsukasa
  organization: Department of Cardiology, Ehime Prefectural Central Hospital, 83, Kasuga-machi, 790-0024, Matsuyama, Japan
– sequence: 4
  givenname: Hikaru
  surname: Okabe
  fullname: Okabe, Hikaru
  organization: Department of Cardiology, Ehime Prefectural Central Hospital, 83, Kasuga-machi, 790-0024, Matsuyama, Japan
– sequence: 5
  givenname: Takuro
  surname: Kazatani
  fullname: Kazatani, Takuro
  organization: Department of Cardiology, Ehime Prefectural Central Hospital, 83, Kasuga-machi, 790-0024, Matsuyama, Japan
– sequence: 6
  givenname: Shinsuke
  surname: Kido
  fullname: Kido, Shinsuke
  organization: Department of Cardiology, Ehime Prefectural Central Hospital, 83, Kasuga-machi, 790-0024, Matsuyama, Japan
– sequence: 7
  givenname: Tetsuya
  surname: Aono
  fullname: Aono, Tetsuya
  organization: Department of Cardiology, Ehime Prefectural Central Hospital, 83, Kasuga-machi, 790-0024, Matsuyama, Japan
– sequence: 8
  givenname: Kensho
  surname: Matsuda
  fullname: Matsuda, Kensho
  organization: Department of Cardiology, Ehime Prefectural Central Hospital, 83, Kasuga-machi, 790-0024, Matsuyama, Japan
– sequence: 9
  givenname: Yuta
  surname: Tanaka
  fullname: Tanaka, Yuta
  organization: Department of Cardiology, Ehime Prefectural Central Hospital, 83, Kasuga-machi, 790-0024, Matsuyama, Japan
– sequence: 10
  givenname: Saki
  surname: Hosokawa
  fullname: Hosokawa, Saki
  organization: Department of Cardiology, Ehime Prefectural Central Hospital, 83, Kasuga-machi, 790-0024, Matsuyama, Japan
– sequence: 11
  givenname: Tetsuya
  surname: Kosaki
  fullname: Kosaki, Tetsuya
  organization: Department of Cardiology, Ehime Prefectural Central Hospital, 83, Kasuga-machi, 790-0024, Matsuyama, Japan
– sequence: 12
  givenname: Go
  surname: Kawamura
  fullname: Kawamura, Go
  organization: Department of Cardiology, Ehime Prefectural Central Hospital, 83, Kasuga-machi, 790-0024, Matsuyama, Japan
– sequence: 13
  givenname: Tatsuya
  surname: Shigematsu
  fullname: Shigematsu, Tatsuya
  organization: Department of Cardiology, Ehime Prefectural Central Hospital, 83, Kasuga-machi, 790-0024, Matsuyama, Japan
– sequence: 14
  givenname: Yoshitaka
  surname: Kawada
  fullname: Kawada, Yoshitaka
  organization: Department of Cardiology, Ehime Prefectural Central Hospital, 83, Kasuga-machi, 790-0024, Matsuyama, Japan
– sequence: 15
  givenname: Go
  surname: Hiasa
  fullname: Hiasa, Go
  organization: Department of Cardiology, Ehime Prefectural Central Hospital, 83, Kasuga-machi, 790-0024, Matsuyama, Japan
– sequence: 16
  givenname: Tadakatsu
  surname: Yamada
  fullname: Yamada, Tadakatsu
  organization: Department of Cardiology, Ehime Prefectural Central Hospital, 83, Kasuga-machi, 790-0024, Matsuyama, Japan
– sequence: 17
  givenname: Hideki
  surname: Okayama
  fullname: Okayama, Hideki
  organization: Department of Cardiology, Ehime Prefectural Central Hospital, 83, Kasuga-machi, 790-0024, Matsuyama, Japan
BackLink https://cir.nii.ac.jp/crid/1873679867905073024$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/35802346$$D View this record in MEDLINE/PubMed
BookMark eNp9kU2LFDEQhhtZcT_0D3iQgB720lpJOt1p8CKDq8KCFz2HdLp6zNKTjEl6YP-9Ndurwh6GkE-et6pS72V1FmLAqnrN4T0H6D5kLqSCGoSoQdKom2fVBVdS1K1S_IzO0PFaKs3Pq8uc7wCgl33_ojqnNxCyaS-qwyaGgqHUg804Mr-zW2QJS_J4sDObYmLlF7LR222I2WcWJ7a7j84meprZHtO0ZB_Dg9KHLaMbrZaNiHvmYjjEeSkEEGyXEjG4OGJ6WT2f7Jzx1eN-Vf28-fxj87W-_f7l2-bTbe2UkKWWVg2op0b2imutkDdaO2ndCD00cuj1yK0SqmuxacaBd0IPw4QOhlaA0grkVXW9xt2n-HvBXMzOZ4fzbAPGJRvR6q7jbaM7Qt8-Qe_ikqhuojQoQhrdEPXmkVqGHY5mn-jj6d787SgBYgVcijknnP4hHMzRNrPaZsg282CbOUbVT0TOF3tsW0nWz6elcpVmyhO2mP6XfVL1blUF7ynXceXUg7brNU1Q0EkQR-zjiiF5dPAUPDtPFuLoE7pixuhPZfkD_vLJSw
CitedBy_id crossref_primary_10_1080_14779072_2024_2380764
crossref_primary_10_1080_13682199_2025_2476808
crossref_primary_10_7759_cureus_30646
crossref_primary_10_1053_j_semnuclmed_2024_02_005
crossref_primary_10_1016_j_phrs_2023_106984
Cites_doi 10.1148/radiol.2021204164
10.1016/j.ijmedinf.2003.11.024
10.1007/s10278-016-9904-y
10.1016/j.ahj.2018.04.011
10.1161/01.CIR.0000080946.42225.4D
10.1016/j.ijcard.2011.01.040
10.1053/j.semnuclmed.2020.08.003
10.1016/j.compbiomed.2020.103893
10.1016/j.ijmedinf.2020.104274
10.1093/eurheartj/ehq500
10.1007/s12149-007-0059-2
10.1038/nmeth.4346
10.1159/000516842
10.1081/JCMR-120003946
10.1016/j.jcmg.2018.01.020
10.1016/j.jcmg.2020.07.015
10.1111/pace.14209
10.1007/s12350-010-9207-5
10.1155/2019/9658350
10.1109/ICASSP.2013.6639343
ContentType Journal Article
Copyright 2023 American Society of Nuclear Cardiology. Published by ELSEVIER INC. All rights reserved.
The Author(s) under exclusive licence to American Society of Nuclear Cardiology 2022
2022. The Author(s) under exclusive licence to American Society of Nuclear Cardiology.
The Author(s) under exclusive licence to American Society of Nuclear Cardiology 2022.
Copyright_xml – notice: 2023 American Society of Nuclear Cardiology. Published by ELSEVIER INC. All rights reserved.
– notice: The Author(s) under exclusive licence to American Society of Nuclear Cardiology 2022
– notice: 2022. The Author(s) under exclusive licence to American Society of Nuclear Cardiology.
– notice: The Author(s) under exclusive licence to American Society of Nuclear Cardiology 2022.
DBID RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
DOI 10.1007/s12350-022-03030-4
DatabaseName CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1532-6551
EndPage 549
ExternalDocumentID 35802346
10_1007_s12350_022_03030_4
S1071358123001484
Genre Journal Article
GroupedDBID ---
--K
-EM
-Y2
.GJ
06D
0R~
0VY
199
1B1
1N0
2.D
203
29L
29~
2JN
2JY
2KG
2LR
2VQ
30V
3V.
4.4
406
408
40D
53G
5GY
5VS
67Z
78A
7RV
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
96X
AAAVM
AABHQ
AABYN
AAEDT
AAEOY
AAFGU
AAHNG
AAIAL
AAJKR
AAKSU
AALRI
AANXM
AANZL
AAQFI
AAQXK
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAXUO
AAYFA
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABIPD
ABJNI
ABJOX
ABKAS
ABKCH
ABMAC
ABMQK
ABMYL
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIGE
ACIHN
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACREN
ACTTH
ACUDM
ACVWB
ACWMK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMDM
ADMUD
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEEQQ
AEFQL
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFAFS
AFBBN
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGKHE
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AITUG
AJBLW
AJDOV
AJRNO
AJZVZ
AKMHD
AKQUC
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AZFZN
BA0
BBWZM
BENPR
BGNMA
BKEYQ
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EO8
EO9
ESBYG
EX3
F5P
FDB
FEDTE
FERAY
FFXSO
FGOYB
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYUFA
G-Q
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GRRUI
HF~
