Surface and Interface Engineering of Electrode Materials for Lithium-Ion Batteries
Lithium‐ion batteries are regarded as promising energy storage devices for next‐generation electric and hybrid electric vehicles. In order to meet the demands of electric vehicles, considerable efforts have been devoted to the development of advanced electrode materials for lithium‐ion batteries wit...
Uloženo v:
| Vydáno v: | Advanced materials (Weinheim) Ročník 27; číslo 3; s. 527 - 545 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Blackwell Publishing Ltd
21.01.2015
|
| Témata: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Lithium‐ion batteries are regarded as promising energy storage devices for next‐generation electric and hybrid electric vehicles. In order to meet the demands of electric vehicles, considerable efforts have been devoted to the development of advanced electrode materials for lithium‐ion batteries with high energy and power densities. Although significant progress has been recently made in the development of novel electrode materials, some critical issues comprising low electronic conductivity, low ionic diffusion efficiency, and large structural variation have to be addressed before the practical application of these materials. Surface and interface engineering is essential to improve the electrochemical performance of electrode materials for lithium‐ion batteries. This article reviews the recent progress in surface and interface engineering of electrode materials including the increase in contact interface by decreasing the particle size or introducing porous or hierarchical structures and surface modification or functionalization by metal nanoparticles, metal oxides, carbon materials, polymers, and other ionic and electronic conductive species.
Surface and interface engineering of electrodes is essential for the fabrication of high‐performance lithium‐ion batteries. A brief summary of the recent progress in surface and interface engineering of electrode materials is provided, and the effect of interface engineering on the electrochemical performance of different electrode materials is presented. |
|---|---|
| AbstractList | Lithium-ion batteries are regarded as promising energy storage devices for next-generation electric and hybrid electric vehicles. In order to meet the demands of electric vehicles, considerable efforts have been devoted to the development of advanced electrode materials for lithium-ion batteries with high energy and power densities. Although significant progress has been recently made in the development of novel electrode materials, some critical issues comprising low electronic conductivity, low ionic diffusion efficiency, and large structural variation have to be addressed before the practical application of these materials. Surface and interface engineering is essential to improve the electrochemical performance of electrode materials for lithium-ion batteries. This article reviews the recent progress in surface and interface engineering of electrode materials including the increase in contact interface by decreasing the particle size or introducing porous or hierarchical structures and surface modification or functionalization by metal nanoparticles, metal oxides, carbon materials, polymers, and other ionic and electronic conductive species.Lithium-ion batteries are regarded as promising energy storage devices for next-generation electric and hybrid electric vehicles. In order to meet the demands of electric vehicles, considerable efforts have been devoted to the development of advanced electrode materials for lithium-ion batteries with high energy and power densities. Although significant progress has been recently made in the development of novel electrode materials, some critical issues comprising low electronic conductivity, low ionic diffusion efficiency, and large structural variation have to be addressed before the practical application of these materials. Surface and interface engineering is essential to improve the electrochemical performance of electrode materials for lithium-ion batteries. This article reviews the recent progress in surface and interface engineering of electrode materials including the increase in contact interface by decreasing the particle size or introducing porous or hierarchical structures and surface modification or functionalization by metal nanoparticles, metal oxides, carbon materials, polymers, and other ionic and electronic conductive species. Lithium-ion batteries are regarded as promising energy storage devices for next-generation electric and hybrid electric vehicles. In order to meet the demands of electric vehicles, considerable efforts have been devoted to the development of advanced electrode materials for lithium-ion batteries with high energy and power densities. Although significant progress has been recently made in the development of novel electrode materials, some critical issues comprising low electronic conductivity, low ionic diffusion efficiency, and large structural variation have to be addressed before the practical application of these materials. Surface and interface engineering is essential to improve the electrochemical performance of electrode materials for lithium-ion batteries. This article reviews the recent progress in surface and interface engineering of electrode materials including the increase in contact interface by decreasing the particle size or introducing porous or hierarchical structures and surface modification or functionalization by metal nanoparticles, metal oxides, carbon materials, polymers, and other ionic and electronic conductive species. Lithium-ion batteries are regarded as promising energy storage devices for next-generation electric and hybrid electric vehicles. In order to meet the demands of electric vehicles, considerable efforts have been devoted to the development of advanced electrode materials for lithium-ion batteries with high energy and power densities. Although significant progress has been recently made in the development of novel electrode materials, some critical issues comprising low electronic conductivity, low ionic diffusion efficiency, and large structural variation have to be addressed before the practical application of these materials. Surface and interface engineering is essential to improve the electrochemical performance of electrode materials for lithium-ion batteries. This article reviews the recent progress in surface and interface engineering of electrode materials including the increase in contact interface by decreasing the particle size or introducing porous or hierarchical structures and surface modification or functionalization by metal nanoparticles, metal oxides, carbon materials, polymers, and other ionic and electronic conductive species. Surface and interface engineering of electrodes is essential for the fabrication of high-performance lithium-ion batteries. A brief summary of the recent progress in surface and interface engineering of electrode materials is provided, and the effect of interface engineering on the electrochemical performance of different electrode materials is presented. Lithium‐ion batteries are regarded as promising energy storage devices for next‐generation electric and hybrid electric vehicles. In order to meet the demands of electric vehicles, considerable efforts have been devoted to the development of advanced electrode materials for lithium‐ion batteries with high energy and power densities. Although significant progress has been recently made in the development of novel electrode materials, some critical issues comprising low electronic conductivity, low ionic diffusion efficiency, and large structural variation have to be addressed before the practical application of these materials. Surface and interface engineering is essential to improve the electrochemical performance of electrode materials for lithium‐ion batteries. This article reviews the recent progress in surface and interface engineering of electrode materials including the increase in contact interface by decreasing the particle size or introducing porous or hierarchical structures and surface modification or functionalization by metal nanoparticles, metal oxides, carbon materials, polymers, and other ionic and electronic conductive species. Surface and interface engineering of electrodes is essential for the fabrication of high‐performance lithium‐ion batteries. A brief summary of the recent progress in surface and interface engineering of electrode materials is provided, and the effect of interface engineering on the electrochemical performance of different electrode materials is presented. |
| Author | Wang, Kai-Xue Li, Xin-Hao Chen, Jie-Sheng |
| Author_xml | – sequence: 1 givenname: Kai-Xue surname: Wang fullname: Wang, Kai-Xue organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China – sequence: 2 givenname: Xin-Hao surname: Li fullname: Li, Xin-Hao organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China – sequence: 3 givenname: Jie-Sheng surname: Chen fullname: Chen, Jie-Sheng email: chemcj@sjtu.edu.cn organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25355133$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc9rFDEUx4NU7LZ69Shz9DJrfs5Mjmu7tgtbRVept_Amk9ToTNImGWz_e2eZtogghUDIy-fzeLzvETrwwRuEXhO8JBjTd9ANsKSYcExlRZ-hBRGUlBxLcYAWWDJRyoo3h-gopZ8YY1nh6gU6pIIJQRhboC-7MVrQpgDfFRufzfxa-yvnjYnOXxXBFuve6BxDZ4oLmBAHfSpsiMXW5R9uHMpN8MV7yPsvk16i53YCzKv7-xh9-7D-enJebj-dbU5W21ILymgJTddyLqXlQlsrSNMaTjiImtgWU1JPBcpk1RIrNGgAK6Sm3OAKW9YSwOwYvZ37XsdwM5qU1eCSNn0P3oQxKVJVGIuGTedpdBqpkbSWE_rmHh3bwXTqOroB4p16WNkE8BnQMaQUjVXaZcgu-BzB9YpgtU9G7ZNRj8lM2vIf7aHzfwU5C79db-6eoNXq9GL1t1vOrkvZ3D66EH-pqma1UJcfz9T33fbz6eWOq4b9ATgVrtE |
| CitedBy_id | crossref_primary_10_1002_chem_201502833 crossref_primary_10_1039_D5TA05676D crossref_primary_10_1016_j_jpowsour_2015_05_008 crossref_primary_10_1039_D4YA00583J crossref_primary_10_1002_elan_202300364 crossref_primary_10_1016_j_jiec_2019_04_021 crossref_primary_10_1002_smtd_202100920 crossref_primary_10_1038_s41598_025_03505_7 crossref_primary_10_3390_nano7100325 crossref_primary_10_1016_j_cej_2022_137924 crossref_primary_10_1016_j_nanoen_2017_08_002 crossref_primary_10_1016_j_nanoen_2020_104758 crossref_primary_10_1007_s12274_023_6076_1 crossref_primary_10_1002_admi_201700639 crossref_primary_10_1016_j_apsusc_2016_09_094 crossref_primary_10_1016_j_electacta_2017_07_092 crossref_primary_10_1038_s41467_019_11197_7 crossref_primary_10_1016_j_electacta_2019_135558 crossref_primary_10_1002_adma_201900583 crossref_primary_10_1016_j_apcatb_2018_10_012 crossref_primary_10_1016_j_jpowsour_2018_07_029 crossref_primary_10_1016_j_apsusc_2019_03_061 crossref_primary_10_1016_j_nanoen_2023_109250 crossref_primary_10_1016_j_jallcom_2022_164735 crossref_primary_10_1016_j_molstruc_2023_135512 crossref_primary_10_1557_s43577_021_00026_2 crossref_primary_10_1007_s11581_016_1933_5 crossref_primary_10_1016_j_jechem_2023_08_011 crossref_primary_10_1002_adfm_202109887 crossref_primary_10_1002_crat_202100133 crossref_primary_10_1016_j_cej_2024_156790 crossref_primary_10_1002_celc_202200029 crossref_primary_10_1007_s10800_018_1242_y crossref_primary_10_3390_nano9060871 crossref_primary_10_1002_adfm_201605011 crossref_primary_10_1007_s11164_022_04785_8 crossref_primary_10_1134_S1023193518050038 crossref_primary_10_1016_j_chphma_2021_11_004 crossref_primary_10_1016_j_electacta_2019_135543 crossref_primary_10_1016_j_jallcom_2016_10_259 crossref_primary_10_3390_nano9030441 crossref_primary_10_1016_j_cclet_2021_08_052 crossref_primary_10_1002_anie_202116865 crossref_primary_10_1039_C7CC07485A crossref_primary_10_63995_SGCF3012 crossref_primary_10_1002_chem_201605019 crossref_primary_10_1002_celc_201900848 crossref_primary_10_1016_j_jallcom_2015_09_189 crossref_primary_10_1002_celc_201901340 crossref_primary_10_1002_aenm_202002506 crossref_primary_10_1016_j_jpowsour_2025_237191 crossref_primary_10_1557_adv_2018_517 crossref_primary_10_1021_jacs_0c01117 crossref_primary_10_1002_celc_201900169 crossref_primary_10_1002_adfm_202105180 crossref_primary_10_1002_batt_202400638 crossref_primary_10_3389_fenrg_2020_00170 crossref_primary_10_1039_D2RA03368B crossref_primary_10_1002_ente_202300092 crossref_primary_10_1016_j_nanoen_2017_01_034 crossref_primary_10_1016_j_scib_2019_06_022 crossref_primary_10_1088_1361_6528_ac238f crossref_primary_10_1007_s10008_017_3786_x crossref_primary_10_1109_ACCESS_2025_3606267 crossref_primary_10_1016_j_mtcomm_2024_110846 crossref_primary_10_1002_admi_201600430 crossref_primary_10_1007_s12274_017_1647_7 crossref_primary_10_1016_j_cej_2022_139576 crossref_primary_10_1016_j_jhazmat_2016_10_069 crossref_primary_10_1038_s41467_022_28963_9 crossref_primary_10_1016_j_matchemphys_2018_04_091 crossref_primary_10_1016_j_nanoen_2017_08_033 crossref_primary_10_1016_j_jallcom_2023_173037 crossref_primary_10_1007_s10934_016_0246_4 crossref_primary_10_1002_adfm_201803439 crossref_primary_10_1016_j_jallcom_2017_03_225 crossref_primary_10_1016_j_electacta_2017_06_044 crossref_primary_10_3390_nano9121770 crossref_primary_10_1002_est2_78 crossref_primary_10_1016_j_jpowsour_2022_231716 crossref_primary_10_1680_jsuin_20_00044 crossref_primary_10_12677_AEPE_2021_93013 crossref_primary_10_1016_j_apsusc_2017_11_276 crossref_primary_10_1088_1755_1315_571_1_012110 crossref_primary_10_1016_j_carbon_2015_05_030 crossref_primary_10_1016_j_jallcom_2019_06_194 crossref_primary_10_1017_S1431927620013598 crossref_primary_10_1038_nenergy_2016_50 crossref_primary_10_1002_smll_202403537 crossref_primary_10_1016_j_jpowsour_2017_11_037 crossref_primary_10_1016_j_diamond_2019_107514 crossref_primary_10_1016_j_cap_2019_08_024 crossref_primary_10_1007_s11581_021_04171_1 crossref_primary_10_1002_aenm_202002969 crossref_primary_10_1016_j_jallcom_2018_07_151 crossref_primary_10_1016_j_jallcom_2019_05_142 crossref_primary_10_1016_j_jcis_2021_02_035 crossref_primary_10_1149_2162_8777_adfc98 crossref_primary_10_1016_j_jpowsour_2019_03_046 crossref_primary_10_1016_j_copbio_2015_02_014 crossref_primary_10_1016_j_jpowsour_2022_232395 crossref_primary_10_1016_j_cej_2024_154346 crossref_primary_10_1016_j_matdes_2016_07_007 crossref_primary_10_1016_j_mattod_2024_11_009 crossref_primary_10_1134_S0020168522070111 crossref_primary_10_1002_aisy_202400626 crossref_primary_10_1002_chin_201510340 crossref_primary_10_1016_j_physe_2025_116375 crossref_primary_10_1016_j_electacta_2016_12_001 