On the Asymptotic Behavior of Eigenvalues and Eigenfunctions of the Robin Problem with Large Parameter
We consider the eigenvalue problem with Robin boundary condition Δu + λu = 0 in Ω, ∂u/∂ν + αu = 0 on ∂Ω, where Ω ⊂ ℝ n , n ≥ 2 is a bounded domain with a smooth boundary, ν is the outward unit normal, α is a real parameter. We obtain two terms of the asymptotic expansion of simple eigenvalues of thi...
Gespeichert in:
| Veröffentlicht in: | Mathematical modelling and analysis Jg. 22; H. 1; S. 37 - 51 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Taylor & Francis
02.01.2017
Vilnius Gediminas Technical University |
| Schlagworte: | |
| ISSN: | 1392-6292, 1648-3510 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We consider the eigenvalue problem with Robin boundary condition Δu + λu = 0 in Ω, ∂u/∂ν + αu = 0 on ∂Ω, where Ω ⊂ ℝ
n
, n ≥ 2 is a bounded domain with a smooth boundary, ν is the outward unit normal, α is a real parameter. We obtain two terms of the asymptotic expansion of simple eigenvalues of this problem for α → +∞. We also prove an estimate to the difference between Robin and Dirichlet eigenfunctions. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1392-6292 1648-3510 |
| DOI: | 10.3846/13926292.2017.1263244 |