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IHE
IKXTQ
IMOTQ
ITM
IWAJR
IXC
I~X
J-C
J0Z
J5H
JBSCW
JZLTJ
KOV
KPH
LLZTM
M1P
M41
M4Y
MA-
N2Q
N9A
NAPCQ
NDZJH
NF0
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P9S
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
R2-
R89
R9I
RHV
RIG
RNI
ROL
RPZ
RSV
RZK
S1Z
S26
S27
S28
S37
S3B
SCLPG
SDE
SDG
SDH
SEW
SHX
SISQX
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
SSZ
STPWE
SV3
SZ9
SZN
T13
T16
TSG
TT1
U2A
U9L
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
WOW
Z45
Z7U
Z7X
Z7Y
Z82
Z87
ZMTXR
ZOVNA
~A9
AAJBT
ABFSG
ACSTC
AEZWR
AFHIU
AFJKZ
AHPBZ
AHWEU
AIGII
AIXLP
AMRAJ
AYFIA
EFKBS
NPVJJ
RYH
SJN
AAYZH
ABQSL
ABWVN
ACRPL
ADNMO
ALIPV
H13
AAYXX
ADHKG
AFFHD
AGQPQ
APXCP
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c523t-3a5be8f43951885e1488c3acd09043b98d1a52576e44db1728bbfec0b62058503
IEDL.DBID RSV
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000824977500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1071-3581
1532-6551
IngestDate Wed Oct 01 14:46:55 EDT 2025
Sat Nov 29 14:26:31 EST 2025
Thu Apr 03 07:02:31 EDT 2025
Sat Nov 29 07:07:19 EST 2025
Tue Nov 18 22:15:16 EST 2025
Fri Feb 21 02:43:30 EST 2025
Mon Nov 10 09:15:14 EST 2025
Sat Mar 16 16:14:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords SSS
SDS
SRS
CAE
MPI
CAD
CBIR
SPECT
CHD
image interpretation
ML
PCA
Language English
License 2022. The Author(s) under exclusive licence to American Society of Nuclear Cardiology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-3a5be8f43951885e1488c3acd09043b98d1a52576e44db1728bbfec0b62058503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0827-874X
PMID 35802346
PQID 2805487484
PQPubID 54088
PageCount 10
ParticipantIDs proquest_miscellaneous_2687716487
proquest_journals_2805487484
pubmed_primary_35802346
crossref_primary_10_1007_s12350_022_03030_4
crossref_citationtrail_10_1007_s12350_022_03030_4
springer_journals_10_1007_s12350_022_03030_4
nii_cinii_1873679867905073024
elsevier_sciencedirect_doi_10_1007_s12350_022_03030_4
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: United States
– name: New York
PublicationTitle Journal of Nuclear Cardiology
PublicationTitleAbbrev J. Nucl. Cardiol
PublicationTitleAlternate J Nucl Cardiol
PublicationYear 2023
Publisher Elsevier Inc
Elsevier BV
Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
– name: Springer International Publishing
– name: Springer Nature B.V
References Higaki, Mahmoud, Paradis, Schiffrin (bib17) 2021; 58
Choe (bib23) 2021
Betancur (bib4) 2018; 11
Nakajima (bib13) 2007; 21
Dhara, Mukhopadhyay, Dutta, Garg, Khandelwal (bib9) 2017; 30
Seifert, Weber, Kocakavuk, Rischpler, Kersting (bib2) 2021; 51
Moroi, Yamashina, Tsukamoto, Nishimura (bib14) 2012; 158
Latif, Rasheed, Sajid, Ahmed, Ali, Ratyal (bib20) 2019; 2019
Guner (bib3) 2010; 17
Daoud, Saleh, Hababeh, Alazrai (bib10) 2019
Higaki, Kurokawa, Kazatani, Kido, Aono, Matsuda (bib21) 2021; 44
Klocke (bib11) 2003; 108
Le QV Building high-level features using large scale unsupervised learning. in
Hachamovitch, Rozanski, Shaw, Stone, Thomson, Friedman (bib1) 2011; 32
Lever, Krzywinski, Altman (bib16) 2017; 14
Sengupta (bib6) 2020; 13
.
Siradjuddin, Wardana, Sophan (bib22) 2019
Maron (bib15) 2018; 201
Kaplan Berkaya, Ak Sivrikoz, Gunal (bib5) 2020; 123
Vollmer, Mateen, Bohner, Király, Ghani, Jonsson (bib19) 2020; 368
Pasini (bib7) 2015; 7
8595–8598 (IEEE, 2013).
Cerqueira (bib12) 2002; 4
Müller, Michoux, Bandon, Geissbuhler (bib8) 2004; 73
Higaki, Uetani, Ikeda, Yamaguchi (bib18) 2020; 143
Lever, Krzywinski, Altman (CR16) 2017; 14
Hachamovitch, Rozanski, Shaw, Stone, Thomson, Friedman (CR1) 2011; 32
Seifert, Weber, Kocakavuk, Rischpler, Kersting (CR2) 2021; 51
Müller, Michoux, Bandon, Geissbuhler (CR8) 2004; 73
Maron (CR15) 2018; 201
Higaki, Mahmoud, Paradis, Schiffrin (CR17) 2021; 58
Kaplan Berkaya, Ak Sivrikoz, Gunal (CR5) 2020; 123
Sengupta (CR6) 2020; 13
Dhara, Mukhopadhyay, Dutta, Garg, Khandelwal (CR9) 2017; 30
Nakajima (CR13) 2007; 21
Choe (CR23) 2021
Klocke (CR11) 2003; 108
Higaki, Kurokawa, Kazatani, Kido, Aono, Matsuda (CR21) 2021; 44
CR24
Cerqueira (CR12) 2002; 4
CR22
CR10
Higaki, Uetani, Ikeda, Yamaguchi (CR18) 2020; 143
CR20
Vollmer, Mateen, Bohner, Király, Ghani, Jonsson (CR19) 2020; 368
Betancur (CR4) 2018; 11
Pasini (CR7) 2015; 7
Moroi, Yamashina, Tsukamoto, Nishimura (CR14) 2012; 158
Guner (CR3) 2010; 17
Nakajima (10.1007/s12350-022-03030-4_bib13) 2007; 21
Guner (10.1007/s12350-022-03030-4_bib3) 2010; 17
Vollmer (10.1007/s12350-022-03030-4_bib19) 2020; 368
Higaki (10.1007/s12350-022-03030-4_bib17) 2021; 58
Latif (10.1007/s12350-022-03030-4_bib20) 2019; 2019
Hachamovitch (10.1007/s12350-022-03030-4_bib1) 2011; 32
Cerqueira (10.1007/s12350-022-03030-4_bib12) 2002; 4
Klocke (10.1007/s12350-022-03030-4_bib11) 2003; 108
Pasini (10.1007/s12350-022-03030-4_bib7) 2015; 7
Maron (10.1007/s12350-022-03030-4_bib15) 2018; 201
Seifert (10.1007/s12350-022-03030-4_bib2) 2021; 51
Sengupta (10.1007/s12350-022-03030-4_bib6) 2020; 13
Moroi (10.1007/s12350-022-03030-4_bib14) 2012; 158
Daoud (10.1007/s12350-022-03030-4_bib10) 2019
Higaki (10.1007/s12350-022-03030-4_bib21) 2021; 44
Kaplan Berkaya (10.1007/s12350-022-03030-4_bib5) 2020; 123
10.1007/s12350-022-03030-4_bib24
Müller (10.1007/s12350-022-03030-4_bib8) 2004; 73
Lever (10.1007/s12350-022-03030-4_bib16) 2017; 14
Siradjuddin (10.1007/s12350-022-03030-4_bib22) 2019
Dhara (10.1007/s12350-022-03030-4_bib9) 2017; 30
Betancur (10.1007/s12350-022-03030-4_bib4) 2018; 11
Choe (10.1007/s12350-022-03030-4_bib23) 2021
Higaki (10.1007/s12350-022-03030-4_bib18) 2020; 143
References_xml – volume: 123
  year: 2020
  ident: bib5
  article-title: Classification models for SPECT myocardial perfusion imaging
  publication-title: Comput Biol Med
– year: 2019
  ident: bib10
  article-title: Content-based image retrieval for breast ultrasound images using convolutional autoencoders: A feasibility study
  publication-title: BioSMART 2019 - Proc. 3rd Int. Conf. Bio-Engineering Smart Technol.
– volume: 30
  start-page: 63
  year: 2017
  end-page: 77
  ident: bib9
  article-title: Content-based image retrieval system for pulmonary nodules: assisting radiologists in self-learning and diagnosis of lung cancer
  publication-title: J Digit Imaging
– volume: 58
  start-page: 379
  year: 2021
  end-page: 387
  ident: bib17
  article-title: Automated detection and diameter estimation for mouse mesenteric artery using semantic segmentation
  publication-title: J Vasc Res
– volume: 2019
  year: 2019
  ident: bib20
  article-title: Content-based image retrieval and feature extraction: a comprehensive review
  publication-title: Math Probl Eng
– volume: 73
  start-page: 1
  year: 2004
  end-page: 23
  ident: bib8
  article-title: A review of content-based image retrieval systems in medical applications: Clinical benefits and future directions
  publication-title: Int J Med Inform
– volume: 7
  start-page: 953
  year: 2015
  end-page: 960
  ident: bib7
  article-title: Artificial neural networks for small dataset analysis
  publication-title: J Thorac Dis
– volume: 11
  start-page: 1654
  year: 2018
  end-page: 1663
  ident: bib4
  article-title: Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: A multicenter study
  publication-title: JACC Cardiovasc Imaging
– volume: 13
  start-page: 2017
  year: 2020
  end-page: 2035
  ident: bib6
  article-title: Proposed requirements for cardiovascular imaging-related machine learning evaluation (PRIME): A checklist
  publication-title: JACC Cardiovasc Imaging
– volume: 108
  start-page: 1404
  year: 2003
  end-page: 1418
  ident: bib11
  article-title: ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging–executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guideli
  publication-title: Circulation
– volume: 4
  start-page: 203
  year: 2002
  end-page: 210
  ident: bib12
  article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart
  publication-title: J Cardiovasc Magn Reson
– reference: 8595–8598 (IEEE, 2013).