crossref_primary_10_1002_nano_202000174 crossref_primary_10_1016_j_ceramint_2016_02_044 crossref_primary_10_1039_C9ME00084D crossref_primary_10_1016_j_est_2025_116616 crossref_primary_10_1016_j_jallcom_2023_169362 crossref_primary_10_1016_j_jallcom_2023_170387 crossref_primary_10_1016_j_apenergy_2025_125347 crossref_primary_10_1039_D0QM00710B crossref_primary_10_1002_ange_201712907 crossref_primary_10_1039_C5TA09323F crossref_primary_10_1002_cjoc_201800216 crossref_primary_10_1016_j_electacta_2016_06_002 crossref_primary_10_1007_s10853_016_9748_3 crossref_primary_10_1016_j_cej_2023_148047 crossref_primary_10_1039_C7CP00509A crossref_primary_10_1016_j_pnsc_2018_02_005 crossref_primary_10_3390_nano14010017 crossref_primary_10_1002_admt_202001301 crossref_primary_10_1016_j_nanoen_2016_02_006 crossref_primary_10_1093_ce_zkae048 crossref_primary_10_1016_j_mssp_2025_109864 crossref_primary_10_1002_aenm_202201466 crossref_primary_10_1016_j_ssi_2019_02_014 crossref_primary_10_1039_C9QI00212J crossref_primary_10_1002_smll_202409304 crossref_primary_10_1007_s00604_024_06470_6 crossref_primary_10_1016_j_electacta_2016_04_180 crossref_primary_10_1039_D4MH00715H crossref_primary_10_1002_aenm_201702028 crossref_primary_10_1007_s11434_016_1048_4 crossref_primary_10_1016_j_electacta_2024_144083 crossref_primary_10_1007_s10008_024_05929_z crossref_primary_10_1002_cey2_338 crossref_primary_10_3390_batteries11020046 crossref_primary_10_1002_adfm_201704880 crossref_primary_10_1016_j_cej_2024_151976 crossref_primary_10_1002_adma_201605895 crossref_primary_10_1002_celc_201900915 crossref_primary_10_1016_j_apsusc_2020_145622 crossref_primary_10_1016_j_jhazmat_2019_01_106 crossref_primary_10_3390_batteries9100515 crossref_primary_10_1002_adfm_202408935 crossref_primary_10_1016_j_jallcom_2025_181295 crossref_primary_10_1016_j_electacta_2025_146545 crossref_primary_10_1007_s10853_020_04905_y crossref_primary_10_1016_j_cej_2024_157941 crossref_primary_10_1016_j_bios_2018_12_017 crossref_primary_10_1016_j_cej_2024_158116 crossref_primary_10_1016_j_jpowsour_2022_231873 crossref_primary_10_1002_adfm_201500644 crossref_primary_10_1016_j_ceramint_2023_12_075 crossref_primary_10_1039_C9MH01094G crossref_primary_10_1088_2053_1591_3_12_125008 crossref_primary_10_1016_j_est_2024_115253 crossref_primary_10_1002_er_6953 crossref_primary_10_1007_s12274_022_4953_7 crossref_primary_10_1039_C6CP01366J crossref_primary_10_1016_j_est_2023_109756 crossref_primary_10_1002_admi_202202268 crossref_primary_10_1016_j_nantod_2021_101094 crossref_primary_10_1016_j_nanoen_2019_104212 crossref_primary_10_1002_smll_201701802 crossref_primary_10_1016_j_mtcomm_2020_101820 crossref_primary_10_1142_S1793604716500557 crossref_primary_10_1016_j_electacta_2017_12_038 crossref_primary_10_1016_j_jallcom_2020_154081 crossref_primary_10_1038_s41467_017_00574_9 crossref_primary_10_1016_j_jallcom_2019_151913 crossref_primary_10_1016_j_jpowsour_2023_233451 crossref_primary_10_1016_j_jallcom_2024_174806 crossref_primary_10_1016_j_apt_2020_09_002 crossref_primary_10_1016_j_cej_2018_08_056 crossref_primary_10_1016_j_electacta_2024_144576 crossref_primary_10_1002_adma_201704309 crossref_primary_10_1038_srep36580 crossref_primary_10_1016_j_apsusc_2021_149860 crossref_primary_10_1002_anie_201712907 crossref_primary_10_1088_1361_6528_aa8106 crossref_primary_10_1002_admi_202000226 crossref_primary_10_1002_ente_201900987 crossref_primary_10_1016_j_cej_2024_155637 crossref_primary_10_1016_j_snb_2025_137467 crossref_primary_10_1002_adma_201805234 crossref_primary_10_1002_aenm_202000058 crossref_primary_10_1002_ente_202400096 crossref_primary_10_1002_batt_202400257 crossref_primary_10_1007_s11581_018_2620_5 crossref_primary_10_1016_j_jallcom_2018_07_003 crossref_primary_10_1016_j_jics_2023_100959 crossref_primary_10_1016_j_jmst_2021_12_048 crossref_primary_10_1016_j_est_2024_114228 crossref_primary_10_1002_er_6496 crossref_primary_10_1016_j_jpowsour_2024_235457 crossref_primary_10_1016_j_jpowsour_2016_01_005 crossref_primary_10_1016_j_cej_2024_154535 crossref_primary_10_1002_adfm_202000024 crossref_primary_10_1016_j_jpowsour_2021_229522 crossref_primary_10_1016_j_nanoen_2022_108028 crossref_primary_10_1039_C6CP02364A crossref_primary_10_1142_S1793604718501035 crossref_primary_10_1007_s11237_024_09791_y crossref_primary_10_1016_j_jmst_2022_09_010 crossref_primary_10_1016_j_actamat_2017_08_054 crossref_primary_10_1007_s10800_019_01393_0 crossref_primary_10_1002_advs_202205069 crossref_primary_10_1016_j_micromeso_2017_03_019 crossref_primary_10_3390_batteries11060209 crossref_primary_10_1002_adma_201700396 crossref_primary_10_1039_D4QI02198C crossref_primary_10_1007_s10854_020_03663_6 crossref_primary_10_1016_j_jallcom_2018_11_242 crossref_primary_10_1002_admi_202300668 crossref_primary_10_1002_cssc_201900209 crossref_primary_10_1002_cssc_202101852 crossref_primary_10_1016_j_electacta_2016_06_155 crossref_primary_10_1002_smll_202306428 crossref_primary_10_1016_j_electacta_2019_134604 crossref_primary_10_1016_j_aca_2023_341646 crossref_primary_10_1016_j_ensm_2025_104256 crossref_primary_10_1016_j_ceramint_2021_01_215 crossref_primary_10_1016_j_cej_2023_147813 crossref_primary_10_1016_j_carbon_2018_11_054 crossref_primary_10_1016_j_carbon_2023_118564 crossref_primary_10_1002_aenm_201501727 crossref_primary_10_1002_ange_202116865 crossref_primary_10_3389_fchem_2025_1633529 crossref_primary_10_1002_aenm_202402720 crossref_primary_10_1016_j_ijhydene_2019_08_048 crossref_primary_10_3390_ma13010119 crossref_primary_10_1016_j_joule_2017_08_001 crossref_primary_10_1016_j_matchemphys_2018_05_054 crossref_primary_10_1016_j_nanoen_2017_03_017 crossref_primary_10_1007_s10008_017_3524_4 crossref_primary_10_1007_s10800_022_01736_4 crossref_primary_10_1007_s11581_019_02864_2 crossref_primary_10_1016_j_jcis_2021_05_150 crossref_primary_10_1016_j_electacta_2017_03_155 crossref_primary_10_1039_C7QI00711F crossref_primary_10_1016_j_elecom_2015_05_005 crossref_primary_10_1002_advs_201600049 crossref_primary_10_1002_aenm_201602559 crossref_primary_10_1007_s11581_017_2287_3 crossref_primary_10_1039_C5TA06962A crossref_primary_10_1016_j_jallcom_2016_09_205 crossref_primary_10_1016_j_mtnano_2019_100040 crossref_primary_10_1016_j_jcis_2021_10_025 crossref_primary_10_1016_j_solener_2024_112515 crossref_primary_10_1016_j_mser_2015_12_003 crossref_primary_10_1016_j_cej_2021_129894 crossref_primary_10_1016_j_electacta_2021_137835 crossref_primary_10_1016_j_jallcom_2024_177689 crossref_primary_10_1016_j_gee_2017_09_005 crossref_primary_10_1002_chem_201901168 crossref_primary_10_1007_s10008_023_05662_z crossref_primary_10_1149_1945_7111_ad0c6a crossref_primary_10_1016_j_apenergy_2016_04_066 crossref_primary_10_1016_j_cej_2020_126894 crossref_primary_10_1016_j_est_2021_103112 crossref_primary_10_1016_j_cej_2023_143436 crossref_primary_10_1016_j_tsf_2019_137522 crossref_primary_10_1016_j_mseb_2020_115015 crossref_primary_10_1016_j_ultsonch_2017_06_010 crossref_primary_10_1007_s11172_017_1897_2 crossref_primary_10_1002_smll_201903652 crossref_primary_10_1039_D5RA01695A crossref_primary_10_1016_j_trac_2017_02_010 crossref_primary_10_1002_smll_201601158 crossref_primary_10_1016_j_jallcom_2017_06_114 crossref_primary_10_1002_cplu_201500528 crossref_primary_10_1016_j_apsusc_2020_147631 crossref_primary_10_1002_adfm_202305515 crossref_primary_10_1016_j_jpowsour_2015_08_031 crossref_primary_10_1007_s11664_019_07607_7 crossref_primary_10_1007_s10854_018_9247_1 crossref_primary_10_1002_adma_201606805 crossref_primary_10_1007_s11426_017_9050_6 crossref_primary_10_1016_j_jechem_2020_07_033 crossref_primary_10_1016_j_electacta_2015_11_094 crossref_primary_10_1002_adma_202200777 crossref_primary_10_1007_s11581_016_1941_5 crossref_primary_10_1038_srep35620 crossref_primary_10_1007_s10008_017_3629_9 crossref_primary_10_3389_fenrg_2023_1108269 crossref_primary_10_1016_j_ultsonch_2023_106590 crossref_primary_10_1039_D1ME00082A crossref_primary_10_1017_S1431927616007406 crossref_primary_10_1002_adma_201605807 crossref_primary_10_1002_celc_201600914 crossref_primary_10_1016_j_jpowsour_2020_229372 crossref_primary_10_1016_j_jallcom_2019_152386 crossref_primary_10_1016_j_jpowsour_2017_06_037 crossref_primary_10_1016_j_jpowsour_2015_09_092 crossref_primary_10_1038_srep26246 crossref_primary_10_1002_smtd_202300965 crossref_primary_10_1016_j_cej_2021_130310 crossref_primary_10_1016_j_est_2024_110525 crossref_primary_10_1016_j_jallcom_2018_09_017 crossref_primary_10_1002_admt_202101107 crossref_primary_10_1002_chem_202103938 crossref_primary_10_1016_j_jallcom_2018_09_377 crossref_primary_10_1016_j_jpcs_2020_109861 crossref_primary_10_1002_admi_201701255 crossref_primary_10_1002_celc_201600343 crossref_primary_10_1016_j_matdes_2016_05_040 crossref_primary_10_1002_aenm_201701681 crossref_primary_10_1002_adma_201804116 crossref_primary_10_1002_smll_202410482 crossref_primary_10_2478_adms_2024_0011 crossref_primary_10_1016_j_ijhydene_2016_04_160 crossref_primary_10_1002_aenm_201601906 crossref_primary_10_1016_j_jallcom_2019_152497 |
| Cites_doi | 10.1002/adma.200305075 10.1039/c0jm00508h 10.1021/nl0727157 10.1021/nn4037909 10.1002/anie.201101661 10.1149/1.2108601 10.1021/ar300253f 10.1039/c2jm34114j 10.1002/anie.201107817 10.1039/C3DT52661E 10.1021/nl300794f 10.1016/j.elecom.2005.08.006 10.1021/nl200658a 10.1038/nature07853 10.1038/srep01622 10.1016/j.jpowsour.2007.01.004 10.1016/j.jpowsour.2013.06.116 10.1016/j.jpowsour.2010.07.021 10.1002/aenm.201100485 10.1016/S0167-2738(99)00043-0 10.1021/nl0725906 10.1021/cm049971u 10.1039/c3ra44731f 10.1021/jp206277a 10.1039/c2cc17925c 10.1039/C0EE00029A 10.1002/adma.200601667 10.1016/j.jpowsour.2010.12.078 10.1149/1.2956088 10.5012/bkcs.2009.30.11.2584 10.1039/c2cp23433e 10.1149/1.3447750 10.1021/ja0545721 10.1021/am403798a 10.1039/c0nr00068j 10.1016/j.jpowsour.2013.04.042 10.1021/ja1110464 10.1039/b907509g 10.1002/anie.200300614 10.1016/S0924-0136(01)01044-5 10.1002/adma.200901710 10.1016/j.electacta.2005.11.015 10.1149/1.1837722 10.1039/C3TA14178K 10.1016/j.jpowsour.2007.12.109 10.1016/j.electacta.2008.06.053 10.1039/c3ta13092d 10.1021/cm801607e 10.1016/j.jpowsour.2005.07.047 10.1021/jp110694k 10.1007/s12274-013-0300-3 10.1021/ja2004329 10.1002/adma.200903755 10.1021/ja002261e 10.1039/c1nr10668f 10.1038/nature05570 10.1002/adma.201002828 10.1039/c2jm31910a 10.1016/j.jpowsour.2012.06.023 10.1016/j.jpowsour.2007.09.102 10.1021/cm4018248 10.1007/s11581-014-1108-1 10.1039/c0jm01387k 10.1016/j.elecom.2008.04.004 10.1039/c2jm32402d 10.1002/anie.201304762 10.1039/c0ee00713g 10.1002/anie.201107885 10.1039/b900397e 10.1007/s12274-013-0293-y 10.1016/j.elecom.2008.10.043 10.1007/s11581-013-1006-y 10.1149/1.1613668 10.1021/jp9082322 10.1039/c1jm10976f 10.1016/j.ssi.2008.04.031 10.1016/j.jallcom.2013.03.041 10.1021/cm050566s 10.1016/j.elecom.2003.08.012 10.1039/c1cp22026h 10.1021/nl400199r 10.1149/1.3267294 10.1038/nmat3191 10.1016/j.elecom.2013.01.015 10.1016/j.ssi.2012.08.003 10.1088/0957-4484/24/42/424008 10.1002/adma.200306125 10.1039/c1jm12979a 10.1039/b817156d 10.1016/j.jpowsour.2010.09.027 10.1002/anie.201104102 10.1021/cm404154u 10.1002/anie.200804355 10.1023/A:1009987225710 10.1016/j.jpowsour.2012.01.058 10.1002/adma.200803439 10.1021/cm2037475 10.1016/j.jpowsour.2004.12.041 10.1038/srep02788 10.1002/adma.201301795 10.1021/nn4022263 10.1021/jp0674367 10.1016/S1369-7021(13)70012-9 10.1021/jp309724q 10.1149/2.032203jes 10.1002/adfm.200400186 10.1016/j.nanoen.2013.06.006 10.1039/c2ee03215e 10.1021/nl300206e 10.1021/cm202812z 10.1002/anie.201104597 10.1021/ja0488378 10.1002/adma.201401937 10.1002/adfm.201303856 10.1063/1.2399935 10.1021/cm900698p 10.1038/nmat1107 10.1039/b411915k 10.1016/0013-4686(93)80046-3 10.1002/chem.201303675 10.1016/j.solidstatesciences.2005.10.019 10.1021/cm9024167 10.1149/1.2360769 10.1039/c2nr32069j 10.1002/asia.201200429 10.1039/c0jm04126b 10.1021/cm0481372 10.1016/j.elecom.2010.01.008 10.1002/anie.201205292 10.1002/adma.201202744 10.1039/C0NR00423E 10.1002/adma.201200397 10.1149/1.2188081 10.1002/anie.200802539 10.1016/j.jssc.2012.07.029 10.1002/ejic.200900275 10.1002/adfm.200400429 10.1016/S1388-2481(03)00179-6 10.1002/smll.201101838 10.1007/s10853-012-6576-y 10.1021/nn406449u 10.1002/anie.200603665 10.1039/c2ra23365g 10.1002/asia.201300279 10.1021/jp067116n 10.1016/j.jpowsour.2010.11.138 10.1039/c2jm16799a 10.1149/1.2128859 10.1016/j.elecom.2008.10.041 10.1039/c3cc44360d 10.1016/S0040-6090(96)09440-0 10.1039/c0nr00998a 10.1039/c2jm32658b 10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO;2-A 10.1016/j.jpowsour.2013.07.032 10.1016/j.nanoen.2013.03.005 10.1016/j.jpowsour.2013.08.042 10.1007/s10971-010-2162-4 10.1007/s11581-013-1041-8 10.1039/c3cc41967c 10.1016/0025-5408(80)90012-4 10.1021/ja028165q 10.1021/jp9072125 10.1002/anie.200250808 10.1021/am1009056 10.1016/j.electacta.2004.03.049 10.1149/1.1526782 10.1002/asia.201100757 10.1016/j.jpowsour.2013.01.082 10.1039/C3TA14123C 10.1039/c2cc31476b 10.1016/j.electacta.2009.07.028 10.1002/adfm.201200591 10.1016/j.jpowsour.2011.11.074 10.1021/ar800229g 10.1016/S0378-7753(03)00228-3 10.1002/adma.200600369 10.1016/S0013-4686(99)00191-7 10.1038/srep03490 10.1016/j.fusengdes.2010.04.003 10.1002/anie.200461051 10.1016/j.materresbull.2012.12.056 10.1016/S0167-2738(99)00095-8 10.1039/c3ta01618h 10.1126/science.1122716 10.1039/C3NR04611G 10.1021/ja108720w 10.1038/nmat1230 10.1016/j.jpowsour.2009.08.089 10.1021/ja308717z 10.1149/1.2711075 10.1016/j.jpowsour.2013.08.105 10.1039/c1jm13048j 10.1016/j.ssi.2008.03.001 10.1039/c3ra22125c 10.1021/ja058441b 10.1038/nmat2460 10.1002/adma.201201601 10.1021/nl5008568 10.1002/adma.200602189 10.1021/jz3006892 10.1021/ja0752843 10.1039/C2CS35378D 10.1021/ja105389t 10.1002/anie.200501561 10.1002/aenm.201200389 10.1016/j.jpowsour.2009.11.022 10.1016/j.jpowsour.2010.01.003 10.1039/C4TA00974F 10.1016/j.electacta.2014.03.171 10.1021/cm902696j 10.1016/j.ssi.2006.03.033 10.1039/b923576k 10.1021/jp0707889 10.1007/s10853-011-5680-8 10.1016/j.electacta.2005.02.026 10.1039/C1CC14764A 10.1039/b922898e 10.1039/c1dt10749f 10.1039/B512304F 10.1016/j.jpowsour.2007.08.034 10.1021/jp807463u 10.1002/anie.200460937 10.1039/c0jm01346c 10.1007/s10008-009-0967-2 10.1039/c2ce25114k 10.1039/c4ra01255k 10.1021/nn203436j 10.1039/c003630g 10.1039/c3ta12964k 10.1016/j.jpowsour.2012.10.030 10.1016/j.jpowsour.2009.02.063 10.1149/1.2096876 10.1021/cm8002589 10.1038/nmat1368 10.1038/35104644 10.1016/j.ssi.2004.04.003 10.1016/j.cej.2010.11.040 10.1021/cm901452z 10.1016/j.elecom.2007.09.020 10.1002/aenm.201100765 10.1016/j.electacta.2004.01.090 10.1021/nl403715h 10.1016/0378-7753(93)80106-Y 10.1021/nl9017594 10.1149/2.003311jes 10.1039/c3ta12566a 10.1021/cm300929r 10.1021/nl403979s 10.1351/PAC-CON-09-05-06 10.1002/anie.200601676 10.1002/adma.200602513 10.1002/aenm.201200320 10.1039/c2cc17083c 10.1002/adma.200400283 10.1021/cm051880p 10.1039/c4ta00189c 10.1021/cm060921u 10.1021/nl3027839 10.1126/science.282.5397.2244 10.1021/nl202297p 10.1088/0957-4484/24/42/424004 10.1021/cm900613d 10.1002/aenm.201300269 10.1016/S0008-6223(02)00425-6 10.1007/s10008-014-2411-5 10.1002/anie.201100637 10.1021/cm201197j 10.1021/cm702134s 10.1002/adma.200800627 10.1016/j.jpowsour.2012.04.091 10.1021/cr020731c 10.1038/361511a0 10.1039/c1ee01598b 10.1021/cm0487425 10.1002/adma.201003713 10.1007/s10008-007-0449-3 10.1016/j.jpowsour.2004.06.046 |
| ContentType | Journal Article |
| Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| DBID | BSCLL AAYXX CITATION NPM 7X8 7SP 7SR 7TB 8BQ 8FD FR3 JG9 L7M |
| DOI | 10.1002/adma.201402962 |
| DatabaseName | Istex CrossRef PubMed MEDLINE - Academic Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | 545 |
| ExternalDocumentID | 25355133 10_1002_adma_201402962 ADMA201402962 ark_67375_WNG_XSLQDWS4_8 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21271128; 21331004 – fundername: National Basic Research Program of China funderid: 2013CB934102; 2014CB932102 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE FOJGT G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WTY WXSBR WYISQ XG1 XPP XV2 YR2 ZY4 ZZTAW ~02 ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI RWM WRC AAYXX CITATION O8X NPM 7X8 7SP 7SR 7TB 8BQ 8FD FR3 JG9 L7M |
| ID | FETCH-LOGICAL-c5232-a8db4499f45cff518be414a571fb021718b2396b1f5cacaaf59c24e060f3b1a03 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 474 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000348031800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Sun Nov 09 12:32:36 EST 2025 Thu Oct 02 08:26:59 EDT 2025 Mon Jul 21 05:55:24 EDT 2025 Tue Nov 18 22:11:13 EST 2025 Sat Nov 29 07:17:28 EST 2025 Wed Jan 22 16:21:11 EST 2025 Sun Sep 21 06:18:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | surface engineering lithium-ion batteries electrode materials electrochemical performance interface engineering |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5232-a8db4499f45cff518be414a571fb021718b2396b1f5cacaaf59c24e060f3b1a03 |
| Notes | istex:1D1057279FBA2CCC99153E637C0D73810F435D68 ark:/67375/WNG-XSLQDWS4-8 National Basic Research Program of China - No. 2013CB934102; No. 2014CB932102 National Natural Science Foundation of China - No. 21271128; No. 21331004 ArticleID:ADMA201402962 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 25355133 |
| PQID | 1652389279 |
| PQPubID | 23479 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_1660058358 proquest_miscellaneous_1652389279 pubmed_primary_25355133 crossref_citationtrail_10_1002_adma_201402962 crossref_primary_10_1002_adma_201402962 wiley_primary_10_1002_adma_201402962_ADMA201402962 istex_primary_ark_67375_WNG_XSLQDWS4_8 |
| PublicationCentury | 2000 |
| PublicationDate | January 21, 2015 |
| PublicationDateYYYYMMDD | 2015-01-21 |
| PublicationDate_xml | – month: 01 year: 2015 text: January 21, 2015 day: 21 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv. Mater |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | X. Pu, C. Yu, Nanoscale 2012, 4, 6743. B. Yao, D. Fleming, M. A. Morris, S. E. Lawrence, Chem. Mater. 2004, 16, 4851. B. Wang, B. Xu, T. Liu, P. Liu, C. Guo, S. Wang, Q. Wang, Z. Xiong, D. Wang, X. S. Zhao, Nanoscale 2014, 6, 986. J. Cho, Y. Kim, M. G. Kim, J. Phys. Chem. C 2007, 111, 3192. X. L. Yang, Z. Y. Wen, S. H. Huang, X. J. Zhu, X. F. Zhang, Solid State Ionics 2006, 177, 2807. G. X. Wang, L. Yang, Y. Chen, J. Z. Wang, S. Bewlay, H. K. Liu, Electrochim. Acta 2005, 50, 4649. Y. Wu, Z. Wen, J. Li, Adv. Mater. 2011, 23, 1126. C. F. Zhang, H. B. Wu, C. Z. Yuan, Z. P. Guo, X. W. Lou, Angew. Chem. Int. Ed. 2012, 51, 9592. W. Liu, J. Liu, K. F. Chen, S. M. Ji, Y. L. Wan, Y. C. Zhou, D. F. Xue, P. Hodgson, Y. C. Li, Chem. Eur. J. 2014, 20, 824. D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J. S. Gnanaraj, H. J. Kim, Electrochim. Acta 2004, 50, 247. J. Cho, Y. J. Kim, T. J. Kim, B. Park, Angew. Chem. Int. Ed. 2001, 40, 3367. M. Gaberscek, R. Dominko, J. Jamnik, Electrochem. Commun. 2007, 9, 2778. M. M. Thackeray, C. S. Johnson, J. S. Kim, K. C. Lauzze, J. T. Vaughey, N. Dietz, D. Abraham, S. A. Hackney, W. Zeltner, M. A. Anderson, Electrochem. Commun. 2003, 5, 752. Y. M. Jiang, K. X. Wang, H. J. Zhang, X. X. Guo, J. F. Wang, G. D. Li, J. S. Chen, RSC Adv. 2013, 3, 26052. H. L. Wang, Y. Yang, Y. Y. Liang, J. T. Robinson, Y. G. Li, A. Jackson, Y. Cui, H. J. Dai, Nano Lett. 2011, 11, 2644. Y. Huang, H. Q. Cai, T. Yu, F. Q. Zhang, F. Zhang, Y. Meng, D. Gu, Y. Wan, X. L. Sun, B. Tu, D. Y. Zhao, Angew. Chem. Int. Ed. 2007, 46, 1089. Z. H. Bao, M. R. Weatherspoon, S. Shian, Y. Cai, P. D. Graham, S. M. Allan, G. Ahmad, M. B. Dickerson, B. C. Church, Z. T. Kang, H. W. Abernathy, C. J. Summers, M. L. Liu, K. H. Sandhage, Nature 2007, 446, 172. J. Y. Luo, X. Zhao, J. S. Wu, H. D. Jang, H. H. Kung, J. X. Huang, J. Phys. Chem. Lett. 2012, 3, 1824. K. Saravanan, P. Balaya, M. V. Reddy, B. V. R. Chowdari, J. J. Vittal, Energy Environ. Sci. 2010, 3, 457. F. Wu, M. Wang, Y. Su, S. Chen, B. Xu, J. Power Sources 2009, 191, 628. M. Y. Ge, J. P. Rong, X. Fang, A. Y. Zhang, Y. H. Lu, C. W. Zhou, Nano Res. 2013, 6, 174. X. Wang, K. Q. Peng, X. J. Pan, X. Chen, Y. Yang, L. Li, X. M. Meng, W. J. Zhang, S. T. Lee, Angew. Chem. Int. Ed. 2011, 50, 9861. E. Antolini, Solid State Ionics 2004, 170, 159. Y. G. Wang, H. Q. Li, P. He, E. Hosono, H. S. Zhou, Nanoscale 2010, 2, 1294. R. R. Song, H. H. Song, J. S. Zhou, X. H. Chen, B. Wu, H. Y. Yang, J. Mater. Chem. 2012, 22, 12369. J. G. Yu, L. J. Zhang, B. Cheng, Y. R. Su, J. Phys. Chem. C 2007, 111, 10582. H. Q. Li, H. S. Zhou, Chem. Commun. 2012, 48, 1201. L. Wang, X. He, W. Sun, J. Wang, Y. Li, S. Fan, Nano Lett. 2012, 12, 5632. C. K. Chan, X. F. Zhang, Y. Cui, Nano Lett. 2007, 8, 307. M. Wagemaker, G. J. Kearley, A. A. v. Well, H. Mutka, F. M. Mulder, J. Am. Chem. Soc. 2003, 125, 840. B. L. Ellis, K. T. Lee, L. F. Nazar, Chem. Mater. 2010, 22, 691. J. Q. Zhao, Y. Wang, Nano Energy 2013, 2, 882. B. M. Bang, J.-I. Lee, H. Kim, J. Cho, S. Park, Adv. Energy Mater. 2012, 2, 878. M. Steinhart, R. B. Wehrspohn, U. Gosele, J. H. Wendorff, Angew. Chem. Int. Ed. 2004, 43, 1334. D. Aurbach, J. Electrochem. Soc. 1989, 136, 906. Q. Q. Xiong, X. H. Xia, J. P. Tu, J. Chen, Y. Q. Zhang, D. Zhou, C. D. Gu, X. L. Wang, J. Power Sources 2013, 240, 344. F. Zhang, K. X. Wang, G. D. Li, J. S. Chen, Electrochem. Commun. 2009, 11, 130. L. Zhan, Z. Song, J. Zhang, J. Tang, H. Zhan, Y. Zhou, C. Zhan, Electrochim. Acta 2008, 53, 8319. A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwijk, Nat. Mater. 2005, 4, 366. D. Qian, B. Xu, H.-M. Cho, T. Hatsukade, K. J. Carroll, Y. S. Meng, Chem. Mater. 2012, 24, 2744. S. H. Lee, H. G. You, K. S. Han, J. Kim, I. H. Jung, J. H. Song, J. Power Sources 2014, 247, 307. F. Zhang, K. Wang, X. Wang, G. Li, J. Chen, Dalton Trans. 2011, 40, 8517. Y. Harada, Y. Hirakoso, H. Kawai, J. Kuwano, Solid State Ionics 1999, 121, 245. M. J. G. Jak, E. M. Kelder, J. Schoonman, N. M. Van der Pers, A. Weisenburger, J. Electroceram. 1998, 2, 127. B. Kang, G. Ceder, Nature 2009, 458, 190. Z. H. Wen, G. H. Lu, S. Mao, H. Kim, S. M. Cui, K. H. Yu, X. K. Huang, P. T. Hurley, O. Mao, J. H. Chen, Electrochem. Commun. 2013, 29, 67. Q. Fu, F. Du, X. Bian, Y. Wang, X. Yan, Y. Zhang, K. Zhu, G. Chen, C. Wang, Y. Wei, J. Mater. Chem. A 2014, 2, 7555. S. H. Ju, I. S. Kang, Y. S. Lee, W. K. Shin, S. Kim, K. Shin, D. W. Kim, ACS Appl. Mater. Interfaces 2014, 6, 2545. S. Murugesan, J. T. Harris, B. A. Korgel, K. J. Stevenson, Chem. Mater. 2012, 24, 1306. A. Yamaguchi, F. Uejo, T. Yoda, T. Uchida, Y. Tanamura, T. Yamashita, N. Teramae, Nat. Mater. 2004, 3, 337. S. Chen, M. Wang, J. F. Ye, J. G. Cai, Y. R. Ma, H. H. Zhou, L. M. Qi, Nano Res. 2013, 6, 243. Z. L. Gong, Y. Yang, Energy Environ. Sci. 2011, 4, 3223. F. H. Du, K. X. Wang, W. Fu, P.-F. Gao, J. F. Wang, J. Yang, J. S. Chen, J. Mater. Chem. A 2013, 1, 13648. F. H. Du, B. Li, W. Fu, Y. J. Xiong, K. X. Wang, J. S. Chen, Adv. Mater. 2014, 26, 10.1002/adma.201401937. R. Lakes, Nature 1993, 361, 511. X. Qin, J. Wang, J. Xie, F. Li, L. Wen, X. Wang, Phys. Chem. Chem. Phys. 2012, 14, 2669. Y. Park, N. S. Choi, S. Park, S. H. Woo, S. Sim, B. Y. Jang, S. M. Oh, S. Park, J. Cho, K. T. Lee, Adv. Energy Mater. 2013, 3, 206. X. Y. Yang, Y. Li, A. Lemaire, J. G. Yu, B. L. Su, Pure Appl. Chem. 2009, 81, 2265. S. H. Wu, J. J. Shiu, J. Y. Lin, J. Power Sources 2011, 196, 6676. Z. L. Yang, Z. W. Niu, X. Y. Cao, Z. Z. Yang, Y. F. Lu, Z. B. Hu, C. C. Han, Angew. Chem. Int. Ed. 2003, 42, 4201. S. Dorfler, M. Hagen, H. Althues, J. Tubke, S. Kaskel, M. J. Hoffmann, Chem. Commun. 2012, 48, 4097. X. Rui, X. Zhao, Z. Lu, H. Tan, D. Sim, H. H. Hng, R. Yazami, T. M. Lim, Q. Yan, ACS Nano 2013, 7, 5637. Z. Y. Yuan, T. Z. Ren, B. L. Su, Adv. Mater. 2003, 15, 1462. L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, M. D. Fleischauer, J. R. Dahn, J. Electrochem. Soc. 2003, 150, A1457. T. B. Lan, Y. B. Liu, J. Dou, Z. S. Hong, M. D. Wei, J. Mater. Chem. A 2014, 2, 1102. G. S. Chai, I. S. Shin, J. S. Yu, Adv. Mater. 2004, 16, 2057. L. X. Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang, J. B. Goodenough, Energy Environ. Sci. 2011, 4, 269. N. Du, H. Zhang, B. Chen, J. B. Wu, X. Y. Ma, Z. H. Liu, Y. Q. Zhang, D. Yang, X. H. Huang, J. P. Tu, Adv. Mater. 2007, 19, 4505. W. Y. Li, L. N. Xu, J. Chen, Adv. Funct. Mater. 2005, 15, 851. M. S. Whittingham, Chem. Rev. 2004, 104, 4271. S. H. Lee, J. R. Harding, D. S. Liu, J. M. D'Arcy, Y. Shao-Horn, P. T. Hammond, Chem. Mater. 2014, 26, 2579. A. I. Hochbaum, D. Gargas, Y. J. Hwang, P. D. Yang, Nano Lett. 2009, 9, 3550. H. G. Song, J. Y. Kim, K. T. Kim, Y. J. Park, J. Power Sources 2011, 196, 6847. Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, H. F. Yang, Z. Li, C. Z. Yu, B. Tu, D. Y. Zhao, Angew. Chem. Int. Ed. 2005, 44, 7053. C. Z. Yuan, B. Gao, L. F. Shen, S. D. Yang, L. Hao, X. J. Lu, F. Zhang, L. J. Zhang, X. G. Zhang, Nanoscale 2011, 3, 529. Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Angew. Chem. Int. Ed. 2013, 52, 13186. Y. M. Jiang, K. X. Wang, H. J. Zhang, J. F. Wang, J. S. Chen, Sci. Rep. 2013, 3, 3490. M. Nishizawa, K. Mukai, S. Kuwabata, C. R. Martin, H. Yoneyama, J. Electrochem. Soc. 1997, 144, 1923. R. Marom, O. Haik, D. Aurbach, I. C. Halalay, J. Electrochem. Soc. 2010, 157, A972. Y. Jin, N. Li, C. H. Chen, S. Q. Wei, Electrochem. Solid State Lett. 2006, 9, A273. Y. Yu, L. Gu, A. Dhanabalan, C. H. Chen, C. L. Wang, Electrochim. Acta 2009, 54, 7227. L. Liang, M. Zhou, Y. Xie, Chem. Asian J. 2012, 7, 565. H. Uchiyama, E. Hosono, H. Zhou, H. Imai, J. Mater. Chem. 2009, 19, 4012. B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, G. Shen, Nano Lett. 2012, 12, 3005. G. Tan, F. Wu, L. Li, R. Chen, S. Chen, J. Phys. Chem. C 2013, 117, 6013. W. Tang, Y. Y. Hou, F. X. Wang, L. L. Liu, Y. P. Wu, K. Zhu, Nano Lett. 2013, 13, 2036. S. C. Jung, Y.-K. Han, Phys. Chem. Chem. Phys. 2011, 13, 21282. M. T. McDowell, I. Ryu, S. W. Lee, C. M. Wang, W. D. Nix, Y. Cui, Adv. Mater. 2012, 24, 6034. C. M. Doherty, R. A. Caruso, B. M. Smarsly, P. Adelhelm, C. J. Drummond, Chem. Mater. 2009, 21, 5300. J. Xiao, J. M. Zheng, X. L. Li, Y. Y. Shao, J. G. Zhang, Nanotechnology 2013, 24, 424004. N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer, Angew. Chem. Int. Ed. 2011, 50, 5904. Y. K. Sun, S. T. Myung, B. C. Park, H. Yashiro, J. Electrochem. Soc. 2008, 155, A705. L. Wang, Z. H. Dong, D. Wang, F. X. Zhang, J. Jin, Nano Lett. 2013, 13, 6244. H. K. Wang, A. L. Rogach, Chem. Mater. 2014, 26, 123. M. A. S. Chong, Y. B. Zheng, H. Gao, L. K. Tan, Appl. Phys. Lett. 2006, 89, 233104. J. Wang, N. Du, H. Zhang, J. Yu, D. Yang, J. Phys. Chem. C 2011, 115, 23620. J. W. Fergus, J. Power Sources 2010, 195, 939. L. J. Her, J. L. Hong, C. C. Chang, J. Power Sources 2006, 157, 457. M. Vijayakumar, S. Kerisit, Z. G. Yang, G. L. Graff, J. Liu, J. A. Sears, S. D. Burton, K. M. Rosso, J. Z. Hu, J. Phys. Chem. C 2009, 113, 20108. S. Yang, X. Zhou, J. Zhang, Z. Liu, J. Mater. Chem. 2010, 20, 8086. Y. Wu, Z. Wen, H. Feng, J. Li, Small 2012, 8, 858. Q. Y. Lu, F. Gao, S. Komarneni, T. E. Mallouk, J. Am. Chem. Soc. 2004, 126, 8650. H. J. Zhang, K. X. Wang, X. Y. Wu, Y. M. Jiang, Y. B. Zhai, C. Wang, X. Wei, J. S. Chen, Adv. Funct. Mater. 2014, 24, 3399. X. J. Yang, T. Yang, S. S. Liang, X. Wu, H. P. Zhang, J. Mater. Chem. A 2014, 2, 10359. S. Ding, J. S. Chen, G. Qi, X. Duan, Z. Wang, E. P. Giannelis, L. A. Archer, X. W. Lou, J. Am. Chem. Soc. 2010, 133, 21. Y. Y. Wu, G. S. Cheng, K. Katsov, S. W. Sides, J. F. Wang, J. Tang, G. H. Fredrickson, M. Moskovits, G. D. Stucky, Nat. Mater. 2004, 3, 816. X. Zhong, Y. Q. Qu, Y. C. Lin, L. Liao, X. F. Duan, ACS Appl. Mater. Interfaces 2011, 3, 261. R. Mao, H. Guo, D. X. Tian, D. P. Zhao, X. J. Yang, S. X. Wang, J. Chen, Mater. Res. Bull. 2013, 48, 1518. X. W. Lou, C. M. Li, L. A. Archer, Adv. Mater. 2009, 21, 2536. K. X. Wang, M. D. Wei, M. A. Morris, H. S. Zhou, J. D. Holmes, Adv. Mater. 2007, 19, 3016. Y. G. Li, B. Tan, Y. Y. Wu, Nano Lett. 2008, 8, 265. N. Van Landschoot, E. M. Kelder, P. J. Ko 2010; 12 2011; 115 2013; 3 2013; 1 2010; 14 2013; 2 2009; 81 2004; 3 2014; 26 1999; 45 2003; 150 1993; 361 2014; 24 2009; 113 2013; 240 2012; 15 2012; 14 2013; 7 2011; 196 2014; 132 2013; 8 2012; 12 2013; 5 2013; 6 2012; 11 2001; 40 2006; 177 2014; 20 2010; 22 2009; 11 2010; 20 1993; 38 2004; 170 2010; 114 1997; 144 2013; 117 2013; 52 2013; 233 2007; 8 2007; 9 2014; 14 2010; 195 2000; 122 2014; 18 2008; 20 2013; 230 2010; 3 2010; 2 2009; 19 2012; 24 2012; 22 2003; 41 2003; 42 1998; 282 2014; 247 2001; 414 2014; 245 2004; 43 2007; 19 1979; 126 2007; 446 2011; 1 2006; 51 1989; 136 2007; 166 1997; 297 2013; 225 1993; 43 1996 2008; 53 2011; 4 2011; 3 2011; 5 2011; 133 2014; 43 2009; 458 2012; 196 2004; 50 2002; 120 2006; 45 2009; 191 2007; 154 2005; 127 2008; 47 2005; 4 2005; 7 1998; 2 2012; 48 2005; 15 2012; 47 2005; 17 2013; 29 2010; 54 2003; 119 2004; 126 2013; 25 2009; 42 2013; 24 1986; 133 2013; 566 1999; 121 2003; 15 2011; 11 2008; 8 2011; 13 1999; 123 2012; 202 2012; 205 2013; 160 2012; 51 2013; 19 2004; 138 2014; 4 2009; 54 2014; 2 2013; 13 2003; 6 2005; 147 2010; 157 2011; 21 2003; 5 2011; 23 2003; 125 2014; 8 2012; 214 2008; 155 2006; 128 2014; 6 2012; 216 2009; 22 2007; 129 2013; 48 2004; 104 2009; 21 2013; 49 2013; 46 2006; 16 2011; 40 2013; 42 2006; 9 2009 2006; 8 2006; 18 2008; 12 2006; 153 2011; 170 2005 2008; 10 2005; 44 2010; 85 2006; 312 2006; 157 2004; 10 1980; 15 2012; 2 2009; 30 2012; 3 2006; 89 2004; 16 2007; 111 2011; 50 2010; 132 2010; 133 2009; 9 2013; 135 2009; 8 2011; 46 2008; 179 2005; 50 2008; 178 2012; 7 2012; 159 2012; 4 2012; 5 2008; 175 2007; 46 2012; 8 e_1_2_6_114_1 e_1_2_6_137_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_30_1 e_1_2_6_91_1 e_1_2_6_152_1 e_1_2_6_175_1 e_1_2_6_198_1 e_1_2_6_212_1 e_1_2_6_258_1 e_1_2_6_250_1 e_1_2_6_273_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_99_1 e_1_2_6_235_1 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_148_1 e_1_2_6_41_1 e_1_2_6_163_1 e_1_2_6_140_1 e_1_2_6_102_1 e_1_2_6_186_1 e_1_2_6_200_1 e_1_2_6_223_1 e_1_2_6_246_1 e_1_2_6_269_1 e_1_2_6_5_1 e_1_2_6_208_1 e_1_2_6_261_1 e_1_2_6_49_1 e_1_2_6_26_1 e_1_2_6_136_1 e_1_2_6_54_1 e_1_2_6_159_1 e_1_2_6_31_1 e_1_2_6_92_1 e_1_2_6_174_1 e_1_2_6_151_1 Ju S. H. (e_1_2_6_178_1) 2014; 6 e_1_2_6_113_1 e_1_2_6_197_1 e_1_2_6_211_1 e_1_2_6_234_1 e_1_2_6_257_1 e_1_2_6_272_1 e_1_2_6_219_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 Fey G. T. K. (e_1_2_6_192_1) 2004; 10 e_1_2_6_42_1 e_1_2_6_147_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_162_1 e_1_2_6_101_1 e_1_2_6_124_1 e_1_2_6_185_1 e_1_2_6_222_1 e_1_2_6_268_1 e_1_2_6_6_1 e_1_2_6_260_1 e_1_2_6_207_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_245_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_158_1 e_1_2_6_150_1 e_1_2_6_173_1 e_1_2_6_112_1 e_1_2_6_135_1 e_1_2_6_196_1 e_1_2_6_233_1 e_1_2_6_279_1 e_1_2_6_210_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_271_1 e_1_2_6_218_1 e_1_2_6_256_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_169_1 e_1_2_6_108_1 e_1_2_6_270_1 e_1_2_6_161_1 e_1_2_6_100_1 e_1_2_6_146_1 e_1_2_6_184_1 e_1_2_6_123_1 e_1_2_6_221_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_206_1 e_1_2_6_229_1 e_1_2_6_244_1 e_1_2_6_267_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_75_1 e_1_2_6_119_1 e_1_2_6_281_1 e_1_2_6_90_1 e_1_2_6_172_1 e_1_2_6_111_1 e_1_2_6_157_1 e_1_2_6_195_1 e_1_2_6_134_1 e_1_2_6_232_1 e_1_2_6_160_1 e_1_2_6_14_1 e_1_2_6_217_1 e_1_2_6_255_1 e_1_2_6_278_1 e_1_2_6_37_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_107_1 e_1_2_6_40_1 e_1_2_6_122_1 e_1_2_6_145_1 e_1_2_6_168_1 e_1_2_6_183_1 e_1_2_6_220_1 e_1_2_6_171_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_228_1 e_1_2_6_205_1 e_1_2_6_243_1 e_1_2_6_266_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_280_1 e_1_2_6_72_1 e_1_2_6_110_1 e_1_2_6_133_1 e_1_2_6_156_1 e_1_2_6_179_1 e_1_2_6_194_1 e_1_2_6_19_1 e_1_2_6_182_1 e_1_2_6_231_1 e_1_2_6_239_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_216_1 e_1_2_6_254_1 e_1_2_6_57_1 e_1_2_6_277_1 e_1_2_6_106_1 e_1_2_6_129_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_121_1 e_1_2_6_167_1 e_1_2_6_144_1 e_1_2_6_9_1 e_1_2_6_193_1 e_1_2_6_170_1 e_1_2_6_1_1 e_1_2_6_22_1 e_1_2_6_204_1 e_1_2_6_227_1 e_1_2_6_242_1 e_1_2_6_265_1 e_1_2_6_45_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_50_1 e_1_2_6_132_1 e_1_2_6_155_1 e_1_2_6_181_1 e_1_2_6_230_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_238_1 e_1_2_6_253_1 e_1_2_6_276_1 e_1_2_6_215_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_105_1 e_1_2_6_128_1 e_1_2_6_61_1 e_1_2_6_120_1 e_1_2_6_189_1 e_1_2_6_143_1 e_1_2_6_166_1 e_1_2_6_249_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_241_1 e_1_2_6_226_1 e_1_2_6_264_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_203_1 e_1_2_6_116_1 e_1_2_6_139_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_131_1 e_1_2_6_154_1 e_1_2_6_177_1 e_1_2_6_180_1 e_1_2_6_252_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_237_1 e_1_2_6_275_1 e_1_2_6_214_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_127_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_142_1 e_1_2_6_188_1 e_1_2_6_165_1 e_1_2_6_191_1 e_1_2_6_248_1 e_1_2_6_7_1 e_1_2_6_240_1 e_1_2_6_263_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_202_1 e_1_2_6_225_1 e_1_2_6_115_1 e_1_2_6_138_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_71_1 e_1_2_6_153_1 e_1_2_6_199_1 e_1_2_6_130_1 e_1_2_6_176_1 e_1_2_6_259_1 e_1_2_6_251_1 e_1_2_6_274_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_236_1 e_1_2_6_79_1 e_1_2_6_213_1 e_1_2_6_103_1 e_1_2_6_126_1 e_1_2_6_149_1 e_1_2_6_21_1 e_1_2_6_82_1 e_1_2_6_141_1 e_1_2_6_164_1 e_1_2_6_187_1 e_1_2_6_190_1 e_1_2_6_8_1 e_1_2_6_201_1 e_1_2_6_247_1 e_1_2_6_209_1 e_1_2_6_262_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_224_1 |
| References_xml | – reference: Y. Yu, C. H. Chen, Y. Shi, Adv. Mater. 2007, 19, 993. – reference: X. W. Wu, Z. Y. Wen, X. G. Xu, J. D. Han, Solid State Ionics 2008, 179, 1779. – reference: L. Liang, M. Zhou, Y. Xie, Chem. Asian J. 2012, 7, 565. – reference: M. T. McDowell, I. Ryu, S. W. Lee, C. M. Wang, W. D. Nix, Y. Cui, Adv. Mater. 2012, 24, 6034. – reference: Y. G. Guo, J. S. Hu, L. J. Wan, Adv. Mater. 2008, 20, 2878. – reference: M. Lu, H. A. Zhang, Ionics 2013, 19, 1695. – reference: X. C. Chen, K. Kierzek, K. Wilgosz, J. Machnikowski, J. Gong, J. D. Feng, T. Tang, R. J. Kalenczuk, H. M. Chen, P. K. Chu, E. Mijowska, J. Power Sources 2012, 216, 475. – reference: S.-T. Myung, K.-S. Lee, C. S. Yoon, Y.-K. Sun, K. Amine, H. Yashiro, J. Phys. Chem. C 2010, 114, 4710. – reference: Y. N. Wu, F. T. Li, W. Zhu, J. C. Cui, C. A. Tao, C. X. Lin, P. M. Hannam, G. T. Li, Angew. Chem. Int. Ed. 2011, 50, 12518. – reference: M. M. Thackeray, C. S. Johnson, J. S. Kim, K. C. Lauzze, J. T. Vaughey, N. Dietz, D. Abraham, S. A. Hackney, W. Zeltner, M. A. Anderson, Electrochem. Commun. 2003, 5, 752. – reference: L. Wang, Z. H. Dong, D. Wang, F. X. Zhang, J. Jin, Nano Lett. 2013, 13, 6244. – reference: X. W. Lou, J. S. Chen, P. Chen, L. A. Archer, Chem. Mater. 2009, 21, 2868. – reference: S. H. Lee, J. R. Harding, D. S. Liu, J. M. D'Arcy, Y. Shao-Horn, P. T. Hammond, Chem. Mater. 2014, 26, 2579. – reference: H. L. Wang, Y. Yang, Y. Y. Liang, J. T. Robinson, Y. G. Li, A. Jackson, Y. Cui, H. J. Dai, Nano Lett. 2011, 11, 2644. – reference: C. Arbizzani, A. Balducci, M. Mastragostino, M. Rossi, F. Soavi, J. Power Sources 2003, 119, 695. – reference: Y. Zhao, L. Peng, B. Liu, G. Yu, Nano Lett. 2014, 14, 2849. – reference: J. Cho, Y. J. Kim, T. J. Kim, B. Park, Angew. Chem. Int. Ed. 2001, 40, 3367. – reference: M. Mancini, P. Kubiak, M. Wohlfahrt-Mehrens, R. Marassi, J. Electrochem. Soc. 2010, 157, A164. – reference: Y. Wu, Z. Wen, J. Li, Adv. Mater. 2011, 23, 1126. – reference: Q. Fu, F. Du, X. Bian, Y. Wang, X. Yan, Y. Zhang, K. Zhu, G. Chen, C. Wang, Y. Wei, J. Mater. Chem. A 2014, 2, 7555. – reference: X. F. Zhang, K. X. Wang, X. Wei, J. S. Chen, Chem. Mater. 2011, 23, 5290. – reference: Y. Wu, Z. Wen, H. Feng, J. Li, Small 2012, 8, 858. – reference: X. L. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500. – reference: O. Park, J. I. Lee, M. J. Chun, J. T. Yeon, S. Yoo, S. Choi, N. S. Choi, S. Park, RSC Adv. 2013, 3, 2538. – reference: J. W. Fergus, J. Power Sources 2010, 195, 939. – reference: A. Fedorkova, R. Orinakova, A. Orinak, I. Talian, A. Heile, H.-D. Wiemhoefer, D. Kaniansky, H. F. Arlinghaus, J. Power Sources 2010, 195, 3907. – reference: D. Qian, B. Xu, H.-M. Cho, T. Hatsukade, K. J. Carroll, Y. S. Meng, Chem. Mater. 2012, 24, 2744. – reference: Z. H. Wen, J. H. Li, J. Mater. Chem. 2009, 19, 8707. – reference: M. Vijayakumar, S. Kerisit, Z. G. Yang, G. L. Graff, J. Liu, J. A. Sears, S. D. Burton, K. M. Rosso, J. Z. Hu, J. Phys. Chem. C 2009, 113, 20108. – reference: F. X. Wang, S. Y. Xiao, Z. Chang, Y. Q. Yang, Y. P. Wu, Chem. Commun. 2013, 49, 9209. – reference: T. F. Yi, J. Shu, Y. R. Zhu, A. N. Zhou, R. S. Zhu, Electrochem. Commun. 2009, 11, 91. – reference: H. Li, Z. X. Wang, L. Q. Chen, X. J. Huang, Adv. Mater. 2009, 21, 4593. – reference: J. G. Yu, L. J. Zhang, B. Cheng, Y. R. Su, J. Phys. Chem. C 2007, 111, 10582. – reference: P. D. Yang, T. Deng, D. Y. Zhao, P. Y. Feng, D. Pine, B. F. Chmelka, G. M. Whitesides, G. D. Stucky, Science 1998, 282, 2244. – reference: K. X. Wang, M. D. Wei, M. A. Morris, H. S. Zhou, J. D. Holmes, Adv. Mater. 2007, 19, 3016. – reference: C. Sun, S. Rajasekhara, J. B. Goodenough, F. Zhou, J. Am. Chem. Soc. 2011, 133, 2132. – reference: X. Qin, J. Wang, J. Xie, F. Li, L. Wen, X. Wang, Phys. Chem. Chem. Phys. 2012, 14, 2669. – reference: F. H. Du, B. Li, W. Fu, Y. J. Xiong, K. X. Wang, J. S. Chen, Adv. Mater. 2014, 26, 10.1002/adma.201401937. – reference: Y. Harada, Y. Hirakoso, H. Kawai, J. Kuwano, Solid State Ionics 1999, 121, 245. – reference: R. R. Song, H. H. Song, J. S. Zhou, X. H. Chen, B. Wu, H. Y. Yang, J. Mater. Chem. 2012, 22, 12369. – reference: F. Q. Zhang, Y. Meng, D. Gu, Y. Yan, C. Z. Yu, B. Tu, D. Y. Zhao, J. Am. Chem. Soc. 2005, 127, 13508. – reference: F. Zhang, K. X. Wang, G. D. Li, J. S. Chen, Electrochem. Commun. 2009, 11, 130. – reference: P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. M. Tarascon, Nat. Mater. 2012, 11, 19. – reference: F. Bai, M. C. Li, D. D. Song, H. Yu, B. Jiang, Y. F. Li, J. Solid State Chem. 2012, 196, 596. – reference: X. J. Yang, T. Yang, S. S. Liang, X. Wu, H. P. Zhang, J. Mater. Chem. A 2014, 2, 10359. – reference: H. J. Zhang, K. X. Wang, X. Y. Wu, Y. M. Jiang, Y. B. Zhai, C. Wang, X. Wei, J. S. Chen, Adv. Funct. Mater. 2014, 24, 3399. – reference: A. Vu, A. Stein, J. Power Sources 2014, 245, 48. – reference: V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 2011, 4, 3243. – reference: S. L. Jin, H. G. Deng, D. H. Long, X. J. Liu, L. A. Zhan, X. Y. Liang, W. M. Qiao, L. C. Ling, J. Power Sources 2011, 196, 3887. – reference: K. Shiva, S. Asokan, A. J. Bhattacharyya, Nanoscale 2011, 3, 1501. – reference: Z. L. Yang, Z. W. Niu, X. Y. Cao, Z. Z. Yang, Y. F. Lu, Z. B. Hu, C. C. Han, Angew. Chem. Int. Ed. 2003, 42, 4201. – reference: M. Y. Ge, J. P. Rong, X. Fang, A. Y. Zhang, Y. H. Lu, C. W. Zhou, Nano Res. 2013, 6, 174. – reference: G. X. Wang, L. Yang, Y. Chen, J. Z. Wang, S. Bewlay, H. K. Liu, Electrochim. Acta 2005, 50, 4649. – reference: J. Wang, I. D. Raistrick, R. A. Huggins, J. Electrochem. Soc. 1986, 133, 457. – reference: S. H. Lee, H. G. You, K. S. Han, J. Kim, I. H. Jung, J. H. Song, J. Power Sources 2014, 247, 307. – reference: B. C. Park, H. B. Kim, S. T. Myung, K. Amine, I. Belharouak, S. M. Lee, Y. K. Sun, J. Power Sources 2008, 178, 826. – reference: N. Van Landschoot, E. M. Kelder, P. J. Kooyman, C. Kwakernaak, J. Schoonman, J. Power Sources 2004, 138, 262. – reference: A. n. Jagminas, F. M. Morales, K. Mažeika, G. P. Veronese, J. Reklaitis, J. G. Lozano, J. M. Mánuel, R. García, M. Kurtinaitienė, R. Juškėnas, D. Baltru̅nas, J. Phys. Chem. C 2011, 115, 4495. – reference: W. Y. Li, L. N. Xu, J. Chen, Adv. Funct. Mater. 2005, 15, 851. – reference: M. Y. Ge, J. P. Rong, X. Fang, C. W. Zhou, Nano Lett. 2012, 12, 2318. – reference: H. K. Wang, A. L. Rogach, Chem. Mater. 2014, 26, 123. – reference: K. T. Lee, J. C. Lytle, N. S. Ergang, S. M. Oh, A. Stein, Adv. Funct. Mater. 2005, 15, 547. – reference: S. X. Zhao, H. Ding, Y. C. Wang, B. H. Li, C. W. Nan, J. Alloy Compd. 2013, 566, 206. – reference: D. J. Lee, H. Lee, M. H. Ryou, G. B. Han, J. N. Lee, J. Song, J. Choi, K. Y. Cho, Y. M. Lee, J. K. Park, ACS Appl. Mater. Interfaces 2013, 5, 12005. – reference: W. Tang, Y. Y. Hou, F. X. Wang, L. L. Liu, Y. P. Wu, K. Zhu, Nano Lett. 2013, 13, 2036. – reference: M. Bettge, Y. Li, B. Sankaran, N. D. Rago, T. Spila, R. T. Haasch, I. Petrov, D. P. Abraham, J. Power Sources 2013, 233, 346. – reference: K. T. Nam, D. W. Kim, P. J. Yoo, C. Y. Chiang, N. Meethong, P. T. Hammond, Y. M. Chiang, A. M. Belcher, Science 2006, 312, 885. – reference: K. J. Rosina, M. Jiang, D. Zeng, E. Salager, A. S. Best, C. P. Grey, J. Mater. Chem. 2012, 22, 20602. – reference: Y. Yang, G. Yu, J. J. Cha, H. Wu, M. Vosgueritchian, Y. Yao, Z. Bao, Y. Cui, ACS Nano 2011, 5, 9187. – reference: Y. M. Jiang, K. X. Wang, H. J. Zhang, X. X. Guo, J. F. Wang, G. D. Li, J. S. Chen, RSC Adv. 2013, 3, 26052. – reference: J. B. Goodenough, Y. Kim, Chem. Mater. 2009, 22, 587. – reference: Z. Y. Yuan, T. Z. Ren, B. L. Su, Adv. Mater. 2003, 15, 1462. – reference: J. K. Yoo, J. Kim, H. Lee, J. Choi, M. J. Choi, D. M. Sim, Y. S. Jung, K. Kang, Nanotechnology 2013, 24, 424008. – reference: S. T. Myung, K. Amine, Y. K. Sun, J. Mater. Chem. 2010, 20, 7074. – reference: G. Yang, H. Cui, G. Yang, C. Wang, ACS Nano 2014, 8, 4474. – reference: A. Vu, A. Stein, Chem. Mater. 2011, 23, 3237. – reference: Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, H. F. Yang, Z. Li, C. Z. Yu, B. Tu, D. Y. Zhao, Angew. Chem. Int. Ed. 2005, 44, 7053. – reference: C. H. Doh, D. H. Kim, H. S. Kim, H. M. Shin, Y. D. Jeong, S. I. Moon, B. S. Jin, S. W. Eom, H. S. Kim, K. W. Kim, D. H. Oh, A. Veluchamy, J. Power Sources 2008, 175, 881. – reference: J. Lu, Q. Peng, W. Y. Wang, C. Y. Nan, L. H. Li, Y. D. Li, J. Am. Chem. Soc. 2013, 135, 1649. – reference: B. M. Bang, J.-I. Lee, H. Kim, J. Cho, S. Park, Adv. Energy Mater. 2012, 2, 878. – reference: H. B. Kim, B. C. Park, S. T. Myung, K. Amine, J. Prakash, Y. K. Sun, J. Power Sources 2008, 179, 347. – reference: L. Zhan, Z. Song, J. Zhang, J. Tang, H. Zhan, Y. Zhou, C. Zhan, Electrochim. Acta 2008, 53, 8319. – reference: D. J. Cott, N. Petkov, M. A. Morris, B. Platschek, T. Bein, J. D. Holmes, J. Am. Chem. Soc. 2006, 128, 3920. – reference: Y. G. Wang, Y. R. Wang, E. J. Hosono, K. X. Wang, H. S. Zhou, Angew. Chem. Int. Ed. 2008, 47, 7461. – reference: K. Wang, W. Zhang, R. Phelan, M. A. Morris, J. D. Holmes, J. Am. Chem. Soc. 2007, 129, 13388. – reference: B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, G. Shen, Nano Lett. 2012, 12, 3005. – reference: Q. Q. Xiong, X. H. Xia, J. P. Tu, J. Chen, Y. Q. Zhang, D. Zhou, C. D. Gu, X. L. Wang, J. Power Sources 2013, 240, 344. – reference: X. Pu, C. Yu, Nanoscale 2012, 4, 6743. – reference: Q. Y. Lu, F. Gao, S. Komarneni, T. E. Mallouk, J. Am. Chem. Soc. 2004, 126, 8650. – reference: X. Y. Yang, Y. Li, A. Lemaire, J. G. Yu, B. L. Su, Pure Appl. Chem. 2009, 81, 2265. – reference: C. D. Liang, K. L. Hong, G. A. Guiochon, J. W. Mays, S. Dai, Angew. Chem. Int. Ed. 2004, 43, 5785. – reference: T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, H. Komori, Electrochim. Acta 1993, 38, 1159. – reference: C. Nan, J. Lu, C. Chen, Q. Peng, Y. Li, J. Mater. Chem. 2011, 21, 9994. – reference: J. S. Gnanaraj, V. G. Pol, A. Gedanken, D. Aurbach, Electrochem. Commun. 2003, 5, 940. – reference: H. Q. Li, H. S. Zhou, Chem. Commun. 2012, 48, 1201. – reference: E. Antolini, Solid State Ionics 2004, 170, 159. – reference: K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mater. Res. Bull. 1980, 15, 783. – reference: Y. M. Liu, B. L. Chen, F. Cao, H. L. W. Chan, X. Z. Zhao, J. K. Yuan, J. Mater. Chem. 2011, 21, 17083. – reference: J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, J. D. Robertson, J. Power Sources 1993, 43, 103. – reference: J. F. Wang, K. X. Wang, F. H. Du, X. X. Guo, Y. M. Jiang, J. S. Chen, Chem. Commun. 2013, 49, 5007. – reference: H. Kim, B. Han, J. Choo, J. Cho, Angew. Chem. Int. Ed. 2008, 47, 10151. – reference: K.-S. Park, S. B. Schougaard, J. B. Goodenough, Adv. Mater. 2007, 19, 848. – reference: Y. Huang, J. Chen, F. Cheng, W. Wan, W. Liu, H. Zhou, X. Zhang, J. Power Sources 2010, 195, 8267. – reference: D. Belov, M. H. Yang, J. Solid State Electrochem. 2008, 12, 885. – reference: G. E. Thompson, Thin Solid Films 1997, 297, 192. – reference: S. H. Ng, J. Z. Wang, D. Wexler, K. Konstantinov, Z. P. Guo, H. K. Liu, Angew. Chem. Int. Ed. 2006, 45, 6896. – reference: Y.-H. Huang, K.-S. Park, J. B. Goodenough, J. Electrochem. Soc. 2006, 153, A2282. – reference: J. Cho, Y. Kim, M. G. Kim, J. Phys. Chem. C 2007, 111, 3192. – reference: A. V. Murugan, T. Muraliganth, A. Manthiram, Electrochem. Commun. 2008, 10, 903. – reference: Z. Wang, D. Luan, F. Y. C. Boey, X. W. Lou, J. Am. Chem. Soc. 2011, 133, 4738. – reference: H. J. Zhang, T.-H. Wu, K. X. Wang, X. Y. Wu, X. T. Chen, Y. M. Jiang, X. Wei, J. S. Chen, J. Mater. Chem. A 2013, 1, 12038. – reference: D. Tonti, M. J. Torralvo, E. Enciso, I. Sobrados, J. Sanz, Chem. Mater. 2008, 20, 4783. – reference: H. Y. Chen, D. B. Kuang, C. Y. Su, J. Mater. Chem. 2012, 22, 15475. – reference: L. X. Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang, J. B. Goodenough, Energy Environ. Sci. 2011, 4, 269. – reference: F. Wu, M. Wang, Y. Su, S. Chen, B. Xu, J. Power Sources 2009, 191, 628. – reference: D. Belov, M. H. Yang, Solid State Ionics 2008, 179, 1816. – reference: D. Lepage, C. Michot, G. Liang, M. Gauthier, S. B. Schougaard, Angew. Chem. Int. Ed. 2011, 50, 6884. – reference: Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P. A. van Aken, J. Maier, Adv. Mater. 2010, 22, 2247. – reference: M. T. McDowell, S. W. Lee, W. D. Nix, Y. Cui, Adv. Mater. 2013, 25, 4966. – reference: F. Fu, G.-L. Xu, Q. Wang, Y.-P. Deng, X. Li, J.-T. Li, L. Huang, S.-G. Sun, J. Mater. Chem. A 2013, 1, 3860. – reference: M. P. Liu, C. H. Li, H. B. Du, X. Z. You, Chem. Commun. 2012, 48, 4950. – reference: Y. Yu, L. Gu, A. Dhanabalan, C. H. Chen, C. L. Wang, Electrochim. Acta 2009, 54, 7227. – reference: M. Wagemaker, G. J. Kearley, A. A. v. Well, H. Mutka, F. M. Mulder, J. Am. Chem. Soc. 2003, 125, 840. – reference: E. Peled, J. Electrochem. Soc. 1979, 126, 2047. – reference: S. T. Myung, K. Izumi, S. Komaba, H. Yashiro, H. J. Bang, Y. K. Sun, N. Kumagai, J. Phys. Chem. C 2007, 111, 4061. – reference: A. Fedorkova, R. Orinakova, A. Orinak, H.-D. Wiemhoefer, D. Kaniansky, M. Winter, J. Solid State Electrochem. 2010, 14, 2173. – reference: S. Dorfler, M. Hagen, H. Althues, J. Tubke, S. Kaskel, M. J. Hoffmann, Chem. Commun. 2012, 48, 4097. – reference: K. Saravanan, K. Ananthanarayanan, P. Balaya, Energy Environ. Sci. 2010, 3, 939. – reference: B. Kang, G. Ceder, Nature 2009, 458, 190. – reference: Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, L. Cheng, D. Feng, Z. X. Wu, Z. X. Chen, Y. Wan, A. Stein, D. Y. Zhao, Chem. Mater. 2006, 18, 4447. – reference: Y. Q. Qu, H. L. Zhou, X. F. Duan, Nanoscale 2011, 3, 4060. – reference: C. R. Becker, K. E. Strawhecker, Q. P. McAllister, C. A. Lundgren, ACS Nano 2013, 7, 9173. – reference: Y. G. Wang, H. Q. Li, P. He, E. Hosono, H. S. Zhou, Nanoscale 2010, 2, 1294. – reference: B. L. Ellis, K. T. Lee, L. F. Nazar, Chem. Mater. 2010, 22, 691. – reference: G. Zou, X. Yang, X. Wang, L. Ge, H. Shu, Y. Bai, C. Wu, H. Guo, L. Hu, X. Yi, B. Ju, H. Hu, D. Wang, R. Yu, J. Solid State Electrochem. 2014, 18, 1789. – reference: C. Z. Yuan, B. Gao, L. F. Shen, S. D. Yang, L. Hao, X. J. Lu, F. Zhang, L. J. Zhang, X. G. Zhang, Nanoscale 2011, 3, 529. – reference: L. Wang, X. He, W. Sun, J. Wang, Y. Li, S. Fan, Nano Lett. 2012, 12, 5632. – reference: Y. Y. Wu, G. S. Cheng, K. Katsov, S. W. Sides, J. F. Wang, J. Tang, G. H. Fredrickson, M. Moskovits, G. D. Stucky, Nat. Mater. 2004, 3, 816. – reference: J. H. Yuan, F. Y. He, D. C. Sun, X. H. Xia, Chem. Mater. 2004, 16, 1841. – reference: K. Edstrom, T. Gustafsson, J. O. Thomas, Electrochim. Acta 2004, 50, 397. – reference: X. B. Meng, X. Q. Yang, X. L. Sun, Adv. Mater. 2012, 24, 3589. – reference: H. G. Song, J. Y. Kim, K. T. Kim, Y. J. Park, J. Power Sources 2011, 196, 6847. – reference: W. Ahn, K. B. Kim, K. N. Jung, K. H. Shin, C. S. Jin, J. Power Sources 2012, 202, 394. – reference: F. H. Du, K. X. Wang, W. Fu, P.-F. Gao, J. F. Wang, J. Yang, J. S. Chen, J. Mater. Chem. A 2013, 1, 13648. – reference: Y. Jin, N. Li, C. H. Chen, S. Q. Wei, Electrochem. Solid State Lett. 2006, 9, A273. – reference: S. H. Ju, I. S. Kang, Y. S. Lee, W. K. Shin, S. Kim, K. Shin, D. W. Kim, ACS Appl. Mater. Interfaces 2014, 6, 2545. – reference: X. L. Yang, Z. Y. Wen, S. H. Huang, X. J. Zhu, X. F. Zhang, Solid State Ionics 2006, 177, 2807. – reference: J. M. Tarascon, M. Armand, Nature 2001, 414, 359. – reference: H. S. Zhou, D. L. Li, M. Hibino, I. Honma, Angew. Chem. Int. Ed. 2005, 44, 797. – reference: W. Liu, J. Liu, K. F. Chen, S. M. Ji, Y. L. Wan, Y. C. Zhou, D. F. Xue, P. Hodgson, Y. C. Li, Chem. Eur. J. 2014, 20, 824. – reference: K. X. Wang, Y. G. Wang, Y. R. Wang, E. Hosono, H. S. Zhou, J. Phys. Chem. C 2009, 113, 1093. – reference: X. L. Li, Y. L. Cao, W. Qi, L. V. Saraf, J. Xiao, Z. M. Nie, J. Mietek, J. G. Zhang, B. Schwenzer, J. Liu, J. Mater. Chem. 2011, 21, 16603. – reference: A. Vu, Y. Q. Qian, A. Stein, Adv. Energy Mater. 2012, 2, 1056. – reference: C. Li, H. P. Zhang, L. J. Fu, H. Liu, Y. P. Wu, E. Ram, R. Holze, H. Q. Wu, Electrochim. Acta 2006, 51, 3872. – reference: H. J. Lee, Y. J. Park, Solid State Ionics 2013, 230, 86. – reference: Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Angew. Chem. Int. Ed. 2013, 52, 13186. – reference: T. Kennedy, E. Mullane, H. Geaney, M. Osiak, C. O'Dwyer, K. M. Ryan, Nano Lett. 2014, 14, 716. – reference: A. Timmons, J. R. Dahn, J. Electrochem. Soc. 2007, 154, A444. – reference: W. S. Kim, Y. Hwa, J. H. Jeun, H. J. Sohn, S. H. Hong, J. Power Sources 2013, 225, 108. – reference: Q. L. Cheng, Y. M. Xia, V. Pavlinek, Y. F. Yan, C. Z. Li, P. Saha, J. Mater. Sci. 2012, 47, 6444. – reference: X. F. Zhang, I. Belharouak, L. Li, Y. Lei, J. W. Elam, A. M. Nie, X. Q. Chen, R. S. Yassar, R. L. Axelbaum, Adv. Energy Mater. 2013, 3, 1299. – reference: B. Guo, H. Ruan, C. Zheng, H. Fei, M. Wei, Sci. Rep. 2013, 3, 02788. – reference: M. A. S. Chong, Y. B. Zheng, H. Gao, L. K. Tan, Appl. Phys. Lett. 2006, 89, 233104. – reference: J. H. Pan, X. S. Zhao, W. I. Lee, Chem. Eng. J. 2011, 170, 363. – reference: B. Liu, X. F. Wang, H. T. Chen, Z. R. Wang, D. Chen, Y. B. Cheng, C. W. Zhou, G. Z. Shen, Sci. Rep. 2013, 3, 1622. – reference: S. Ding, J. S. Chen, G. Qi, X. Duan, Z. Wang, E. P. Giannelis, L. A. Archer, X. W. Lou, J. Am. Chem. Soc. 2010, 133, 21. – reference: R. Marom, O. Haik, D. Aurbach, I. C. Halalay, J. Electrochem. Soc. 2010, 157, A972. – reference: X. F. Li, J. Liu, X. B. Meng, Y. J. Tang, M. N. Banis, J. L. Yang, Y. H. Hu, R. Y. Li, M. Cai, X. L. Sun, J. Power Sources 2014, 247, 57. – reference: L. C. Yang, Q. S. Gao, L. Li, Y. Tang, Y. P. Wu, Electrochem. Commun. 2010, 12, 418. – reference: K. X. Wang, P. Birjukovs, D. Erts, R. Phelan, M. A. Morris, H. S. Zhou, J. D. Holmes, J. Mater. Chem. 2009, 19, 1331. – reference: H. P. Jia, P. F. Gao, J. Yang, J. L. Wang, Y. N. Nuli, Z. Yang, Adv. Energy Mater. 2011, 1, 1036. – reference: H. Wang, S. Liu, Y. Ren, W. Wang, A. Tang, Energy Environ. Sci. 2012, 5, 6173. – reference: X. Li, W. He, L. Chen, W. Guo, J. Chen, Z. Xiao, Ionics 2014, 20, 833. – reference: S. H. Wu, J. J. Shiu, J. Y. Lin, J. Power Sources 2011, 196, 6676. – reference: H. Sclar, O. Haik, T. Menachem, J. Grinblat, N. Leifer, A. Meitav, S. Luski, D. Aurbach, J. Electrochem. Soc. 2012, 159, A228. – reference: S. C. Jung, Y.-K. Han, Phys. Chem. Chem. Phys. 2011, 13, 21282. – reference: H. Uchiyama, E. Hosono, H. Zhou, H. Imai, J. Mater. Chem. 2009, 19, 4012. – reference: S. Chen, M. Wang, J. F. Ye, J. G. Cai, Y. R. Ma, H. H. Zhou, L. M. Qi, Nano Res. 2013, 6, 243. – reference: S. Huang, J. P. Tu, X. M. Jian, Y. Lu, S. J. Shi, X. Y. Zhao, T. Q. Wang, X. L. Wang, C. D. Gu, J. Power Sources 2014, 245, 698. – reference: A. Kohandehghan, P. Kalisvaart, K. Cui, M. Kupsta, E. Memarzadeh, D. Mitlin, J. Mater. Chem. A 2013, 1, 12850. – reference: Y. J. Liu, Y. Y. Gao, Q. L. Wang, A. C. Dou, Ionics 2014, 20, 739. – reference: J. Wang, N. Du, H. Zhang, J. Yu, D. Yang, J. Phys. Chem. C 2011, 115, 23620. – reference: H. J. Zhang, J. Shu, K. X. Wang, X. T. Chen, Y. M. Jiang, X. Wei, J. S. Chen, J. Mater. Chem. A 2014, 2, 80. – reference: J. Xiao, J. M. Zheng, X. L. Li, Y. Y. Shao, J. G. Zhang, Nanotechnology 2013, 24, 424004. – reference: S. Yoo, J. I. Lee, S. Ko, S. Park, Nano Energy 2013, 2, 1271. – reference: Z. Y. Yuan, B. L. Su, J. Mater. Chem. 2006, 16, 663. – reference: B. Fang, M. S. Kim, J. H. Kim, S. Lim, J. S. Yu, J. Mater. Chem. 2010, 20, 10253. – reference: D. H. Wang, D. W. Choi, Z. G. Yang, V. V. Viswanathan, Z. M. Nie, C. M. Wang, Y. J. Song, J. G. Zhang, J. Liu, Chem. Mater. 2008, 20, 3435. – reference: X. Zhong, Y. Q. Qu, Y. C. Lin, L. Liao, X. F. Duan, ACS Appl. Mater. Interfaces 2011, 3, 261. – reference: M. Thakur, M. Isaacson, S. L. Sinsabaugh, M. S. Wong, S. L. Biswal, J. Power Sources 2012, 205, 426. – reference: C. M. A. Parlett, K. Wilson, A. F. Lee, Chem. Soc. Rev. 2013, 42, 3876. – reference: T. B. Lan, Y. B. Liu, J. Dou, Z. S. Hong, M. D. Wei, J. Mater. Chem. A 2014, 2, 1102. – reference: S. H. Yun, S. B. Kim, Y. J. Park, Bull. Korean Chem. Soc. 2009, 30, 2584. – reference: X. Rui, X. Zhao, Z. Lu, H. Tan, D. Sim, H. H. Hng, R. Yazami, T. M. Lim, Q. Yan, ACS Nano 2013, 7, 5637. – reference: H. Miyashiro, S. Seki, Y. Kobayashi, Y. Ohno, Y. Mita, A. Usami, Electrochem. Commun. 2005, 7, 1083. – reference: M. Noh, Y. Kwon, H. Lee, J. Cho, Y. Kim, M. G. Kim, Chem. Mater. 2005, 17, 1926. – reference: Y. Zhao, X. Z. Liu, H. Q. Li, T. Y. Zhai, H. S. Zhou, Chem. Commun. 2012, 48, 5079. – reference: S. T. Myung, K. Izumi, S. Komaba, Y. K. Sun, H. Yashiro, N. Kumagai, Chem. Mater. 2005, 17, 3695. – reference: G. Tan, F. Wu, L. Li, R. Chen, S. Chen, J. Phys. Chem. C 2013, 117, 6013. – reference: Z. L. Gong, Y. Yang, Energy Environ. Sci. 2011, 4, 3223. – reference: W. Sun, F. Cao, Y. Liu, X. Zhao, X. Liu, J. Yuan, J. Mater. Chem. 2012, 22, 20952. – reference: D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J. S. Gnanaraj, H. J. Kim, Electrochim. Acta 2004, 50, 247. – reference: A. Yamaguchi, F. Uejo, T. Yoda, T. Uchida, Y. Tanamura, T. Yamashita, N. Teramae, Nat. Mater. 2004, 3, 337. – reference: X. Song, M. Jia, R. Chen, J. Mater. Process. Technol. 2002, 120, 21. – reference: J. Chen, F. Y. Cheng, Acc. Chem. Res. 2009, 42, 713. – reference: W. X. Chen, J. Y. Lee, Z. L. Liu, Carbon 2003, 41, 959. – reference: B. Wang, B. Xu, T. Liu, P. Liu, C. Guo, S. Wang, Q. Wang, Z. Xiong, D. Wang, X. S. Zhao, Nanoscale 2014, 6, 986. – reference: Y. M. Jiang, K. X. Wang, H. J. Zhang, J. F. Wang, J. S. Chen, Sci. Rep. 2013, 3, 3490. – reference: X. W. Wu, Z. Y. Wen, X. Y. Wang, X. G. Xu, J. Lin, S. F. Song, Fusion Eng. Des. 2010, 85, 1442. – reference: X. W. Lou, C. M. Li, L. A. Archer, Adv. Mater. 2009, 21, 2536. – reference: B. Yao, D. Fleming, M. A. Morris, S. E. Lawrence, Chem. Mater. 2004, 16, 4851. – reference: J. G. Tu, L. W. Hu, W. Wang, J. G. Hou, H. M. Zhu, S. Q. Jiao, J. Electrochem. Soc. 2013, 160, A1916. – reference: J. C. Guo, Y. H. Xu, C. S. Wang, Nano Lett. 2011, 11, 4288. – reference: M. Winter, J. O. Besenhard, Electrochim. Acta 1999, 45, 31. – reference: J. K. Yoo, J. Kim, Y. S. Jung, K. Kang, Adv. Mater. 2012, 24, 5452. – reference: Y. K. Sun, S. T. Myung, B. C. Park, H. Yashiro, J. Electrochem. Soc. 2008, 155, A705. – reference: X. L. Wu, Y. G. Guo, L. J. Wan, Chem. Asian J. 2013, 8, 1948. – reference: B. Fang, J. H. Kim, M. S. Kim, J. S. Yu, Acc. Chem. Res. 2013, 46, 1397. – reference: L. J. Fu, H. Liu, C. Li, Y. P. Wu, E. Rahm, R. Holze, H. Q. Wu, Solid State Sci. 2006, 8, 113. – reference: C. Jiang, M. Wei, Z. Qi, T. Kudo, I. Honma, H. Zhou, J. Power Sources 2007, 166, 239. – reference: C. J. Zhang, X. He, Q. S. Kong, H. Li, H. Hu, H. B. Wang, L. Gu, L. Wang, G. L. Cui, L. Q. Chen, CrystEngComm 2012, 14, 4344. – reference: N. Du, H. Zhang, B. Chen, J. B. Wu, X. Y. Ma, Z. H. Liu, Y. Q. Zhang, D. Yang, X. H. Huang, J. P. Tu, Adv. Mater. 2007, 19, 4505. – reference: J. H. Park, J. H. Cho, S. B. Kim, W. S. Kim, S. Y. Lee, S. Y. Lee, J. Mater. Chem. 2012, 22, 12574. – reference: R. Lakes, Nature 1993, 361, 511. – reference: C. M. Doherty, R. A. Caruso, C. J. Drummond, Energy Environ. Sci. 2010, 3, 813. – reference: A. M. Kannan, L. Rabenberg, A. Manthiram, Electrochem. Solid State Lett. 2003, 6, A16. – reference: Z. H. Wen, G. H. Lu, S. Mao, H. Kim, S. M. Cui, K. H. Yu, X. K. Huang, P. T. Hurley, O. Mao, J. H. Chen, Electrochem. Commun. 2013, 29, 67. – reference: J. H. Smatt, C. Weidenthaler, J. B. Rosenholm, M. Linden, Chem. Mater. 2006, 18, 1443. – reference: K. Saravanan, P. Balaya, M. V. Reddy, B. V. R. Chowdari, J. J. Vittal, Energy Environ. Sci. 2010, 3, 457. – reference: J. W. Kim, J. H. Ryu, K. T. Lee, S. M. Oh, J. Power Sources 2005, 147, 227. – reference: X.-F. Guan, J. Zheng, M.-L. Zhao, L.-P. Li, G.-S. Li, RSC Adv. 2013, 3, 13635. – reference: Z. H. Bao, M. R. Weatherspoon, S. Shian, Y. Cai, P. D. Graham, S. M. Allan, G. Ahmad, M. B. Dickerson, B. C. Church, Z. T. Kang, H. W. Abernathy, C. J. Summers, M. L. Liu, K. H. Sandhage, Nature 2007, 446, 172. – reference: X. T. Chen, K. X. Wang, Y. B. Zhai, H. J. Zhang, X. Y. Wu, X. Wei, J. S. Chen, Dalton Trans. 2014, 43, 3137. – reference: N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer, Angew. Chem. Int. Ed. 2011, 50, 5904. – reference: Z. Y. Liu, H. W. Bai, D. D. Sun, Chem. Asian J. 2012, 7, 2381. – reference: Y. Li, Z. Y. Fu, B. L. Su, Adv. Funct. Mater. 2012, 22, 4634. – reference: S. Murugesan, J. T. Harris, B. A. Korgel, K. J. Stevenson, Chem. Mater. 2012, 24, 1306. – reference: Y. M. Jiang, K. X. Wang, X. X. Guo, X. Wei, J. F. Wang, J. S. Chen, J. Power Sources 2012, 214, 298. – reference: M. Gaberscek, R. Dominko, J. Jamnik, Electrochem. Commun. 2007, 9, 2778. – reference: J. Zhu, R. Liu, J. Xu, C. Meng, J. Mater. Sci. 2011, 46, 7223. – reference: J. Schuster, G. He, B. Mandlmeier, T. Yim, K. T. Lee, T. Bein, L. F. Nazar, Angew. Chem. Int. Ed. 2012, 51, 3591. – reference: L. J. Her, J. L. Hong, C. C. Chang, J. Power Sources 2006, 157, 457. – reference: A. Pan, J.-G. Zhang, G. Cao, S. Liang, C. Wang, Z. Nie, B. W. Arey, W. Xu, D. Liu, J. Xiao, G. Li, J. Liu, J. Mater. Chem. 2011, 21, 10077. – reference: E. M. Guerra, D. T. Cestarolli, H. P. Oliveira, J. Sol-Gel Sci. Technol. 2010, 54, 93. – reference: C. M. Doherty, R. A. Caruso, B. M. Smarsly, C. J. Drummond, Chem. Mater. 2009, 21, 2895. – reference: B. Platschek, A. Keilbach, T. Bein, Adv. Mater. 2011, 23, 2395. – reference: Y. Z. Dong, Y. M. Zhao, H. Duan, Z. Y. Liang, Electrochim. Acta 2014, 132, 244. – reference: G. Centi, S. Perathoner, Eur. J. Inorg. Chem. 2009, 3851. – reference: X. W. Lou, D. Deng, J. Y. Lee, L. A. Archer, Chem. Mater. 2008, 20, 6562. – reference: S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc. 2000, 122, 10712. – reference: G. T. K. Fey, T. P. Kumar, J. Ind. Eng. Chem. 2004, 10, 1090. – reference: S. Takai, M. Kamata, S. Fujine, K. Yoneda, K. Kanda, T. Esaka, Solid State Ionics 1999, 123, 165. – reference: M. Hirayama, H. Ido, K. Kim, W. Cho, K. Tamura, J. i. Mizuki, R. Kanno, J. Am. Chem. Soc. 2010, 132, 15268. – reference: C. K. Chan, X. F. Zhang, Y. Cui, Nano Lett. 2007, 8, 307. – reference: D. Aurbach, J. Electrochem. Soc. 1989, 136, 906. – reference: A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwijk, Nat. Mater. 2005, 4, 366. – reference: B. Wang, B. Luo, X. L. Li, L. J. Zhi, Mater. Today 2012, 15, 544. – reference: Y. G. Li, B. Tan, Y. Y. Wu, Nano Lett. 2008, 8, 265. – reference: A. I. Hochbaum, D. Gargas, Y. J. Hwang, P. D. Yang, Nano Lett. 2009, 9, 3550. – reference: D. H. Wang, R. Kou, Z. L. Yang, J. B. He, Z. Z. Yang, Y. F. Lu, Chem. Commun. 2005, 166. – reference: D. Y. Chen, X. Mei, G. Ji, M. H. Lu, J. P. Xie, J. M. Lu, J. Y. Lee, Angew. Chem. Int. Ed. 2012, 51, 2409. – reference: J. Q. Zhao, Y. Wang, Nano Energy 2013, 2, 882. – reference: M. Nishizawa, K. Mukai, S. Kuwabata, C. R. Martin, H. Yoneyama, J. Electrochem. Soc. 1997, 144, 1923. – reference: H. S. Zhou, S. M. Zhu, M. Hibino, I. Honma, M. Ichihara, Adv. Mater. 2003, 15, 2107. – reference: X. Wang, K. Q. Peng, X. J. Pan, X. Chen, Y. Yang, L. Li, X. M. Meng, W. J. Zhang, S. T. Lee, Angew. Chem. Int. Ed. 2011, 50, 9861. – reference: Y. Park, N. S. Choi, S. Park, S. H. Woo, S. Sim, B. Y. Jang, S. M. Oh, S. Park, J. Cho, K. T. Lee, Adv. Energy Mater. 2013, 3, 206. – reference: S. Yang, X. Zhou, J. Zhang, Z. Liu, J. Mater. Chem. 2010, 20, 8086. – reference: G. S. Chai, I. S. Shin, J. S. Yu, Adv. Mater. 2004, 16, 2057. – reference: L. Y. Shen, Z. X. Wang, L. Q. Chen, RSC Adv. 2014, 4, 15314. – reference: F. Zhang, K. Wang, X. Wang, G. Li, J. Chen, Dalton Trans. 2011, 40, 8517. – reference: Y. Huang, H. Q. Cai, T. Yu, F. Q. Zhang, F. Zhang, Y. Meng, D. Gu, Y. Wan, X. L. Sun, B. Tu, D. Y. Zhao, Angew. Chem. Int. Ed. 2007, 46, 1089. – reference: C. M. Doherty, R. A. Caruso, B. M. Smarsly, P. Adelhelm, C. J. Drummond, Chem. Mater. 2009, 21, 5300. – reference: C. F. Zhang, H. B. Wu, C. Z. Yuan, Z. P. Guo, X. W. Lou, Angew. Chem. Int. Ed. 2012, 51, 9592. – reference: S. H. Yun, K.-S. Park, Y. J. Park, J. Power Sources 2010, 195, 6108. – reference: R. Mao, H. Guo, D. X. Tian, D. P. Zhao, X. J. Yang, S. X. Wang, J. Chen, Mater. Res. Bull. 2013, 48, 1518. – reference: M. J. G. Jak, E. M. Kelder, J. Schoonman, N. M. Van der Pers, A. Weisenburger, J. Electroceram. 1998, 2, 127. – reference: J. Y. Luo, X. Zhao, J. S. Wu, H. D. Jang, H. H. Kung, J. X. Huang, J. Phys. Chem. Lett. 2012, 3, 1824. – reference: L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, M. D. Fleischauer, J. R. Dahn, J. Electrochem. Soc. 2003, 150, A1457. – reference: M. S. Whittingham, Chem. Rev. 2004, 104, 4271. – reference: M. Steinhart, R. B. Wehrspohn, U. Gosele, J. H. Wendorff, Angew. Chem. Int. Ed. 2004, 43, 1334. – volume: 126 start-page: 8650 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 4966 year: 2013 publication-title: Adv. Mater. – volume: 3 start-page: 1501 year: 2011 publication-title: Nanoscale – volume: 138 start-page: 262 year: 2004 publication-title: J. Power Sources – volume: 51 start-page: 2409 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 19 start-page: 4012 year: 2009 publication-title: J. Mater. Chem. – volume: 132 start-page: 15268 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 147 start-page: 227 year: 2005 publication-title: J. Power Sources – volume: 21 start-page: 2895 year: 2009 publication-title: Chem. Mater. – volume: 170 start-page: 363 year: 2011 publication-title: Chem. Eng. J. – volume: 175 start-page: 881 year: 2008 publication-title: J. Power Sources – volume: 113 start-page: 20108 year: 2009 publication-title: J. Phys. Chem. C – volume: 45 start-page: 31 year: 1999 publication-title: Electrochim. Acta – volume: 1 start-page: 12850 year: 2013 publication-title: J. Mater. Chem. A – volume: 11 start-page: 19 year: 2012 publication-title: Nat. Mater. – volume: 22 start-page: 4634 year: 2012 publication-title: Adv. Funct. Mater. – volume: 170 start-page: 159 year: 2004 publication-title: Solid State Ionics – volume: 361 start-page: 511 year: 1993 publication-title: Nature – volume: 104 start-page: 4271 year: 2004 publication-title: Chem. Rev. – volume: 5 start-page: 940 year: 2003 publication-title: Electrochem. Commun. – volume: 49 start-page: 5007 year: 2013 publication-title: Chem. Commun. – volume: 54 start-page: 7227 year: 2009 publication-title: Electrochim. Acta – volume: 22 start-page: 691 year: 2010 publication-title: Chem. Mater. – volume: 49 start-page: 9209 year: 2013 publication-title: Chem. Commun. – volume: 282 start-page: 2244 year: 1998 publication-title: Science – volume: 50 start-page: 397 year: 2004 publication-title: Electrochim. Acta – volume: 12 start-page: 3005 year: 2012 publication-title: Nano Lett. – volume: 14 start-page: 716 year: 2014 publication-title: Nano Lett. – volume: 225 start-page: 108 year: 2013 publication-title: J. Power Sources – volume: 5 start-page: 9187 year: 2011 publication-title: ACS Nano – volume: 133 start-page: 457 year: 1986 publication-title: J. Electrochem. Soc. – volume: 51 start-page: 9592 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 414 start-page: 359 year: 2001 publication-title: Nature – volume: 7 start-page: 1083 year: 2005 publication-title: Electrochem. Commun. – volume: 5 start-page: 6173 year: 2012 publication-title: Energy Environ. Sci. – volume: 166 start-page: 239 year: 2007 publication-title: J. Power Sources – volume: 50 start-page: 6884 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 566 start-page: 206 year: 2013 publication-title: J. Alloy Compd. – volume: 47 start-page: 7461 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 111 start-page: 4061 year: 2007 publication-title: J. Phys. Chem. C – volume: 24 start-page: 424004 year: 2013 publication-title: Nanotechnology – volume: 15 start-page: 2107 year: 2003 publication-title: Adv. Mater. – volume: 5 start-page: 752 year: 2003 publication-title: Electrochem. Commun. – volume: 11 start-page: 91 year: 2009 publication-title: Electrochem. Commun. – volume: 18 start-page: 1789 year: 2014 publication-title: J. Solid State Electrochem. – volume: 196 start-page: 3887 year: 2011 publication-title: J. Power Sources – volume: 81 start-page: 2265 year: 2009 publication-title: Pure Appl. Chem. – volume: 51 start-page: 3872 year: 2006 publication-title: Electrochim. Acta – volume: 19 start-page: 1331 year: 2009 publication-title: J. Mater. Chem. – volume: 117 start-page: 6013 year: 2013 publication-title: J. Phys. Chem. C – volume: 26 start-page: 123 year: 2014 publication-title: Chem. Mater. – volume: 8 start-page: 858 year: 2012 publication-title: Small – volume: 129 start-page: 13388 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 115 start-page: 4495 year: 2011 publication-title: J. Phys. Chem. C – volume: 177 start-page: 2807 year: 2006 publication-title: Solid State Ionics – volume: 297 start-page: 192 year: 1997 publication-title: Thin Solid Films – volume: 19 start-page: 8707 year: 2009 publication-title: J. Mater. Chem. – volume: 3 start-page: 1824 year: 2012 publication-title: J. Phys. Chem. Lett. – volume: 45 start-page: 6896 year: 2006 publication-title: Angew. Chem. Int. Ed. – volume: 21 start-page: 5300 year: 2009 publication-title: Chem. Mater. – volume: 1 start-page: 13648 year: 2013 publication-title: J. Mater. Chem. A – volume: 50 start-page: 247 year: 2004 publication-title: Electrochim. Acta – volume: 6 start-page: 986 year: 2014 publication-title: Nanoscale – volume: 20 start-page: 2878 year: 2008 publication-title: Adv. Mater. – volume: 19 start-page: 3016 year: 2007 publication-title: Adv. Mater. – volume: 3 start-page: 529 year: 2011 publication-title: Nanoscale – volume: 133 start-page: 4738 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 10077 year: 2011 publication-title: J. Mater. Chem. – volume: 132 start-page: 244 year: 2014 publication-title: Electrochim. Acta – volume: 47 start-page: 10151 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 154 start-page: A444 year: 2007 publication-title: J. Electrochem. Soc. – volume: 11 start-page: 4288 year: 2011 publication-title: Nano Lett. – start-page: 166 year: 2005 publication-title: Chem. Commun. – volume: 160 start-page: A1916 year: 2013 publication-title: J. Electrochem. Soc. – volume: 196 start-page: 6847 year: 2011 publication-title: J. Power Sources – volume: 136 start-page: 906 year: 1989 publication-title: J. Electrochem. Soc. – volume: 16 start-page: 2057 year: 2004 publication-title: Adv. Mater. – volume: 44 start-page: 797 year: 2005 publication-title: Angew. Chem. Int. Ed. – volume: 46 start-page: 1089 year: 2007 publication-title: Angew. Chem. Int. Ed. – volume: 179 start-page: 1816 year: 2008 publication-title: Solid State Ionics – volume: 4 start-page: 15314 year: 2014 publication-title: RSC Adv. – volume: 3 start-page: 13635 year: 2013 publication-title: RSC Adv. – volume: 6 start-page: 2545 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 418 year: 2010 publication-title: Electrochem. Commun. – volume: 17 start-page: 3695 year: 2005 publication-title: Chem. Mater. – volume: 179 start-page: 347 year: 2008 publication-title: J. Power Sources – volume: 23 start-page: 5290 year: 2011 publication-title: Chem. Mater. – volume: 43 start-page: 3137 year: 2014 publication-title: Dalton Trans. – volume: 20 start-page: 10253 year: 2010 publication-title: J. Mater. Chem. – volume: 13 start-page: 21282 year: 2011 publication-title: Phys. Chem. Chem. Phys. – volume: 12 start-page: 5632 year: 2012 publication-title: Nano Lett. – volume: 3 start-page: 3490 year: 2013 publication-title: Sci. Rep. – volume: 48 start-page: 1518 year: 2013 publication-title: Mater. Res. Bull. – volume: 3 start-page: 939 year: 2010 publication-title: Energy Environ. Sci. – volume: 19 start-page: 993 year: 2007 publication-title: Adv. Mater. – volume: 6 start-page: 243 year: 2013 publication-title: Nano Res. – volume: 8 start-page: 1948 year: 2013 publication-title: Chem. Asian J. – volume: 120 start-page: 21 year: 2002 publication-title: J. Mater. Process. Technol. – volume: 41 start-page: 959 year: 2003 publication-title: Carbon – volume: 245 start-page: 48 year: 2014 publication-title: J. Power Sources – volume: 22 start-page: 12574 year: 2012 publication-title: J. Mater. Chem. – volume: 24 start-page: 5452 year: 2012 publication-title: Adv. Mater. – volume: 233 start-page: 346 year: 2013 publication-title: J. Power Sources – volume: 12 start-page: 885 year: 2008 publication-title: J. Solid State Electrochem. – volume: 50 start-page: 4649 year: 2005 publication-title: Electrochim. Acta – volume: 205 start-page: 426 year: 2012 publication-title: J. Power Sources – volume: 3 start-page: 337 year: 2004 publication-title: Nat. Mater. – volume: 159 start-page: A228 year: 2012 publication-title: J. Electrochem. Soc. – volume: 20 start-page: 824 year: 2014 publication-title: Chem. Eur. J. – volume: 47 start-page: 6444 year: 2012 publication-title: J. Mater. Sci. – volume: 230 start-page: 86 year: 2013 publication-title: Solid State Ionics – volume: 15 start-page: 544 year: 2012 publication-title: Mater. Today – volume: 126 start-page: 2047 year: 1979 publication-title: J. Electrochem. Soc. – volume: 133 start-page: 21 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 2669 year: 2012 publication-title: Phys. Chem. Chem. Phys. – volume: 157 start-page: A164 year: 2010 publication-title: J. Electrochem. Soc. – volume: 157 start-page: 457 year: 2006 publication-title: J. Power Sources – volume: 24 start-page: 424008 year: 2013 publication-title: Nanotechnology – volume: 2 start-page: 10359 year: 2014 publication-title: J. Mater. Chem. A – year: 1996 – volume: 3 start-page: 261 year: 2011 publication-title: ACS Appl. Mater. Interfaces – volume: 22 start-page: 20952 year: 2012 publication-title: J. Mater. Chem. – volume: 14 start-page: 2173 year: 2010 publication-title: J. Solid State Electrochem. – volume: 1 start-page: 12038 year: 2013 publication-title: J. Mater. Chem. A – volume: 2 start-page: 878 year: 2012 publication-title: Adv. Energy Mater. – volume: 458 start-page: 190 year: 2009 publication-title: Nature – volume: 155 start-page: A705 year: 2008 publication-title: J. Electrochem. Soc. – volume: 123 start-page: 165 year: 1999 publication-title: Solid State Ionics – volume: 24 start-page: 1306 year: 2012 publication-title: Chem. Mater. – volume: 2 start-page: 1294 year: 2010 publication-title: Nanoscale – volume: 20 start-page: 833 year: 2014 publication-title: Ionics – volume: 29 start-page: 67 year: 2013 publication-title: Electrochem. Commun. – volume: 23 start-page: 1126 year: 2011 publication-title: Adv. Mater. – volume: 43 start-page: 103 year: 1993 publication-title: J. Power Sources – volume: 4 start-page: 3243 year: 2011 publication-title: Energy Environ. Sci. – volume: 133 start-page: 2132 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 8517 year: 2011 publication-title: Dalton Trans. – volume: 7 start-page: 9173 year: 2013 publication-title: ACS Nano – volume: 20 start-page: 739 year: 2014 publication-title: Ionics – volume: 21 start-page: 16603 year: 2011 publication-title: J. Mater. Chem. – volume: 21 start-page: 2868 year: 2009 publication-title: Chem. Mater. – volume: 247 start-page: 307 year: 2014 publication-title: J. Power Sources – volume: 50 start-page: 12518 year: 2011 publication-title: Angew. Chem. Int. Ed. – start-page: 3851 year: 2009 publication-title: Eur. J. Inorg. Chem. – volume: 202 start-page: 394 year: 2012 publication-title: J. Power Sources – volume: 178 start-page: 826 year: 2008 publication-title: J. Power Sources – volume: 13 start-page: 6244 year: 2013 publication-title: Nano Lett. – volume: 50 start-page: 5904 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 114 start-page: 4710 year: 2010 publication-title: J. Phys. Chem. C – volume: 195 start-page: 8267 year: 2010 publication-title: J. Power Sources – volume: 15 start-page: 1462 year: 2003 publication-title: Adv. Mater. – volume: 22 start-page: 2247 year: 2010 publication-title: Adv. Mater. – volume: 16 start-page: 663 year: 2006 publication-title: J. Mater. Chem. – volume: 24 start-page: 6034 year: 2012 publication-title: Adv. Mater. – volume: 13 start-page: 2036 year: 2013 publication-title: Nano Lett. – volume: 125 start-page: 840 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 7223 year: 2011 publication-title: J. Mater. Sci. – volume: 6 start-page: A16 year: 2003 publication-title: Electrochem. Solid State Lett. – volume: 2 start-page: 882 year: 2013 publication-title: Nano Energy – volume: 195 start-page: 3907 year: 2010 publication-title: J. Power Sources – volume: 16 start-page: 1841 year: 2004 publication-title: Chem. Mater. – volume: 85 start-page: 1442 year: 2010 publication-title: Fusion Eng. Des. – volume: 22 start-page: 12369 year: 2012 publication-title: J. Mater. Chem. – volume: 21 start-page: 9994 year: 2011 publication-title: J. Mater. Chem. – volume: 23 start-page: 2395 year: 2011 publication-title: Adv. Mater. – volume: 240 start-page: 344 year: 2013 publication-title: J. Power Sources – volume: 195 start-page: 6108 year: 2010 publication-title: J. Power Sources – volume: 3 start-page: 457 year: 2010 publication-title: Energy Environ. Sci. – volume: 196 start-page: 596 year: 2012 publication-title: J. Solid State Chem. – volume: 12 start-page: 2318 year: 2012 publication-title: Nano Lett. – volume: 1 start-page: 3860 year: 2013 publication-title: J. Mater. Chem. A – volume: 22 start-page: 15475 year: 2012 publication-title: J. Mater. Chem. – volume: 3 start-page: 26052 year: 2013 publication-title: RSC Adv. – volume: 5 start-page: 12005 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 4060 year: 2011 publication-title: Nanoscale – volume: 20 start-page: 7074 year: 2010 publication-title: J. Mater. Chem. – volume: 3 start-page: 2538 year: 2013 publication-title: RSC Adv. – volume: 7 start-page: 5637 year: 2013 publication-title: ACS Nano – volume: 48 start-page: 4097 year: 2012 publication-title: Chem. Commun. – volume: 8 start-page: 4474 year: 2014 publication-title: ACS Nano – volume: 3 start-page: 206 year: 2013 publication-title: Adv. Energy Mater. – volume: 2 start-page: 1102 year: 2014 publication-title: J. Mater. Chem. A – volume: 17 start-page: 1926 year: 2005 publication-title: Chem. Mater. – volume: 3 start-page: 1622 year: 2013 publication-title: Sci. Rep. – volume: 4 start-page: 269 year: 2011 publication-title: Energy Environ. Sci. – volume: 22 start-page: 20602 year: 2012 publication-title: J. Mater. Chem. – volume: 38 start-page: 1159 year: 1993 publication-title: Electrochim. Acta – volume: 19 start-page: 848 year: 2007 publication-title: Adv. Mater. – volume: 8 start-page: 500 year: 2009 publication-title: Nat. Mater. – volume: 4 start-page: 366 year: 2005 publication-title: Nat. Mater. – volume: 8 start-page: 113 year: 2006 publication-title: Solid State Sci. – volume: 8 start-page: 265 year: 2008 publication-title: Nano Lett. – volume: 43 start-page: 1334 year: 2004 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 6743 year: 2012 publication-title: Nanoscale – volume: 19 start-page: 4505 year: 2007 publication-title: Adv. Mater. – volume: 157 start-page: A972 year: 2010 publication-title: J. Electrochem. Soc. – volume: 10 start-page: 903 year: 2008 publication-title: Electrochem. Commun. – volume: 122 start-page: 10712 year: 2000 publication-title: J. Am. Chem. Soc. – volume: 89 start-page: 233104 year: 2006 publication-title: Appl. Phys. Lett. – volume: 2 start-page: 7555 year: 2014 publication-title: J. Mater. Chem. A – volume: 21 start-page: 2536 year: 2009 publication-title: Adv. Mater. – volume: 48 start-page: 5079 year: 2012 publication-title: Chem. Commun. – volume: 179 start-page: 1779 year: 2008 publication-title: Solid State Ionics – volume: 40 start-page: 3367 year: 2001 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 816 year: 2004 publication-title: Nat. Mater. – volume: 51 start-page: 3591 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 195 start-page: 939 year: 2010 publication-title: J. Power Sources – volume: 135 start-page: 1649 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 113 start-page: 1093 year: 2009 publication-title: J. Phys. Chem. C – volume: 121 start-page: 245 year: 1999 publication-title: Solid State Ionics – volume: 111 start-page: 3192 year: 2007 publication-title: J. Phys. Chem. C – volume: 2 start-page: 1056 year: 2012 publication-title: Adv. Energy Mater. – volume: 8 start-page: 307 year: 2007 publication-title: Nano Lett. – volume: 9 start-page: 3550 year: 2009 publication-title: Nano Lett. – volume: 1 start-page: 1036 year: 2011 publication-title: Adv. Energy Mater. – volume: 127 start-page: 13508 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 5785 year: 2004 publication-title: Angew. Chem. Int. Ed. – volume: 48 start-page: 1201 year: 2012 publication-title: Chem. Commun. – volume: 24 start-page: 3589 year: 2012 publication-title: Adv. Mater. – volume: 16 start-page: 4851 year: 2004 publication-title: Chem. Mater. – volume: 111 start-page: 10582 year: 2007 publication-title: J. Phys. Chem. C – volume: 247 start-page: 57 year: 2014 publication-title: J. Power Sources – volume: 21 start-page: 17083 year: 2011 publication-title: J. Mater. Chem. – volume: 19 start-page: 1695 year: 2013 publication-title: Ionics – volume: 26 start-page: 2579 year: 2014 publication-title: Chem. Mater. – volume: 2 start-page: 80 year: 2014 publication-title: J. Mater. Chem. A – volume: 196 start-page: 6676 year: 2011 publication-title: J. Power Sources – volume: 3 start-page: 1299 year: 2013 publication-title: Adv. Energy Mater. – volume: 312 start-page: 885 year: 2006 publication-title: Science – volume: 115 start-page: 23620 year: 2011 publication-title: J. Phys. Chem. C – volume: 245 start-page: 698 year: 2014 publication-title: J. Power Sources – volume: 15 start-page: 783 year: 1980 publication-title: Mater. Res. Bull. – volume: 20 start-page: 6562 year: 2008 publication-title: Chem. Mater. – volume: 7 start-page: 2381 year: 2012 publication-title: Chem. Asian J. – volume: 9 start-page: 2778 year: 2007 publication-title: Electrochem. Commun. – volume: 3 start-page: 813 year: 2010 publication-title: Energy Environ. Sci. – volume: 15 start-page: 547 year: 2005 publication-title: Adv. Funct. Mater. – volume: 9 start-page: A273 year: 2006 publication-title: Electrochem. Solid State Lett. – volume: 54 start-page: 93 year: 2010 publication-title: J. Sol‐Gel Sci. Technol. – volume: 214 start-page: 298 year: 2012 publication-title: J. Power Sources – volume: 11 start-page: 130 year: 2009 publication-title: Electrochem. Commun. – volume: 42 start-page: 4201 year: 2003 publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 1090 year: 2004 publication-title: J. Ind. Eng. Chem. – volume: 30 start-page: 2584 year: 2009 publication-title: Bull. Korean Chem. Soc. – volume: 216 start-page: 475 year: 2012 publication-title: J. Power Sources – volume: 42 start-page: 3876 year: 2013 publication-title: Chem. Soc. Rev. – volume: 24 start-page: 3399 year: 2014 publication-title: Adv. Funct. Mater. – volume: 153 start-page: 2282 year: 2006 publication-title: J. Electrochem. Soc. – volume: 128 start-page: 3920 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 446 start-page: 172 year: 2007 publication-title: Nature – volume: 53 start-page: 8319 year: 2008 publication-title: Electrochim. Acta – volume: 23 start-page: 3237 year: 2011 publication-title: Chem. Mater. – volume: 24 start-page: 2744 year: 2012 publication-title: Chem. Mater. – volume: 20 start-page: 8086 year: 2010 publication-title: J. Mater. Chem. – volume: 4 start-page: 3223 year: 2011 publication-title: Energy Environ. Sci. – volume: 150 start-page: A1457 year: 2003 publication-title: J. Electrochem. Soc. – volume: 48 start-page: 4950 year: 2012 publication-title: Chem. Commun. – volume: 7 start-page: 565 year: 2012 publication-title: Chem. Asian J. – volume: 20 start-page: 4783 year: 2008 publication-title: Chem. Mater. – volume: 6 start-page: 174 year: 2013 publication-title: Nano Res. – volume: 22 start-page: 587 year: 2009 publication-title: Chem. Mater. – volume: 52 start-page: 13186 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 119 start-page: 695 year: 2003 publication-title: J. Power Sources – volume: 18 start-page: 4447 year: 2006 publication-title: Chem. Mater. – volume: 46 start-page: 1397 year: 2013 publication-title: Acc. Chem. Res. – volume: 191 start-page: 628 year: 2009 publication-title: J. Power Sources – volume: 2 start-page: 1271 year: 2013 publication-title: Nano Energy – volume: 20 start-page: 3435 year: 2008 publication-title: Chem. Mater. – volume: 50 start-page: 9861 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 14 start-page: 4344 year: 2012 publication-title: CrystEngComm – volume: 15 start-page: 851 year: 2005 publication-title: Adv. Funct. Mater. – volume: 21 start-page: 4593 year: 2009 publication-title: Adv. Mater. – volume: 14 start-page: 2849 year: 2014 publication-title: Nano Lett. – volume: 26 year: 2014 publication-title: Adv. Mater. – volume: 2 start-page: 127 year: 1998 publication-title: J. Electroceram. – volume: 144 start-page: 1923 year: 1997 publication-title: J. Electrochem. Soc. – volume: 18 start-page: 1443 year: 2006 publication-title: Chem. Mater. – volume: 3 start-page: 02788 year: 2013 publication-title: Sci. Rep. – volume: 44 start-page: 7053 year: 2005 publication-title: Angew. Chem. Int. Ed. – volume: 42 start-page: 713 year: 2009 publication-title: Acc. Chem. Res. – volume: 11 start-page: 2644 year: 2011 publication-title: Nano Lett. – ident: e_1_2_6_153_1 doi: 10.1002/adma.200305075 – ident: e_1_2_6_168_1 doi: 10.1039/c0jm00508h – ident: e_1_2_6_254_1 doi: 10.1021/nl0727157 – ident: e_1_2_6_265_1 doi: 10.1021/nn4037909 – ident: e_1_2_6_198_1 doi: 10.1002/anie.201101661 – ident: e_1_2_6_258_1 doi: 10.1149/1.2108601 – ident: e_1_2_6_89_1 doi: 10.1021/ar300253f – ident: e_1_2_6_184_1 doi: 10.1039/c2jm34114j – ident: e_1_2_6_273_1 doi: 10.1002/anie.201107817 – ident: e_1_2_6_140_1 doi: 10.1039/C3DT52661E – ident: e_1_2_6_81_1 doi: 10.1021/nl300794f – ident: e_1_2_6_219_1 doi: 10.1016/j.elecom.2005.08.006 – ident: e_1_2_6_280_1 doi: 10.1021/nl200658a – ident: e_1_2_6_30_1 doi: 10.1038/nature07853 – ident: e_1_2_6_266_1 doi: 10.1038/srep01622 – ident: e_1_2_6_12_1 doi: 10.1016/j.jpowsour.2007.01.004 – ident: e_1_2_6_96_1 doi: 10.1016/j.jpowsour.2013.06.116 – ident: e_1_2_6_205_1 doi: 10.1016/j.jpowsour.2010.07.021 – ident: e_1_2_6_113_1 doi: 10.1002/aenm.201100485 – ident: e_1_2_6_234_1 doi: 10.1016/S0167-2738(99)00043-0 – ident: e_1_2_6_40_1 doi: 10.1021/nl0725906 – ident: e_1_2_6_61_1 doi: 10.1021/cm049971u – ident: e_1_2_6_97_1 doi: 10.1039/c3ra44731f – ident: e_1_2_6_131_1 doi: 10.1021/jp206277a – ident: e_1_2_6_276_1 doi: 10.1039/c2cc17925c – ident: e_1_2_6_27_1 doi: 10.1039/C0EE00029A – ident: e_1_2_6_124_1 doi: 10.1002/adma.200601667 – ident: e_1_2_6_84_1 doi: 10.1016/j.jpowsour.2010.12.078 – ident: e_1_2_6_172_1 doi: 10.1149/1.2956088 – ident: e_1_2_6_212_1 doi: 10.5012/bkcs.2009.30.11.2584 – ident: e_1_2_6_18_1 doi: 10.1039/c2cp23433e – ident: e_1_2_6_166_1 doi: 10.1149/1.3447750 – ident: e_1_2_6_50_1 doi: 10.1021/ja0545721 – ident: e_1_2_6_117_1 doi: 10.1021/am403798a – ident: e_1_2_6_3_1 doi: 10.1039/c0nr00068j – ident: e_1_2_6_41_1 doi: 10.1016/j.jpowsour.2013.04.042 – ident: e_1_2_6_83_1 doi: 10.1021/ja1110464 – ident: e_1_2_6_148_1 doi: 10.1039/b907509g – ident: e_1_2_6_63_1 doi: 10.1002/anie.200300614 – ident: e_1_2_6_222_1 doi: 10.1016/S0924-0136(01)01044-5 – ident: e_1_2_6_9_1 doi: 10.1002/adma.200901710 – ident: e_1_2_6_165_1 doi: 10.1016/j.electacta.2005.11.015 – ident: e_1_2_6_35_1 doi: 10.1149/1.1837722 – ident: e_1_2_6_156_1 doi: 10.1039/C3TA14178K – ident: e_1_2_6_173_1 doi: 10.1016/j.jpowsour.2007.12.109 – ident: e_1_2_6_195_1 doi: 10.1016/j.electacta.2008.06.053 – ident: e_1_2_6_246_1 doi: 10.1039/c3ta13092d – ident: e_1_2_6_125_1 doi: 10.1021/cm801607e – ident: e_1_2_6_197_1 doi: 10.1016/j.jpowsour.2005.07.047 – ident: e_1_2_6_130_1 doi: 10.1021/jp110694k – ident: e_1_2_6_135_1 doi: 10.1007/s12274-013-0300-3 – ident: e_1_2_6_132_1 doi: 10.1021/ja2004329 – ident: e_1_2_6_112_1 doi: 10.1002/adma.200903755 – ident: e_1_2_6_54_1 doi: 10.1021/ja002261e – ident: e_1_2_6_103_1 doi: 10.1039/c1nr10668f – ident: e_1_2_6_111_1 doi: 10.1038/nature05570 – ident: e_1_2_6_71_1 doi: 10.1002/adma.201002828 – ident: e_1_2_6_150_1 doi: 10.1039/c2jm31910a – ident: e_1_2_6_133_1 doi: 10.1016/j.jpowsour.2012.06.023 – ident: e_1_2_6_191_1 doi: 10.1016/j.jpowsour.2007.09.102 – ident: e_1_2_6_138_1 doi: 10.1021/cm4018248 – ident: e_1_2_6_232_1 doi: 10.1007/s11581-014-1108-1 – ident: e_1_2_6_145_1 doi: 10.1039/c0jm01387k – ident: e_1_2_6_238_1 doi: 10.1016/j.elecom.2008.04.004 – ident: e_1_2_6_77_1 doi: 10.1039/c2jm32402d – ident: e_1_2_6_270_1 doi: 10.1002/anie.201304762 – ident: e_1_2_6_26_1 doi: 10.1039/c0ee00713g – ident: e_1_2_6_242_1 doi: 