Regulation of angiotensinogen by angiotensin II in mouse primary astrocyte cultures
J. Neurochem. (2011) 119, 18–26. Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain renin‐angiotensin system. Regulating brain angiotensinogen production alters blood pressure and fluid and electrolyte homeostasis. In turn, several physiological a...
Gespeichert in:
| Veröffentlicht in: | Journal of neurochemistry Jg. 119; H. 1; S. 18 - 26 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford, UK
Blackwell Publishing Ltd
01.10.2011
Wiley-Blackwell |
| Schlagworte: | |
| ISSN: | 0022-3042, 1471-4159, 1471-4159 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | J. Neurochem. (2011) 119, 18–26.
Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain renin‐angiotensin system. Regulating brain angiotensinogen production alters blood pressure and fluid and electrolyte homeostasis. In turn, several physiological and pathological manipulations alter expression of angiotensinogen in brain. Surprisingly, little is known about the factors that regulate astrocytic expression of angiotensinogen. There is evidence that angiotensinogen production in both hepatocytes and cardiac myocytes can be positively regulated via the angiotensin type 1 receptor, but this effect has not yet been studied in astrocytes. Therefore, the aim of this project was to establish whether angiotensin II modulates angiotensinogen production in brain astrocytes. Primary astrocyte cultures, prepared from neonatal C57Bl6 mice, expressed angiotensinogen measured by immunocytochemistry and real‐time PCR. Using a variety of approaches we were unable to identify angiotensin receptors on cultured astrocytes. Exposure of cultured astrocytes to angiotensin II also did not affect angiotensinogen expression. When astrocyte cultures were transduced with the angiotensin type 1A receptor, using adenoviral vectors, angiotensin II induced a robust down‐regulation (91.4% ± 1.8%, p < 0.01, n = 4) of angiotensinogen gene expression. We conclude that receptors for angiotensin II are present in extremely low levels in astrocytes, and that this concurs with available data in vivo. The signaling pathways activated by the angiotensin type 1A receptor are negatively coupled to angiotensinogen expression and represent a powerful pathway for decreasing expression of this protein, potentially via signaling pathways coupled to Gαq/11. |
|---|---|
| AbstractList | Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain renin-angiotensin system. Regulating brain angiotensinogen production alters blood pressure and fluid and electrolyte homeostasis. In turn, several physiological and pathological manipulations alter expression of angiotensinogen in brain. Surprisingly, little is known about the factors that regulate astrocytic expression of angiotensinogen. There is evidence that angiotensinogen production in both hepatocytes and cardiac myocytes can be positively regulated via the angiotensin type 1 receptor, but this effect has not yet been studied in astrocytes. Therefore, the aim of this project was to establish whether angiotensin II modulates angiotensinogen production in brain astrocytes. Primary astrocyte cultures, prepared from neonatal C57Bl6 mice, expressed angiotensinogen measured by immunocytochemistry and real-time PCR. Using a variety of approaches we were unable to identify angiotensin receptors on cultured astrocytes. Exposure of cultured astrocytes to angiotensin II also did not affect angiotensinogen expression. When astrocyte cultures were transduced with the angiotensin type 1A receptor, using adenoviral vectors, angiotensin II induced a robust down-regulation (91.4%+/-1.8%, p<0.01, n=4) of angiotensinogen gene expression. We conclude that receptors for angiotensin II are present in extremely low levels in astrocytes, and that this concurs with available data in vivo. The signaling pathways activated by the angiotensin type 1A receptor are negatively coupled to angiotensinogen expression and represent a powerful pathway for decreasing expression of this protein, potentially via signaling pathways coupled to G alpha q/11.Original Abstract: J. Neurochem. (2011) 119, 18-26. Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain renin-angiotensin system. Regulating brain angiotensinogen production alters blood pressure and fluid and electrolyte homeostasis. In turn, several physiological and pathological manipulations alter expression of angiotensinogen in brain. Surprisingly, little is known about the factors that regulate astrocytic expression of angiotensinogen. There is evidence that angiotensinogen production in both hepatocytes and cardiac myocytes can be positively regulated via the angiotensin type 1 receptor, but this effect has not yet been studied in astrocytes. Therefore, the aim of this project was to establish whether angiotensin II modulates angiotensinogen production in brain astrocytes. Primary astrocyte cultures, prepared from neonatal C57Bl6 mice, expressed angiotensinogen measured by immunocytochemistry and real-time PCR. Using a variety of approaches we were unable to identify angiotensin receptors on cultured astrocytes. Exposure of cultured astrocytes to angiotensin II also did not affect angiotensinogen expression. When astrocyte cultures were transduced with the angiotensin type 1A receptor, using adenoviral vectors, angiotensin II induced a robust down-regulation (91.4% ± 1.8%, p < 0.01, n = 4) of angiotensinogen gene expression. We conclude that receptors for angiotensin II are present in extremely low levels in astrocytes, and that this concurs with available data in vivo. The signaling pathways activated by the angiotensin type 1A receptor are negatively coupled to angiotensinogen expression and represent a powerful pathway for decreasing expression of this protein, potentially via signaling pathways coupled to Gα(q/11) .Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain renin-angiotensin system. Regulating brain angiotensinogen production alters blood pressure and fluid and electrolyte homeostasis. In turn, several physiological and pathological manipulations alter expression of angiotensinogen in brain. Surprisingly, little is known about the factors that regulate astrocytic expression of angiotensinogen. There is evidence that angiotensinogen production in both hepatocytes and cardiac myocytes can be positively regulated via the angiotensin type 1 receptor, but this effect has not yet been studied in astrocytes. Therefore, the aim of this project was to establish whether angiotensin II modulates angiotensinogen production in brain astrocytes. Primary astrocyte cultures, prepared from neonatal C57Bl6 mice, expressed angiotensinogen measured by immunocytochemistry and real-time PCR. Using a variety of approaches we were unable to identify angiotensin receptors on cultured astrocytes. Exposure of cultured astrocytes to angiotensin II also did not affect angiotensinogen expression. When astrocyte cultures were transduced with the angiotensin type 1A receptor, using adenoviral vectors, angiotensin II induced a robust down-regulation (91.4% ± 1.8%, p < 0.01, n = 4) of angiotensinogen gene expression. We conclude that receptors for angiotensin II are present in extremely low levels in astrocytes, and that this concurs with available data in vivo. The signaling pathways activated by the angiotensin type 1A receptor are negatively coupled to angiotensinogen expression and represent a powerful pathway for decreasing expression of this protein, potentially via signaling pathways coupled to Gα(q/11) . J. Neurochem. (2011) 119, 18–26. Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain renin‐angiotensin system. Regulating brain angiotensinogen production alters blood pressure and fluid and electrolyte homeostasis. In turn, several physiological and pathological manipulations alter expression of angiotensinogen in brain. Surprisingly, little is known about the factors that regulate astrocytic expression of angiotensinogen. There is evidence that angiotensinogen production in both hepatocytes and cardiac myocytes can be positively regulated via the angiotensin type 1 receptor, but this effect has not yet been studied in astrocytes. Therefore, the aim of this project was to establish whether angiotensin II modulates angiotensinogen production in brain astrocytes. Primary astrocyte cultures, prepared from neonatal C57Bl6 mice, expressed angiotensinogen measured by immunocytochemistry and real‐time PCR. Using a variety of approaches we were unable to identify angiotensin receptors on cultured astrocytes. Exposure of cultured astrocytes to angiotensin II also did not affect angiotensinogen expression. When astrocyte cultures were transduced with the angiotensin type 1A receptor, using adenoviral vectors, angiotensin II induced a robust down‐regulation (91.4% ± 1.8%, p < 0.01, n = 4) of angiotensinogen gene expression. We conclude that receptors for angiotensin II are present in extremely low levels in astrocytes, and that this concurs with available data in vivo. The signaling pathways activated by the angiotensin type 1A receptor are negatively coupled to angiotensinogen expression and represent a powerful pathway for decreasing expression of this protein, potentially via signaling pathways coupled to Gαq/11. Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain renin-angiotensin system. Regulating brain angiotensinogen production alters blood pressure and fluid and electrolyte homeostasis. In turn, several physiological and pathological manipulations alter expression of angiotensinogen in brain. Surprisingly, little is known about the factors that regulate astrocytic expression of angiotensinogen. There is evidence that angiotensinogen production in both hepatocytes and cardiac myocytes can be positively regulated via the angiotensin type 1 receptor, but this effect has not yet been studied in astrocytes. Therefore, the aim of this project was to establish whether angiotensin II modulates angiotensinogen production in brain astrocytes. Primary astrocyte cultures, prepared from neonatal C57Bl6 mice, expressed angiotensinogen measured by immunocytochemistry and real-time PCR. Using a variety of approaches we were unable to identify angiotensin receptors on cultured astrocytes. Exposure of cultured astrocytes to angiotensin II also did not affect angiotensinogen expression. When astrocyte cultures were transduced with the angiotensin type 1A receptor, using adenoviral vectors, angiotensin II induced a robust down-regulation (91.4% ± 1.8%, p < 0.01, n = 4) of angiotensinogen gene expression. We conclude that receptors for angiotensin II are present in extremely low levels in astrocytes, and that this concurs with available data in vivo. The signaling pathways activated by the angiotensin type 1A receptor are negatively coupled to angiotensinogen expression and represent a powerful pathway for decreasing expression of this protein, potentially via signaling pathways coupled to Gα(q/11) . J. Neurochem. (2011) 119, 18-26. Abstract Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain renin-angiotensin system. Regulating brain angiotensinogen production alters blood pressure and fluid and electrolyte homeostasis. In turn, several physiological and pathological manipulations alter expression of angiotensinogen in brain. Surprisingly, little is known about the factors that regulate astrocytic expression of angiotensinogen. There is evidence that angiotensinogen production in both hepatocytes and cardiac myocytes can be positively regulated via the angiotensin type 1 receptor, but this effect has not yet been studied in astrocytes. Therefore, the aim of this project was to establish whether angiotensin II modulates angiotensinogen production in brain astrocytes. Primary astrocyte cultures, prepared from neonatal C57Bl6 mice, expressed angiotensinogen measured by immunocytochemistry and real-time PCR. Using a variety of approaches we were unable to identify angiotensin receptors on cultured astrocytes. Exposure of cultured astrocytes to angiotensin II also did not affect angiotensinogen expression. When astrocyte cultures were transduced with the angiotensin type 1A receptor, using adenoviral vectors, angiotensin II induced a robust down-regulation (91.4%±1.8%, p<0.01, n=4) of angiotensinogen gene expression. We conclude that receptors for angiotensin II are present in extremely low levels in astrocytes, and that this concurs with available data in vivo. The signaling pathways activated by the angiotensin type 1A receptor are negatively coupled to angiotensinogen expression and represent a powerful pathway for decreasing expression of this protein, potentially via signaling pathways coupled to Gαq/11. [PUBLICATION ABSTRACT] |
| Author | Porrello, E. R. Delbridge, L. M. D. Bassi, J. K. Thomas, W. G. O’Callaghan, E. L. Allen, A. M. |
| Author_xml | – sequence: 1 givenname: E. L. surname: O’Callaghan fullname: O’Callaghan, E. L. – sequence: 2 givenname: J. K. surname: Bassi fullname: Bassi, J. K. – sequence: 3 givenname: E. R. surname: Porrello fullname: Porrello, E. R. – sequence: 4 givenname: L. M. D. surname: Delbridge fullname: Delbridge, L. M. D. – sequence: 5 givenname: W. G. surname: Thomas fullname: Thomas, W. G. – sequence: 6 givenname: A. M. surname: Allen fullname: Allen, A. M. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24603464$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21797869$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkV9v2yAUxdHUak27fYXJmjTtye69GIN52KQqWrtMVSftzzMiBEdEDnRga823H26ybupLywMg7u8e4JxTcuSDt4QUCBXmcb6pkAksGTayooBYgWDAq7sXZPZQOCIzAErLGhg9IacpbQCQM44vyQlFIUXL5Yx8_2bXY68HF3wRukL7tQuD9cn5sLa-WO7-PyoWiyLP2zAmW9xGt9Ux19MQg9kNtjBjP4zRplfkuNN9sq8P6xn5efnpx_xzef31ajG_uC5NQ2teNswg6wSipJRT6AzIFbdGM40ttN2SLw0KbFYABjXrakMbaqFrbN0yACHqM_J-r3sbw6_RpkFtXTK277W3-YlKZqs4B4FPkm0rMQvSiXz7iNyEMfr8jQy1yCTnMkNvDtC43NqVOlih_tqagXcHQCej-y5qb1z6xzEONeMsc-2eMzGkFG33gCCoKWm1UVOgagpUTUmr-6TVXW79-KjVuOE-xyFq1z9H4MNe4Lfr7e7ZF6svN_NpV_8BX9q_3A |
| CODEN | JONRA9 |
| CitedBy_id | crossref_primary_10_1016_j_yfrne_2016_09_003 crossref_primary_10_1161_STROKEAHA_116_016269 crossref_primary_10_1016_j_neurobiolaging_2014_10_028 crossref_primary_10_1016_j_neuroscience_2012_08_039 crossref_primary_10_1161_HYPERTENSIONAHA_117_08550 crossref_primary_10_1271_bbb_120123 crossref_primary_10_1016_j_neuroscience_2020_06_029 crossref_primary_10_1161_HYPERTENSIONAHA_116_07747 crossref_primary_10_1152_ajpregu_00078_2015 crossref_primary_10_1097_MNH_0b013e3283574c3b crossref_primary_10_1038_s41440_019_0374_8 crossref_primary_10_1016_j_brainres_2016_04_059 crossref_primary_10_1155_2019_4957879 crossref_primary_10_3892_mmr_2017_7547 crossref_primary_10_1007_s11064_018_2557_0 crossref_primary_10_1016_j_phrs_2017_05_009 crossref_primary_10_1016_j_physbeh_2018_07_017 crossref_primary_10_1152_physrev_00042_2016 crossref_primary_10_1186_s13293_018_0173_y crossref_primary_10_3389_fncel_2023_1111263 |
| Cites_doi | 10.1161/hh1601.094988 10.1210/mend-4-12-1921 10.1016/S0306-4522(97)00601-5 10.1073/pnas.84.13.4655 10.1016/j.regpep.2009.09.001 10.1161/01.RES.85.2.137 10.1073/pnas.92.7.2735 10.1210/en.2003-0150 10.1161/01.HYP.18.1.32 10.1152/ajpregu.00435.2005 10.1152/ajpcell.00433.2006 10.1016/S0028-3908(02)00111-9 10.1016/0092-8674(92)90275-H 10.1172/JCI119343 10.1016/0006-8993(92)91575-Y 10.1016/S0006-8993(99)01373-6 10.1016/0006-8993(87)91260-1 10.1523/JNEUROSCI.2088-07.2007 10.1016/S0306-4522(03)00606-7 10.1172/JCI41709 10.1161/HYPERTENSIONAHA.110.165464 10.1210/en.130.3.1331 10.1016/0306-4522(88)90029-2 10.1210/en.138.10.4176 10.1002/glia.1078 10.1161/hh0202.104109 10.1002/cne.903160407 10.1161/01.HYP.27.3.465 10.1111/j.1365-2826.2004.01194.x 10.1016/S0306-4522(97)00328-X 10.1038/2070 10.1016/0304-3940(93)90524-O 10.1016/S0169-328X(98)00308-8 10.1016/0891-0618(92)90049-V 10.1016/j.bbi.2010.09.015 10.1016/j.metabol.2009.11.016 10.1016/S0196-9781(97)00192-7 10.1210/mend.12.5.0108 10.1111/j.1460-9568.2007.06014.x 10.1161/01.HYP.0000112030.79692.21 10.1007/s001090100210 10.1007/s003950070025 10.1097/01.hjh.0000166834.32817.41 10.3109/10641968709159073 10.1161/01.RES.72.6.1245 10.1126/science.3201232 10.1073/pnas.91.9.3774 10.1161/01.HYP.0000218576.36574.54 10.1016/j.brainres.2005.12.044 10.1080/07300077.1988.11878797 10.1677/joe.0.1150311 10.1172/JCI31242 10.1073/pnas.96.7.3975 10.1073/pnas.88.17.7567 |
| ContentType | Journal Article |
| Copyright | 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry 2015 INIST-CNRS 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry. |
| Copyright_xml | – notice: 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry – notice: 2015 INIST-CNRS – notice: 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry. |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 |
| DOI | 10.1111/j.1471-4159.2011.07406.x |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Toxicology Abstracts AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic MEDLINE Virology and AIDS Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1471-4159 |
| EndPage | 26 |
| ExternalDocumentID | 2446810741 21797869 24603464 10_1111_j_1471_4159_2011_07406_x JNC7406 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29L 2WC 31~ 33P 36B 3SF 4.4 41~ 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYJJ AAZKR ABCQN ABCUV ABEML ABIVO ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FUBAC FZ0 G-S G.N GAKWD GODZA GX1 H.X HF~ HGLYW HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TWZ UB1 V8K VH1 W8V W99 WBKPD WIH WIJ WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ X7M XG1 XJT YFH YNH YOC YUY ZGI ZXP ZZTAW ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X IQODW CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 |
| ID | FETCH-LOGICAL-c5236-54c14f711922620fc09d6eca4a1808fb6bc1715d00c1a4f3c252e0f5e38400773 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000295054300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-3042 1471-4159 |
| IngestDate | Fri Jul 11 12:44:00 EDT 2025 Wed Oct 01 14:58:38 EDT 2025 Fri Jul 25 19:44:12 EDT 2025 Mon Jul 21 05:49:59 EDT 2025 Mon Jul 21 09:12:18 EDT 2025 Sat Nov 29 06:49:17 EST 2025 Tue Nov 18 22:23:41 EST 2025 Wed Jan 22 16:56:56 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Neonatal Liver Neuroglia Central nervous system Homeostasis angiotensinogen Encephalon Myocyte Hepatocyte Primary culture Blood pressure qPCR Angiotensin II G protein-coupled receptor Digestive system Rodentia Astrocyte Angiotensin receptor Vertebrata Renin angiotensin system Mammalia Electrolyte Mouse cultures Hemodynamics astrocytes |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5236-54c14f711922620fc09d6eca4a1808fb6bc1715d00c1a4f3c252e0f5e38400773 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PMID | 21797869 |
| PQID | 888149669 |
| PQPubID | 31528 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_911166071 proquest_miscellaneous_889177321 proquest_journals_888149669 pubmed_primary_21797869 pascalfrancis_primary_24603464 crossref_primary_10_1111_j_1471_4159_2011_07406_x crossref_citationtrail_10_1111_j_1471_4159_2011_07406_x wiley_primary_10_1111_j_1471_4159_2011_07406_x_JNC7406 |
| PublicationCentury | 2000 |
| PublicationDate | October 2011 |
| PublicationDateYYYYMMDD | 2011-10-01 |
| PublicationDate_xml | – month: 10 year: 2011 text: October 2011 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England – name: New York |
| PublicationTitle | Journal of neurochemistry |
| PublicationTitleAlternate | J Neurochem |
| PublicationYear | 2011 |
| Publisher | Blackwell Publishing Ltd Wiley-Blackwell |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
| References | 1991; 18 1987; 420 2010; 59 1987; 9 2000; 95 2011; 57 1999; 85 1998; 82 1998; 85 2001; 89 1998; 275 2005; 23 2010; 25 1987; 84 1997; 99 2007; 293 1993; 72 1987; 115 1991; 88 2010; 159 2008; 27 2002; 43 1997; 18 1992; 316 1999; 96 2002; 90 1996; 27 2003; 122 1998; 12 1992; 5 2007; 27 2004; 43 2004; 44 1997; 138 1995; 92 2001; 281 2006; 1073–1074 1992; 588 1988; 10 2010; 120 1999; 64 1988; 242 1992; 71 2007; 117 1992; 130 2004; 16 2005; 289 1988; 25 2006; 47 1993; 150 1994; 91 1999; 830 2001; 79 2001; 35 1998; 4 2003; 144 1990; 4 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Sherrod M. (e_1_2_8_44_1) 2004; 44 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Smith R. D. (e_1_2_8_46_1) 1998; 12 Yosipiv I. V. (e_1_2_8_58_1) 2001; 281 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 Tamura K. (e_1_2_8_51_1) 1998; 275 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – volume: 47 start-page: 1054 issue: 6 year: 2006 end-page: 1061 article-title: Expression of constitutively active angiotensin receptors in the rostral ventrolateral medulla increases blood pressure publication-title: Hypertension – volume: 88 start-page: 7567 issue: 17 year: 1991 end-page: 7571 article-title: Angiotensin II receptor subtypes are coupled with distinct signal‐transduction mechanisms in neurons and astrocytes from rat brain publication-title: Proc. Natl. Acad. Sci. USA – volume: 82 start-page: 827 issue: 3 year: 1998 end-page: 841 article-title: Distribution of angiotensin type‐1 receptor messenger RNA expression in the adult rat brain publication-title: Neuroscience – volume: 115 start-page: 311 issue: 2 year: 1987 end-page: 315 article-title: Effect of thyroid hormones on angiotensinogen production in the rat in vivo and in vitro publication-title: J. Endocrinol. – volume: 43 start-page: 189 issue: 2 year: 2002 article-title: Astrocyte mGlu2/3‐mediated cAMP potentiation is calcium sensitive: studies in murine neuronal and astrocyte cultures publication-title: Neuropharmacology – volume: 420 start-page: 375 issue: 2 year: 1987 end-page: 379 article-title: Angiotensin receptor binding in human hypothalamus: autoradiographic localization publication-title: Brain Res. – volume: 316 start-page: 467 issue: 4 year: 1992 end-page: 484 article-title: Mapping of angiotensin II receptor subtype heterogeneity in rat brain publication-title: J. Comp. Neurol. – volume: 122 start-page: 21 issue: 1 year: 2003 end-page: 36 article-title: Angiotensin II subtype 1A (AT1A) receptors in the rat sensory vagal complex: subcellular localization and association with endogenous angiotensin publication-title: Neuroscience – volume: 44 start-page: 502 issue: 4 year: 2004 end-page: 502 article-title: Genetic deletion of angiotensinogen specifically in astrocytes lowers blood pressure in hypertensive transgenic mice publication-title: Hypertension – volume: 89 start-page: 365 issue: 4 year: 2001 end-page: 372 article-title: Elevated blood pressure in transgenic mice with brain‐specific expression of human angiotensinogen driven by the glial fibrillary acidic protein promoter publication-title: Circ. Res. – volume: 95 start-page: 485 issue: 6 year: 2000 end-page: 490 article-title: Regulation of angiotensinogen gene expression and protein in neonatal rat cardiac fibroblasts by glucocorticoid and beta‐adrenergic stimulation publication-title: Basic Res. Cardiol. – volume: 64 start-page: 151 issue: 2 year: 1999 end-page: 164 article-title: Differential regulation of angiotensinogen and AT1A receptor mRNA within the rat subfornical organ during dehydration publication-title: Brain Res. Mol. Brain Res. – volume: 84 start-page: 4655 issue: 13 year: 1987 end-page: 4659 article-title: Distinct angiotensin II receptor in primary cultures of glial cells from rat brain publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 2027 issue: 12 year: 1987 end-page: 2047 article-title: Induction of angiotensinogen synthesis and secretion by angiotensin II publication-title: Clin. Exp. Hypertens. A – volume: 130 start-page: 1331 issue: 3 year: 1992 end-page: 1338 article-title: Stimulation of angiotensinogen production in primary cultures of rat hepatocytes by glucocorticoid, cyclic adenosine 3’,5’‐monophosphate, and interleukin‐6 publication-title: Endocrinology – volume: 289 start-page: R1763 issue: 6 year: 2005 end-page: R1769 article-title: Glial‐specific ablation of angiotensinogen lowers arterial pressure in renin and angiotensinogen transgenic mice publication-title: Am. J. Physiol. – volume: 90 start-page: 135 year: 2002 end-page: 142 article-title: Adenoviral‐directed expression of the type 1A angiotensin receptor promotes cariomyocyte hypertrophy via transactivation of the epidermal growth factor receptor publication-title: Circ. Res. – volume: 138 start-page: 4176 issue: 10 year: 1997 end-page: 4180 article-title: Growth hormone regulates AT‐1a angiotensin receptors in astrocytes publication-title: Endocrinology – volume: 10 start-page: 1009 issue: 6 year: 1988 end-page: 1022 article-title: Induction of angiotensinogen mRNA in hepatocytes by angiotensin II and glucocorticoids publication-title: Clin. Exp. Hypertens. A – volume: 16 start-page: 508 issue: 6 year: 2004 end-page: 515 article-title: Oestrogenic regulation of brain angiotensinogen publication-title: J. Neuroendocrinol. – volume: 99 start-page: 1786 issue: 7 year: 1997 end-page: 1797 article-title: A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro publication-title: J. Clin. Invest. – volume: 120 start-page: 2782 issue: 8 year: 2010 end-page: 2794 article-title: Angiotensin II sustains brain inflammation in mice via TGF‐beta publication-title: J. Clin. Invest. – volume: 18 start-page: 32 issue: 1 year: 1991 end-page: 39 article-title: Human astrocytes contain two distinct angiotensin receptor subtypes publication-title: Hypertension – volume: 12 start-page: 634 issue: 5 year: 1998 end-page: 644 article-title: Agonist‐induced phosphorylation of the endogenous AT1 angiotensin receptor in bovine adrenal glomerulosa cells publication-title: Mol. Endocrinol. – volume: 144 start-page: 2179 issue: 6 year: 2003 end-page: 2183 article-title: Minireview: overview of the renin‐angiotensin system‐‐an endocrine and paracrine system publication-title: Endocrinology – volume: 27 start-page: 343 issue: 2 year: 2008 end-page: 351 article-title: Angiotensin type 1 receptor antagonist inhibits lipopolysaccharide‐induced stimulation of rat microglial cells by suppressing nuclear factor kappaB and activator protein‐1 activation publication-title: Eur. J. Neurosci – volume: 43 start-page: 317 issue: 2 year: 2004 end-page: 323 article-title: Endogenous angiotensin and pressure modulate brain angiotensinogen and AT1A mRNA expression publication-title: Hypertension – volume: 5 start-page: 245 issue: 3 year: 1992 end-page: 262 article-title: The semi‐quantitative distribution and cellular localization of angiotensinogen mRNA in the rat brain publication-title: J. Chem. Neuroanat. – volume: 91 start-page: 3774 issue: 9 year: 1994 end-page: 3778 article-title: Properties of angiotensin II receptors in glial cells from the adult corpus callosum publication-title: Proc. Natl. Acad. Sci. USA – volume: 79 start-page: 76 issue: 2‐3 year: 2001 end-page: 102 article-title: Tissue renin‐angiotensin systems: new insights from experimental animal models in hypertension research publication-title: J. Mol. Med. – volume: 150 start-page: 153 issue: 2 year: 1993 end-page: 158 article-title: Cellular localization of angiotensin type 1 receptor and angiotensinogen mRNAs in the subfornical organ of the rat brain publication-title: Neurosci. Lett. – volume: 242 start-page: 1444 issue: 4884 year: 1988 end-page: 1446 article-title: Astrocytes synthesize angiotensinogen in brain publication-title: Science – volume: 25 start-page: 897 issue: 5 year: 2010 end-page: 904 article-title: Angiotensin II type 1 receptor (AT1) signaling in astrocytes regulates synaptic degeneration‐induced leukocyte entry to the central nervous system publication-title: Brain Behav. Immun. – volume: 27 start-page: 465 issue: 3 year: 1996 end-page: 475 article-title: Mechanisms for inducible control of angiotensinogen gene transcription publication-title: Hypertension – volume: 4 start-page: 1921 issue: 12 year: 1990 end-page: 1933 article-title: Synergistic enhansons located within an acute phase responsive enhancer modulate glucocorticoid induction of angiotensinogen gene transcription publication-title: Mol. Endocrinol. – volume: 1073–1074 start-page: 38 year: 2006 end-page: 47 article-title: Interleukin‐1beta enhances the angiotensin‐induced expression of plasminogen activator inhibitor‐1 through angiotensin receptor upregulation in human astrocytes publication-title: Brain Res. – volume: 35 start-page: 131 issue: 2 year: 2001 end-page: 146 article-title: Angiotensin receptor‐like immunoreactivity in adult brain white matter astrocytes and oligodendrocytes publication-title: Glia – volume: 281 start-page: F795 issue: 5 year: 2001 end-page: F801 article-title: Targeted disruption of the bradykinin B(2) receptor gene in mice alters the ontogeny of the renin‐angiotensin system publication-title: Am. J. Physiol. – volume: 85 start-page: 137 issue: 2 year: 1999 end-page: 146 article-title: Mechanical stretch and angiotensin II differentially upregulate the renin‐angiotensin system in cardiac myocytes in vitro publication-title: Circ. Res. – volume: 275 start-page: R1 issue: 1 Pt 2 year: 1998 end-page: R9 article-title: Activation of angiotensinogen gene in cardiac myocytes by angiotensin II and mechanical stretch publication-title: Am. J. Physiol. – volume: 71 start-page: 169 issue: 1 year: 1992 end-page: 180 article-title: Molecular basis of human hypertension: role of angiotensinogen publication-title: Cell – volume: 85 start-page: 509 issue: 2 year: 1998 end-page: 520 article-title: Angiotensin II‐induced calcium signalling in neurons and astrocytes of rat circumventricular organs publication-title: Neuroscience – volume: 4 start-page: 1078 issue: 9 year: 1998 end-page: 1080 article-title: Impaired blood‐brain barrier function in angiotensinogen‐deficient mice publication-title: Nat. Med. – volume: 18 start-page: 1365 issue: 9 year: 1997 end-page: 1375 article-title: Differential regulation of angiotensinogen and natriuretic peptide mRNAs in rat brain by osmotic stimulation: focus on anterior hypothalamus and supraoptic nucleus publication-title: Peptides – volume: 588 start-page: 191 issue: 2 year: 1992 end-page: 200 article-title: Angiotensinogen is secreted by pure rat neuronal cell cultures publication-title: Brain Res. – volume: 96 start-page: 3975 issue: 7 year: 1999 end-page: 3980 article-title: Blood pressure reduction and diabetes insipidus in transgenic rats deficient in brain angiotensinogen publication-title: Proc. Natl. Acad. Sci. USA – volume: 27 start-page: 9032 issue: 34 year: 2007 end-page: 9042 article-title: Angiotensin II controls occludin function and is required for blood brain barrier maintenance: relevance to multiple sclerosis publication-title: J. Neurosci. – volume: 92 start-page: 2735 issue: 7 year: 1995 end-page: 2739 article-title: Genetic control of blood pressure and the angiotensinogen locus publication-title: Proc. Natl. Acad. Sci. USA – volume: 25 start-page: 319 issue: 1 year: 1988 end-page: 341 article-title: Immunocytochemical localization of angiotensinogen in the rat brain publication-title: Neuroscience – volume: 72 start-page: 1245 issue: 6 year: 1993 end-page: 1254 article-title: Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts publication-title: Circ. Res. – volume: 59 start-page: 1241 issue: 9 year: 2010 end-page: 1251 article-title: Adipose tissue‐specific dysregulation of angiotensinogen by oxidative stress in obesity publication-title: Metabolism – volume: 293 start-page: C401 issue: 1 year: 2007 end-page: C410 article-title: HNF‐1alpha plays an important role in IL‐6‐induced expression of the human angiotensinogen gene publication-title: Am. J. Physiol. – volume: 23 start-page: 945 issue: 5 year: 2005 end-page: 954 article-title: Angiotensinogen and angiotensin‐converting enzyme gene copy number and angiotensin and bradykinin peptide levels in mice publication-title: J. Hypertens. – volume: 117 start-page: 1088 issue: 4 year: 2007 end-page: 1095 article-title: Local production of angiotensin II in the subfornical organ causes elevated drinking publication-title: J. Clin. Invest. – volume: 57 start-page: 608 issue: 3 year: 2011 end-page: 613 article-title: Contribution of a nuclear factor‐{kappa}B binding site to human angiotensinogen promoter activity in renal proximal tubular cells publication-title: Hypertension – volume: 830 start-page: 101 issue: 1 year: 1999 end-page: 112 article-title: Brain parenchyma vessels and the angiotensin system publication-title: Brain Res. – volume: 159 start-page: 110 issue: 1–3 year: 2010 end-page: 116 article-title: Angiotensin II activates JAK2/STAT3 pathway and induces interleukin‐6 production in cultured rat brainstem astrocytes publication-title: Regul. Peptides – ident: e_1_2_8_34_1 doi: 10.1161/hh1601.094988 – ident: e_1_2_8_9_1 doi: 10.1210/mend-4-12-1921 – ident: e_1_2_8_14_1 doi: 10.1016/S0306-4522(97)00601-5 – ident: e_1_2_8_37_1 doi: 10.1073/pnas.84.13.4655 – volume: 281 start-page: F795 issue: 5 year: 2001 ident: e_1_2_8_58_1 article-title: Targeted disruption of the bradykinin B(2) receptor gene in mice alters the ontogeny of the renin‐angiotensin system publication-title: Am. J. Physiol. – ident: e_1_2_8_21_1 doi: 10.1016/j.regpep.2009.09.001 – volume: 44 start-page: 502 issue: 4 year: 2004 ident: e_1_2_8_44_1 article-title: Genetic deletion of angiotensinogen specifically in astrocytes lowers blood pressure in hypertensive transgenic mice publication-title: Hypertension – ident: e_1_2_8_29_1 doi: 10.1161/01.RES.85.2.137 – ident: e_1_2_8_22_1 doi: 10.1073/pnas.92.7.2735 – ident: e_1_2_8_26_1 doi: 10.1210/en.2003-0150 – ident: e_1_2_8_50_1 doi: 10.1161/01.HYP.18.1.32 – ident: e_1_2_8_45_1 doi: 10.1152/ajpregu.00435.2005 – volume: 275 start-page: R1 issue: 1 year: 1998 ident: e_1_2_8_51_1 article-title: Activation of angiotensinogen gene in cardiac myocytes by angiotensin II and mechanical stretch publication-title: Am. J. Physiol. – ident: e_1_2_8_18_1 doi: 10.1152/ajpcell.00433.2006 – ident: e_1_2_8_33_1 doi: 10.1016/S0028-3908(02)00111-9 – ident: e_1_2_8_19_1 doi: 10.1016/0092-8674(92)90275-H – ident: e_1_2_8_17_1 doi: 10.1172/JCI119343 – ident: e_1_2_8_53_1 doi: 10.1016/0006-8993(92)91575-Y – ident: e_1_2_8_5_1 doi: 10.1016/S0006-8993(99)01373-6 – ident: e_1_2_8_31_1 doi: 10.1016/0006-8993(87)91260-1 – ident: e_1_2_8_55_1 doi: 10.1523/JNEUROSCI.2088-07.2007 – ident: e_1_2_8_16_1 doi: 10.1016/S0306-4522(03)00606-7 – ident: e_1_2_8_25_1 doi: 10.1172/JCI41709 – ident: e_1_2_8_2_1 doi: 10.1161/HYPERTENSIONAHA.110.165464 – ident: e_1_2_8_35_1 doi: 10.1210/en.130.3.1331 – ident: e_1_2_8_52_1 doi: 10.1016/0306-4522(88)90029-2 – ident: e_1_2_8_56_1 doi: 10.1210/en.138.10.4176 – ident: e_1_2_8_12_1 doi: 10.1002/glia.1078 – ident: e_1_2_8_54_1 doi: 10.1161/hh0202.104109 – ident: e_1_2_8_47_1 doi: 10.1002/cne.903160407 – ident: e_1_2_8_8_1 doi: 10.1161/01.HYP.27.3.465 – ident: e_1_2_8_15_1 doi: 10.1111/j.1365-2826.2004.01194.x – ident: e_1_2_8_27_1 doi: 10.1016/S0306-4522(97)00328-X – ident: e_1_2_8_20_1 doi: 10.1038/2070 – ident: e_1_2_8_28_1 doi: 10.1016/0304-3940(93)90524-O – ident: e_1_2_8_7_1 doi: 10.1016/S0169-328X(98)00308-8 – ident: e_1_2_8_10_1 doi: 10.1016/0891-0618(92)90049-V – ident: e_1_2_8_13_1 doi: 10.1016/j.bbi.2010.09.015 – ident: e_1_2_8_36_1 doi: 10.1016/j.metabol.2009.11.016 – ident: e_1_2_8_39_1 doi: 10.1016/S0196-9781(97)00192-7 – volume: 12 start-page: 634 issue: 5 year: 1998 ident: e_1_2_8_46_1 article-title: Agonist‐induced phosphorylation of the endogenous AT1 angiotensin receptor in bovine adrenal glomerulosa cells publication-title: Mol. Endocrinol. doi: 10.1210/mend.12.5.0108 – ident: e_1_2_8_32_1 doi: 10.1111/j.1460-9568.2007.06014.x – ident: e_1_2_8_41_1 doi: 10.1161/01.HYP.0000112030.79692.21 – ident: e_1_2_8_6_1 doi: 10.1007/s001090100210 – ident: e_1_2_8_11_1 doi: 10.1007/s003950070025 – ident: e_1_2_8_3_1 doi: 10.1097/01.hjh.0000166834.32817.41 – ident: e_1_2_8_23_1 doi: 10.3109/10641968709159073 – ident: e_1_2_8_43_1 doi: 10.1161/01.RES.72.6.1245 – ident: e_1_2_8_48_1 doi: 10.1126/science.3201232 – ident: e_1_2_8_30_1 doi: 10.1073/pnas.91.9.3774 – ident: e_1_2_8_4_1 doi: 10.1161/01.HYP.0000218576.36574.54 – ident: e_1_2_8_57_1 doi: 10.1016/j.brainres.2005.12.044 – ident: e_1_2_8_24_1 doi: 10.1080/07300077.1988.11878797 – ident: e_1_2_8_38_1 doi: 10.1677/joe.0.1150311 – ident: e_1_2_8_40_1 doi: 10.1172/JCI31242 – ident: e_1_2_8_42_1 doi: 10.1073/pnas.96.7.3975 – ident: e_1_2_8_49_1 doi: 10.1073/pnas.88.17.7567 |
| SSID | ssj0016461 |
| Score | 2.151338 |
| Snippet | J. Neurochem. (2011) 119, 18–26.
Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain renin‐angiotensin... Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain renin-angiotensin system. Regulating brain... J. Neurochem. (2011) 119, 18-26. Abstract Astrocytes are the major source of angiotensinogen in the brain and play an important role in the brain... |
| SourceID | proquest pubmed pascalfrancis crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 18 |
| SubjectTerms | Adenoviridae - genetics Angiotensin Angiotensin II Angiotensin II - physiology Angiotensin II Type 1 Receptor Blockers - pharmacology Angiotensin receptors angiotensinogen Angiotensinogen - metabolism Animals Astrocytes Astrocytes - drug effects Astrocytes - metabolism Benzimidazoles - pharmacology Biological and medical sciences Blood pressure Brain Brain - cytology Brain Chemistry - physiology cardiomyocytes Cell culture Cells, Cultured cultures Data processing Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Dexamethasone - pharmacology Expression vectors Feedback, Physiological Fundamental and applied biological sciences. Psychology G protein‐coupled receptor Gene expression Hepatocytes Homeostasis Imidazoles - pharmacology Immunocytochemistry Immunohistochemistry Inositol Phosphates - physiology Isolated neuron and nerve. Neuroglia Liver - drug effects Liver - metabolism Medical sciences Mice Mice, Inbred C57BL Neonates Neurochemistry Neurology Polymerase chain reaction Proteins Pyridines - pharmacology qPCR Receptors, Angiotensin - metabolism Reverse Transcriptase Polymerase Chain Reaction Rodents Signal transduction Signal Transduction - physiology Tetrazoles - pharmacology Vertebrates: nervous system and sense organs |
| Title | Regulation of angiotensinogen by angiotensin II in mouse primary astrocyte cultures |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1471-4159.2011.07406.x https://www.ncbi.nlm.nih.gov/pubmed/21797869 https://www.proquest.com/docview/888149669 https://www.proquest.com/docview/889177321 https://www.proquest.com/docview/911166071 |
| Volume | 119 |
| WOSCitedRecordID | wos000295054300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1471-4159 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016461 issn: 0022-3042 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1471-4159 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016461 issn: 0022-3042 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED62brDC2I92P7xuQQ9jbx6WLUvKY8kWmlHC6FaWNyHJUilsdqnT0fz3PcmO15QOythLMImloNMn3X3y-TuA99RypD2VSYtKh1dyaJkah1fclBmzjlvvo4jroZjP5WIx_trnP4V3YTp9iOHALayMuF-HBa5Ne2ORC-Q_6I97JU6BzuljiCcpo6GYwY_ZfHigwBmng3A4AnUzqefWjjY81eMz3aLRfFft4rZwdDO6je5p-vR_DuwZPOmDVLLfoeo53HP1Duzu10jQf63IBxLTRuN5_A48mqxLxu3Ct6Ousj3ONWk80fXJaRMz5OsGcUrM6vpXZDYj-BmOHhw560QviMaOGrtaOtJJgrj2BRxPP3-fHKR91YbUIqnlacksZV5QDB2D2L232bjizmqmqcykN9xYKmhZZZmlmvnC5mXuMl-6QoYa7aJ4CVt1U7vXOENUGJNJWxV-jDQJQe8ZhptIsljFEEwJiPUMKdtLmofKGj_VdWojqAq2VMGWKtpSXSZAh5b9CO_QZrQBgqFhznhWMM4S2FujQvU7QauklEhCOR8nQIZfcVrCcxldO7Qx3oKcWRQ5_fstwSXxIAWYwKsObn_-HbdUIUP_PKLqzuNRX-aTcPXmXxvuwXa-zoikb2FreX7h3sFD-3t52p6P4L5YyBE8-HQ0PT4cxdV4BYi1LVs |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9UwFD6MOZgg_tic1s2ZB_Gt0rRpkvs4Lo5ddy2iE_cW2jQZg9mO3at4_3vPSXvr7pgwZC-ltE1KTr7knC9NvwPwlluJtKeu4qwu6ZccnseVwzNZ5YmwTlrvg4jrVBWFPj0dfe7TAdG_MJ0-xLDgRiMjzNc0wGlB-sYoV0iA0CH3UpwKvdN7DCgfCIw7KI_D90kxfFKQQvJBOhyhurqt59aaVnzVo8tyhmbzXb6L2wLS1fg2OKjDJ_fatKfwuI9T2UEHrGew5pot2D5okKP_WLB3LOwcDUvyW7A5XmaN24avX7rk9tjdrPWsbM7O27BJvmkRqqxaXL_EJhOGR1p9cOyy071gJVbU2sXcsU4VxM2ew7fDDyfjo7hP3BBb5LUyzoXlwiuO0SPp3XubjGrpbClKrhPtK1lZrnheJ4nlpfCZTfPUJT53maY07SrbgfWmbdxL7CKuqirRts78CJkS4t4LjDiRZ4laIJ4iUMsuMrZXNafkGhfmOrtR3JAtDdnSBFua3xHwoWTfwjuU2V9BwVAwFTLJhBQR7C5hYfrJYGa01shDpRxFwIa72C30aaZsHNoYH0HarLKU__sR8kqS1AAjeNHh7e_bcVZVmuqXAVZ3bo_5WIzp7NX_FnwDm0cnn6ZmOimOd-FhutwgyfdgfX71072GDftrfj672g-D8Q_cgC7x |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dS-QwFL3IKLogun7sWj_zsOxbpWnTJPMoo4PjDoPoCr6FNk1EcNvBGcX59960neqIgiy-lNI2Kbk5yb0nTc8F-EU1R9qTpX6UJe6XHBr7qcEznsYB04Zra0sR174YDOT1dfu8Tgfk_oWp9CGaBTc3Msr52g1wM8zsm1EukAChQ66lOAV6p0MMKOeZyynTgvnji-5Vv_mowBmnjXg4gnV2Y8-7dc14q-VhMkLD2SrjxXsh6WyEW7qo7uqXNu47rNSRKjmqoLUGcyZfh42jHFn6vwn5Tcq9o-Wi_DosdaZ54zbg8qJKb48dTgpLkvzmtii3yecFgpWkk9eXSK9H8OjWHwwZVsoXJMGKCj0ZG1LpgpjRJlx1T_52Tv06dYOvkdlyP2aaMisoxo9O8d7qoJ1xoxOWUBlIm_JUU0HjLAg0TZiNdBiHJrCxiaRL1C6iH9DKi9xsYRdRkaaB1Flk28iVEPmWYcyJTItlDBHlgZh2kdK1rrlLr3GnXvMbQZWzpXK2VKUt1ZMHtClZt_ATZfZnUNAUDBkPIsaZBztTWKh6OhgpKSUyUc7bHpDmLnaL-ziT5AZtjI8gcRZRSD9-xPkl7vQAPfhZ4e3l7TivCunq5yWsPt0edTbouLPt_y14AIvnx13V7w3-7MC3cLpDku5Ca3z_YPZgQT-Ob0f3-_VofAb4US-a |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+angiotensinogen+by+angiotensin+II+in+mouse+primary+astrocyte+cultures&rft.jtitle=Journal+of+neurochemistry&rft.au=O%27Callaghan%2C+EL&rft.au=Bassi%2C+J+K&rft.au=Porrello%2C+E+R&rft.au=Delbridge%2C+LMD&rft.date=2011-10-01&rft.issn=0022-3042&rft.eissn=1471-4159&rft.volume=119&rft.issue=1&rft.spage=18&rft.epage=26&rft_id=info:doi/10.1111%2Fj.1471-4159.2011.07406.x&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon |