On the Asymptotic Behavior of Eigenvalues and Eigenfunctions of the Robin Problem with Large Parameter

We consider the eigenvalue problem with Robin boundary condition Δu + λu = 0 in Ω, ∂u/∂ν + αu = 0 on ∂Ω, where Ω ⊂ ℝ n , n ≥ 2 is a bounded domain with a smooth boundary, ν is the outward unit normal, α is a real parameter. We obtain two terms of the asymptotic expansion of simple eigenvalues of thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical modelling and analysis Jg. 22; H. 1; S. 37 - 51
1. Verfasser: Filinovskiy, Alexey V.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Taylor & Francis 02.01.2017
Vilnius Gediminas Technical University
Schlagworte:
ISSN:1392-6292, 1648-3510
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the eigenvalue problem with Robin boundary condition Δu + λu = 0 in Ω, ∂u/∂ν + αu = 0 on ∂Ω, where Ω ⊂ ℝ n , n ≥ 2 is a bounded domain with a smooth boundary, ν is the outward unit normal, α is a real parameter. We obtain two terms of the asymptotic expansion of simple eigenvalues of this problem for α → +∞. We also prove an estimate to the difference between Robin and Dirichlet eigenfunctions.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1392-6292
1648-3510
DOI:10.3846/13926292.2017.1263244