10.1002/anie.201107885 – ident: e_1_2_6_78_1 doi: 10.1039/b900397e – ident: e_1_2_6_108_1 doi: 10.1007/s12274-013-0293-y – ident: e_1_2_6_233_1 doi: 10.1016/j.elecom.2008.10.043 – ident: e_1_2_6_118_1 doi: 10.1007/s11581-013-1006-y – ident: e_1_2_6_261_1 doi: 10.1149/1.1613668 – ident: e_1_2_6_183_1 doi: 10.1021/jp9082322 – ident: e_1_2_6_14_1 doi: 10.1039/c1jm10976f – ident: e_1_2_6_189_1 doi: 10.1016/j.ssi.2008.04.031 – ident: e_1_2_6_216_1 doi: 10.1016/j.jallcom.2013.03.041 – ident: e_1_2_6_167_1 doi: 10.1021/cm050566s – ident: e_1_2_6_208_1 doi: 10.1016/j.elecom.2003.08.012 – ident: e_1_2_6_19_1 doi: 10.1039/c1cp22026h – ident: e_1_2_6_36_1 doi: 10.1021/nl400199r – ident: e_1_2_6_47_1 doi: 10.1149/1.3267294 – ident: e_1_2_6_271_1 doi: 10.1038/nmat3191 – ident: e_1_2_6_119_1 doi: 10.1016/j.elecom.2013.01.015 – ident: e_1_2_6_210_1 doi: 10.1016/j.ssi.2012.08.003 – ident: e_1_2_6_120_1 doi: 10.1088/0957-4484/24/42/424008 – ident: e_1_2_6_55_1 doi: 10.1002/adma.200306125 – ident: e_1_2_6_274_1 doi: 10.1039/c1jm12979a – ident: e_1_2_6_74_1 doi: 10.1039/b817156d – ident: e_1_2_6_215_1 doi: 10.1016/j.jpowsour.2010.09.027 – ident: e_1_2_6_104_1 doi: 10.1002/anie.201104102 – ident: e_1_2_6_239_1 doi: 10.1021/cm404154u – ident: e_1_2_6_253_1 doi: 10.1002/anie.200804355 – ident: e_1_2_6_220_1 doi: 10.1023/A:1009987225710 – ident: e_1_2_6_245_1 doi: 10.1016/j.jpowsour.2012.01.058 – ident: e_1_2_6_127_1 doi: 10.1002/adma.200803439 – ident: e_1_2_6_241_1 doi: 10.1021/cm2037475 – ident: e_1_2_6_240_1 doi: 10.1016/j.jpowsour.2004.12.041 – ident: e_1_2_6_34_1 doi: 10.1038/srep02788 – ident: e_1_2_6_264_1 doi: 10.1002/adma.201301795 – ident: e_1_2_6_32_1 doi: 10.1021/nn4022263 – ident: e_1_2_6_171_1 doi: 10.1021/jp0674367 – ident: e_1_2_6_123_1 doi: 10.1016/S1369-7021(13)70012-9 – ident: e_1_2_6_218_1 doi: 10.1021/jp309724q – ident: e_1_2_6_209_1 doi: 10.1149/2.032203jes – volume: 10 start-page: 1090 year: 2004 ident: e_1_2_6_192_1 publication-title: J. Ind. Eng. Chem. – ident: e_1_2_6_146_1 doi: 10.1002/adfm.200400186 – ident: e_1_2_6_244_1 doi: 10.1016/j.nanoen.2013.06.006 – ident: e_1_2_6_15_1 doi: 10.1039/c2ee03215e – ident: e_1_2_6_105_1 doi: 10.1021/nl300206e – ident: e_1_2_6_57_1 doi: 10.1021/cm202812z – ident: e_1_2_6_157_1 doi: 10.1002/anie.201104597 – ident: e_1_2_6_62_1 doi: 10.1021/ja0488378 – ident: e_1_2_6_269_1 doi: 10.1002/adma.201401937 – ident: e_1_2_6_59_1 doi: 10.1002/adfm.201303856 – ident: e_1_2_6_68_1 doi: 10.1063/1.2399935 – ident: e_1_2_6_93_1 doi: 10.1021/cm900698p – ident: e_1_2_6_65_1 doi: 10.1038/nmat1107 – ident: e_1_2_6_67_1 doi: 10.1039/b411915k – ident: e_1_2_6_188_1 doi: 10.1016/0013-4686(93)80046-3 – ident: e_1_2_6_90_1 doi: 10.1002/chem.201303675 – ident: e_1_2_6_193_1 doi: 10.1016/j.solidstatesciences.2005.10.019 – ident: e_1_2_6_92_1 doi: 10.1021/cm9024167 – ident: e_1_2_6_201_1 doi: 10.1149/1.2360769 – ident: e_1_2_6_223_1 doi: 10.1039/c2nr32069j – ident: e_1_2_6_134_1 doi: 10.1002/asia.201200429 – ident: e_1_2_6_24_1 doi: 10.1039/c0jm04126b – ident: e_1_2_6_122_1 doi: 10.1021/cm0481372 – ident: e_1_2_6_260_1 doi: 10.1016/j.elecom.2010.01.008 – ident: e_1_2_6_279_1 doi: 10.1002/anie.201205292 – ident: e_1_2_6_263_1 doi: 10.1002/adma.201202744 – ident: e_1_2_6_86_1 doi: 10.1039/C0NR00423E – ident: e_1_2_6_175_1 doi: 10.1002/adma.201200397 – ident: e_1_2_6_214_1 doi: 10.1149/1.2188081 – ident: e_1_2_6_251_1 doi: 10.1002/anie.200802539 – ident: e_1_2_6_101_1 doi: 10.1016/j.jssc.2012.07.029 – ident: e_1_2_6_5_1 doi: 10.1002/ejic.200900275 – ident: e_1_2_6_37_1 doi: 10.1002/adfm.200400429 – ident: e_1_2_6_206_1 doi: 10.1016/S1388-2481(03)00179-6 – ident: e_1_2_6_79_1 doi: 10.1002/smll.201101838 – ident: e_1_2_6_147_1 doi: 10.1007/s10853-012-6576-y – ident: e_1_2_6_16_1 doi: 10.1021/nn406449u – ident: e_1_2_6_53_1 doi: 10.1002/anie.200603665 – ident: e_1_2_6_252_1 doi: 10.1039/c2ra23365g – ident: e_1_2_6_259_1 doi: 10.1002/asia.201300279 – ident: e_1_2_6_13_1 doi: 10.1021/jp067116n – ident: e_1_2_6_217_1 doi: 10.1016/j.jpowsour.2010.11.138 – ident: e_1_2_6_237_1 doi: 10.1039/c2jm16799a – ident: e_1_2_6_163_1 doi: 10.1149/1.2128859 – ident: e_1_2_6_149_1 doi: 10.1016/j.elecom.2008.10.041 – ident: e_1_2_6_56_1 doi: 10.1039/c3cc44360d – ident: e_1_2_6_60_1 doi: 10.1016/S0040-6090(96)09440-0 – ident: e_1_2_6_45_1 doi: 10.1039/c0nr00998a – ident: e_1_2_6_23_1 doi: 10.1039/c2jm32658b – ident: e_1_2_6_194_1 doi: 10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO;2-A – ident: e_1_2_6_181_1 doi: 10.1016/j.jpowsour.2013.07.032 – ident: e_1_2_6_177_1 doi: 10.1016/j.nanoen.2013.03.005 – ident: e_1_2_6_179_1 doi: 10.1016/j.jpowsour.2013.08.042 – ident: e_1_2_6_44_1 doi: 10.1007/s10971-010-2162-4 – ident: e_1_2_6_204_1 doi: 10.1007/s11581-013-1041-8 – ident: e_1_2_6_121_1 doi: 10.1039/c3cc41967c – ident: e_1_2_6_187_1 doi: 10.1016/0025-5408(80)90012-4 – ident: e_1_2_6_11_1 doi: 10.1021/ja028165q – ident: e_1_2_6_226_1 doi: 10.1021/jp9072125 – ident: e_1_2_6_72_1 doi: 10.1002/anie.200250808 – ident: e_1_2_6_102_1 doi: 10.1021/am1009056 – ident: e_1_2_6_159_1 doi: 10.1016/j.electacta.2004.03.049 – ident: e_1_2_6_229_1 doi: 10.1149/1.1526782 – ident: e_1_2_6_25_1 doi: 10.1002/asia.201100757 – ident: e_1_2_6_180_1 doi: 10.1016/j.jpowsour.2013.01.082 – ident: e_1_2_6_58_1 doi: 10.1039/C3TA14123C – ident: e_1_2_6_110_1 doi: 10.1039/c2cc31476b – ident: e_1_2_6_128_1 doi: 10.1016/j.electacta.2009.07.028 – ident: e_1_2_6_87_1 doi: 10.1002/adfm.201200591 – ident: e_1_2_6_277_1 doi: 10.1016/j.jpowsour.2011.11.074 – ident: e_1_2_6_7_1 doi: 10.1021/ar800229g – ident: e_1_2_6_196_1 doi: 10.1016/S0378-7753(03)00228-3 – ident: e_1_2_6_199_1 doi: 10.1002/adma.200600369 – ident: e_1_2_6_256_1 doi: 10.1016/S0013-4686(99)00191-7 – ident: e_1_2_6_99_1 doi: 10.1038/srep03490 – ident: e_1_2_6_228_1 doi: 10.1016/j.fusengdes.2010.04.003 – ident: e_1_2_6_49_1 doi: 10.1002/anie.200461051 – ident: e_1_2_6_137_1 doi: 10.1016/j.materresbull.2012.12.056 – ident: e_1_2_6_231_1 doi: 10.1016/S0167-2738(99)00095-8 – ident: e_1_2_6_21_1 doi: 10.1039/c3ta01618h – ident: e_1_2_6_39_1 doi: 10.1126/science.1122716 – ident: e_1_2_6_80_1 doi: 10.1039/C3NR04611G – ident: e_1_2_6_129_1 doi: 10.1021/ja108720w – ident: e_1_2_6_64_1 doi: 10.1038/nmat1230 – ident: e_1_2_6_185_1 doi: 10.1016/j.jpowsour.2009.08.089 – ident: e_1_2_6_230_1 doi: 10.1021/ja308717z – ident: e_1_2_6_262_1 doi: 10.1149/1.2711075 – ident: e_1_2_6_164_1 doi: 10.1016/j.jpowsour.2013.08.105 – ident: e_1_2_6_106_1 doi: 10.1039/c1jm13048j – ident: e_1_2_6_227_1 doi: 10.1016/j.ssi.2008.03.001 – ident: e_1_2_6_17_1 doi: 10.1039/c3ra22125c – ident: e_1_2_6_69_1 doi: 10.1021/ja058441b – ident: e_1_2_6_272_1 doi: 10.1038/nmat2460 – ident: e_1_2_6_116_1 doi: 10.1002/adma.201201601 – ident: e_1_2_6_33_1 doi: 10.1021/nl5008568 – ident: e_1_2_6_70_1 doi: 10.1002/adma.200602189 – ident: e_1_2_6_248_1 doi: 10.1021/jz3006892 – ident: e_1_2_6_73_1 doi: 10.1021/ja0752843 – ident: e_1_2_6_143_1 doi: 10.1039/C2CS35378D – ident: e_1_2_6_20_1 doi: 10.1021/ja105389t – ident: e_1_2_6_51_1 doi: 10.1002/anie.200501561 – ident: e_1_2_6_109_1 doi: 10.1002/aenm.201200389 – ident: e_1_2_6_211_1 doi: 10.1016/j.jpowsour.2009.11.022 – ident: e_1_2_6_202_1 doi: 10.1016/j.jpowsour.2010.01.003 – ident: e_1_2_6_221_1 doi: 10.1039/C4TA00974F – ident: e_1_2_6_224_1 doi: 10.1016/j.electacta.2014.03.171 – ident: e_1_2_6_28_1 doi: 10.1021/cm902696j – ident: e_1_2_6_243_1 doi: 10.1016/j.ssi.2006.03.033 – ident: e_1_2_6_85_1 doi: 10.1039/b923576k – ident: e_1_2_6_155_1 doi: 10.1021/jp0707889 – ident: e_1_2_6_114_1 doi: 10.1007/s10853-011-5680-8 – ident: e_1_2_6_200_1 doi: 10.1016/j.electacta.2005.02.026 – ident: e_1_2_6_247_1 doi: 10.1039/C1CC14764A – ident: e_1_2_6_94_1 doi: 10.1039/b922898e – ident: e_1_2_6_139_1 doi: 10.1039/c1dt10749f – ident: e_1_2_6_141_1 doi: 10.1039/B512304F – ident: e_1_2_6_174_1 doi: 10.1016/j.jpowsour.2007.08.034 – ident: e_1_2_6_75_1 doi: 10.1021/jp807463u – ident: e_1_2_6_2_1 doi: 10.1002/anie.200460937 – ident: e_1_2_6_22_1 doi: 10.1039/c0jm01346c – ident: e_1_2_6_203_1 doi: 10.1007/s10008-009-0967-2 – ident: e_1_2_6_91_1 doi: 10.1039/c2ce25114k – ident: e_1_2_6_250_1 doi: 10.1039/c4ra01255k – ident: e_1_2_6_236_1 doi: 10.1021/nn203436j – ident: e_1_2_6_169_1 – ident: e_1_2_6_43_1 doi: 10.1039/c003630g – ident: e_1_2_6_267_1 doi: 10.1039/c3ta12964k – ident: e_1_2_6_136_1 doi: 10.1016/j.jpowsour.2012.10.030 – ident: e_1_2_6_207_1 doi: 10.1016/j.jpowsour.2009.02.063 – ident: e_1_2_6_160_1 doi: 10.1149/1.2096876 – ident: e_1_2_6_46_1 doi: 10.1021/cm8002589 – ident: e_1_2_6_6_1 doi: 10.1038/nmat1368 – ident: e_1_2_6_10_1 doi: 10.1038/35104644 – ident: e_1_2_6_186_1 doi: 10.1016/j.ssi.2004.04.003 – ident: e_1_2_6_48_1 doi: 10.1016/j.cej.2010.11.040 – ident: e_1_2_6_161_1 doi: 10.1021/cm901452z – ident: e_1_2_6_4_1 doi: 10.1016/j.elecom.2007.09.020 – ident: e_1_2_6_107_1 doi: 10.1002/aenm.201100765 – ident: e_1_2_6_162_1 doi: 10.1016/j.electacta.2004.01.090 – ident: e_1_2_6_281_1 doi: 10.1021/nl403715h – ident: e_1_2_6_213_1 doi: 10.1016/0378-7753(93)80106-Y – ident: e_1_2_6_100_1 doi: 10.1021/nl9017594 – ident: e_1_2_6_268_1 doi: 10.1149/2.003311jes – ident: e_1_2_6_151_1 doi: 10.1039/c3ta12566a – ident: e_1_2_6_235_1 doi: 10.1021/cm300929r – ident: e_1_2_6_255_1 doi: 10.1021/nl403979s – ident: e_1_2_6_142_1 doi: 10.1351/PAC-CON-09-05-06 – ident: e_1_2_6_249_1 doi: 10.1002/anie.200601676 – ident: e_1_2_6_38_1 doi: 10.1002/adma.200602513 – ident: e_1_2_6_42_1 doi: 10.1002/aenm.201200320 – ident: e_1_2_6_115_1 doi: 10.1039/c2cc17083c – ident: e_1_2_6_144_1 doi: 10.1002/adma.200400283 – ident: e_1_2_6_154_1 doi: 10.1021/cm051880p – ident: e_1_2_6_225_1 doi: 10.1039/c4ta00189c – ident: e_1_2_6_52_1 doi: 10.1021/cm060921u – ident: e_1_2_6_31_1 doi: 10.1021/nl3027839 – ident: e_1_2_6_152_1 doi: 10.1126/science.282.5397.2244 – ident: e_1_2_6_275_1 doi: 10.1021/nl202297p – ident: e_1_2_6_88_1 doi: 10.1088/0957-4484/24/42/424004 – ident: e_1_2_6_126_1 doi: 10.1021/cm900613d – ident: e_1_2_6_176_1 doi: 10.1002/aenm.201300269 – ident: e_1_2_6_257_1 doi: 10.1016/S0008-6223(02)00425-6 – ident: e_1_2_6_182_1 doi: 10.1007/s10008-014-2411-5 – ident: e_1_2_6_278_1 doi: 10.1002/anie.201100637 – ident: e_1_2_6_95_1 doi: 10.1021/cm201197j – ident: e_1_2_6_158_1 doi: 10.1021/cm702134s – ident: e_1_2_6_8_1 doi: 10.1002/adma.200800627 – ident: e_1_2_6_98_1 doi: 10.1016/j.jpowsour.2012.04.091 – volume: 6 start-page: 2545 year: 2014 ident: e_1_2_6_178_1 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_6_1_1 doi: 10.1021/cr020731c – ident: e_1_2_6_76_1 doi: 10.1038/361511a0 – ident: e_1_2_6_29_1 doi: 10.1039/c1ee01598b – ident: e_1_2_6_66_1 doi: 10.1021/cm0487425 – ident: e_1_2_6_82_1 doi: 10.1002/adma.201003713 – ident: e_1_2_6_190_1 doi: 10.1007/s10008-007-0449-3 – ident: e_1_2_6_170_1 doi: 10.1016/j.jpowsour.2004.06.046 |
| SSID | ssj0009606 |
| Score | 2.6263926 |
| Snippet | Lithium‐ion batteries are regarded as promising energy storage devices for next‐generation electric and hybrid electric vehicles. In order to meet the demands... Lithium-ion batteries are regarded as promising energy storage devices for next-generation electric and hybrid electric vehicles. In order to meet the demands... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 527 |
| SubjectTerms | Carbon Demand Density Devices Electrochemical analysis electrochemical performance Electrode materials Electrodes Electronics interface engineering Lithium-ion batteries surface engineering |
| Title | Surface and Interface Engineering of Electrode Materials for Lithium-Ion Batteries |
| URI | https://api.istex.fr/ark:/67375/WNG-XSLQDWS4-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201402962 https://www.ncbi.nlm.nih.gov/pubmed/25355133 https://www.proquest.com/docview/1652389279 https://www.proquest.com/docview/1660058358 |
| Volume | 27 |
| WOSCitedRecordID | wos000348031800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BywEOvB_lsTISgpO1sWMn9rGiW0DqVkB32d4s27FFBaSoD8SRn8Bv5JdgO222lXhIcIujiWONZ-wZP74P4ElZaiJt4XEIhR1mTnCsC-YxMT6rSlpYm-iA3o3K8VhMp_L1zi3-Bh-iXXCLnpHG6-jg2iwPz0FDdZVwg0KCQGUchLs0GC_vQHfwdng6OgfeLRK_Ztzvw7JgYgvcmNHD_Rr2JqZu1PHXX0Wd-0FsmoWG1_6__dfh6iYCRf3GZG7ABVffhCs7uIS34GSyXnhtHdJ1hdKaYSrtyKC5R0cNg07l0LFeNYaMQgiMRrPV-9n6049v31_Na9QAeIZ8_DacDo9Onr_EG_oFbEN2SrEWlWEhIfKMW-85EcYxwjQviTcxkwkvaC4LQzy32mrtubSUuazIfG6IzvI70KnntbsHiAoTcdy5ERF3VFqTM2qyyuvMVtxntAd4q3tlN9jkkSLjo2pQlamK2lKttnrwrJX_3KBy_FbyaerKVkwvPsSzbCVXZ-MXajoZvRmcTZgSPXi87WsVPCxum-jazddLRYqgDiFpKf8kU0SCxpyHeu42htL-kfI8sej0gCZ7-EuLVX9w3G9L9__lowdwOTzHQ5mYkofQWS3W7hFcsl9Ws-XiAC6WU3Gw8ZOfABQQxA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQigR74D7WcTMSgidrsWMn9mNFVzaRVkA71jfLdmxRDdKpa9Ee-Qn8Rn4JtpNmq8RFQjzaOnHi43Psc2zn-wB4kecKC5M55ENhi6jlDKmMOoS1S8qcZMZEOqCPRT4a8elUvGtuE4Z_YWp8iHbDLXhGnK-Dg4cN6f1L1FBVRuAgnyEQEWbhDvW25I280_8wOC4ukXezSLAZDvyQyChfIzcmZH-zhY2VqROUfPGrsHMzio3L0OD2f-jAHXCriUFhrzaau-Care6B7SvIhPfBZLxaOGUsVFUJ465hLF2RgXMHD2oOndLCoVrWpgx9EAyL2fLTbPXlx7fvR_MK1hCePiN_AI4HB5PXh6ghYEDG56cEKV5q6lMiR5lxjmGuLcVUsRw7HXIZX0FSkWnsmFFGKceEIdQmWeJSjVWS7oCtal7ZXQAJ1wHJnWkekEeF0SklOimdSkzJXEK6AK2VL02DTh5IMj7LGleZyKAt2WqrC1618mc1LsdvJV_GsWzF1OI03GbLmTwZvZHTcfG-fzKmknfB8_VgS-9j4eBEVXa-Opc48-rgguTiTzJZoGhMmW_nYW0p7RsJSyOPTheQaBB_-WLZ6w97bWnvXx56Bm4cToaFLI5Gbx-Bm74-XNFEBD8GW8vFyj4B183X5ex88bRxl5_swhPM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bjxMhFCamNUYfvF_qFROjT2QHBhh4bOxWN842q911-0aAgdio0023NT76E_yN_hKBmc5uEy-J8RFyhhkO58A5wHwfAM-KQmNpuUchFHaIOsGQ5tQjbHxWFYRbm-iA3pfFZCJmM3nQ3iaM_8I0-BDdhlv0jDRfRwd3J5XfOUMN1VUCDgoZApFxFu7TyCTTA_3Ru_FReYa8yxPBZjzwQ5JTsUFuzMjOdgtbK1M_Kvnrr8LO7Sg2LUPja_-hA9fB1TYGhcPGaG6AC66-Ca6cQya8BQ6n66XX1kFdVzDtGqbSORm48HC34dCpHNzXq8aUYQiCYTlffZivP__49n1vUcMGwjNk5LfB0Xj38OVr1BIwIBvyU4K0qAwNKZGnzHrPsDCOYqpZgb2JuUyoILnkBntmtdXaM2kJdRnPfG6wzvI7oFcvancPQCJMRHJnRkTkUWlNTonJKq8zWzGfkQFAG-Ur26KTR5KMT6rBVSYqakt12hqAF538SYPL8VvJ52ksOzG9_BhvsxVMHU9eqdm0fDs6nlIlBuDpZrBV8LF4cKJrt1ifKsyDOoQkhfyTDI8UjTkL7dxtLKV7I2F54tEZAJIM4i9frIaj_WFXuv8vDz0Blw5GY1XuTd48AJdDdbyhiQh-CHqr5do9Ahftl9X8dPm49ZafWZsTRw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+and+Interface+Engineering+of+Electrode+Materials+for+Lithium-Ion+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Kai-Xue&rft.au=Li%2C+Xin-Hao&rft.au=Chen%2C+Jie-Sheng&rft.date=2015-01-21&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=27&rft.issue=3&rft.spage=527&rft.epage=545&rft_id=info:doi/10.1002%2Fadma.201402962&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_XSLQDWS4_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |