On the Asymptotic Behavior of Eigenvalues and Eigenfunctions of the Robin Problem with Large Parameter

We consider the eigenvalue problem with Robin boundary condition Δu + λu = 0 in Ω, ∂u/∂ν + αu = 0 on ∂Ω, where Ω ⊂ ℝ n , n ≥ 2 is a bounded domain with a smooth boundary, ν is the outward unit normal, α is a real parameter. We obtain two terms of the asymptotic expansion of simple eigenvalues of thi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical modelling and analysis Ročník 22; číslo 1; s. 37 - 51
Hlavní autor: Filinovskiy, Alexey V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis 02.01.2017
Vilnius Gediminas Technical University
Témata:
ISSN:1392-6292, 1648-3510
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the eigenvalue problem with Robin boundary condition Δu + λu = 0 in Ω, ∂u/∂ν + αu = 0 on ∂Ω, where Ω ⊂ ℝ n , n ≥ 2 is a bounded domain with a smooth boundary, ν is the outward unit normal, α is a real parameter. We obtain two terms of the asymptotic expansion of simple eigenvalues of this problem for α → +∞. We also prove an estimate to the difference between Robin and Dirichlet eigenfunctions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1392-6292
1648-3510
DOI:10.3846/13926292.2017.1263244