Regulation of angiotensinogen by angiotensin II in mouse primary astrocyte cultures

J. Neurochem. (2011) 119, 18–26. Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain renin‐angiotensin system. Regulating brain angiotensinogen production alters blood pressure and fluid and electrolyte homeostasis. In turn, several physiological a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurochemistry Jg. 119; H. 1; S. 18 - 26
Hauptverfasser: O’Callaghan, E. L., Bassi, J. K., Porrello, E. R., Delbridge, L. M. D., Thomas, W. G., Allen, A. M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.10.2011
Wiley-Blackwell
Schlagworte:
ISSN:0022-3042, 1471-4159, 1471-4159
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract J. Neurochem. (2011) 119, 18–26. Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain renin‐angiotensin system. Regulating brain angiotensinogen production alters blood pressure and fluid and electrolyte homeostasis. In turn, several physiological and pathological manipulations alter expression of angiotensinogen in brain. Surprisingly, little is known about the factors that regulate astrocytic expression of angiotensinogen. There is evidence that angiotensinogen production in both hepatocytes and cardiac myocytes can be positively regulated via the angiotensin type 1 receptor, but this effect has not yet been studied in astrocytes. Therefore, the aim of this project was to establish whether angiotensin II modulates angiotensinogen production in brain astrocytes. Primary astrocyte cultures, prepared from neonatal C57Bl6 mice, expressed angiotensinogen measured by immunocytochemistry and real‐time PCR. Using a variety of approaches we were unable to identify angiotensin receptors on cultured astrocytes. Exposure of cultured astrocytes to angiotensin II also did not affect angiotensinogen expression. When astrocyte cultures were transduced with the angiotensin type 1A receptor, using adenoviral vectors, angiotensin II induced a robust down‐regulation (91.4% ± 1.8%, p < 0.01, n = 4) of angiotensinogen gene expression. We conclude that receptors for angiotensin II are present in extremely low levels in astrocytes, and that this concurs with available data in vivo. The signaling pathways activated by the angiotensin type 1A receptor are negatively coupled to angiotensinogen expression and represent a powerful pathway for decreasing expression of this protein, potentially via signaling pathways coupled to Gαq/11.
AbstractList Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain renin-angiotensin system. Regulating brain angiotensinogen production alters blood pressure and fluid and electrolyte homeostasis. In turn, several physiological and pathological manipulations alter expression of angiotensinogen in brain. Surprisingly, little is known about the factors that regulate astrocytic expression of angiotensinogen. There is evidence that angiotensinogen production in both hepatocytes and cardiac myocytes can be positively regulated via the angiotensin type 1 receptor, but this effect has not yet been studied in astrocytes. Therefore, the aim of this project was to establish whether angiotensin II modulates angiotensinogen production in brain astrocytes. Primary astrocyte cultures, prepared from neonatal C57Bl6 mice, expressed angiotensinogen measured by immunocytochemistry and real-time PCR. Using a variety of approaches we were unable to identify angiotensin receptors on cultured astrocytes. Exposure of cultured astrocytes to angiotensin II also did not affect angiotensinogen expression. When astrocyte cultures were transduced with the angiotensin type 1A receptor, using adenoviral vectors, angiotensin II induced a robust down-regulation (91.4%+/-1.8%, p<0.01, n=4) of angiotensinogen gene expression. We conclude that receptors for angiotensin II are present in extremely low levels in astrocytes, and that this concurs with available data in vivo. The signaling pathways activated by the angiotensin type 1A receptor are negatively coupled to angiotensinogen expression and represent a powerful pathway for decreasing expression of this protein, potentially via signaling pathways coupled to G alpha q/11.Original Abstract: J. Neurochem. (2011) 119, 18-26.
Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain renin-angiotensin system. Regulating brain angiotensinogen production alters blood pressure and fluid and electrolyte homeostasis. In turn, several physiological and pathological manipulations alter expression of angiotensinogen in brain. Surprisingly, little is known about the factors that regulate astrocytic expression of angiotensinogen. There is evidence that angiotensinogen production in both hepatocytes and cardiac myocytes can be positively regulated via the angiotensin type 1 receptor, but this effect has not yet been studied in astrocytes. Therefore, the aim of this project was to establish whether angiotensin II modulates angiotensinogen production in brain astrocytes. Primary astrocyte cultures, prepared from neonatal C57Bl6 mice, expressed angiotensinogen measured by immunocytochemistry and real-time PCR. Using a variety of approaches we were unable to identify angiotensin receptors on cultured astrocytes. Exposure of cultured astrocytes to angiotensin II also did not affect angiotensinogen expression. When astrocyte cultures were transduced with the angiotensin type 1A receptor, using adenoviral vectors, angiotensin II induced a robust down-regulation (91.4% ± 1.8%, p < 0.01, n = 4) of angiotensinogen gene expression. We conclude that receptors for angiotensin II are present in extremely low levels in astrocytes, and that this concurs with available data in vivo. The signaling pathways activated by the angiotensin type 1A receptor are negatively coupled to angiotensinogen expression and represent a powerful pathway for decreasing expression of this protein, potentially via signaling pathways coupled to Gα(q/11) .Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain renin-angiotensin system. Regulating brain angiotensinogen production alters blood pressure and fluid and electrolyte homeostasis. In turn, several physiological and pathological manipulations alter expression of angiotensinogen in brain. Surprisingly, little is known about the factors that regulate astrocytic expression of angiotensinogen. There is evidence that angiotensinogen production in both hepatocytes and cardiac myocytes can be positively regulated via the angiotensin type 1 receptor, but this effect has not yet been studied in astrocytes. Therefore, the aim of this project was to establish whether angiotensin II modulates angiotensinogen production in brain astrocytes. Primary astrocyte cultures, prepared from neonatal C57Bl6 mice, expressed angiotensinogen measured by immunocytochemistry and real-time PCR. Using a variety of approaches we were unable to identify angiotensin receptors on cultured astrocytes. Exposure of cultured astrocytes to angiotensin II also did not affect angiotensinogen expression. When astrocyte cultures were transduced with the angiotensin type 1A receptor, using adenoviral vectors, angiotensin II induced a robust down-regulation (91.4% ± 1.8%, p < 0.01, n = 4) of angiotensinogen gene expression. We conclude that receptors for angiotensin II are present in extremely low levels in astrocytes, and that this concurs with available data in vivo. The signaling pathways activated by the angiotensin type 1A receptor are negatively coupled to angiotensinogen expression and represent a powerful pathway for decreasing expression of this protein, potentially via signaling pathways coupled to Gα(q/11) .