– volume: 17
  start-page: 405
  year: 2010
  end-page: 413
  ident: bib3
  article-title: An open-source framework of neural networks for diagnosis of coronary artery disease from myocardial perfusion SPECT
  publication-title: J Nucl Cardiol
– volume: 158
  start-page: 246
  year: 2012
  end-page: 252
  ident: bib14
  article-title: Coronary revascularization does not decrease cardiac events in patients with stable ischemic heart disease but might do in those who showed moderate to severe ischemia
  publication-title: Int J Cardiol
– volume: 143
  year: 2020
  ident: bib18
  article-title: Co-authorship network analysis in cardiovascular research utilizing machine learning (2009–2019)
  publication-title: Int J Med Inform
– year: 2021
  ident: bib23
  article-title: Content-based Image retrieval by using deep learning for interstitial lung disease diagnosis with chest CT
  publication-title: Radiology
– volume: 368
  start-page: 15
  year: 2020
  ident: bib19
  article-title: Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness
  publication-title: BMJ
– volume: 14
  start-page: 641
  year: 2017
  end-page: 642
  ident: bib16
  article-title: Points of significance: principal component analysis
  publication-title: Nat Methods
– volume: 32
  start-page: 1012
  year: 2011
  end-page: 1024
  ident: bib1
  article-title: Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy
  publication-title: Eur Heart J
– volume: 44
  start-page: 633
  year: 2021
  end-page: 640
  ident: bib21
  article-title: Image similarity-based cardiac rhythm device identification from X-rays using feature point matching
  publication-title: Pacing Clin Electrophysiol
– year: 2019
  ident: bib22
  article-title: Feature extraction using self-supervised convolutional autoencoder for content based image retrieval
  publication-title: ICICOS 2019 - 3rd Int. Conf. Informatics Comput. Sci. Accel. Informatics Comput. Res. Smarter Soc. Era Ind. 4.0, Proc.
– volume: 201
  start-page: 124
  year: 2018
  end-page: 135
  ident: bib15
  article-title: International study of comparative health effectiveness with medical and invasive approaches (ISCHEMIA) trial: Rationale and design
  publication-title: Am Heart J
– reference: .
– reference: Le QV Building high-level features using large scale unsupervised learning. in
– volume: 51
  start-page: 170
  year: 2021
  end-page: 177
  ident: bib2
  article-title: Artificial intelligence and machine learning in nuclear medicine: Future perspectives
  publication-title: Semin Nucl Med
– volume: 21
  start-page: 505
  year: 2007
  end-page: 511
  ident: bib13
  article-title: Creation and characterization of Japanese standards for myocardial perfusion SPECT: Database from the Japanese Society of Nuclear Medicine Working Group
  publication-title: Ann Nucl Med
– year: 2021
  ident: CR23
  article-title: Content-based Image retrieval by using deep learning for interstitial lung disease diagnosis with chest CT
  publication-title: Radiology
  doi: 10.1148/radiol.2021204164
– volume: 7
  start-page: 953
  year: 2015
  end-page: 960
  ident: CR7
  article-title: Artificial neural networks for small dataset analysis
  publication-title: J Thorac Dis
– ident: CR22
– volume: 73
  start-page: 1
  year: 2004
  end-page: 23
  ident: CR8
  article-title: A review of content-based image retrieval systems in medical applications: Clinical benefits and future directions
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2003.11.024
– volume: 30
  start-page: 63
  year: 2017
  end-page: 77
  ident: CR9
  article-title: Content-based image retrieval system for pulmonary nodules: assisting radiologists in self-learning and diagnosis of lung cancer
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-016-9904-y
– volume: 201
  start-page: 124
  year: 2018
  end-page: 135
  ident: CR15
  article-title: International study of comparative health effectiveness with medical and invasive approaches (ISCHEMIA) trial: Rationale and design
  publication-title: Am Heart J
  doi: 10.1016/j.ahj.2018.04.011
– volume: 108
  start-page: 1404
  year: 2003
  end-page: 1418
  ident: CR11
  article-title: ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging–executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guideli
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000080946.42225.4D
– volume: 158
  start-page: 246
  year: 2012
  end-page: 252
  ident: CR14
  article-title: Coronary revascularization does not decrease cardiac events in patients with stable ischemic heart disease but might do in those who showed moderate to severe ischemia
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2011.01.040
– volume: 51
  start-page: 170
  year: 2021
  end-page: 177
  ident: CR2
  article-title: Artificial intelligence and machine learning in nuclear medicine: Future perspectives
  publication-title: Semin Nucl Med
  doi: 10.1053/j.semnuclmed.2020.08.003
– volume: 123
  year: 2020
  ident: CR5
  article-title: Classification models for SPECT myocardial perfusion imaging
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103893
– volume: 368
  start-page: 15
  year: 2020
  ident: CR19
  article-title: Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness
  publication-title: BMJ
– ident: CR10
– volume: 143
  year: 2020
  ident: CR18
  article-title: Co-authorship network analysis in cardiovascular research utilizing machine learning (2009–2019)
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2020.104274
– volume: 32
  start-page: 1012
  year: 2011
  end-page: 1024
  ident: CR1
  article-title: Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehq500
– volume: 21
  start-page: 505
  year: 2007
  end-page: 511
  ident: CR13
  article-title: Creation and characterization of Japanese standards for myocardial perfusion SPECT: Database from the Japanese Society of Nuclear Medicine Working Group
  publication-title: Ann Nucl Med
  doi: 10.1007/s12149-007-0059-2
– volume: 14
  start-page: 641
  year: 2017
  end-page: 642
  ident: CR16
  article-title: Points of significance: principal component analysis
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4346
– volume: 58
  start-page: 379
  year: 2021
  end-page: 387
  ident: CR17
  article-title: Automated detection and diameter estimation for mouse mesenteric artery using semantic segmentation
  publication-title: J Vasc Res
  doi: 10.1159/000516842
– volume: 4
  start-page: 203
  year: 2002
  end-page: 210
  ident: CR12
  article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1081/JCMR-120003946
– volume: 11
  start-page: 1654
  year: 2018
  end-page: 1663
  ident: CR4
  article-title: Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: A multicenter study
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2018.01.020
– volume: 13
  start-page: 2017
  year: 2020
  end-page: 2035
  ident: CR6
  article-title: Proposed requirements for cardiovascular imaging-related machine learning evaluation (PRIME): A checklist
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2020.07.015
– ident: CR24
– ident: CR20
– volume: 44
  start-page: 633
  year: 2021
  end-page: 640
  ident: CR21
  article-title: Image similarity-based cardiac rhythm device identification from X-rays using feature point matching
  publication-title: Pacing Clin Electrophysiol
  doi: 10.1111/pace.14209
– volume: 17
  start-page: 405
  year: 2010
  end-page: 413
  ident: CR3
  article-title: An open-source framework of neural networks for diagnosis of coronary artery disease from myocardial perfusion SPECT
  publication-title: J Nucl Cardiol
  doi: 10.1007/s12350-010-9207-5
– volume: 7
  start-page: 953
  year: 2015
  ident: 10.1007/s12350-022-03030-4_bib7
  article-title: Artificial neural networks for small dataset analysis
  publication-title: J Thorac Dis
– volume: 11
  start-page: 1654
  year: 2018
  ident: 10.1007/s12350-022-03030-4_bib4
  article-title: Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: A multicenter study
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2018.01.020
– volume: 13
  start-page: 2017
  year: 2020
  ident: 10.1007/s12350-022-03030-4_bib6
  article-title: Proposed requirements for cardiovascular imaging-related machine learning evaluation (PRIME): A checklist
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2020.07.015
– volume: 73
  start-page: 1
  year: 2004
  ident: 10.1007/s12350-022-03030-4_bib8
  article-title: A review of content-based image retrieval systems in medical applications: Clinical benefits and future directions
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2003.11.024
– volume: 4
  start-page: 203
  year: 2002
  ident: 10.1007/s12350-022-03030-4_bib12
  article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1081/JCMR-120003946
– volume: 201
  start-page: 124
  year: 2018
  ident: 10.1007/s12350-022-03030-4_bib15
  article-title: International study of comparative health effectiveness with medical and invasive approaches (ISCHEMIA) trial: Rationale and design
  publication-title: Am Heart J
  doi: 10.1016/j.ahj.2018.04.011
– volume: 143
  year: 2020
  ident: 10.1007/s12350-022-03030-4_bib18
  article-title: Co-authorship network analysis in cardiovascular research utilizing machine learning (2009–2019)
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2020.104274
– volume: 123
  year: 2020
  ident: 10.1007/s12350-022-03030-4_bib5
  article-title: Classification models for SPECT myocardial perfusion imaging
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103893
– volume: 2019
  year: 2019
  ident: 10.1007/s12350-022-03030-4_bib20
  article-title: Content-based image retrieval and feature extraction: a comprehensive review
  publication-title: Math Probl Eng
  doi: 10.1155/2019/9658350
– volume: 21
  start-page: 505
  year: 2007
  ident: 10.1007/s12350-022-03030-4_bib13
  article-title: Creation and characterization of Japanese standards for myocardial perfusion SPECT: Database from the Japanese Society of Nuclear Medicine Working Group
  publication-title: Ann Nucl Med
  doi: 10.1007/s12149-007-0059-2
– volume: 368
  start-page: 15
  year: 2020
  ident: 10.1007/s12350-022-03030-4_bib19
  article-title: Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness
  publication-title: BMJ
– volume: 32
  start-page: 1012
  year: 2011
  ident: 10.1007/s12350-022-03030-4_bib1
  article-title: Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehq500
– volume: 51
  start-page: 170
  year: 2021
  ident: 10.1007/s12350-022-03030-4_bib2
  article-title: Artificial intelligence and machine learning in nuclear medicine: Future perspectives
  publication-title: Semin Nucl Med
  doi: 10.1053/j.semnuclmed.2020.08.003
– volume: 158
  start-page: 246
  year: 2012
  ident: 10.1007/s12350-022-03030-4_bib14
  article-title: Coronary revascularization does not decrease cardiac events in patients with stable ischemic heart disease but might do in those who showed moderate to severe ischemia
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2011.01.040
– volume: 30
  start-page: 63
  year: 2017
  ident: 10.1007/s12350-022-03030-4_bib9
  article-title: Content-based image retrieval system for pulmonary nodules: assisting radiologists in self-learning and diagnosis of lung cancer
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-016-9904-y
– year: 2019
  ident: 10.1007/s12350-022-03030-4_bib10
  article-title: Content-based image retrieval for breast ultrasound images using convolutional autoencoders: A feasibility study
  publication-title: BioSMART 2019 - Proc. 3rd Int. Conf. Bio-Engineering Smart Technol.
– ident: 10.1007/s12350-022-03030-4_bib24
  doi: 10.1109/ICASSP.2013.6639343
– volume: 58
  start-page: 379
  year: 2021
  ident: 10.1007/s12350-022-03030-4_bib17
  article-title: Automated detection and diameter estimation for mouse mesenteric artery using semantic segmentation
  publication-title: J Vasc Res
  doi: 10.1159/000516842
– volume: 17
  start-page: 405
  year: 2010
  ident: 10.1007/s12350-022-03030-4_bib3
  article-title: An open-source framework of neural networks for diagnosis of coronary artery disease from myocardial perfusion SPECT
  publication-title: J Nucl Cardiol
  doi: 10.1007/s12350-010-9207-5
– volume: 14
  start-page: 641
  year: 2017
  ident: 10.1007/s12350-022-03030-4_bib16
  article-title: Points of significance: principal component analysis
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4346
– volume: 44
  start-page: 633
  year: 2021
  ident: 10.1007/s12350-022-03030-4_bib21
  article-title: Image similarity-based cardiac rhythm device identification from X-rays using feature point matching
  publication-title: Pacing Clin Electrophysiol
  doi: 10.1111/pace.14209
– year: 2019
  ident: 10.1007/s12350-022-03030-4_bib22
  article-title: Feature extraction using self-supervised convolutional autoencoder for content based image retrieval
  publication-title: ICICOS 2019 - 3rd Int. Conf. Informatics Comput. Sci. Accel. Informatics Comput. Res. Smarter Soc. Era Ind. 4.0, Proc.
– year: 2021
  ident: 10.1007/s12350-022-03030-4_bib23
  article-title: Content-based Image retrieval by using deep learning for interstitial lung disease diagnosis with chest CT
  publication-title: Radiology
– volume: 108
  start-page: 1404
  year: 2003
  ident: 10.1007/s12350-022-03030-4_bib11
  article-title: ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging–executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guideli
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000080946.42225.4D
SSID ssj0009399
ssib060511058
ssib006796575
ssib006796577
Score 2.3966246
Snippet Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) plays a crucial role in the optimal treatment strategy for patients with...
Background Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) plays a crucial role in the optimal treatment strategy for...
BackgroundSingle-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) plays a crucial role in the optimal treatment strategy for...
SourceID proquest
pubmed
crossref
springer
nii
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 540
SubjectTerms CAD
Cardiology
Cardiovascular disease
Coronary Artery Disease
Coronary Artery Disease - diagnosis
Data visualization
Heart
Humans
image interpretation
Image retrieval
Imaging
Medical diagnosis
Medicine
Medicine & Public Health
MPI
Myocardial Perfusion Imaging
Myocardial Perfusion Imaging - methods
Neural Networks, Computer
Nuclear Medicine
Original Article
Radiology
SPECT
Tomography, Emission-Computed, Single-Photon
Tomography, Emission-Computed, Single-Photon - methods
Title Content-based image retrieval for the diagnosis of myocardial perfusion imaging using a deep convolutional autoencoder
URI https://dx.doi.org/10.1007/s12350-022-03030-4
https://cir.nii.ac.jp/crid/1873679867905073024
https://link.springer.com/article/10.1007/s12350-022-03030-4
https://www.ncbi.nlm.nih.gov/pubmed/35802346
https://www.proquest.com/docview/2805487484
https://www.proquest.com/docview/2687716487
Volume 30
WOSCitedRecordID wos000824977500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1532-6551
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib060511058
  issn: 1071-3581
  databaseCode: M~E
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1532-6551
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009399
  issn: 1071-3581
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbYghAX3tCFtjISN7Dk2Hk4R4RacaAVElDtzYpfKFKbXWWzlbj0tzPjOLsH2kpw8cUPOfZnz0xm_A0h74NveMmDZKG0juWwsawp68CkFYoHZbmL-VPOv1ZnZ2qxqL-lR2HrKdp9cknGm3r32E3IgjOMPgdgSs7yGblfINsM2ujfz3dUuzJmjQS7JmPI7pWeytw8xm3iaNa17U1K518O0yiHTp783xc8JY-T3kk_jUB5Ru757jl5eJo86y_IVaSp6gaGYs3R9hLuGdrHdFuARQqqLQVVkboxMq9d02Wgl79BECLALujK92GDP95iT5gUxYD6X7ShzvsVxdj2hHFo3GyGJfJnOt-_JD9Pjn98_sJSTgZmwWQdmGwK41UANQaZ3AoP1pSysrGO1zyXplYua5BgtfR57gwmvzImeMtNKThYJly-InvdsvP7hLrMNB6sS-GQIUcVBiyxygsualM7L_ycZNPWaJsIyzFvxoXeUS3jgmpYUB0XVOdz8mHbZzXSddzZuph2XCeFY1QkNMiTO_sdAjxgUlhmqpLoyiqR6gwvTAH1BxNwdLoS1hqwj9ZhrqD63bYaDjN6aJrOLzfQplQVGrCqmpPXI-C2n4H-aiHzck4-TujaDX77XN_8W_O35BHsgBxjkw7I3tBv_CF5YK-Gdt0fkVm1UFCeXh8fxUP3BwTDHlY
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoQZRLebZsacFI3MCSY-fhHBGiKmK7QqJUvVmOHyhSm11ls5X675lxkt0DbSW47MV25NhfPPPtjL8h5EPwhuc8SBZy61gKG8tMXgYmrVA8KMtdrJ9yPi1mM3VxUf4YLoUtx2z3MSQZT-rNZTchM84w-xyAKTlLt8jDFMvsIEf_eb6R2pWxaiTwmoShutdwVeb2Z9xljraaur7N6fwrYBrt0PHT_3uDZ2R38Dvp5x4oz8kD37wgj0-HyPpLch1lqpqOoVlztL6Cc4a2sdwWYJGCa0vBVaSuz8yrl3Qe6NUNGEIE2CVd-Das8I-3OBImRTGh_jc11Hm_oJjbPmAcOptVN0f9TOfbV-TX8dezLydsqMnALFDWjkmTVV4FcGNQyS3zwKaUlcY6XvJUVqVyiUGB1dynqauw-FVVBW95lQsOzITLPbLdzBv_mlCXVMYDuxQOFXJUVgETK7zgoqxK54WfkGTcGm0HwXKsm3GpN1LLuKAaFlTHBdXphHxcj1n0ch339s7GHdeDw9E7Ehrsyb3jjgAeMCn8TVQhMZSVo9QZHpgC2g9H4OjhSFhqwD6yw1RB8_t1M3zMGKExjZ-voE-uCiSwqpiQ_R5w69fAeLWQaT4hn0Z0bR5-91wP_q37O7JzcnY61dNvs-9vyBPYDdnnKR2S7a5d-SPyyF539bJ9Gz-6P_44HyE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZoQRUv5aYLLRiJN7Dq2E7iPKLCCkRZVRxV3yzHB4rUZlfZbCX-PTM5dpFoKyFe8uJDPj57ZjLjbwh5HYPlGY-Sxcx5pmBjmc2KyKQTmkftuO_yp5we57OZPjsrTv54xd9Fu48uyf5NA7I01e3hwsfDzcM3IVPOMBIdQCo5U1vktgJLBoO6vn473dDuyi6DJJQkDJm-hmczV_dxnWjaqqvqKgX0L-dpJ5Om9_5_NvfJ7qCP0nc9gB6QW6F-SHa-DB73R-TyqO-KobjztLqA-4c2XRouwCgFlZeCCkl9H7FXLek80otfICAReOd0EZq4wh9yXUsYIMVA-5_UUh_CgmLM-4B9qGxX7Rx5NX1oHpMf0w_fjz6yIVcDc2DKtkzatAw6gnqDDG9pACtLO2md5wVXsiy0TywSr2ZBKV9iUqyyjMHxMhMcLBYun5Dtel6HPUJ9UtoAVqfwyJyj0xIstDwILoqy8EGECUnGbTJuIDLHfBrnZkPBjAtqYEFNt6BGTcibdZtFT-NxY-103H0zKCK9gmFAztzY7gCgAoPCb6JziS6uDCnQ8CIVUL4_gsgMV8XSwJlAq1FpKH61LoZDjp4bW4f5CupkOkfDVucT8rQH33oa6McWUmUT8nZE2qbz68f67N-qvyQ7J--n5vjT7PNzchc2Q_bhS_tku21W4YDccZdttWxedOfvN4GvKAU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Content-based+image+retrieval+for+the+diagnosis+of+myocardial+perfusion+imaging+using+a+deep+convolutional+autoencoder&rft.jtitle=Journal+of+nuclear+cardiology&rft.au=Higaki+Akinori&rft.au=Kawaguchi+Naoto&rft.au=Kurokawa+Tsukasa&rft.au=Okabe+Hikaru&rft.date=2023-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1071-3581&rft.eissn=1532-6551&rft.volume=30&rft.issue=2&rft.spage=540&rft.epage=549&rft_id=info:doi/10.1007%2Fs12350-022-03030-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1071-3581&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1071-3581&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1071-3581&client=summon