On the Asymptotic Behavior of Eigenvalues and Eigenfunctions of the Robin Problem with Large Parameter
We consider the eigenvalue problem with Robin boundary condition Δu + λu = 0 in Ω, ∂u/∂ν + αu = 0 on ∂Ω, where Ω ⊂ ℝ n , n ≥ 2 is a bounded domain with a smooth boundary, ν is the outward unit normal, α is a real parameter. We obtain two terms of the asymptotic expansion of simple eigenvalues of thi...
Uloženo v:
| Vydáno v: | Mathematical modelling and analysis Ročník 22; číslo 1; s. 37 - 51 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Taylor & Francis
02.01.2017
Vilnius Gediminas Technical University |
| Témata: | |
| ISSN: | 1392-6292, 1648-3510 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider the eigenvalue problem with Robin boundary condition Δu + λu = 0 in Ω, ∂u/∂ν + αu = 0 on ∂Ω, where Ω ⊂ ℝ
n
, n ≥ 2 is a bounded domain with a smooth boundary, ν is the outward unit normal, α is a real parameter. We obtain two terms of the asymptotic expansion of simple eigenvalues of this problem for α → +∞. We also prove an estimate to the difference between Robin and Dirichlet eigenfunctions. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1392-6292 1648-3510 |
| DOI: | 10.3846/13926292.2017.1263244 |