J. Neurochem. (2011) 119, 18–26. Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain renin‐angiotensin system. Regulating brain angiotensinogen production alters blood pressure and fluid and electrolyte homeostasis. In turn, several physiological and pathological manipulations alter expression of angiotensinogen in brain. Surprisingly, little is known about the factors that regulate astrocytic expression of angiotensinogen. There is evidence that angiotensinogen production in both hepatocytes and cardiac myocytes can be positively regulated via the angiotensin type 1 receptor, but this effect has not yet been studied in astrocytes. Therefore, the aim of this project was to establish whether angiotensin II modulates angiotensinogen production in brain astrocytes. Primary astrocyte cultures, prepared from neonatal C57Bl6 mice, expressed angiotensinogen measured by immunocytochemistry and real‐time PCR. Using a variety of approaches we were unable to identify angiotensin receptors on cultured astrocytes. Exposure of cultured astrocytes to angiotensin II also did not affect angiotensinogen expression. When astrocyte cultures were transduced with the angiotensin type 1A receptor, using adenoviral vectors, angiotensin II induced a robust down‐regulation (91.4% ± 1.8%, p < 0.01, n = 4) of angiotensinogen gene expression. We conclude that receptors for angiotensin II are present in extremely low levels in astrocytes, and that this concurs with available data in vivo. The signaling pathways activated by the angiotensin type 1A receptor are negatively coupled to angiotensinogen expression and represent a powerful pathway for decreasing expression of this protein, potentially via signaling pathways coupled to Gαq/11.
Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain renin-angiotensin system. Regulating brain angiotensinogen production alters blood pressure and fluid and electrolyte homeostasis. In turn, several physiological and pathological manipulations alter expression of angiotensinogen in brain. Surprisingly, little is known about the factors that regulate astrocytic expression of angiotensinogen. There is evidence that angiotensinogen production in both hepatocytes and cardiac myocytes can be positively regulated via the angiotensin type 1 receptor, but this effect has not yet been studied in astrocytes. Therefore, the aim of this project was to establish whether angiotensin II modulates angiotensinogen production in brain astrocytes. Primary astrocyte cultures, prepared from neonatal C57Bl6 mice, expressed angiotensinogen measured by immunocytochemistry and real-time PCR. Using a variety of approaches we were unable to identify angiotensin receptors on cultured astrocytes. Exposure of cultured astrocytes to angiotensin II also did not affect angiotensinogen expression. When astrocyte cultures were transduced with the angiotensin type 1A receptor, using adenoviral vectors, angiotensin II induced a robust down-regulation (91.4% ± 1.8%, p < 0.01, n = 4) of angiotensinogen gene expression. We conclude that receptors for angiotensin II are present in extremely low levels in astrocytes, and that this concurs with available data in vivo. The signaling pathways activated by the angiotensin type 1A receptor are negatively coupled to angiotensinogen expression and represent a powerful pathway for decreasing expression of this protein, potentially via signaling pathways coupled to Gα(q/11) .
J. Neurochem. (2011) 119, 18-26. Abstract Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain renin-angiotensin system. Regulating brain angiotensinogen production alters blood pressure and fluid and electrolyte homeostasis. In turn, several physiological and pathological manipulations alter expression of angiotensinogen in brain. Surprisingly, little is known about the factors that regulate astrocytic expression of angiotensinogen. There is evidence that angiotensinogen production in both hepatocytes and cardiac myocytes can be positively regulated via the angiotensin type 1 receptor, but this effect has not yet been studied in astrocytes. Therefore, the aim of this project was to establish whether angiotensin II modulates angiotensinogen production in brain astrocytes. Primary astrocyte cultures, prepared from neonatal C57Bl6 mice, expressed angiotensinogen measured by immunocytochemistry and real-time PCR. Using a variety of approaches we were unable to identify angiotensin receptors on cultured astrocytes. Exposure of cultured astrocytes to angiotensin II also did not affect angiotensinogen expression. When astrocyte cultures were transduced with the angiotensin type 1A receptor, using adenoviral vectors, angiotensin II induced a robust down-regulation (91.4%±1.8%, p<0.01, n=4) of angiotensinogen gene expression. We conclude that receptors for angiotensin II are present in extremely low levels in astrocytes, and that this concurs with available data in vivo. The signaling pathways activated by the angiotensin type 1A receptor are negatively coupled to angiotensinogen expression and represent a powerful pathway for decreasing expression of this protein, potentially via signaling pathways coupled to Gαq/11. [PUBLICATION ABSTRACT]
Author Porrello, E. R.
Delbridge, L. M. D.
Bassi, J. K.
Thomas, W. G.
O’Callaghan, E. L.
Allen, A. M.
Author_xml – sequence: 1
  givenname: E. L.
  surname: O’Callaghan
  fullname: O’Callaghan, E. L.
– sequence: 2
  givenname: J. K.
  surname: Bassi
  fullname: Bassi, J. K.
– sequence: 3
  givenname: E. R.
  surname: Porrello
  fullname: Porrello, E. R.
– sequence: 4
  givenname: L. M. D.
  surname: Delbridge
  fullname: Delbridge, L. M. D.
– sequence: 5
  givenname: W. G.
  surname: Thomas
  fullname: Thomas, W. G.
– sequence: 6
  givenname: A. M.
  surname: Allen
  fullname: Allen, A. M.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24603464$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21797869$$D View this record in MEDLINE/PubMed
BookMark eNqNkV9v2yAUxdHUak27fYXJmjTtye69GIN52KQqWrtMVSftzzMiBEdEDnRga823H26ybupLywMg7u8e4JxTcuSDt4QUCBXmcb6pkAksGTayooBYgWDAq7sXZPZQOCIzAErLGhg9IacpbQCQM44vyQlFIUXL5Yx8_2bXY68HF3wRukL7tQuD9cn5sLa-WO7-PyoWiyLP2zAmW9xGt9Ux19MQg9kNtjBjP4zRplfkuNN9sq8P6xn5efnpx_xzef31ajG_uC5NQ2teNswg6wSipJRT6AzIFbdGM40ttN2SLw0KbFYABjXrakMbaqFrbN0yACHqM_J-r3sbw6_RpkFtXTK277W3-YlKZqs4B4FPkm0rMQvSiXz7iNyEMfr8jQy1yCTnMkNvDtC43NqVOlih_tqagXcHQCej-y5qb1z6xzEONeMsc-2eMzGkFG33gCCoKWm1UVOgagpUTUmr-6TVXW79-KjVuOE-xyFq1z9H4MNe4Lfr7e7ZF6svN_NpV_8BX9q_3A
CODEN JONRA9
CitedBy_id crossref_primary_10_1016_j_yfrne_2016_09_003
crossref_primary_10_1161_STROKEAHA_116_016269
crossref_primary_10_1016_j_neurobiolaging_2014_10_028
crossref_primary_10_1016_j_neuroscience_2012_08_039
crossref_primary_10_1161_HYPERTENSIONAHA_117_08550
crossref_primary_10_1271_bbb_120123
crossref_primary_10_1016_j_neuroscience_2020_06_029
crossref_primary_10_1161_HYPERTENSIONAHA_116_07747
crossref_primary_10_1152_ajpregu_00078_2015
crossref_primary_10_1097_MNH_0b013e3283574c3b
crossref_primary_10_1038_s41440_019_0374_8
crossref_primary_10_1016_j_brainres_2016_04_059
crossref_primary_10_1155_2019_4957879
crossref_primary_10_3892_mmr_2017_7547
crossref_primary_10_1007_s11064_018_2557_0
crossref_primary_10_1016_j_phrs_2017_05_009
crossref_primary_10_1016_j_physbeh_2018_07_017
crossref_primary_10_1152_physrev_00042_2016
crossref_primary_10_1186_s13293_018_0173_y
crossref_primary_10_3389_fncel_2023_1111263
Cites_doi 10.1161/hh1601.094988
10.1210/mend-4-12-1921
10.1016/S0306-4522(97)00601-5
10.1073/pnas.84.13.4655
10.1016/j.regpep.2009.09.001
10.1161/01.RES.85.2.137
10.1073/pnas.92.7.2735
10.1210/en.2003-0150
10.1161/01.HYP.18.1.32
10.1152/ajpregu.00435.2005
10.1152/ajpcell.00433.2006
10.1016/S0028-3908(02)00111-9
10.1016/0092-8674(92)90275-H
10.1172/JCI119343
10.1016/0006-8993(92)91575-Y
10.1016/S0006-8993(99)01373-6
10.1016/0006-8993(87)91260-1
10.1523/JNEUROSCI.2088-07.2007
10.1016/S0306-4522(03)00606-7
10.1172/JCI41709
10.1161/HYPERTENSIONAHA.110.165464
10.1210/en.130.3.1331
10.1016/0306-4522(88)90029-2
10.1210/en.138.10.4176
10.1002/glia.1078
10.1161/hh0202.104109
10.1002/cne.903160407
10.1161/01.HYP.27.3.465
10.1111/j.1365-2826.2004.01194.x
10.1016/S0306-4522(97)00328-X
10.1038/2070
10.1016/0304-3940(93)90524-O
10.1016/S0169-328X(98)00308-8
10.1016/0891-0618(92)90049-V
10.1016/j.bbi.2010.09.015
10.1016/j.metabol.2009.11.016
10.1016/S0196-9781(97)00192-7
10.1210/mend.12.5.0108
10.1111/j.1460-9568.2007.06014.x
10.1161/01.HYP.0000112030.79692.21
10.1007/s001090100210
10.1007/s003950070025
10.1097/01.hjh.0000166834.32817.41
10.3109/10641968709159073
10.1161/01.RES.72.6.1245
10.1126/science.3201232
10.1073/pnas.91.9.3774
10.1161/01.HYP.0000218576.36574.54
10.1016/j.brainres.2005.12.044
10.1080/07300077.1988.11878797
10.1677/joe.0.1150311
10.1172/JCI31242
10.1073/pnas.96.7.3975
10.1073/pnas.88.17.7567
ContentType Journal Article
Copyright 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry
2015 INIST-CNRS
2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
Copyright_xml – notice: 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry
– notice: 2015 INIST-CNRS
– notice: 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
DOI 10.1111/j.1471-4159.2011.07406.x
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Toxicology Abstracts
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts
MEDLINE - Academic

MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1471-4159
EndPage 26
ExternalDocumentID 2446810741
21797869
24603464
10_1111_j_1471_4159_2011_07406_x
JNC7406
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29L
2WC
31~
33P
36B
3SF
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
GX1
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UB1
V8K
VH1
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
X7M
XG1
XJT
YFH
YNH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
ID FETCH-LOGICAL-c5236-54c14f711922620fc09d6eca4a1808fb6bc1715d00c1a4f3c252e0f5e38400773
IEDL.DBID WIN
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000295054300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-3042
1471-4159
IngestDate Fri Jul 11 12:44:00 EDT 2025
Wed Oct 01 14:58:38 EDT 2025
Fri Jul 25 19:44:12 EDT 2025
Mon Jul 21 05:49:59 EDT 2025
Mon Jul 21 09:12:18 EDT 2025
Sat Nov 29 06:49:17 EST 2025
Tue Nov 18 22:23:41 EST 2025
Wed Jan 22 16:56:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Neonatal
Liver
Neuroglia
Central nervous system
Homeostasis
angiotensinogen
Encephalon
Myocyte
Hepatocyte
Primary culture
Blood pressure
qPCR
Angiotensin II
G protein-coupled receptor
Digestive system
Rodentia
Astrocyte
Angiotensin receptor
Vertebrata
Renin angiotensin system
Mammalia
Electrolyte
Mouse
cultures
Hemodynamics
astrocytes
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5236-54c14f711922620fc09d6eca4a1808fb6bc1715d00c1a4f3c252e0f5e38400773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 21797869
PQID 888149669
PQPubID 31528
PageCount 9
ParticipantIDs proquest_miscellaneous_911166071
proquest_miscellaneous_889177321
proquest_journals_888149669
pubmed_primary_21797869
pascalfrancis_primary_24603464
crossref_primary_10_1111_j_1471_4159_2011_07406_x
crossref_citationtrail_10_1111_j_1471_4159_2011_07406_x
wiley_primary_10_1111_j_1471_4159_2011_07406_x_JNC7406
PublicationCentury 2000
PublicationDate October 2011
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: October 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
– name: New York
PublicationTitle Journal of neurochemistry
PublicationTitleAlternate J Neurochem
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
References 1991; 18
1987; 420
2010; 59
1987; 9
2000; 95
2011; 57
1999; 85
1998; 82
1998; 85
2001; 89
1998; 275
2005; 23
2010; 25
1987; 84
1997; 99
2007; 293
1993; 72
1987; 115
1991; 88
2010; 159
2008; 27
2002; 43
1997; 18
1992; 316
1999; 96
2002; 90
1996; 27
2003; 122
1998; 12
1992; 5
2007; 27
2004; 43
2004; 44
1997; 138
1995; 92
2001; 281
2006; 1073–1074
1992; 588
1988; 10
2010; 120
1999; 64
1988; 242
1992; 71
2007; 117
1992; 130
2004; 16
2005; 289
1988; 25
2006; 47
1993; 150
1994; 91
1999; 830
2001; 79
2001; 35
1998; 4
2003; 144
1990; 4
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Sherrod M. (e_1_2_8_44_1) 2004; 44
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Smith R. D. (e_1_2_8_46_1) 1998; 12
Yosipiv I. V. (e_1_2_8_58_1) 2001; 281
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
Tamura K. (e_1_2_8_51_1) 1998; 275
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 47
  start-page: 1054
  issue: 6
  year: 2006
  end-page: 1061
  article-title: Expression of constitutively active angiotensin receptors in the rostral ventrolateral medulla increases blood pressure
  publication-title: Hypertension
– volume: 88
  start-page: 7567
  issue: 17
  year: 1991
  end-page: 7571
  article-title: Angiotensin II receptor subtypes are coupled with distinct signal‐transduction mechanisms in neurons and astrocytes from rat brain
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 82
  start-page: 827
  issue: 3
  year: 1998
  end-page: 841
  article-title: Distribution of angiotensin type‐1 receptor messenger RNA expression in the adult rat brain
  publication-title: Neuroscience
– volume: 115
  start-page: 311
  issue: 2
  year: 1987
  end-page: 315
  article-title: Effect of thyroid hormones on angiotensinogen production in the rat in vivo and in vitro
  publication-title: J. Endocrinol.
– volume: 43
  start-page: 189
  issue: 2
  year: 2002
  article-title: Astrocyte mGlu2/3‐mediated cAMP potentiation is calcium sensitive: studies in murine neuronal and astrocyte cultures
  publication-title: Neuropharmacology
– volume: 420
  start-page: 375
  issue: 2
  year: 1987
  end-page: 379
  article-title: Angiotensin receptor binding in human hypothalamus: autoradiographic localization
  publication-title: Brain Res.
– volume: 316
  start-page: 467
  issue: 4
  year: 1992
  end-page: 484
  article-title: Mapping of angiotensin II receptor subtype heterogeneity in rat brain
  publication-title: J. Comp. Neurol.
– volume: 122
  start-page: 21
  issue: 1
  year: 2003
  end-page: 36
  article-title: Angiotensin II subtype 1A (AT1A) receptors in the rat sensory vagal complex: subcellular localization and association with endogenous angiotensin
  publication-title: Neuroscience
– volume: 44
  start-page: 502
  issue: 4
  year: 2004
  end-page: 502
  article-title: Genetic deletion of angiotensinogen specifically in astrocytes lowers blood pressure in hypertensive transgenic mice
  publication-title: Hypertension
– volume: 89
  start-page: 365
  issue: 4
  year: 2001
  end-page: 372
  article-title: Elevated blood pressure in transgenic mice with brain‐specific expression of human angiotensinogen driven by the glial fibrillary acidic protein promoter
  publication-title: Circ. Res.
– volume: 95
  start-page: 485
  issue: 6
  year: 2000
  end-page: 490
  article-title: Regulation of angiotensinogen gene expression and protein in neonatal rat cardiac fibroblasts by glucocorticoid and beta‐adrenergic stimulation
  publication-title: Basic Res. Cardiol.
– volume: 64
  start-page: 151
  issue: 2
  year: 1999
  end-page: 164
  article-title: Differential regulation of angiotensinogen and AT1A receptor mRNA within the rat subfornical organ during dehydration
  publication-title: Brain Res. Mol. Brain Res.
– volume: 84
  start-page: 4655
  issue: 13
  year: 1987
  end-page: 4659
  article-title: Distinct angiotensin II receptor in primary cultures of glial cells from rat brain
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 2027
  issue: 12
  year: 1987
  end-page: 2047
  article-title: Induction of angiotensinogen synthesis and secretion by angiotensin II
  publication-title: Clin. Exp. Hypertens. A
– volume: 130
  start-page: 1331
  issue: 3
  year: 1992
  end-page: 1338
  article-title: Stimulation of angiotensinogen production in primary cultures of rat hepatocytes by glucocorticoid, cyclic adenosine 3’,5’‐monophosphate, and interleukin‐6
  publication-title: Endocrinology
– volume: 289
  start-page: R1763
  issue: 6
  year: 2005
  end-page: R1769
  article-title: Glial‐specific ablation of angiotensinogen lowers arterial pressure in renin and angiotensinogen transgenic mice
  publication-title: Am. J. Physiol.
– volume: 90
  start-page: 135
  year: 2002
  end-page: 142
  article-title: Adenoviral‐directed expression of the type 1A angiotensin receptor promotes cariomyocyte hypertrophy via transactivation of the epidermal growth factor receptor
  publication-title: Circ. Res.
– volume: 138
  start-page: 4176
  issue: 10
  year: 1997
  end-page: 4180
  article-title: Growth hormone regulates AT‐1a angiotensin receptors in astrocytes
  publication-title: Endocrinology
– volume: 10
  start-page: 1009
  issue: 6
  year: 1988
  end-page: 1022
  article-title: Induction of angiotensinogen mRNA in hepatocytes by angiotensin II and glucocorticoids
  publication-title: Clin. Exp. Hypertens. A
– volume: 16
  start-page: 508
  issue: 6
  year: 2004
  end-page: 515
  article-title: Oestrogenic regulation of brain angiotensinogen
  publication-title: J. Neuroendocrinol.
– volume: 99
  start-page: 1786
  issue: 7
  year: 1997
  end-page: 1797
  article-title: A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro
  publication-title: J. Clin. Invest.
– volume: 120
  start-page: 2782
  issue: 8
  year: 2010
  end-page: 2794
  article-title: Angiotensin II sustains brain inflammation in mice via TGF‐beta
  publication-title: J. Clin. Invest.
– volume: 18
  start-page: 32
  issue: 1
  year: 1991
  end-page: 39
  article-title: Human astrocytes contain two distinct angiotensin receptor subtypes
  publication-title: Hypertension
– volume: 12
  start-page: 634
  issue: 5
  year: 1998
  end-page: 644
  article-title: Agonist‐induced phosphorylation of the endogenous AT1 angiotensin receptor in bovine adrenal glomerulosa cells
  publication-title: Mol. Endocrinol.
– volume: 144
  start-page: 2179
  issue: 6
  year: 2003
  end-page: 2183
  article-title: Minireview: overview of the renin‐angiotensin system‐‐an endocrine and paracrine system
  publication-title: Endocrinology
– volume: 27
  start-page: 343
  issue: 2
  year: 2008
  end-page: 351
  article-title: Angiotensin type 1 receptor antagonist inhibits lipopolysaccharide‐induced stimulation of rat microglial cells by suppressing nuclear factor kappaB and activator protein‐1 activation
  publication-title: Eur. J. Neurosci
– volume: 43
  start-page: 317
  issue: 2
  year: 2004
  end-page: 323
  article-title: Endogenous angiotensin and pressure modulate brain angiotensinogen and AT1A mRNA expression
  publication-title: Hypertension
– volume: 5
  start-page: 245
  issue: 3
  year: 1992
  end-page: 262
  article-title: The semi‐quantitative distribution and cellular localization of angiotensinogen mRNA in the rat brain
  publication-title: J. Chem. Neuroanat.
– volume: 91
  start-page: 3774
  issue: 9
  year: 1994
  end-page: 3778
  article-title: Properties of angiotensin II receptors in glial cells from the adult corpus callosum
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 79
  start-page: 76
  issue: 2‐3
  year: 2001
  end-page: 102
  article-title: Tissue renin‐angiotensin systems: new insights from experimental animal models in hypertension research
  publication-title: J. Mol. Med.
– volume: 150
  start-page: 153
  issue: 2
  year: 1993
  end-page: 158
  article-title: Cellular localization of angiotensin type 1 receptor and angiotensinogen mRNAs in the subfornical organ of the rat brain
  publication-title: Neurosci. Lett.
– volume: 242
  start-page: 1444
  issue: 4884
  year: 1988
  end-page: 1446
  article-title: Astrocytes synthesize angiotensinogen in brain
  publication-title: Science
– volume: 25
  start-page: 897
  issue: 5
  year: 2010
  end-page: 904
  article-title: Angiotensin II type 1 receptor (AT1) signaling in astrocytes regulates synaptic degeneration‐induced leukocyte entry to the central nervous system
  publication-title: Brain Behav. Immun.
– volume: 27
  start-page: 465
  issue: 3
  year: 1996
  end-page: 475
  article-title: Mechanisms for inducible control of angiotensinogen gene transcription
  publication-title: Hypertension
– volume: 4
  start-page: 1921
  issue: 12
  year: 1990
  end-page: 1933
  article-title: Synergistic enhansons located within an acute phase responsive enhancer modulate glucocorticoid induction of angiotensinogen gene transcription
  publication-title: Mol. Endocrinol.
– volume: 1073–1074
  start-page: 38
  year: 2006
  end-page: 47
  article-title: Interleukin‐1beta enhances the angiotensin‐induced expression of plasminogen activator inhibitor‐1 through angiotensin receptor upregulation in human astrocytes
  publication-title: Brain Res.
– volume: 35
  start-page: 131
  issue: 2
  year: 2001
  end-page: 146
  article-title: Angiotensin receptor‐like immunoreactivity in adult brain white matter astrocytes and oligodendrocytes
  publication-title: Glia
– volume: 281
  start-page: F795
  issue: 5
  year: 2001
  end-page: F801
  article-title: Targeted disruption of the bradykinin B(2) receptor gene in mice alters the ontogeny of the renin‐angiotensin system
  publication-title: Am. J. Physiol.
– volume: 85
  start-page: 137
  issue: 2
  year: 1999
  end-page: 146
  article-title: Mechanical stretch and angiotensin II differentially upregulate the renin‐angiotensin system in cardiac myocytes in vitro
  publication-title: Circ. Res.
– volume: 275
  start-page: R1
  issue: 1 Pt 2
  year: 1998
  end-page: R9
  article-title: Activation of angiotensinogen gene in cardiac myocytes by angiotensin II and mechanical stretch
  publication-title: Am. J. Physiol.
– volume: 71
  start-page: 169
  issue: 1
  year: 1992
  end-page: 180
  article-title: Molecular basis of human hypertension: role of angiotensinogen
  publication-title: Cell
– volume: 85
  start-page: 509
  issue: 2
  year: 1998
  end-page: 520
  article-title: Angiotensin II‐induced calcium signalling in neurons and astrocytes of rat circumventricular organs
  publication-title: Neuroscience
– volume: 4
  start-page: 1078
  issue: 9
  year: 1998
  end-page: 1080
  article-title: Impaired blood‐brain barrier function in angiotensinogen‐deficient mice
  publication-title: Nat. Med.
– volume: 18
  start-page: 1365
  issue: 9
  year: 1997
  end-page: 1375
  article-title: Differential regulation of angiotensinogen and natriuretic peptide mRNAs in rat brain by osmotic stimulation: focus on anterior hypothalamus and supraoptic nucleus
  publication-title: Peptides
– volume: 588
  start-page: 191
  issue: 2
  year: 1992
  end-page: 200
  article-title: Angiotensinogen is secreted by pure rat neuronal cell cultures
  publication-title: Brain Res.
– volume: 96
  start-page: 3975
  issue: 7
  year: 1999
  end-page: 3980
  article-title: Blood pressure reduction and diabetes insipidus in transgenic rats deficient in brain angiotensinogen
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 27
  start-page: 9032
  issue: 34
  year: 2007
  end-page: 9042
  article-title: Angiotensin II controls occludin function and is required for blood brain barrier maintenance: relevance to multiple sclerosis
  publication-title: J. Neurosci.
– volume: 92
  start-page: 2735
  issue: 7
  year: 1995
  end-page: 2739
  article-title: Genetic control of blood pressure and the angiotensinogen locus
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 25
  start-page: 319
  issue: 1
  year: 1988
  end-page: 341
  article-title: Immunocytochemical localization of angiotensinogen in the rat brain
  publication-title: Neuroscience
– volume: 72
  start-page: 1245
  issue: 6
  year: 1993
  end-page: 1254
  article-title: Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts
  publication-title: Circ. Res.
– volume: 59
  start-page: 1241
  issue: 9
  year: 2010
  end-page: 1251
  article-title: Adipose tissue‐specific dysregulation of angiotensinogen by oxidative stress in obesity
  publication-title: Metabolism
– volume: 293
  start-page: C401
  issue: 1
  year: 2007
  end-page: C410
  article-title: HNF‐1alpha plays an important role in IL‐6‐induced expression of the human angiotensinogen gene
  publication-title: Am. J. Physiol.
– volume: 23
  start-page: 945
  issue: 5
  year: 2005
  end-page: 954
  article-title: Angiotensinogen and angiotensin‐converting enzyme gene copy number and angiotensin and bradykinin peptide levels in mice
  publication-title: J. Hypertens.
– volume: 117
  start-page: 1088
  issue: 4
  year: 2007
  end-page: 1095
  article-title: Local production of angiotensin II in the subfornical organ causes elevated drinking
  publication-title: J. Clin. Invest.
– volume: 57
  start-page: 608
  issue: 3
  year: 2011
  end-page: 613
  article-title: Contribution of a nuclear factor‐{kappa}B binding site to human angiotensinogen promoter activity in renal proximal tubular cells
  publication-title: Hypertension
– volume: 830
  start-page: 101
  issue: 1
  year: 1999
  end-page: 112
  article-title: Brain parenchyma vessels and the angiotensin system
  publication-title: Brain Res.
– volume: 159
  start-page: 110
  issue: 1–3
  year: 2010
  end-page: 116
  article-title: Angiotensin II activates JAK2/STAT3 pathway and induces interleukin‐6 production in cultured rat brainstem astrocytes
  publication-title: Regul. Peptides
– ident: e_1_2_8_34_1
  doi: 10.1161/hh1601.094988
– ident: e_1_2_8_9_1
  doi: 10.1210/mend-4-12-1921
– ident: e_1_2_8_14_1
  doi: 10.1016/S0306-4522(97)00601-5
– ident: e_1_2_8_37_1
  doi: 10.1073/pnas.84.13.4655
– volume: 281
  start-page: F795
  issue: 5
  year: 2001
  ident: e_1_2_8_58_1
  article-title: Targeted disruption of the bradykinin B(2) receptor gene in mice alters the ontogeny of the renin‐angiotensin system
  publication-title: Am. J. Physiol.
– ident: e_1_2_8_21_1
  doi: 10.1016/j.regpep.2009.09.001
– volume: 44
  start-page: 502
  issue: 4
  year: 2004
  ident: e_1_2_8_44_1
  article-title: Genetic deletion of angiotensinogen specifically in astrocytes lowers blood pressure in hypertensive transgenic mice
  publication-title: Hypertension
– ident: e_1_2_8_29_1
  doi: 10.1161/01.RES.85.2.137
– ident: e_1_2_8_22_1
  doi: 10.1073/pnas.92.7.2735
– ident: e_1_2_8_26_1
  doi: 10.1210/en.2003-0150
– ident: e_1_2_8_50_1
  doi: 10.1161/01.HYP.18.1.32
– ident: e_1_2_8_45_1
  doi: 10.1152/ajpregu.00435.2005
– volume: 275
  start-page: R1
  issue: 1
  year: 1998
  ident: e_1_2_8_51_1
  article-title: Activation of angiotensinogen gene in cardiac myocytes by angiotensin II and mechanical stretch
  publication-title: Am. J. Physiol.
– ident: e_1_2_8_18_1
  doi: 10.1152/ajpcell.00433.2006
– ident: e_1_2_8_33_1
  doi: 10.1016/S0028-3908(02)00111-9
– ident: e_1_2_8_19_1
  doi: 10.1016/0092-8674(92)90275-H
– ident: e_1_2_8_17_1
  doi: 10.1172/JCI119343
– ident: e_1_2_8_53_1
  doi: 10.1016/0006-8993(92)91575-Y
– ident: e_1_2_8_5_1
  doi: 10.1016/S0006-8993(99)01373-6
– ident: e_1_2_8_31_1
  doi: 10.1016/0006-8993(87)91260-1
– ident: e_1_2_8_55_1
  doi: 10.1523/JNEUROSCI.2088-07.2007
– ident: e_1_2_8_16_1
  doi: 10.1016/S0306-4522(03)00606-7
– ident: e_1_2_8_25_1
  doi: 10.1172/JCI41709
– ident: e_1_2_8_2_1
  doi: 10.1161/HYPERTENSIONAHA.110.165464
– ident: e_1_2_8_35_1
  doi: 10.1210/en.130.3.1331
– ident: e_1_2_8_52_1
  doi: 10.1016/0306-4522(88)90029-2
– ident: e_1_2_8_56_1
  doi: 10.1210/en.138.10.4176
– ident: e_1_2_8_12_1
  doi: 10.1002/glia.1078
– ident: e_1_2_8_54_1
  doi: 10.1161/hh0202.104109
– ident: e_1_2_8_47_1
  doi: 10.1002/cne.903160407
– ident: e_1_2_8_8_1
  doi: 10.1161/01.HYP.27.3.465
– ident: e_1_2_8_15_1
  doi: 10.1111/j.1365-2826.2004.01194.x
– ident: e_1_2_8_27_1
  doi: 10.1016/S0306-4522(97)00328-X
– ident: e_1_2_8_20_1
  doi: 10.1038/2070
– ident: e_1_2_8_28_1
  doi: 10.1016/0304-3940(93)90524-O
– ident: e_1_2_8_7_1
  doi: 10.1016/S0169-328X(98)00308-8
– ident: e_1_2_8_10_1
  doi: 10.1016/0891-0618(92)90049-V
– ident: e_1_2_8_13_1
  doi: 10.1016/j.bbi.2010.09.015
– ident: e_1_2_8_36_1
  doi: 10.1016/j.metabol.2009.11.016
– ident: e_1_2_8_39_1
  doi: 10.1016/S0196-9781(97)00192-7
– volume: 12
  start-page: 634
  issue: 5
  year: 1998
  ident: e_1_2_8_46_1
  article-title: Agonist‐induced phosphorylation of the endogenous AT1 angiotensin receptor in bovine adrenal glomerulosa cells
  publication-title: Mol. Endocrinol.
  doi: 10.1210/mend.12.5.0108
– ident: e_1_2_8_32_1
  doi: 10.1111/j.1460-9568.2007.06014.x
– ident: e_1_2_8_41_1
  doi: 10.1161/01.HYP.0000112030.79692.21
– ident: e_1_2_8_6_1
  doi: 10.1007/s001090100210
– ident: e_1_2_8_11_1
  doi: 10.1007/s003950070025
– ident: e_1_2_8_3_1
  doi: 10.1097/01.hjh.0000166834.32817.41
– ident: e_1_2_8_23_1
  doi: 10.3109/10641968709159073
– ident: e_1_2_8_43_1
  doi: 10.1161/01.RES.72.6.1245
– ident: e_1_2_8_48_1
  doi: 10.1126/science.3201232
– ident: e_1_2_8_30_1
  doi: 10.1073/pnas.91.9.3774
– ident: e_1_2_8_4_1
  doi: 10.1161/01.HYP.0000218576.36574.54
– ident: e_1_2_8_57_1
  doi: 10.1016/j.brainres.2005.12.044
– ident: e_1_2_8_24_1
  doi: 10.1080/07300077.1988.11878797
– ident: e_1_2_8_38_1
  doi: 10.1677/joe.0.1150311
– ident: e_1_2_8_40_1
  doi: 10.1172/JCI31242
– ident: e_1_2_8_42_1
  doi: 10.1073/pnas.96.7.3975
– ident: e_1_2_8_49_1
  doi: 10.1073/pnas.88.17.7567
SSID ssj0016461
Score 2.151338
Snippet J. Neurochem. (2011) 119, 18–26. Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain renin‐angiotensin...
Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain renin-angiotensin system. Regulating brain...
J. Neurochem. (2011) 119, 18-26. Abstract Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18
SubjectTerms Adenoviridae - genetics
Angiotensin
Angiotensin II
Angiotensin II - physiology
Angiotensin II Type 1 Receptor Blockers - pharmacology
Angiotensin receptors
angiotensinogen
Angiotensinogen - metabolism
Animals
Astrocytes
Astrocytes - drug effects
Astrocytes - metabolism
Benzimidazoles - pharmacology
Biological and medical sciences
Blood pressure
Brain
Brain - cytology
Brain Chemistry - physiology
cardiomyocytes
Cell culture
Cells, Cultured
cultures
Data processing
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Dexamethasone - pharmacology
Expression vectors
Feedback, Physiological
Fundamental and applied biological sciences. Psychology
G protein‐coupled receptor
Gene expression
Hepatocytes
Homeostasis
Imidazoles - pharmacology
Immunocytochemistry
Immunohistochemistry
Inositol Phosphates - physiology
Isolated neuron and nerve. Neuroglia
Liver - drug effects
Liver - metabolism
Medical sciences
Mice
Mice, Inbred C57BL
Neonates
Neurochemistry
Neurology
Polymerase chain reaction
Proteins
Pyridines - pharmacology
qPCR
Receptors, Angiotensin - metabolism
Reverse Transcriptase Polymerase Chain Reaction
Rodents
Signal transduction
Signal Transduction - physiology
Tetrazoles - pharmacology
Vertebrates: nervous system and sense organs
Title Regulation of angiotensinogen by angiotensin II in mouse primary astrocyte cultures
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1471-4159.2011.07406.x
https://www.ncbi.nlm.nih.gov/pubmed/21797869
https://www.proquest.com/docview/888149669
https://www.proquest.com/docview/889177321
https://www.proquest.com/docview/911166071
Volume 119
WOSCitedRecordID wos000295054300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1471-4159
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016461
  issn: 0022-3042
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1471-4159
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016461
  issn: 0022-3042
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED62brDC2I92P7xuQQ9jbx6WLUvKY8kWmlHC6FaWNyHJUilsdqnT0fz3PcmO15QOythLMImloNMn3X3y-TuA99RypD2VSYtKh1dyaJkah1fclBmzjlvvo4jroZjP5WIx_trnP4V3YTp9iOHALayMuF-HBa5Ne2ORC-Q_6I97JU6BzuljiCcpo6GYwY_ZfHigwBmng3A4AnUzqefWjjY81eMz3aLRfFft4rZwdDO6je5p-vR_DuwZPOmDVLLfoeo53HP1Duzu10jQf63IBxLTRuN5_A48mqxLxu3Ct6Ousj3ONWk80fXJaRMz5OsGcUrM6vpXZDYj-BmOHhw560QviMaOGrtaOtJJgrj2BRxPP3-fHKR91YbUIqnlacksZV5QDB2D2L232bjizmqmqcykN9xYKmhZZZmlmvnC5mXuMl-6QoYa7aJ4CVt1U7vXOENUGJNJWxV-jDQJQe8ZhptIsljFEEwJiPUMKdtLmofKGj_VdWojqAq2VMGWKtpSXSZAh5b9CO_QZrQBgqFhznhWMM4S2FujQvU7QauklEhCOR8nQIZfcVrCcxldO7Qx3oKcWRQ5_fstwSXxIAWYwKsObn_-HbdUIUP_PKLqzuNRX-aTcPXmXxvuwXa-zoikb2FreX7h3sFD-3t52p6P4L5YyBE8-HQ0PT4cxdV4BYi1LVs
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9UwFD6MOZgg_tic1s2ZB_Gt0rRpkvs4Lo5ddy2iE_cW2jQZg9mO3at4_3vPSXvr7pgwZC-ltE1KTr7knC9NvwPwlluJtKeu4qwu6ZccnseVwzNZ5YmwTlrvg4jrVBWFPj0dfe7TAdG_MJ0-xLDgRiMjzNc0wGlB-sYoV0iA0CH3UpwKvdN7DCgfCIw7KI_D90kxfFKQQvJBOhyhurqt59aaVnzVo8tyhmbzXb6L2wLS1fg2OKjDJ_fatKfwuI9T2UEHrGew5pot2D5okKP_WLB3LOwcDUvyW7A5XmaN24avX7rk9tjdrPWsbM7O27BJvmkRqqxaXL_EJhOGR1p9cOyy071gJVbU2sXcsU4VxM2ew7fDDyfjo7hP3BBb5LUyzoXlwiuO0SPp3XubjGrpbClKrhPtK1lZrnheJ4nlpfCZTfPUJT53maY07SrbgfWmbdxL7CKuqirRts78CJkS4t4LjDiRZ4laIJ4iUMsuMrZXNafkGhfmOrtR3JAtDdnSBFua3xHwoWTfwjuU2V9BwVAwFTLJhBQR7C5hYfrJYGa01shDpRxFwIa72C30aaZsHNoYH0HarLKU__sR8kqS1AAjeNHh7e_bcVZVmuqXAVZ3bo_5WIzp7NX_FnwDm0cnn6ZmOimOd-FhutwgyfdgfX71072GDftrfj672g-D8Q_cgC7x
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dS-QwFL3IKLogun7sWj_zsOxbpWnTJPMoo4PjDoPoCr6FNk1EcNvBGcX59960neqIgiy-lNI2Kbk5yb0nTc8F-EU1R9qTpX6UJe6XHBr7qcEznsYB04Zra0sR174YDOT1dfu8Tgfk_oWp9CGaBTc3Msr52g1wM8zsm1EukAChQ66lOAV6p0MMKOeZyynTgvnji-5Vv_mowBmnjXg4gnV2Y8-7dc14q-VhMkLD2SrjxXsh6WyEW7qo7uqXNu47rNSRKjmqoLUGcyZfh42jHFn6vwn5Tcq9o-Wi_DosdaZ54zbg8qJKb48dTgpLkvzmtii3yecFgpWkk9eXSK9H8OjWHwwZVsoXJMGKCj0ZG1LpgpjRJlx1T_52Tv06dYOvkdlyP2aaMisoxo9O8d7qoJ1xoxOWUBlIm_JUU0HjLAg0TZiNdBiHJrCxiaRL1C6iH9DKi9xsYRdRkaaB1Flk28iVEPmWYcyJTItlDBHlgZh2kdK1rrlLr3GnXvMbQZWzpXK2VKUt1ZMHtClZt_ATZfZnUNAUDBkPIsaZBztTWKh6OhgpKSUyUc7bHpDmLnaL-ziT5AZtjI8gcRZRSD9-xPkl7vQAPfhZ4e3l7TivCunq5yWsPt0edTbouLPt_y14AIvnx13V7w3-7MC3cLpDku5Ca3z_YPZgQT-Ob0f3-_VofAb4US-a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+angiotensinogen+by+angiotensin+II+in+mouse+primary+astrocyte+cultures&rft.jtitle=Journal+of+neurochemistry&rft.au=O%27Callaghan%2C+EL&rft.au=Bassi%2C+J+K&rft.au=Porrello%2C+E+R&rft.au=Delbridge%2C+LMD&rft.date=2011-10-01&rft.issn=0022-3042&rft.eissn=1471-4159&rft.volume=119&rft.issue=1&rft.spage=18&rft.epage=26&rft_id=info:doi/10.1111%2Fj.1471-4159.2011.07406.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon