Surface and Interface Engineering of Electrode Materials for Lithium-Ion Batteries

Lithium‐ion batteries are regarded as promising energy storage devices for next‐generation electric and hybrid electric vehicles. In order to meet the demands of electric vehicles, considerable efforts have been devoted to the development of advanced electrode materials for lithium‐ion batteries wit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced materials (Weinheim) Ročník 27; číslo 3; s. 527 - 545
Hlavní autoři: Wang, Kai-Xue, Li, Xin-Hao, Chen, Jie-Sheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Blackwell Publishing Ltd 21.01.2015
Témata:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Lithium‐ion batteries are regarded as promising energy storage devices for next‐generation electric and hybrid electric vehicles. In order to meet the demands of electric vehicles, considerable efforts have been devoted to the development of advanced electrode materials for lithium‐ion batteries with high energy and power densities. Although significant progress has been recently made in the development of novel electrode materials, some critical issues comprising low electronic conductivity, low ionic diffusion efficiency, and large structural variation have to be addressed before the practical application of these materials. Surface and interface engineering is essential to improve the electrochemical performance of electrode materials for lithium‐ion batteries. This article reviews the recent progress in surface and interface engineering of electrode materials including the increase in contact interface by decreasing the particle size or introducing porous or hierarchical structures and surface modification or functionalization by metal nanoparticles, metal oxides, carbon materials, polymers, and other ionic and electronic conductive species. Surface and interface engineering of electrodes is essential for the fabrication of high‐performance lithium‐ion batteries. A brief summary of the recent progress in surface and interface engineering of electrode materials is provided, and the effect of interface engineering on the electrochemical performance of different electrode materials is presented.
AbstractList Lithium-ion batteries are regarded as promising energy storage devices for next-generation electric and hybrid electric vehicles. In order to meet the demands of electric vehicles, considerable efforts have been devoted to the development of advanced electrode materials for lithium-ion batteries with high energy and power densities. Although significant progress has been recently made in the development of novel electrode materials, some critical issues comprising low electronic conductivity, low ionic diffusion efficiency, and large structural variation have to be addressed before the practical application of these materials. Surface and interface engineering is essential to improve the electrochemical performance of electrode materials for lithium-ion batteries. This article reviews the recent progress in surface and interface engineering of electrode materials including the increase in contact interface by decreasing the particle size or introducing porous or hierarchical structures and surface modification or functionalization by metal nanoparticles, metal oxides, carbon materials, polymers, and other ionic and electronic conductive species.Lithium-ion batteries are regarded as promising energy storage devices for next-generation electric and hybrid electric vehicles. In order to meet the demands of electric vehicles, considerable efforts have been devoted to the development of advanced electrode materials for lithium-ion batteries with high energy and power densities. Although significant progress has been recently made in the development of novel electrode materials, some critical issues comprising low electronic conductivity, low ionic diffusion efficiency, and large structural variation have to be addressed before the practical application of these materials. Surface and interface engineering is essential to improve the electrochemical performance of electrode materials for lithium-ion batteries. This article reviews the recent progress in surface and interface engineering of electrode materials including the increase in contact interface by decreasing the particle size or introducing porous or hierarchical structures and surface modification or functionalization by metal nanoparticles, metal oxides, carbon materials, polymers, and other ionic and electronic conductive species.
Lithium-ion batteries are regarded as promising energy storage devices for next-generation electric and hybrid electric vehicles. In order to meet the demands of electric vehicles, considerable efforts have been devoted to the development of advanced electrode materials for lithium-ion batteries with high energy and power densities. Although significant progress has been recently made in the development of novel electrode materials, some critical issues comprising low electronic conductivity, low ionic diffusion efficiency, and large structural variation have to be addressed before the practical application of these materials. Surface and interface engineering is essential to improve the electrochemical performance of electrode materials for lithium-ion batteries. This article reviews the recent progress in surface and interface engineering of electrode materials including the increase in contact interface by decreasing the particle size or introducing porous or hierarchical structures and surface modification or functionalization by metal nanoparticles, metal oxides, carbon materials, polymers, and other ionic and electronic conductive species.
Lithium-ion batteries are regarded as promising energy storage devices for next-generation electric and hybrid electric vehicles. In order to meet the demands of electric vehicles, considerable efforts have been devoted to the development of advanced electrode materials for lithium-ion batteries with high energy and power densities. Although significant progress has been recently made in the development of novel electrode materials, some critical issues comprising low electronic conductivity, low ionic diffusion efficiency, and large structural variation have to be addressed before the practical application of these materials. Surface and interface engineering is essential to improve the electrochemical performance of electrode materials for lithium-ion batteries. This article reviews the recent progress in surface and interface engineering of electrode materials including the increase in contact interface by decreasing the particle size or introducing porous or hierarchical structures and surface modification or functionalization by metal nanoparticles, metal oxides, carbon materials, polymers, and other ionic and electronic conductive species. Surface and interface engineering of electrodes is essential for the fabrication of high-performance lithium-ion batteries. A brief summary of the recent progress in surface and interface engineering of electrode materials is provided, and the effect of interface engineering on the electrochemical performance of different electrode materials is presented.
Lithium‐ion batteries are regarded as promising energy storage devices for next‐generation electric and hybrid electric vehicles. In order to meet the demands of electric vehicles, considerable efforts have been devoted to the development of advanced electrode materials for lithium‐ion batteries with high energy and power densities. Although significant progress has been recently made in the development of novel electrode materials, some critical issues comprising low electronic conductivity, low ionic diffusion efficiency, and large structural variation have to be addressed before the practical application of these materials. Surface and interface engineering is essential to improve the electrochemical performance of electrode materials for lithium‐ion batteries. This article reviews the recent progress in surface and interface engineering of electrode materials including the increase in contact interface by decreasing the particle size or introducing porous or hierarchical structures and surface modification or functionalization by metal nanoparticles, metal oxides, carbon materials, polymers, and other ionic and electronic conductive species. Surface and interface engineering of electrodes is essential for the fabrication of high‐performance lithium‐ion batteries. A brief summary of the recent progress in surface and interface engineering of electrode materials is provided, and the effect of interface engineering on the electrochemical performance of different electrode materials is presented.
Author Wang, Kai-Xue
Li, Xin-Hao
Chen, Jie-Sheng
Author_xml – sequence: 1
  givenname: Kai-Xue
  surname: Wang
  fullname: Wang, Kai-Xue
  organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
– sequence: 2
  givenname: Xin-Hao
  surname: Li
  fullname: Li, Xin-Hao
  organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
– sequence: 3
  givenname: Jie-Sheng
  surname: Chen
  fullname: Chen, Jie-Sheng
  email: chemcj@sjtu.edu.cn
  organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25355133$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9rFDEUx4NU7LZ69Shz9DJrfs5Mjmu7tgtbRVept_Amk9ToTNImGWz_e2eZtogghUDIy-fzeLzvETrwwRuEXhO8JBjTd9ANsKSYcExlRZ-hBRGUlBxLcYAWWDJRyoo3h-gopZ8YY1nh6gU6pIIJQRhboC-7MVrQpgDfFRufzfxa-yvnjYnOXxXBFuve6BxDZ4oLmBAHfSpsiMXW5R9uHMpN8MV7yPsvk16i53YCzKv7-xh9-7D-enJebj-dbU5W21ILymgJTddyLqXlQlsrSNMaTjiImtgWU1JPBcpk1RIrNGgAK6Sm3OAKW9YSwOwYvZ37XsdwM5qU1eCSNn0P3oQxKVJVGIuGTedpdBqpkbSWE_rmHh3bwXTqOroB4p16WNkE8BnQMaQUjVXaZcgu-BzB9YpgtU9G7ZNRj8lM2vIf7aHzfwU5C79db-6eoNXq9GL1t1vOrkvZ3D66EH-pqma1UJcfz9T33fbz6eWOq4b9ATgVrtE
CitedBy_id crossref_primary_10_1002_chem_201502833
crossref_primary_10_1039_D5TA05676D
crossref_primary_10_1016_j_jpowsour_2015_05_008
crossref_primary_10_1039_D4YA00583J
crossref_primary_10_1002_elan_202300364
crossref_primary_10_1016_j_jiec_2019_04_021
crossref_primary_10_1002_smtd_202100920
crossref_primary_10_1038_s41598_025_03505_7
crossref_primary_10_3390_nano7100325
crossref_primary_10_1016_j_cej_2022_137924
crossref_primary_10_1016_j_nanoen_2017_08_002
crossref_primary_10_1016_j_nanoen_2020_104758
crossref_primary_10_1007_s12274_023_6076_1
crossref_primary_10_1002_admi_201700639
crossref_primary_10_1016_j_apsusc_2016_09_094
crossref_primary_10_1016_j_electacta_2017_07_092
crossref_primary_10_1038_s41467_019_11197_7
crossref_primary_10_1016_j_electacta_2019_135558
crossref_primary_10_1002_adma_201900583
crossref_primary_10_1016_j_apcatb_2018_10_012
crossref_primary_10_1016_j_jpowsour_2018_07_029
crossref_primary_10_1016_j_apsusc_2019_03_061
crossref_primary_10_1016_j_nanoen_2023_109250
crossref_primary_10_1016_j_jallcom_2022_164735
crossref_primary_10_1016_j_molstruc_2023_135512
crossref_primary_10_1557_s43577_021_00026_2
crossref_primary_10_1007_s11581_016_1933_5
crossref_primary_10_1016_j_jechem_2023_08_011
crossref_primary_10_1002_adfm_202109887
crossref_primary_10_1002_crat_202100133
crossref_primary_10_1016_j_cej_2024_156790
crossref_primary_10_1002_celc_202200029
crossref_primary_10_1007_s10800_018_1242_y
crossref_primary_10_3390_nano9060871
crossref_primary_10_1002_adfm_201605011
crossref_primary_10_1007_s11164_022_04785_8
crossref_primary_10_1134_S1023193518050038
crossref_primary_10_1016_j_chphma_2021_11_004
crossref_primary_10_1016_j_electacta_2019_135543
crossref_primary_10_1016_j_jallcom_2016_10_259
crossref_primary_10_3390_nano9030441
crossref_primary_10_1016_j_cclet_2021_08_052
crossref_primary_10_1002_anie_202116865
crossref_primary_10_1039_C7CC07485A
crossref_primary_10_63995_SGCF3012
crossref_primary_10_1002_chem_201605019
crossref_primary_10_1002_celc_201900848
crossref_primary_10_1016_j_jallcom_2015_09_189
crossref_primary_10_1002_celc_201901340
crossref_primary_10_1002_aenm_202002506
crossref_primary_10_1016_j_jpowsour_2025_237191
crossref_primary_10_1557_adv_2018_517
crossref_primary_10_1021_jacs_0c01117
crossref_primary_10_1002_celc_201900169
crossref_primary_10_1002_adfm_202105180
crossref_primary_10_1002_batt_202400638
crossref_primary_10_3389_fenrg_2020_00170
crossref_primary_10_1039_D2RA03368B
crossref_primary_10_1002_ente_202300092
crossref_primary_10_1016_j_nanoen_2017_01_034
crossref_primary_10_1016_j_scib_2019_06_022
crossref_primary_10_1088_1361_6528_ac238f
crossref_primary_10_1007_s10008_017_3786_x
crossref_primary_10_1109_ACCESS_2025_3606267
crossref_primary_10_1016_j_mtcomm_2024_110846
crossref_primary_10_1002_admi_201600430
crossref_primary_10_1007_s12274_017_1647_7
crossref_primary_10_1016_j_cej_2022_139576
crossref_primary_10_1016_j_jhazmat_2016_10_069
crossref_primary_10_1038_s41467_022_28963_9
crossref_primary_10_1016_j_matchemphys_2018_04_091
crossref_primary_10_1016_j_nanoen_2017_08_033
crossref_primary_10_1016_j_jallcom_2023_173037
crossref_primary_10_1007_s10934_016_0246_4
crossref_primary_10_1002_adfm_201803439
crossref_primary_10_1016_j_jallcom_2017_03_225
crossref_primary_10_1016_j_electacta_2017_06_044
crossref_primary_10_3390_nano9121770
crossref_primary_10_1002_est2_78
crossref_primary_10_1016_j_jpowsour_2022_231716
crossref_primary_10_1680_jsuin_20_00044
crossref_primary_10_12677_AEPE_2021_93013
crossref_primary_10_1016_j_apsusc_2017_11_276
crossref_primary_10_1088_1755_1315_571_1_012110
crossref_primary_10_1016_j_carbon_2015_05_030
crossref_primary_10_1016_j_jallcom_2019_06_194
crossref_primary_10_1017_S1431927620013598
crossref_primary_10_1038_nenergy_2016_50
crossref_primary_10_1002_smll_202403537
crossref_primary_10_1016_j_jpowsour_2017_11_037
crossref_primary_10_1016_j_diamond_2019_107514
crossref_primary_10_1016_j_cap_2019_08_024
crossref_primary_10_1007_s11581_021_04171_1
crossref_primary_10_1002_aenm_202002969
crossref_primary_10_1016_j_jallcom_2018_07_151
crossref_primary_10_1016_j_jallcom_2019_05_142
crossref_primary_10_1016_j_jcis_2021_02_035
crossref_primary_10_1149_2162_8777_adfc98
crossref_primary_10_1016_j_jpowsour_2019_03_046
crossref_primary_10_1016_j_copbio_2015_02_014
crossref_primary_10_1016_j_jpowsour_2022_232395
crossref_primary_10_1016_j_cej_2024_154346
crossref_primary_10_1016_j_matdes_2016_07_007
crossref_primary_10_1016_j_mattod_2024_11_009
crossref_primary_10_1134_S0020168522070111
crossref_primary_10_1002_aisy_202400626
crossref_primary_10_1002_chin_201510340
crossref_primary_10_1016_j_physe_2025_116375
crossref_primary_10_1016_j_electacta_2016_12_001
crossref_primary_10_1002_nano_202000174
crossref_primary_10_1016_j_ceramint_2016_02_044
crossref_primary_10_1039_C9ME00084D
crossref_primary_10_1016_j_est_2025_116616
crossref_primary_10_1016_j_jallcom_2023_169362
crossref_primary_10_1016_j_jallcom_2023_170387
crossref_primary_10_1016_j_apenergy_2025_125347
crossref_primary_10_1039_D0QM00710B
crossref_primary_10_1002_ange_201712907
crossref_primary_10_1039_C5TA09323F
crossref_primary_10_1002_cjoc_201800216
crossref_primary_10_1016_j_electacta_2016_06_002
crossref_primary_10_1007_s10853_016_9748_3
crossref_primary_10_1016_j_cej_2023_148047
crossref_primary_10_1039_C7CP00509A
crossref_primary_10_1016_j_pnsc_2018_02_005
crossref_primary_10_3390_nano14010017
crossref_primary_10_1002_admt_202001301
crossref_primary_10_1016_j_nanoen_2016_02_006
crossref_primary_10_1093_ce_zkae048
crossref_primary_10_1016_j_mssp_2025_109864
crossref_primary_10_1002_aenm_202201466
crossref_primary_10_1016_j_ssi_2019_02_014
crossref_primary_10_1039_C9QI00212J
crossref_primary_10_1002_smll_202409304
crossref_primary_10_1007_s00604_024_06470_6
crossref_primary_10_1016_j_electacta_2016_04_180
crossref_primary_10_1039_D4MH00715H
crossref_primary_10_1002_aenm_201702028
crossref_primary_10_1007_s11434_016_1048_4
crossref_primary_10_1016_j_electacta_2024_144083
crossref_primary_10_1007_s10008_024_05929_z
crossref_primary_10_1002_cey2_338
crossref_primary_10_3390_batteries11020046
crossref_primary_10_1002_adfm_201704880
crossref_primary_10_1016_j_cej_2024_151976
crossref_primary_10_1002_adma_201605895
crossref_primary_10_1002_celc_201900915
crossref_primary_10_1016_j_apsusc_2020_145622
crossref_primary_10_1016_j_jhazmat_2019_01_106
crossref_primary_10_3390_batteries9100515
crossref_primary_10_1002_adfm_202408935
crossref_primary_10_1016_j_jallcom_2025_181295
crossref_primary_10_1016_j_electacta_2025_146545
crossref_primary_10_1007_s10853_020_04905_y
crossref_primary_10_1016_j_cej_2024_157941
crossref_primary_10_1016_j_bios_2018_12_017
crossref_primary_10_1016_j_cej_2024_158116
crossref_primary_10_1016_j_jpowsour_2022_231873
crossref_primary_10_1002_adfm_201500644
crossref_primary_10_1016_j_ceramint_2023_12_075
crossref_primary_10_1039_C9MH01094G
crossref_primary_10_1088_2053_1591_3_12_125008
crossref_primary_10_1016_j_est_2024_115253
crossref_primary_10_1002_er_6953
crossref_primary_10_1007_s12274_022_4953_7
crossref_primary_10_1039_C6CP01366J
crossref_primary_10_1016_j_est_2023_109756
crossref_primary_10_1002_admi_202202268
crossref_primary_10_1016_j_nantod_2021_101094
crossref_primary_10_1016_j_nanoen_2019_104212
crossref_primary_10_1002_smll_201701802
crossref_primary_10_1016_j_mtcomm_2020_101820
crossref_primary_10_1142_S1793604716500557
crossref_primary_10_1016_j_electacta_2017_12_038
crossref_primary_10_1016_j_jallcom_2020_154081
crossref_primary_10_1038_s41467_017_00574_9
crossref_primary_10_1016_j_jallcom_2019_151913
crossref_primary_10_1016_j_jpowsour_2023_233451
crossref_primary_10_1016_j_jallcom_2024_174806
crossref_primary_10_1016_j_apt_2020_09_002
crossref_primary_10_1016_j_cej_2018_08_056
crossref_primary_10_1016_j_electacta_2024_144576
crossref_primary_10_1002_adma_201704309
crossref_primary_10_1038_srep36580
crossref_primary_10_1016_j_apsusc_2021_149860
crossref_primary_10_1002_anie_201712907
crossref_primary_10_1088_1361_6528_aa8106
crossref_primary_10_1002_admi_202000226
crossref_primary_10_1002_ente_201900987
crossref_primary_10_1016_j_cej_2024_155637
crossref_primary_10_1016_j_snb_2025_137467
crossref_primary_10_1002_adma_201805234
crossref_primary_10_1002_aenm_202000058
crossref_primary_10_1002_ente_202400096
crossref_primary_10_1002_batt_202400257
crossref_primary_10_1007_s11581_018_2620_5
crossref_primary_10_1016_j_jallcom_2018_07_003
crossref_primary_10_1016_j_jics_2023_100959
crossref_primary_10_1016_j_jmst_2021_12_048
crossref_primary_10_1016_j_est_2024_114228
crossref_primary_10_1002_er_6496
crossref_primary_10_1016_j_jpowsour_2024_235457
crossref_primary_10_1016_j_jpowsour_2016_01_005
crossref_primary_10_1016_j_cej_2024_154535
crossref_primary_10_1002_adfm_202000024
crossref_primary_10_1016_j_jpowsour_2021_229522
crossref_primary_10_1016_j_nanoen_2022_108028
crossref_primary_10_1039_C6CP02364A
crossref_primary_10_1142_S1793604718501035
crossref_primary_10_1007_s11237_024_09791_y
crossref_primary_10_1016_j_jmst_2022_09_010
crossref_primary_10_1016_j_actamat_2017_08_054
crossref_primary_10_1007_s10800_019_01393_0
crossref_primary_10_1002_advs_202205069
crossref_primary_10_1016_j_micromeso_2017_03_019
crossref_primary_10_3390_batteries11060209
crossref_primary_10_1002_adma_201700396
crossref_primary_10_1039_D4QI02198C
crossref_primary_10_1007_s10854_020_03663_6
crossref_primary_10_1016_j_jallcom_2018_11_242
crossref_primary_10_1002_admi_202300668
crossref_primary_10_1002_cssc_201900209
crossref_primary_10_1002_cssc_202101852
crossref_primary_10_1016_j_electacta_2016_06_155
crossref_primary_10_1002_smll_202306428
crossref_primary_10_1016_j_electacta_2019_134604
crossref_primary_10_1016_j_aca_2023_341646
crossref_primary_10_1016_j_ensm_2025_104256
crossref_primary_10_1016_j_ceramint_2021_01_215
crossref_primary_10_1016_j_cej_2023_147813
crossref_primary_10_1016_j_carbon_2018_11_054
crossref_primary_10_1016_j_carbon_2023_118564
crossref_primary_10_1002_aenm_201501727
crossref_primary_10_1002_ange_202116865
crossref_primary_10_3389_fchem_2025_1633529
crossref_primary_10_1002_aenm_202402720
crossref_primary_10_1016_j_ijhydene_2019_08_048
crossref_primary_10_3390_ma13010119
crossref_primary_10_1016_j_joule_2017_08_001
crossref_primary_10_1016_j_matchemphys_2018_05_054
crossref_primary_10_1016_j_nanoen_2017_03_017
crossref_primary_10_1007_s10008_017_3524_4
crossref_primary_10_1007_s10800_022_01736_4
crossref_primary_10_1007_s11581_019_02864_2
crossref_primary_10_1016_j_jcis_2021_05_150
crossref_primary_10_1016_j_electacta_2017_03_155
crossref_primary_10_1039_C7QI00711F
crossref_primary_10_1016_j_elecom_2015_05_005
crossref_primary_10_1002_advs_201600049
crossref_primary_10_1002_aenm_201602559
crossref_primary_10_1007_s11581_017_2287_3
crossref_primary_10_1039_C5TA06962A
crossref_primary_10_1016_j_jallcom_2016_09_205
crossref_primary_10_1016_j_mtnano_2019_100040
crossref_primary_10_1016_j_jcis_2021_10_025
crossref_primary_10_1016_j_solener_2024_112515
crossref_primary_10_1016_j_mser_2015_12_003
crossref_primary_10_1016_j_cej_2021_129894
crossref_primary_10_1016_j_electacta_2021_137835
crossref_primary_10_1016_j_jallcom_2024_177689
crossref_primary_10_1016_j_gee_2017_09_005
crossref_primary_10_1002_chem_201901168
crossref_primary_10_1007_s10008_023_05662_z
crossref_primary_10_1149_1945_7111_ad0c6a
crossref_primary_10_1016_j_apenergy_2016_04_066
crossref_primary_10_1016_j_cej_2020_126894
crossref_primary_10_1016_j_est_2021_103112
crossref_primary_10_1016_j_cej_2023_143436
crossref_primary_10_1016_j_tsf_2019_137522
crossref_primary_10_1016_j_mseb_2020_115015
crossref_primary_10_1016_j_ultsonch_2017_06_010
crossref_primary_10_1007_s11172_017_1897_2
crossref_primary_10_1002_smll_201903652
crossref_primary_10_1039_D5RA01695A
crossref_primary_10_1016_j_trac_2017_02_010
crossref_primary_10_1002_smll_201601158
crossref_primary_10_1016_j_jallcom_2017_06_114
crossref_primary_10_1002_cplu_201500528
crossref_primary_10_1016_j_apsusc_2020_147631
crossref_primary_10_1002_adfm_202305515
crossref_primary_10_1016_j_jpowsour_2015_08_031
crossref_primary_10_1007_s11664_019_07607_7
crossref_primary_10_1007_s10854_018_9247_1
crossref_primary_10_1002_adma_201606805
crossref_primary_10_1007_s11426_017_9050_6
crossref_primary_10_1016_j_jechem_2020_07_033
crossref_primary_10_1016_j_electacta_2015_11_094
crossref_primary_10_1002_adma_202200777
crossref_primary_10_1007_s11581_016_1941_5
crossref_primary_10_1038_srep35620
crossref_primary_10_1007_s10008_017_3629_9
crossref_primary_10_3389_fenrg_2023_1108269
crossref_primary_10_1016_j_ultsonch_2023_106590
crossref_primary_10_1039_D1ME00082A
crossref_primary_10_1017_S1431927616007406
crossref_primary_10_1002_adma_201605807
crossref_primary_10_1002_celc_201600914
crossref_primary_10_1016_j_jpowsour_2020_229372
crossref_primary_10_1016_j_jallcom_2019_152386
crossref_primary_10_1016_j_jpowsour_2017_06_037
crossref_primary_10_1016_j_jpowsour_2015_09_092
crossref_primary_10_1038_srep26246
crossref_primary_10_1002_smtd_202300965
crossref_primary_10_1016_j_cej_2021_130310
crossref_primary_10_1016_j_est_2024_110525
crossref_primary_10_1016_j_jallcom_2018_09_017
crossref_primary_10_1002_admt_202101107
crossref_primary_10_1002_chem_202103938
crossref_primary_10_1016_j_jallcom_2018_09_377
crossref_primary_10_1016_j_jpcs_2020_109861
crossref_primary_10_1002_admi_201701255
crossref_primary_10_1002_celc_201600343
crossref_primary_10_1016_j_matdes_2016_05_040
crossref_primary_10_1002_aenm_201701681
crossref_primary_10_1002_adma_201804116
crossref_primary_10_1002_smll_202410482
crossref_primary_10_2478_adms_2024_0011
crossref_primary_10_1016_j_ijhydene_2016_04_160
crossref_primary_10_1002_aenm_201601906
crossref_primary_10_1016_j_jallcom_2019_152497
Cites_doi 10.1002/adma.200305075
10.1039/c0jm00508h
10.1021/nl0727157
10.1021/nn4037909
10.1002/anie.201101661
10.1149/1.2108601
10.1021/ar300253f
10.1039/c2jm34114j
10.1002/anie.201107817
10.1039/C3DT52661E
10.1021/nl300794f
10.1016/j.elecom.2005.08.006
10.1021/nl200658a
10.1038/nature07853
10.1038/srep01622
10.1016/j.jpowsour.2007.01.004
10.1016/j.jpowsour.2013.06.116
10.1016/j.jpowsour.2010.07.021
10.1002/aenm.201100485
10.1016/S0167-2738(99)00043-0
10.1021/nl0725906
10.1021/cm049971u
10.1039/c3ra44731f
10.1021/jp206277a
10.1039/c2cc17925c
10.1039/C0EE00029A
10.1002/adma.200601667
10.1016/j.jpowsour.2010.12.078
10.1149/1.2956088
10.5012/bkcs.2009.30.11.2584
10.1039/c2cp23433e
10.1149/1.3447750
10.1021/ja0545721
10.1021/am403798a
10.1039/c0nr00068j
10.1016/j.jpowsour.2013.04.042
10.1021/ja1110464
10.1039/b907509g
10.1002/anie.200300614
10.1016/S0924-0136(01)01044-5
10.1002/adma.200901710
10.1016/j.electacta.2005.11.015
10.1149/1.1837722
10.1039/C3TA14178K
10.1016/j.jpowsour.2007.12.109
10.1016/j.electacta.2008.06.053
10.1039/c3ta13092d
10.1021/cm801607e
10.1016/j.jpowsour.2005.07.047
10.1021/jp110694k
10.1007/s12274-013-0300-3
10.1021/ja2004329
10.1002/adma.200903755
10.1021/ja002261e
10.1039/c1nr10668f
10.1038/nature05570
10.1002/adma.201002828
10.1039/c2jm31910a
10.1016/j.jpowsour.2012.06.023
10.1016/j.jpowsour.2007.09.102
10.1021/cm4018248
10.1007/s11581-014-1108-1
10.1039/c0jm01387k
10.1016/j.elecom.2008.04.004
10.1039/c2jm32402d
10.1002/anie.201304762
10.1039/c0ee00713g
10.1002/anie.201107885
10.1039/b900397e
10.1007/s12274-013-0293-y
10.1016/j.elecom.2008.10.043
10.1007/s11581-013-1006-y
10.1149/1.1613668
10.1021/jp9082322
10.1039/c1jm10976f
10.1016/j.ssi.2008.04.031
10.1016/j.jallcom.2013.03.041
10.1021/cm050566s
10.1016/j.elecom.2003.08.012
10.1039/c1cp22026h
10.1021/nl400199r
10.1149/1.3267294
10.1038/nmat3191
10.1016/j.elecom.2013.01.015
10.1016/j.ssi.2012.08.003
10.1088/0957-4484/24/42/424008
10.1002/adma.200306125
10.1039/c1jm12979a
10.1039/b817156d
10.1016/j.jpowsour.2010.09.027
10.1002/anie.201104102
10.1021/cm404154u
10.1002/anie.200804355
10.1023/A:1009987225710
10.1016/j.jpowsour.2012.01.058
10.1002/adma.200803439
10.1021/cm2037475
10.1016/j.jpowsour.2004.12.041
10.1038/srep02788
10.1002/adma.201301795
10.1021/nn4022263
10.1021/jp0674367
10.1016/S1369-7021(13)70012-9
10.1021/jp309724q
10.1149/2.032203jes
10.1002/adfm.200400186
10.1016/j.nanoen.2013.06.006
10.1039/c2ee03215e
10.1021/nl300206e
10.1021/cm202812z
10.1002/anie.201104597
10.1021/ja0488378
10.1002/adma.201401937
10.1002/adfm.201303856
10.1063/1.2399935
10.1021/cm900698p
10.1038/nmat1107
10.1039/b411915k
10.1016/0013-4686(93)80046-3
10.1002/chem.201303675
10.1016/j.solidstatesciences.2005.10.019
10.1021/cm9024167
10.1149/1.2360769
10.1039/c2nr32069j
10.1002/asia.201200429
10.1039/c0jm04126b
10.1021/cm0481372
10.1016/j.elecom.2010.01.008
10.1002/anie.201205292
10.1002/adma.201202744
10.1039/C0NR00423E
10.1002/adma.201200397
10.1149/1.2188081
10.1002/anie.200802539
10.1016/j.jssc.2012.07.029
10.1002/ejic.200900275
10.1002/adfm.200400429
10.1016/S1388-2481(03)00179-6
10.1002/smll.201101838
10.1007/s10853-012-6576-y
10.1021/nn406449u
10.1002/anie.200603665
10.1039/c2ra23365g
10.1002/asia.201300279
10.1021/jp067116n
10.1016/j.jpowsour.2010.11.138
10.1039/c2jm16799a
10.1149/1.2128859
10.1016/j.elecom.2008.10.041
10.1039/c3cc44360d
10.1016/S0040-6090(96)09440-0
10.1039/c0nr00998a
10.1039/c2jm32658b
10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO;2-A
10.1016/j.jpowsour.2013.07.032
10.1016/j.nanoen.2013.03.005
10.1016/j.jpowsour.2013.08.042
10.1007/s10971-010-2162-4
10.1007/s11581-013-1041-8
10.1039/c3cc41967c
10.1016/0025-5408(80)90012-4
10.1021/ja028165q
10.1021/jp9072125
10.1002/anie.200250808
10.1021/am1009056
10.1016/j.electacta.2004.03.049
10.1149/1.1526782
10.1002/asia.201100757
10.1016/j.jpowsour.2013.01.082
10.1039/C3TA14123C
10.1039/c2cc31476b
10.1016/j.electacta.2009.07.028
10.1002/adfm.201200591
10.1016/j.jpowsour.2011.11.074
10.1021/ar800229g
10.1016/S0378-7753(03)00228-3
10.1002/adma.200600369
10.1016/S0013-4686(99)00191-7
10.1038/srep03490
10.1016/j.fusengdes.2010.04.003
10.1002/anie.200461051
10.1016/j.materresbull.2012.12.056
10.1016/S0167-2738(99)00095-8
10.1039/c3ta01618h
10.1126/science.1122716
10.1039/C3NR04611G
10.1021/ja108720w
10.1038/nmat1230
10.1016/j.jpowsour.2009.08.089
10.1021/ja308717z
10.1149/1.2711075
10.1016/j.jpowsour.2013.08.105
10.1039/c1jm13048j
10.1016/j.ssi.2008.03.001
10.1039/c3ra22125c
10.1021/ja058441b
10.1038/nmat2460
10.1002/adma.201201601
10.1021/nl5008568
10.1002/adma.200602189
10.1021/jz3006892
10.1021/ja0752843
10.1039/C2CS35378D
10.1021/ja105389t
10.1002/anie.200501561
10.1002/aenm.201200389
10.1016/j.jpowsour.2009.11.022
10.1016/j.jpowsour.2010.01.003
10.1039/C4TA00974F
10.1016/j.electacta.2014.03.171
10.1021/cm902696j
10.1016/j.ssi.2006.03.033
10.1039/b923576k
10.1021/jp0707889
10.1007/s10853-011-5680-8
10.1016/j.electacta.2005.02.026
10.1039/C1CC14764A
10.1039/b922898e
10.1039/c1dt10749f
10.1039/B512304F
10.1016/j.jpowsour.2007.08.034
10.1021/jp807463u
10.1002/anie.200460937
10.1039/c0jm01346c
10.1007/s10008-009-0967-2
10.1039/c2ce25114k
10.1039/c4ra01255k
10.1021/nn203436j
10.1039/c003630g
10.1039/c3ta12964k
10.1016/j.jpowsour.2012.10.030
10.1016/j.jpowsour.2009.02.063
10.1149/1.2096876
10.1021/cm8002589
10.1038/nmat1368
10.1038/35104644
10.1016/j.ssi.2004.04.003
10.1016/j.cej.2010.11.040
10.1021/cm901452z
10.1016/j.elecom.2007.09.020
10.1002/aenm.201100765
10.1016/j.electacta.2004.01.090
10.1021/nl403715h
10.1016/0378-7753(93)80106-Y
10.1021/nl9017594
10.1149/2.003311jes
10.1039/c3ta12566a
10.1021/cm300929r
10.1021/nl403979s
10.1351/PAC-CON-09-05-06
10.1002/anie.200601676
10.1002/adma.200602513
10.1002/aenm.201200320
10.1039/c2cc17083c
10.1002/adma.200400283
10.1021/cm051880p
10.1039/c4ta00189c
10.1021/cm060921u
10.1021/nl3027839
10.1126/science.282.5397.2244
10.1021/nl202297p
10.1088/0957-4484/24/42/424004
10.1021/cm900613d
10.1002/aenm.201300269
10.1016/S0008-6223(02)00425-6
10.1007/s10008-014-2411-5
10.1002/anie.201100637
10.1021/cm201197j
10.1021/cm702134s
10.1002/adma.200800627
10.1016/j.jpowsour.2012.04.091
10.1021/cr020731c
10.1038/361511a0
10.1039/c1ee01598b
10.1021/cm0487425
10.1002/adma.201003713
10.1007/s10008-007-0449-3
10.1016/j.jpowsour.2004.06.046
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
AAYXX
CITATION
NPM
7X8
7SP
7SR
7TB
8BQ
8FD
FR3
JG9
L7M
DOI 10.1002/adma.201402962
DatabaseName Istex
CrossRef
PubMed
MEDLINE - Academic
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList MEDLINE - Academic
PubMed
Materials Research Database

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage 545
ExternalDocumentID 25355133
10_1002_adma_201402962
ADMA201402962
ark_67375_WNG_XSLQDWS4_8
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21271128; 21331004
– fundername: National Basic Research Program of China
  funderid: 2013CB934102; 2014CB932102
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
FOJGT
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WTY
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZY4
ZZTAW
~02
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
RWM
WRC
AAYXX
CITATION
O8X
NPM
7X8
7SP
7SR
7TB
8BQ
8FD
FR3
JG9
L7M
ID FETCH-LOGICAL-c5232-a8db4499f45cff518be414a571fb021718b2396b1f5cacaaf59c24e060f3b1a03
IEDL.DBID DRFUL
ISICitedReferencesCount 474
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000348031800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Sun Nov 09 12:32:36 EST 2025
Thu Oct 02 08:26:59 EDT 2025
Mon Jul 21 05:55:24 EDT 2025
Tue Nov 18 22:11:13 EST 2025
Sat Nov 29 07:17:28 EST 2025
Wed Jan 22 16:21:11 EST 2025
Sun Sep 21 06:18:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords surface engineering
lithium-ion batteries
electrode materials
electrochemical performance
interface engineering
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5232-a8db4499f45cff518be414a571fb021718b2396b1f5cacaaf59c24e060f3b1a03
Notes istex:1D1057279FBA2CCC99153E637C0D73810F435D68
ark:/67375/WNG-XSLQDWS4-8
National Basic Research Program of China - No. 2013CB934102; No. 2014CB932102
National Natural Science Foundation of China - No. 21271128; No. 21331004
ArticleID:ADMA201402962
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25355133
PQID 1652389279
PQPubID 23479
PageCount 19
ParticipantIDs proquest_miscellaneous_1660058358
proquest_miscellaneous_1652389279
pubmed_primary_25355133
crossref_citationtrail_10_1002_adma_201402962
crossref_primary_10_1002_adma_201402962
wiley_primary_10_1002_adma_201402962_ADMA201402962
istex_primary_ark_67375_WNG_XSLQDWS4_8
PublicationCentury 2000
PublicationDate January 21, 2015
PublicationDateYYYYMMDD 2015-01-21
PublicationDate_xml – month: 01
  year: 2015
  text: January 21, 2015
  day: 21
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv. Mater
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References X. Pu, C. Yu, Nanoscale 2012, 4, 6743.
B. Yao, D. Fleming, M. A. Morris, S. E. Lawrence, Chem. Mater. 2004, 16, 4851.
B. Wang, B. Xu, T. Liu, P. Liu, C. Guo, S. Wang, Q. Wang, Z. Xiong, D. Wang, X. S. Zhao, Nanoscale 2014, 6, 986.
J. Cho, Y. Kim, M. G. Kim, J. Phys. Chem. C 2007, 111, 3192.
X. L. Yang, Z. Y. Wen, S. H. Huang, X. J. Zhu, X. F. Zhang, Solid State Ionics 2006, 177, 2807.
G. X. Wang, L. Yang, Y. Chen, J. Z. Wang, S. Bewlay, H. K. Liu, Electrochim. Acta 2005, 50, 4649.
Y. Wu, Z. Wen, J. Li, Adv. Mater. 2011, 23, 1126.
C. F. Zhang, H. B. Wu, C. Z. Yuan, Z. P. Guo, X. W. Lou, Angew. Chem. Int. Ed. 2012, 51, 9592.
W. Liu, J. Liu, K. F. Chen, S. M. Ji, Y. L. Wan, Y. C. Zhou, D. F. Xue, P. Hodgson, Y. C. Li, Chem. Eur. J. 2014, 20, 824.
D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J. S. Gnanaraj, H. J. Kim, Electrochim. Acta 2004, 50, 247.
J. Cho, Y. J. Kim, T. J. Kim, B. Park, Angew. Chem. Int. Ed. 2001, 40, 3367.
M. Gaberscek, R. Dominko, J. Jamnik, Electrochem. Commun. 2007, 9, 2778.
M. M. Thackeray, C. S. Johnson, J. S. Kim, K. C. Lauzze, J. T. Vaughey, N. Dietz, D. Abraham, S. A. Hackney, W. Zeltner, M. A. Anderson, Electrochem. Commun. 2003, 5, 752.
Y. M. Jiang, K. X. Wang, H. J. Zhang, X. X. Guo, J. F. Wang, G. D. Li, J. S. Chen, RSC Adv. 2013, 3, 26052.
H. L. Wang, Y. Yang, Y. Y. Liang, J. T. Robinson, Y. G. Li, A. Jackson, Y. Cui, H. J. Dai, Nano Lett. 2011, 11, 2644.
Y. Huang, H. Q. Cai, T. Yu, F. Q. Zhang, F. Zhang, Y. Meng, D. Gu, Y. Wan, X. L. Sun, B. Tu, D. Y. Zhao, Angew. Chem. Int. Ed. 2007, 46, 1089.
Z. H. Bao, M. R. Weatherspoon, S. Shian, Y. Cai, P. D. Graham, S. M. Allan, G. Ahmad, M. B. Dickerson, B. C. Church, Z. T. Kang, H. W. Abernathy, C. J. Summers, M. L. Liu, K. H. Sandhage, Nature 2007, 446, 172.
J. Y. Luo, X. Zhao, J. S. Wu, H. D. Jang, H. H. Kung, J. X. Huang, J. Phys. Chem. Lett. 2012, 3, 1824.
K. Saravanan, P. Balaya, M. V. Reddy, B. V. R. Chowdari, J. J. Vittal, Energy Environ. Sci. 2010, 3, 457.
F. Wu, M. Wang, Y. Su, S. Chen, B. Xu, J. Power Sources 2009, 191, 628.
M. Y. Ge, J. P. Rong, X. Fang, A. Y. Zhang, Y. H. Lu, C. W. Zhou, Nano Res. 2013, 6, 174.
X. Wang, K. Q. Peng, X. J. Pan, X. Chen, Y. Yang, L. Li, X. M. Meng, W. J. Zhang, S. T. Lee, Angew. Chem. Int. Ed. 2011, 50, 9861.
E. Antolini, Solid State Ionics 2004, 170, 159.
Y. G. Wang, H. Q. Li, P. He, E. Hosono, H. S. Zhou, Nanoscale 2010, 2, 1294.
R. R. Song, H. H. Song, J. S. Zhou, X. H. Chen, B. Wu, H. Y. Yang, J. Mater. Chem. 2012, 22, 12369.
J. G. Yu, L. J. Zhang, B. Cheng, Y. R. Su, J. Phys. Chem. C 2007, 111, 10582.
H. Q. Li, H. S. Zhou, Chem. Commun. 2012, 48, 1201.
L. Wang, X. He, W. Sun, J. Wang, Y. Li, S. Fan, Nano Lett. 2012, 12, 5632.
C. K. Chan, X. F. Zhang, Y. Cui, Nano Lett. 2007, 8, 307.
M. Wagemaker, G. J. Kearley, A. A. v. Well, H. Mutka, F. M. Mulder, J. Am. Chem. Soc. 2003, 125, 840.
B. L. Ellis, K. T. Lee, L. F. Nazar, Chem. Mater. 2010, 22, 691.
J. Q. Zhao, Y. Wang, Nano Energy 2013, 2, 882.
B. M. Bang, J.-I. Lee, H. Kim, J. Cho, S. Park, Adv. Energy Mater. 2012, 2, 878.
M. Steinhart, R. B. Wehrspohn, U. Gosele, J. H. Wendorff, Angew. Chem. Int. Ed. 2004, 43, 1334.
D. Aurbach, J. Electrochem. Soc. 1989, 136, 906.
Q. Q. Xiong, X. H. Xia, J. P. Tu, J. Chen, Y. Q. Zhang, D. Zhou, C. D. Gu, X. L. Wang, J. Power Sources 2013, 240, 344.
F. Zhang, K. X. Wang, G. D. Li, J. S. Chen, Electrochem. Commun. 2009, 11, 130.
L. Zhan, Z. Song, J. Zhang, J. Tang, H. Zhan, Y. Zhou, C. Zhan, Electrochim. Acta 2008, 53, 8319.
A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwijk, Nat. Mater. 2005, 4, 366.
D. Qian, B. Xu, H.-M. Cho, T. Hatsukade, K. J. Carroll, Y. S. Meng, Chem. Mater. 2012, 24, 2744.
S. H. Lee, H. G. You, K. S. Han, J. Kim, I. H. Jung, J. H. Song, J. Power Sources 2014, 247, 307.
F. Zhang, K. Wang, X. Wang, G. Li, J. Chen, Dalton Trans. 2011, 40, 8517.
Y. Harada, Y. Hirakoso, H. Kawai, J. Kuwano, Solid State Ionics 1999, 121, 245.
M. J. G. Jak, E. M. Kelder, J. Schoonman, N. M. Van der Pers, A. Weisenburger, J. Electroceram. 1998, 2, 127.
B. Kang, G. Ceder, Nature 2009, 458, 190.
Z. H. Wen, G. H. Lu, S. Mao, H. Kim, S. M. Cui, K. H. Yu, X. K. Huang, P. T. Hurley, O. Mao, J. H. Chen, Electrochem. Commun. 2013, 29, 67.
Q. Fu, F. Du, X. Bian, Y. Wang, X. Yan, Y. Zhang, K. Zhu, G. Chen, C. Wang, Y. Wei, J. Mater. Chem. A 2014, 2, 7555.
S. H. Ju, I. S. Kang, Y. S. Lee, W. K. Shin, S. Kim, K. Shin, D. W. Kim, ACS Appl. Mater. Interfaces 2014, 6, 2545.
S. Murugesan, J. T. Harris, B. A. Korgel, K. J. Stevenson, Chem. Mater. 2012, 24, 1306.
A. Yamaguchi, F. Uejo, T. Yoda, T. Uchida, Y. Tanamura, T. Yamashita, N. Teramae, Nat. Mater. 2004, 3, 337.
S. Chen, M. Wang, J. F. Ye, J. G. Cai, Y. R. Ma, H. H. Zhou, L. M. Qi, Nano Res. 2013, 6, 243.
Z. L. Gong, Y. Yang, Energy Environ. Sci. 2011, 4, 3223.
F. H. Du, K. X. Wang, W. Fu, P.-F. Gao, J. F. Wang, J. Yang, J. S. Chen, J. Mater. Chem. A 2013, 1, 13648.
F. H. Du, B. Li, W. Fu, Y. J. Xiong, K. X. Wang, J. S. Chen, Adv. Mater. 2014, 26, 10.1002/adma.201401937.
R. Lakes, Nature 1993, 361, 511.
X. Qin, J. Wang, J. Xie, F. Li, L. Wen, X. Wang, Phys. Chem. Chem. Phys. 2012, 14, 2669.
Y. Park, N. S. Choi, S. Park, S. H. Woo, S. Sim, B. Y. Jang, S. M. Oh, S. Park, J. Cho, K. T. Lee, Adv. Energy Mater. 2013, 3, 206.
X. Y. Yang, Y. Li, A. Lemaire, J. G. Yu, B. L. Su, Pure Appl. Chem. 2009, 81, 2265.
S. H. Wu, J. J. Shiu, J. Y. Lin, J. Power Sources 2011, 196, 6676.
Z. L. Yang, Z. W. Niu, X. Y. Cao, Z. Z. Yang, Y. F. Lu, Z. B. Hu, C. C. Han, Angew. Chem. Int. Ed. 2003, 42, 4201.
S. Dorfler, M. Hagen, H. Althues, J. Tubke, S. Kaskel, M. J. Hoffmann, Chem. Commun. 2012, 48, 4097.
X. Rui, X. Zhao, Z. Lu, H. Tan, D. Sim, H. H. Hng, R. Yazami, T. M. Lim, Q. Yan, ACS Nano 2013, 7, 5637.
Z. Y. Yuan, T. Z. Ren, B. L. Su, Adv. Mater. 2003, 15, 1462.
L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, M. D. Fleischauer, J. R. Dahn, J. Electrochem. Soc. 2003, 150, A1457.
T. B. Lan, Y. B. Liu, J. Dou, Z. S. Hong, M. D. Wei, J. Mater. Chem. A 2014, 2, 1102.
G. S. Chai, I. S. Shin, J. S. Yu, Adv. Mater. 2004, 16, 2057.
L. X. Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang, J. B. Goodenough, Energy Environ. Sci. 2011, 4, 269.
N. Du, H. Zhang, B. Chen, J. B. Wu, X. Y. Ma, Z. H. Liu, Y. Q. Zhang, D. Yang, X. H. Huang, J. P. Tu, Adv. Mater. 2007, 19, 4505.
W. Y. Li, L. N. Xu, J. Chen, Adv. Funct. Mater. 2005, 15, 851.
M. S. Whittingham, Chem. Rev. 2004, 104, 4271.
S. H. Lee, J. R. Harding, D. S. Liu, J. M. D'Arcy, Y. Shao-Horn, P. T. Hammond, Chem. Mater. 2014, 26, 2579.
A. I. Hochbaum, D. Gargas, Y. J. Hwang, P. D. Yang, Nano Lett. 2009, 9, 3550.
H. G. Song, J. Y. Kim, K. T. Kim, Y. J. Park, J. Power Sources 2011, 196, 6847.
Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, H. F. Yang, Z. Li, C. Z. Yu, B. Tu, D. Y. Zhao, Angew. Chem. Int. Ed. 2005, 44, 7053.
C. Z. Yuan, B. Gao, L. F. Shen, S. D. Yang, L. Hao, X. J. Lu, F. Zhang, L. J. Zhang, X. G. Zhang, Nanoscale 2011, 3, 529.
Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Angew. Chem. Int. Ed. 2013, 52, 13186.
Y. M. Jiang, K. X. Wang, H. J. Zhang, J. F. Wang, J. S. Chen, Sci. Rep. 2013, 3, 3490.
M. Nishizawa, K. Mukai, S. Kuwabata, C. R. Martin, H. Yoneyama, J. Electrochem. Soc. 1997, 144, 1923.
R. Marom, O. Haik, D. Aurbach, I. C. Halalay, J. Electrochem. Soc. 2010, 157, A972.
Y. Jin, N. Li, C. H. Chen, S. Q. Wei, Electrochem. Solid State Lett. 2006, 9, A273.
Y. Yu, L. Gu, A. Dhanabalan, C. H. Chen, C. L. Wang, Electrochim. Acta 2009, 54, 7227.
L. Liang, M. Zhou, Y. Xie, Chem. Asian J. 2012, 7, 565.
H. Uchiyama, E. Hosono, H. Zhou, H. Imai, J. Mater. Chem. 2009, 19, 4012.
B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, G. Shen, Nano Lett. 2012, 12, 3005.
G. Tan, F. Wu, L. Li, R. Chen, S. Chen, J. Phys. Chem. C 2013, 117, 6013.
W. Tang, Y. Y. Hou, F. X. Wang, L. L. Liu, Y. P. Wu, K. Zhu, Nano Lett. 2013, 13, 2036.
S. C. Jung, Y.-K. Han, Phys. Chem. Chem. Phys. 2011, 13, 21282.
M. T. McDowell, I. Ryu, S. W. Lee, C. M. Wang, W. D. Nix, Y. Cui, Adv. Mater. 2012, 24, 6034.
C. M. Doherty, R. A. Caruso, B. M. Smarsly, P. Adelhelm, C. J. Drummond, Chem. Mater. 2009, 21, 5300.
J. Xiao, J. M. Zheng, X. L. Li, Y. Y. Shao, J. G. Zhang, Nanotechnology 2013, 24, 424004.
N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer, Angew. Chem. Int. Ed. 2011, 50, 5904.
Y. K. Sun, S. T. Myung, B. C. Park, H. Yashiro, J. Electrochem. Soc. 2008, 155, A705.
L. Wang, Z. H. Dong, D. Wang, F. X. Zhang, J. Jin, Nano Lett. 2013, 13, 6244.
H. K. Wang, A. L. Rogach, Chem. Mater. 2014, 26, 123.
M. A. S. Chong, Y. B. Zheng, H. Gao, L. K. Tan, Appl. Phys. Lett. 2006, 89, 233104.
J. Wang, N. Du, H. Zhang, J. Yu, D. Yang, J. Phys. Chem. C 2011, 115, 23620.
J. W. Fergus, J. Power Sources 2010, 195, 939.
L. J. Her, J. L. Hong, C. C. Chang, J. Power Sources 2006, 157, 457.
M. Vijayakumar, S. Kerisit, Z. G. Yang, G. L. Graff, J. Liu, J. A. Sears, S. D. Burton, K. M. Rosso, J. Z. Hu, J. Phys. Chem. C 2009, 113, 20108.
S. Yang, X. Zhou, J. Zhang, Z. Liu, J. Mater. Chem. 2010, 20, 8086.
Y. Wu, Z. Wen, H. Feng, J. Li, Small 2012, 8, 858.
Q. Y. Lu, F. Gao, S. Komarneni, T. E. Mallouk, J. Am. Chem. Soc. 2004, 126, 8650.
H. J. Zhang, K. X. Wang, X. Y. Wu, Y. M. Jiang, Y. B. Zhai, C. Wang, X. Wei, J. S. Chen, Adv. Funct. Mater. 2014, 24, 3399.
X. J. Yang, T. Yang, S. S. Liang, X. Wu, H. P. Zhang, J. Mater. Chem. A 2014, 2, 10359.
S. Ding, J. S. Chen, G. Qi, X. Duan, Z. Wang, E. P. Giannelis, L. A. Archer, X. W. Lou, J. Am. Chem. Soc. 2010, 133, 21.
Y. Y. Wu, G. S. Cheng, K. Katsov, S. W. Sides, J. F. Wang, J. Tang, G. H. Fredrickson, M. Moskovits, G. D. Stucky, Nat. Mater. 2004, 3, 816.
X. Zhong, Y. Q. Qu, Y. C. Lin, L. Liao, X. F. Duan, ACS Appl. Mater. Interfaces 2011, 3, 261.
R. Mao, H. Guo, D. X. Tian, D. P. Zhao, X. J. Yang, S. X. Wang, J. Chen, Mater. Res. Bull. 2013, 48, 1518.
X. W. Lou, C. M. Li, L. A. Archer, Adv. Mater. 2009, 21, 2536.
K. X. Wang, M. D. Wei, M. A. Morris, H. S. Zhou, J. D. Holmes, Adv. Mater. 2007, 19, 3016.
Y. G. Li, B. Tan, Y. Y. Wu, Nano Lett. 2008, 8, 265.
N. Van Landschoot, E. M. Kelder, P. J. Ko
2010; 12
2011; 115
2013; 3
2013; 1
2010; 14
2013; 2
2009; 81
2004; 3
2014; 26
1999; 45
2003; 150
1993; 361
2014; 24
2009; 113
2013; 240
2012; 15
2012; 14
2013; 7
2011; 196
2014; 132
2013; 8
2012; 12
2013; 5
2013; 6
2012; 11
2001; 40
2006; 177
2014; 20
2010; 22
2009; 11
2010; 20
1993; 38
2004; 170
2010; 114
1997; 144
2013; 117
2013; 52
2013; 233
2007; 8
2007; 9
2014; 14
2010; 195
2000; 122
2014; 18
2008; 20
2013; 230
2010; 3
2010; 2
2009; 19
2012; 24
2012; 22
2003; 41
2003; 42
1998; 282
2014; 247
2001; 414
2014; 245
2004; 43
2007; 19
1979; 126
2007; 446
2011; 1
2006; 51
1989; 136
2007; 166
1997; 297
2013; 225
1993; 43
1996
2008; 53
2011; 4
2011; 3
2011; 5
2011; 133
2014; 43
2009; 458
2012; 196
2004; 50
2002; 120
2006; 45
2009; 191
2007; 154
2005; 127
2008; 47
2005; 4
2005; 7
1998; 2
2012; 48
2005; 15
2012; 47
2005; 17
2013; 29
2010; 54
2003; 119
2004; 126
2013; 25
2009; 42
2013; 24
1986; 133
2013; 566
1999; 121
2003; 15
2011; 11
2008; 8
2011; 13
1999; 123
2012; 202
2012; 205
2013; 160
2012; 51
2013; 19
2004; 138
2014; 4
2009; 54
2014; 2
2013; 13
2003; 6
2005; 147
2010; 157
2011; 21
2003; 5
2011; 23
2003; 125
2014; 8
2012; 214
2008; 155
2006; 128
2014; 6
2012; 216
2009; 22
2007; 129
2013; 48
2004; 104
2009; 21
2013; 49
2013; 46
2006; 16
2011; 40
2013; 42
2006; 9
2009
2006; 8
2006; 18
2008; 12
2006; 153
2011; 170
2005
2008; 10
2005; 44
2010; 85
2006; 312
2006; 157
2004; 10
1980; 15
2012; 2
2009; 30
2012; 3
2006; 89
2004; 16
2007; 111
2011; 50
2010; 132
2010; 133
2009; 9
2013; 135
2009; 8
2011; 46
2008; 179
2005; 50
2008; 178
2012; 7
2012; 159
2012; 4
2012; 5
2008; 175
2007; 46
2012; 8
e_1_2_6_114_1
e_1_2_6_137_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_30_1
e_1_2_6_91_1
e_1_2_6_152_1
e_1_2_6_175_1
e_1_2_6_198_1
e_1_2_6_212_1
e_1_2_6_258_1
e_1_2_6_250_1
e_1_2_6_273_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_99_1
e_1_2_6_235_1
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_148_1
e_1_2_6_41_1
e_1_2_6_163_1
e_1_2_6_140_1
e_1_2_6_102_1
e_1_2_6_186_1
e_1_2_6_200_1
e_1_2_6_223_1
e_1_2_6_246_1
e_1_2_6_269_1
e_1_2_6_5_1
e_1_2_6_208_1
e_1_2_6_261_1
e_1_2_6_49_1
e_1_2_6_26_1
e_1_2_6_136_1
e_1_2_6_54_1
e_1_2_6_159_1
e_1_2_6_31_1
e_1_2_6_92_1
e_1_2_6_174_1
e_1_2_6_151_1
Ju S. H. (e_1_2_6_178_1) 2014; 6
e_1_2_6_113_1
e_1_2_6_197_1
e_1_2_6_211_1
e_1_2_6_234_1
e_1_2_6_257_1
e_1_2_6_272_1
e_1_2_6_219_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
Fey G. T. K. (e_1_2_6_192_1) 2004; 10
e_1_2_6_42_1
e_1_2_6_147_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_162_1
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_185_1
e_1_2_6_222_1
e_1_2_6_268_1
e_1_2_6_6_1
e_1_2_6_260_1
e_1_2_6_207_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_245_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_158_1
e_1_2_6_150_1
e_1_2_6_173_1
e_1_2_6_112_1
e_1_2_6_135_1
e_1_2_6_196_1
e_1_2_6_233_1
e_1_2_6_279_1
e_1_2_6_210_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_271_1
e_1_2_6_218_1
e_1_2_6_256_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_169_1
e_1_2_6_108_1
e_1_2_6_270_1
e_1_2_6_161_1
e_1_2_6_100_1
e_1_2_6_146_1
e_1_2_6_184_1
e_1_2_6_123_1
e_1_2_6_221_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_206_1
e_1_2_6_229_1
e_1_2_6_244_1
e_1_2_6_267_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_75_1
e_1_2_6_119_1
e_1_2_6_281_1
e_1_2_6_90_1
e_1_2_6_172_1
e_1_2_6_111_1
e_1_2_6_157_1
e_1_2_6_195_1
e_1_2_6_134_1
e_1_2_6_232_1
e_1_2_6_160_1
e_1_2_6_14_1
e_1_2_6_217_1
e_1_2_6_255_1
e_1_2_6_278_1
e_1_2_6_37_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_107_1
e_1_2_6_40_1
e_1_2_6_122_1
e_1_2_6_145_1
e_1_2_6_168_1
e_1_2_6_183_1
e_1_2_6_220_1
e_1_2_6_171_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_228_1
e_1_2_6_205_1
e_1_2_6_243_1
e_1_2_6_266_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_280_1
e_1_2_6_72_1
e_1_2_6_110_1
e_1_2_6_133_1
e_1_2_6_156_1
e_1_2_6_179_1
e_1_2_6_194_1
e_1_2_6_19_1
e_1_2_6_182_1
e_1_2_6_231_1
e_1_2_6_239_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_216_1
e_1_2_6_254_1
e_1_2_6_57_1
e_1_2_6_277_1
e_1_2_6_106_1
e_1_2_6_129_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_121_1
e_1_2_6_167_1
e_1_2_6_144_1
e_1_2_6_9_1
e_1_2_6_193_1
e_1_2_6_170_1
e_1_2_6_1_1
e_1_2_6_22_1
e_1_2_6_204_1
e_1_2_6_227_1
e_1_2_6_242_1
e_1_2_6_265_1
e_1_2_6_45_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_50_1
e_1_2_6_132_1
e_1_2_6_155_1
e_1_2_6_181_1
e_1_2_6_230_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_238_1
e_1_2_6_253_1
e_1_2_6_276_1
e_1_2_6_215_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_105_1
e_1_2_6_128_1
e_1_2_6_61_1
e_1_2_6_120_1
e_1_2_6_189_1
e_1_2_6_143_1
e_1_2_6_166_1
e_1_2_6_249_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_241_1
e_1_2_6_226_1
e_1_2_6_264_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_203_1
e_1_2_6_116_1
e_1_2_6_139_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_131_1
e_1_2_6_154_1
e_1_2_6_177_1
e_1_2_6_180_1
e_1_2_6_252_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_237_1
e_1_2_6_275_1
e_1_2_6_214_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_127_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_142_1
e_1_2_6_188_1
e_1_2_6_165_1
e_1_2_6_191_1
e_1_2_6_248_1
e_1_2_6_7_1
e_1_2_6_240_1
e_1_2_6_263_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_202_1
e_1_2_6_225_1
e_1_2_6_115_1
e_1_2_6_138_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_71_1
e_1_2_6_153_1
e_1_2_6_199_1
e_1_2_6_130_1
e_1_2_6_176_1
e_1_2_6_259_1
e_1_2_6_251_1
e_1_2_6_274_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_236_1
e_1_2_6_79_1
e_1_2_6_213_1
e_1_2_6_103_1
e_1_2_6_126_1
e_1_2_6_149_1
e_1_2_6_21_1
e_1_2_6_82_1
e_1_2_6_141_1
e_1_2_6_164_1
e_1_2_6_187_1
e_1_2_6_190_1
e_1_2_6_8_1
e_1_2_6_201_1
e_1_2_6_247_1
e_1_2_6_209_1
e_1_2_6_262_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_224_1
References_xml – reference: Y. Yu, C. H. Chen, Y. Shi, Adv. Mater. 2007, 19, 993.
– reference: X. W. Wu, Z. Y. Wen, X. G. Xu, J. D. Han, Solid State Ionics 2008, 179, 1779.
– reference: L. Liang, M. Zhou, Y. Xie, Chem. Asian J. 2012, 7, 565.
– reference: M. T. McDowell, I. Ryu, S. W. Lee, C. M. Wang, W. D. Nix, Y. Cui, Adv. Mater. 2012, 24, 6034.
– reference: Y. G. Guo, J. S. Hu, L. J. Wan, Adv. Mater. 2008, 20, 2878.
– reference: M. Lu, H. A. Zhang, Ionics 2013, 19, 1695.
– reference: X. C. Chen, K. Kierzek, K. Wilgosz, J. Machnikowski, J. Gong, J. D. Feng, T. Tang, R. J. Kalenczuk, H. M. Chen, P. K. Chu, E. Mijowska, J. Power Sources 2012, 216, 475.
– reference: S.-T. Myung, K.-S. Lee, C. S. Yoon, Y.-K. Sun, K. Amine, H. Yashiro, J. Phys. Chem. C 2010, 114, 4710.
– reference: Y. N. Wu, F. T. Li, W. Zhu, J. C. Cui, C. A. Tao, C. X. Lin, P. M. Hannam, G. T. Li, Angew. Chem. Int. Ed. 2011, 50, 12518.
– reference: M. M. Thackeray, C. S. Johnson, J. S. Kim, K. C. Lauzze, J. T. Vaughey, N. Dietz, D. Abraham, S. A. Hackney, W. Zeltner, M. A. Anderson, Electrochem. Commun. 2003, 5, 752.
– reference: L. Wang, Z. H. Dong, D. Wang, F. X. Zhang, J. Jin, Nano Lett. 2013, 13, 6244.
– reference: X. W. Lou, J. S. Chen, P. Chen, L. A. Archer, Chem. Mater. 2009, 21, 2868.
– reference: S. H. Lee, J. R. Harding, D. S. Liu, J. M. D'Arcy, Y. Shao-Horn, P. T. Hammond, Chem. Mater. 2014, 26, 2579.
– reference: H. L. Wang, Y. Yang, Y. Y. Liang, J. T. Robinson, Y. G. Li, A. Jackson, Y. Cui, H. J. Dai, Nano Lett. 2011, 11, 2644.
– reference: C. Arbizzani, A. Balducci, M. Mastragostino, M. Rossi, F. Soavi, J. Power Sources 2003, 119, 695.
– reference: Y. Zhao, L. Peng, B. Liu, G. Yu, Nano Lett. 2014, 14, 2849.
– reference: J. Cho, Y. J. Kim, T. J. Kim, B. Park, Angew. Chem. Int. Ed. 2001, 40, 3367.
– reference: M. Mancini, P. Kubiak, M. Wohlfahrt-Mehrens, R. Marassi, J. Electrochem. Soc. 2010, 157, A164.
– reference: Y. Wu, Z. Wen, J. Li, Adv. Mater. 2011, 23, 1126.
– reference: Q. Fu, F. Du, X. Bian, Y. Wang, X. Yan, Y. Zhang, K. Zhu, G. Chen, C. Wang, Y. Wei, J. Mater. Chem. A 2014, 2, 7555.
– reference: X. F. Zhang, K. X. Wang, X. Wei, J. S. Chen, Chem. Mater. 2011, 23, 5290.
– reference: Y. Wu, Z. Wen, H. Feng, J. Li, Small 2012, 8, 858.
– reference: X. L. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500.
– reference: O. Park, J. I. Lee, M. J. Chun, J. T. Yeon, S. Yoo, S. Choi, N. S. Choi, S. Park, RSC Adv. 2013, 3, 2538.
– reference: J. W. Fergus, J. Power Sources 2010, 195, 939.
– reference: A. Fedorkova, R. Orinakova, A. Orinak, I. Talian, A. Heile, H.-D. Wiemhoefer, D. Kaniansky, H. F. Arlinghaus, J. Power Sources 2010, 195, 3907.
– reference: D. Qian, B. Xu, H.-M. Cho, T. Hatsukade, K. J. Carroll, Y. S. Meng, Chem. Mater. 2012, 24, 2744.
– reference: Z. H. Wen, J. H. Li, J. Mater. Chem. 2009, 19, 8707.
– reference: M. Vijayakumar, S. Kerisit, Z. G. Yang, G. L. Graff, J. Liu, J. A. Sears, S. D. Burton, K. M. Rosso, J. Z. Hu, J. Phys. Chem. C 2009, 113, 20108.
– reference: F. X. Wang, S. Y. Xiao, Z. Chang, Y. Q. Yang, Y. P. Wu, Chem. Commun. 2013, 49, 9209.
– reference: T. F. Yi, J. Shu, Y. R. Zhu, A. N. Zhou, R. S. Zhu, Electrochem. Commun. 2009, 11, 91.
– reference: H. Li, Z. X. Wang, L. Q. Chen, X. J. Huang, Adv. Mater. 2009, 21, 4593.
– reference: J. G. Yu, L. J. Zhang, B. Cheng, Y. R. Su, J. Phys. Chem. C 2007, 111, 10582.
– reference: P. D. Yang, T. Deng, D. Y. Zhao, P. Y. Feng, D. Pine, B. F. Chmelka, G. M. Whitesides, G. D. Stucky, Science 1998, 282, 2244.
– reference: K. X. Wang, M. D. Wei, M. A. Morris, H. S. Zhou, J. D. Holmes, Adv. Mater. 2007, 19, 3016.
– reference: C. Sun, S. Rajasekhara, J. B. Goodenough, F. Zhou, J. Am. Chem. Soc. 2011, 133, 2132.
– reference: X. Qin, J. Wang, J. Xie, F. Li, L. Wen, X. Wang, Phys. Chem. Chem. Phys. 2012, 14, 2669.
– reference: F. H. Du, B. Li, W. Fu, Y. J. Xiong, K. X. Wang, J. S. Chen, Adv. Mater. 2014, 26, 10.1002/adma.201401937.
– reference: Y. Harada, Y. Hirakoso, H. Kawai, J. Kuwano, Solid State Ionics 1999, 121, 245.
– reference: R. R. Song, H. H. Song, J. S. Zhou, X. H. Chen, B. Wu, H. Y. Yang, J. Mater. Chem. 2012, 22, 12369.
– reference: F. Q. Zhang, Y. Meng, D. Gu, Y. Yan, C. Z. Yu, B. Tu, D. Y. Zhao, J. Am. Chem. Soc. 2005, 127, 13508.
– reference: F. Zhang, K. X. Wang, G. D. Li, J. S. Chen, Electrochem. Commun. 2009, 11, 130.
– reference: P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. M. Tarascon, Nat. Mater. 2012, 11, 19.
– reference: F. Bai, M. C. Li, D. D. Song, H. Yu, B. Jiang, Y. F. Li, J. Solid State Chem. 2012, 196, 596.
– reference: X. J. Yang, T. Yang, S. S. Liang, X. Wu, H. P. Zhang, J. Mater. Chem. A 2014, 2, 10359.
– reference: H. J. Zhang, K. X. Wang, X. Y. Wu, Y. M. Jiang, Y. B. Zhai, C. Wang, X. Wei, J. S. Chen, Adv. Funct. Mater. 2014, 24, 3399.
– reference: A. Vu, A. Stein, J. Power Sources 2014, 245, 48.
– reference: V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 2011, 4, 3243.
– reference: S. L. Jin, H. G. Deng, D. H. Long, X. J. Liu, L. A. Zhan, X. Y. Liang, W. M. Qiao, L. C. Ling, J. Power Sources 2011, 196, 3887.
– reference: K. Shiva, S. Asokan, A. J. Bhattacharyya, Nanoscale 2011, 3, 1501.
– reference: Z. L. Yang, Z. W. Niu, X. Y. Cao, Z. Z. Yang, Y. F. Lu, Z. B. Hu, C. C. Han, Angew. Chem. Int. Ed. 2003, 42, 4201.
– reference: M. Y. Ge, J. P. Rong, X. Fang, A. Y. Zhang, Y. H. Lu, C. W. Zhou, Nano Res. 2013, 6, 174.
– reference: G. X. Wang, L. Yang, Y. Chen, J. Z. Wang, S. Bewlay, H. K. Liu, Electrochim. Acta 2005, 50, 4649.
– reference: J. Wang, I. D. Raistrick, R. A. Huggins, J. Electrochem. Soc. 1986, 133, 457.
– reference: S. H. Lee, H. G. You, K. S. Han, J. Kim, I. H. Jung, J. H. Song, J. Power Sources 2014, 247, 307.
– reference: B. C. Park, H. B. Kim, S. T. Myung, K. Amine, I. Belharouak, S. M. Lee, Y. K. Sun, J. Power Sources 2008, 178, 826.
– reference: N. Van Landschoot, E. M. Kelder, P. J. Kooyman, C. Kwakernaak, J. Schoonman, J. Power Sources 2004, 138, 262.
– reference: A. n. Jagminas, F. M. Morales, K. Mažeika, G. P. Veronese, J. Reklaitis, J. G. Lozano, J. M. Mánuel, R. García, M. Kurtinaitienė, R. Juškėnas, D. Baltru̅nas, J. Phys. Chem. C 2011, 115, 4495.
– reference: W. Y. Li, L. N. Xu, J. Chen, Adv. Funct. Mater. 2005, 15, 851.
– reference: M. Y. Ge, J. P. Rong, X. Fang, C. W. Zhou, Nano Lett. 2012, 12, 2318.
– reference: H. K. Wang, A. L. Rogach, Chem. Mater. 2014, 26, 123.
– reference: K. T. Lee, J. C. Lytle, N. S. Ergang, S. M. Oh, A. Stein, Adv. Funct. Mater. 2005, 15, 547.
– reference: S. X. Zhao, H. Ding, Y. C. Wang, B. H. Li, C. W. Nan, J. Alloy Compd. 2013, 566, 206.
– reference: D. J. Lee, H. Lee, M. H. Ryou, G. B. Han, J. N. Lee, J. Song, J. Choi, K. Y. Cho, Y. M. Lee, J. K. Park, ACS Appl. Mater. Interfaces 2013, 5, 12005.
– reference: W. Tang, Y. Y. Hou, F. X. Wang, L. L. Liu, Y. P. Wu, K. Zhu, Nano Lett. 2013, 13, 2036.
– reference: M. Bettge, Y. Li, B. Sankaran, N. D. Rago, T. Spila, R. T. Haasch, I. Petrov, D. P. Abraham, J. Power Sources 2013, 233, 346.
– reference: K. T. Nam, D. W. Kim, P. J. Yoo, C. Y. Chiang, N. Meethong, P. T. Hammond, Y. M. Chiang, A. M. Belcher, Science 2006, 312, 885.
– reference: K. J. Rosina, M. Jiang, D. Zeng, E. Salager, A. S. Best, C. P. Grey, J. Mater. Chem. 2012, 22, 20602.
– reference: Y. Yang, G. Yu, J. J. Cha, H. Wu, M. Vosgueritchian, Y. Yao, Z. Bao, Y. Cui, ACS Nano 2011, 5, 9187.
– reference: Y. M. Jiang, K. X. Wang, H. J. Zhang, X. X. Guo, J. F. Wang, G. D. Li, J. S. Chen, RSC Adv. 2013, 3, 26052.
– reference: J. B. Goodenough, Y. Kim, Chem. Mater. 2009, 22, 587.
– reference: Z. Y. Yuan, T. Z. Ren, B. L. Su, Adv. Mater. 2003, 15, 1462.
– reference: J. K. Yoo, J. Kim, H. Lee, J. Choi, M. J. Choi, D. M. Sim, Y. S. Jung, K. Kang, Nanotechnology 2013, 24, 424008.
– reference: S. T. Myung, K. Amine, Y. K. Sun, J. Mater. Chem. 2010, 20, 7074.
– reference: G. Yang, H. Cui, G. Yang, C. Wang, ACS Nano 2014, 8, 4474.
– reference: A. Vu, A. Stein, Chem. Mater. 2011, 23, 3237.
– reference: Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, H. F. Yang, Z. Li, C. Z. Yu, B. Tu, D. Y. Zhao, Angew. Chem. Int. Ed. 2005, 44, 7053.
– reference: C. H. Doh, D. H. Kim, H. S. Kim, H. M. Shin, Y. D. Jeong, S. I. Moon, B. S. Jin, S. W. Eom, H. S. Kim, K. W. Kim, D. H. Oh, A. Veluchamy, J. Power Sources 2008, 175, 881.
– reference: J. Lu, Q. Peng, W. Y. Wang, C. Y. Nan, L. H. Li, Y. D. Li, J. Am. Chem. Soc. 2013, 135, 1649.
– reference: B. M. Bang, J.-I. Lee, H. Kim, J. Cho, S. Park, Adv. Energy Mater. 2012, 2, 878.
– reference: H. B. Kim, B. C. Park, S. T. Myung, K. Amine, J. Prakash, Y. K. Sun, J. Power Sources 2008, 179, 347.
– reference: L. Zhan, Z. Song, J. Zhang, J. Tang, H. Zhan, Y. Zhou, C. Zhan, Electrochim. Acta 2008, 53, 8319.
– reference: D. J. Cott, N. Petkov, M. A. Morris, B. Platschek, T. Bein, J. D. Holmes, J. Am. Chem. Soc. 2006, 128, 3920.
– reference: Y. G. Wang, Y. R. Wang, E. J. Hosono, K. X. Wang, H. S. Zhou, Angew. Chem. Int. Ed. 2008, 47, 7461.
– reference: K. Wang, W. Zhang, R. Phelan, M. A. Morris, J. D. Holmes, J. Am. Chem. Soc. 2007, 129, 13388.
– reference: B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, G. Shen, Nano Lett. 2012, 12, 3005.
– reference: Q. Q. Xiong, X. H. Xia, J. P. Tu, J. Chen, Y. Q. Zhang, D. Zhou, C. D. Gu, X. L. Wang, J. Power Sources 2013, 240, 344.
– reference: X. Pu, C. Yu, Nanoscale 2012, 4, 6743.
– reference: Q. Y. Lu, F. Gao, S. Komarneni, T. E. Mallouk, J. Am. Chem. Soc. 2004, 126, 8650.
– reference: X. Y. Yang, Y. Li, A. Lemaire, J. G. Yu, B. L. Su, Pure Appl. Chem. 2009, 81, 2265.
– reference: C. D. Liang, K. L. Hong, G. A. Guiochon, J. W. Mays, S. Dai, Angew. Chem. Int. Ed. 2004, 43, 5785.
– reference: T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, H. Komori, Electrochim. Acta 1993, 38, 1159.
– reference: C. Nan, J. Lu, C. Chen, Q. Peng, Y. Li, J. Mater. Chem. 2011, 21, 9994.
– reference: J. S. Gnanaraj, V. G. Pol, A. Gedanken, D. Aurbach, Electrochem. Commun. 2003, 5, 940.
– reference: H. Q. Li, H. S. Zhou, Chem. Commun. 2012, 48, 1201.
– reference: E. Antolini, Solid State Ionics 2004, 170, 159.
– reference: K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mater. Res. Bull. 1980, 15, 783.
– reference: Y. M. Liu, B. L. Chen, F. Cao, H. L. W. Chan, X. Z. Zhao, J. K. Yuan, J. Mater. Chem. 2011, 21, 17083.
– reference: J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, J. D. Robertson, J. Power Sources 1993, 43, 103.
– reference: J. F. Wang, K. X. Wang, F. H. Du, X. X. Guo, Y. M. Jiang, J. S. Chen, Chem. Commun. 2013, 49, 5007.
– reference: H. Kim, B. Han, J. Choo, J. Cho, Angew. Chem. Int. Ed. 2008, 47, 10151.
– reference: K.-S. Park, S. B. Schougaard, J. B. Goodenough, Adv. Mater. 2007, 19, 848.
– reference: Y. Huang, J. Chen, F. Cheng, W. Wan, W. Liu, H. Zhou, X. Zhang, J. Power Sources 2010, 195, 8267.
– reference: D. Belov, M. H. Yang, J. Solid State Electrochem. 2008, 12, 885.
– reference: G. E. Thompson, Thin Solid Films 1997, 297, 192.
– reference: S. H. Ng, J. Z. Wang, D. Wexler, K. Konstantinov, Z. P. Guo, H. K. Liu, Angew. Chem. Int. Ed. 2006, 45, 6896.
– reference: Y.-H. Huang, K.-S. Park, J. B. Goodenough, J. Electrochem. Soc. 2006, 153, A2282.
– reference: J. Cho, Y. Kim, M. G. Kim, J. Phys. Chem. C 2007, 111, 3192.
– reference: A. V. Murugan, T. Muraliganth, A. Manthiram, Electrochem. Commun. 2008, 10, 903.
– reference: Z. Wang, D. Luan, F. Y. C. Boey, X. W. Lou, J. Am. Chem. Soc. 2011, 133, 4738.
– reference: H. J. Zhang, T.-H. Wu, K. X. Wang, X. Y. Wu, X. T. Chen, Y. M. Jiang, X. Wei, J. S. Chen, J. Mater. Chem. A 2013, 1, 12038.
– reference: D. Tonti, M. J. Torralvo, E. Enciso, I. Sobrados, J. Sanz, Chem. Mater. 2008, 20, 4783.
– reference: H. Y. Chen, D. B. Kuang, C. Y. Su, J. Mater. Chem. 2012, 22, 15475.
– reference: L. X. Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang, J. B. Goodenough, Energy Environ. Sci. 2011, 4, 269.
– reference: F. Wu, M. Wang, Y. Su, S. Chen, B. Xu, J. Power Sources 2009, 191, 628.
– reference: D. Belov, M. H. Yang, Solid State Ionics 2008, 179, 1816.
– reference: D. Lepage, C. Michot, G. Liang, M. Gauthier, S. B. Schougaard, Angew. Chem. Int. Ed. 2011, 50, 6884.
– reference: Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P. A. van Aken, J. Maier, Adv. Mater. 2010, 22, 2247.
– reference: M. T. McDowell, S. W. Lee, W. D. Nix, Y. Cui, Adv. Mater. 2013, 25, 4966.
– reference: F. Fu, G.-L. Xu, Q. Wang, Y.-P. Deng, X. Li, J.-T. Li, L. Huang, S.-G. Sun, J. Mater. Chem. A 2013, 1, 3860.
– reference: M. P. Liu, C. H. Li, H. B. Du, X. Z. You, Chem. Commun. 2012, 48, 4950.
– reference: Y. Yu, L. Gu, A. Dhanabalan, C. H. Chen, C. L. Wang, Electrochim. Acta 2009, 54, 7227.
– reference: M. Wagemaker, G. J. Kearley, A. A. v. Well, H. Mutka, F. M. Mulder, J. Am. Chem. Soc. 2003, 125, 840.
– reference: E. Peled, J. Electrochem. Soc. 1979, 126, 2047.
– reference: S. T. Myung, K. Izumi, S. Komaba, H. Yashiro, H. J. Bang, Y. K. Sun, N. Kumagai, J. Phys. Chem. C 2007, 111, 4061.
– reference: A. Fedorkova, R. Orinakova, A. Orinak, H.-D. Wiemhoefer, D. Kaniansky, M. Winter, J. Solid State Electrochem. 2010, 14, 2173.
– reference: S. Dorfler, M. Hagen, H. Althues, J. Tubke, S. Kaskel, M. J. Hoffmann, Chem. Commun. 2012, 48, 4097.
– reference: K. Saravanan, K. Ananthanarayanan, P. Balaya, Energy Environ. Sci. 2010, 3, 939.
– reference: B. Kang, G. Ceder, Nature 2009, 458, 190.
– reference: Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, L. Cheng, D. Feng, Z. X. Wu, Z. X. Chen, Y. Wan, A. Stein, D. Y. Zhao, Chem. Mater. 2006, 18, 4447.
– reference: Y. Q. Qu, H. L. Zhou, X. F. Duan, Nanoscale 2011, 3, 4060.
– reference: C. R. Becker, K. E. Strawhecker, Q. P. McAllister, C. A. Lundgren, ACS Nano 2013, 7, 9173.
– reference: Y. G. Wang, H. Q. Li, P. He, E. Hosono, H. S. Zhou, Nanoscale 2010, 2, 1294.
– reference: B. L. Ellis, K. T. Lee, L. F. Nazar, Chem. Mater. 2010, 22, 691.
– reference: G. Zou, X. Yang, X. Wang, L. Ge, H. Shu, Y. Bai, C. Wu, H. Guo, L. Hu, X. Yi, B. Ju, H. Hu, D. Wang, R. Yu, J. Solid State Electrochem. 2014, 18, 1789.
– reference: C. Z. Yuan, B. Gao, L. F. Shen, S. D. Yang, L. Hao, X. J. Lu, F. Zhang, L. J. Zhang, X. G. Zhang, Nanoscale 2011, 3, 529.
– reference: L. Wang, X. He, W. Sun, J. Wang, Y. Li, S. Fan, Nano Lett. 2012, 12, 5632.
– reference: Y. Y. Wu, G. S. Cheng, K. Katsov, S. W. Sides, J. F. Wang, J. Tang, G. H. Fredrickson, M. Moskovits, G. D. Stucky, Nat. Mater. 2004, 3, 816.
– reference: J. H. Yuan, F. Y. He, D. C. Sun, X. H. Xia, Chem. Mater. 2004, 16, 1841.
– reference: K. Edstrom, T. Gustafsson, J. O. Thomas, Electrochim. Acta 2004, 50, 397.
– reference: X. B. Meng, X. Q. Yang, X. L. Sun, Adv. Mater. 2012, 24, 3589.
– reference: H. G. Song, J. Y. Kim, K. T. Kim, Y. J. Park, J. Power Sources 2011, 196, 6847.
– reference: W. Ahn, K. B. Kim, K. N. Jung, K. H. Shin, C. S. Jin, J. Power Sources 2012, 202, 394.
– reference: F. H. Du, K. X. Wang, W. Fu, P.-F. Gao, J. F. Wang, J. Yang, J. S. Chen, J. Mater. Chem. A 2013, 1, 13648.
– reference: Y. Jin, N. Li, C. H. Chen, S. Q. Wei, Electrochem. Solid State Lett. 2006, 9, A273.
– reference: S. H. Ju, I. S. Kang, Y. S. Lee, W. K. Shin, S. Kim, K. Shin, D. W. Kim, ACS Appl. Mater. Interfaces 2014, 6, 2545.
– reference: X. L. Yang, Z. Y. Wen, S. H. Huang, X. J. Zhu, X. F. Zhang, Solid State Ionics 2006, 177, 2807.
– reference: J. M. Tarascon, M. Armand, Nature 2001, 414, 359.
– reference: H. S. Zhou, D. L. Li, M. Hibino, I. Honma, Angew. Chem. Int. Ed. 2005, 44, 797.
– reference: W. Liu, J. Liu, K. F. Chen, S. M. Ji, Y. L. Wan, Y. C. Zhou, D. F. Xue, P. Hodgson, Y. C. Li, Chem. Eur. J. 2014, 20, 824.
– reference: K. X. Wang, Y. G. Wang, Y. R. Wang, E. Hosono, H. S. Zhou, J. Phys. Chem. C 2009, 113, 1093.
– reference: X. L. Li, Y. L. Cao, W. Qi, L. V. Saraf, J. Xiao, Z. M. Nie, J. Mietek, J. G. Zhang, B. Schwenzer, J. Liu, J. Mater. Chem. 2011, 21, 16603.
– reference: A. Vu, Y. Q. Qian, A. Stein, Adv. Energy Mater. 2012, 2, 1056.
– reference: C. Li, H. P. Zhang, L. J. Fu, H. Liu, Y. P. Wu, E. Ram, R. Holze, H. Q. Wu, Electrochim. Acta 2006, 51, 3872.
– reference: H. J. Lee, Y. J. Park, Solid State Ionics 2013, 230, 86.
– reference: Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Angew. Chem. Int. Ed. 2013, 52, 13186.
– reference: T. Kennedy, E. Mullane, H. Geaney, M. Osiak, C. O'Dwyer, K. M. Ryan, Nano Lett. 2014, 14, 716.
– reference: A. Timmons, J. R. Dahn, J. Electrochem. Soc. 2007, 154, A444.
– reference: W. S. Kim, Y. Hwa, J. H. Jeun, H. J. Sohn, S. H. Hong, J. Power Sources 2013, 225, 108.
– reference: Q. L. Cheng, Y. M. Xia, V. Pavlinek, Y. F. Yan, C. Z. Li, P. Saha, J. Mater. Sci. 2012, 47, 6444.
– reference: X. F. Zhang, I. Belharouak, L. Li, Y. Lei, J. W. Elam, A. M. Nie, X. Q. Chen, R. S. Yassar, R. L. Axelbaum, Adv. Energy Mater. 2013, 3, 1299.
– reference: B. Guo, H. Ruan, C. Zheng, H. Fei, M. Wei, Sci. Rep. 2013, 3, 02788.
– reference: M. A. S. Chong, Y. B. Zheng, H. Gao, L. K. Tan, Appl. Phys. Lett. 2006, 89, 233104.
– reference: J. H. Pan, X. S. Zhao, W. I. Lee, Chem. Eng. J. 2011, 170, 363.
– reference: B. Liu, X. F. Wang, H. T. Chen, Z. R. Wang, D. Chen, Y. B. Cheng, C. W. Zhou, G. Z. Shen, Sci. Rep. 2013, 3, 1622.
– reference: S. Ding, J. S. Chen, G. Qi, X. Duan, Z. Wang, E. P. Giannelis, L. A. Archer, X. W. Lou, J. Am. Chem. Soc. 2010, 133, 21.
– reference: R. Marom, O. Haik, D. Aurbach, I. C. Halalay, J. Electrochem. Soc. 2010, 157, A972.
– reference: X. F. Li, J. Liu, X. B. Meng, Y. J. Tang, M. N. Banis, J. L. Yang, Y. H. Hu, R. Y. Li, M. Cai, X. L. Sun, J. Power Sources 2014, 247, 57.
– reference: L. C. Yang, Q. S. Gao, L. Li, Y. Tang, Y. P. Wu, Electrochem. Commun. 2010, 12, 418.
– reference: K. X. Wang, P. Birjukovs, D. Erts, R. Phelan, M. A. Morris, H. S. Zhou, J. D. Holmes, J. Mater. Chem. 2009, 19, 1331.
– reference: H. P. Jia, P. F. Gao, J. Yang, J. L. Wang, Y. N. Nuli, Z. Yang, Adv. Energy Mater. 2011, 1, 1036.
– reference: H. Wang, S. Liu, Y. Ren, W. Wang, A. Tang, Energy Environ. Sci. 2012, 5, 6173.
– reference: X. Li, W. He, L. Chen, W. Guo, J. Chen, Z. Xiao, Ionics 2014, 20, 833.
– reference: S. H. Wu, J. J. Shiu, J. Y. Lin, J. Power Sources 2011, 196, 6676.
– reference: H. Sclar, O. Haik, T. Menachem, J. Grinblat, N. Leifer, A. Meitav, S. Luski, D. Aurbach, J. Electrochem. Soc. 2012, 159, A228.
– reference: S. C. Jung, Y.-K. Han, Phys. Chem. Chem. Phys. 2011, 13, 21282.
– reference: H. Uchiyama, E. Hosono, H. Zhou, H. Imai, J. Mater. Chem. 2009, 19, 4012.
– reference: S. Chen, M. Wang, J. F. Ye, J. G. Cai, Y. R. Ma, H. H. Zhou, L. M. Qi, Nano Res. 2013, 6, 243.
– reference: S. Huang, J. P. Tu, X. M. Jian, Y. Lu, S. J. Shi, X. Y. Zhao, T. Q. Wang, X. L. Wang, C. D. Gu, J. Power Sources 2014, 245, 698.
– reference: A. Kohandehghan, P. Kalisvaart, K. Cui, M. Kupsta, E. Memarzadeh, D. Mitlin, J. Mater. Chem. A 2013, 1, 12850.
– reference: Y. J. Liu, Y. Y. Gao, Q. L. Wang, A. C. Dou, Ionics 2014, 20, 739.
– reference: J. Wang, N. Du, H. Zhang, J. Yu, D. Yang, J. Phys. Chem. C 2011, 115, 23620.
– reference: H. J. Zhang, J. Shu, K. X. Wang, X. T. Chen, Y. M. Jiang, X. Wei, J. S. Chen, J. Mater. Chem. A 2014, 2, 80.
– reference: J. Xiao, J. M. Zheng, X. L. Li, Y. Y. Shao, J. G. Zhang, Nanotechnology 2013, 24, 424004.
– reference: S. Yoo, J. I. Lee, S. Ko, S. Park, Nano Energy 2013, 2, 1271.
– reference: Z. Y. Yuan, B. L. Su, J. Mater. Chem. 2006, 16, 663.
– reference: B. Fang, M. S. Kim, J. H. Kim, S. Lim, J. S. Yu, J. Mater. Chem. 2010, 20, 10253.
– reference: D. H. Wang, D. W. Choi, Z. G. Yang, V. V. Viswanathan, Z. M. Nie, C. M. Wang, Y. J. Song, J. G. Zhang, J. Liu, Chem. Mater. 2008, 20, 3435.
– reference: X. Zhong, Y. Q. Qu, Y. C. Lin, L. Liao, X. F. Duan, ACS Appl. Mater. Interfaces 2011, 3, 261.
– reference: M. Thakur, M. Isaacson, S. L. Sinsabaugh, M. S. Wong, S. L. Biswal, J. Power Sources 2012, 205, 426.
– reference: C. M. A. Parlett, K. Wilson, A. F. Lee, Chem. Soc. Rev. 2013, 42, 3876.
– reference: T. B. Lan, Y. B. Liu, J. Dou, Z. S. Hong, M. D. Wei, J. Mater. Chem. A 2014, 2, 1102.
– reference: S. H. Yun, S. B. Kim, Y. J. Park, Bull. Korean Chem. Soc. 2009, 30, 2584.
– reference: X. Rui, X. Zhao, Z. Lu, H. Tan, D. Sim, H. H. Hng, R. Yazami, T. M. Lim, Q. Yan, ACS Nano 2013, 7, 5637.
– reference: H. Miyashiro, S. Seki, Y. Kobayashi, Y. Ohno, Y. Mita, A. Usami, Electrochem. Commun. 2005, 7, 1083.
– reference: M. Noh, Y. Kwon, H. Lee, J. Cho, Y. Kim, M. G. Kim, Chem. Mater. 2005, 17, 1926.
– reference: Y. Zhao, X. Z. Liu, H. Q. Li, T. Y. Zhai, H. S. Zhou, Chem. Commun. 2012, 48, 5079.
– reference: S. T. Myung, K. Izumi, S. Komaba, Y. K. Sun, H. Yashiro, N. Kumagai, Chem. Mater. 2005, 17, 3695.
– reference: G. Tan, F. Wu, L. Li, R. Chen, S. Chen, J. Phys. Chem. C 2013, 117, 6013.
– reference: Z. L. Gong, Y. Yang, Energy Environ. Sci. 2011, 4, 3223.
– reference: W. Sun, F. Cao, Y. Liu, X. Zhao, X. Liu, J. Yuan, J. Mater. Chem. 2012, 22, 20952.
– reference: D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J. S. Gnanaraj, H. J. Kim, Electrochim. Acta 2004, 50, 247.
– reference: A. Yamaguchi, F. Uejo, T. Yoda, T. Uchida, Y. Tanamura, T. Yamashita, N. Teramae, Nat. Mater. 2004, 3, 337.
– reference: X. Song, M. Jia, R. Chen, J. Mater. Process. Technol. 2002, 120, 21.
– reference: J. Chen, F. Y. Cheng, Acc. Chem. Res. 2009, 42, 713.
– reference: W. X. Chen, J. Y. Lee, Z. L. Liu, Carbon 2003, 41, 959.
– reference: B. Wang, B. Xu, T. Liu, P. Liu, C. Guo, S. Wang, Q. Wang, Z. Xiong, D. Wang, X. S. Zhao, Nanoscale 2014, 6, 986.
– reference: Y. M. Jiang, K. X. Wang, H. J. Zhang, J. F. Wang, J. S. Chen, Sci. Rep. 2013, 3, 3490.
– reference: X. W. Wu, Z. Y. Wen, X. Y. Wang, X. G. Xu, J. Lin, S. F. Song, Fusion Eng. Des. 2010, 85, 1442.
– reference: X. W. Lou, C. M. Li, L. A. Archer, Adv. Mater. 2009, 21, 2536.
– reference: B. Yao, D. Fleming, M. A. Morris, S. E. Lawrence, Chem. Mater. 2004, 16, 4851.
– reference: J. G. Tu, L. W. Hu, W. Wang, J. G. Hou, H. M. Zhu, S. Q. Jiao, J. Electrochem. Soc. 2013, 160, A1916.
– reference: J. C. Guo, Y. H. Xu, C. S. Wang, Nano Lett. 2011, 11, 4288.
– reference: M. Winter, J. O. Besenhard, Electrochim. Acta 1999, 45, 31.
– reference: J. K. Yoo, J. Kim, Y. S. Jung, K. Kang, Adv. Mater. 2012, 24, 5452.
– reference: Y. K. Sun, S. T. Myung, B. C. Park, H. Yashiro, J. Electrochem. Soc. 2008, 155, A705.
– reference: X. L. Wu, Y. G. Guo, L. J. Wan, Chem. Asian J. 2013, 8, 1948.
– reference: B. Fang, J. H. Kim, M. S. Kim, J. S. Yu, Acc. Chem. Res. 2013, 46, 1397.
– reference: L. J. Fu, H. Liu, C. Li, Y. P. Wu, E. Rahm, R. Holze, H. Q. Wu, Solid State Sci. 2006, 8, 113.
– reference: C. Jiang, M. Wei, Z. Qi, T. Kudo, I. Honma, H. Zhou, J. Power Sources 2007, 166, 239.
– reference: C. J. Zhang, X. He, Q. S. Kong, H. Li, H. Hu, H. B. Wang, L. Gu, L. Wang, G. L. Cui, L. Q. Chen, CrystEngComm 2012, 14, 4344.
– reference: N. Du, H. Zhang, B. Chen, J. B. Wu, X. Y. Ma, Z. H. Liu, Y. Q. Zhang, D. Yang, X. H. Huang, J. P. Tu, Adv. Mater. 2007, 19, 4505.
– reference: J. H. Park, J. H. Cho, S. B. Kim, W. S. Kim, S. Y. Lee, S. Y. Lee, J. Mater. Chem. 2012, 22, 12574.
– reference: R. Lakes, Nature 1993, 361, 511.
– reference: C. M. Doherty, R. A. Caruso, C. J. Drummond, Energy Environ. Sci. 2010, 3, 813.
– reference: A. M. Kannan, L. Rabenberg, A. Manthiram, Electrochem. Solid State Lett. 2003, 6, A16.
– reference: Z. H. Wen, G. H. Lu, S. Mao, H. Kim, S. M. Cui, K. H. Yu, X. K. Huang, P. T. Hurley, O. Mao, J. H. Chen, Electrochem. Commun. 2013, 29, 67.
– reference: J. H. Smatt, C. Weidenthaler, J. B. Rosenholm, M. Linden, Chem. Mater. 2006, 18, 1443.
– reference: K. Saravanan, P. Balaya, M. V. Reddy, B. V. R. Chowdari, J. J. Vittal, Energy Environ. Sci. 2010, 3, 457.
– reference: J. W. Kim, J. H. Ryu, K. T. Lee, S. M. Oh, J. Power Sources 2005, 147, 227.
– reference: X.-F. Guan, J. Zheng, M.-L. Zhao, L.-P. Li, G.-S. Li, RSC Adv. 2013, 3, 13635.
– reference: Z. H. Bao, M. R. Weatherspoon, S. Shian, Y. Cai, P. D. Graham, S. M. Allan, G. Ahmad, M. B. Dickerson, B. C. Church, Z. T. Kang, H. W. Abernathy, C. J. Summers, M. L. Liu, K. H. Sandhage, Nature 2007, 446, 172.
– reference: X. T. Chen, K. X. Wang, Y. B. Zhai, H. J. Zhang, X. Y. Wu, X. Wei, J. S. Chen, Dalton Trans. 2014, 43, 3137.
– reference: N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer, Angew. Chem. Int. Ed. 2011, 50, 5904.
– reference: Z. Y. Liu, H. W. Bai, D. D. Sun, Chem. Asian J. 2012, 7, 2381.
– reference: Y. Li, Z. Y. Fu, B. L. Su, Adv. Funct. Mater. 2012, 22, 4634.
– reference: S. Murugesan, J. T. Harris, B. A. Korgel, K. J. Stevenson, Chem. Mater. 2012, 24, 1306.
– reference: Y. M. Jiang, K. X. Wang, X. X. Guo, X. Wei, J. F. Wang, J. S. Chen, J. Power Sources 2012, 214, 298.
– reference: M. Gaberscek, R. Dominko, J. Jamnik, Electrochem. Commun. 2007, 9, 2778.
– reference: J. Zhu, R. Liu, J. Xu, C. Meng, J. Mater. Sci. 2011, 46, 7223.
– reference: J. Schuster, G. He, B. Mandlmeier, T. Yim, K. T. Lee, T. Bein, L. F. Nazar, Angew. Chem. Int. Ed. 2012, 51, 3591.
– reference: L. J. Her, J. L. Hong, C. C. Chang, J. Power Sources 2006, 157, 457.
– reference: A. Pan, J.-G. Zhang, G. Cao, S. Liang, C. Wang, Z. Nie, B. W. Arey, W. Xu, D. Liu, J. Xiao, G. Li, J. Liu, J. Mater. Chem. 2011, 21, 10077.
– reference: E. M. Guerra, D. T. Cestarolli, H. P. Oliveira, J. Sol-Gel Sci. Technol. 2010, 54, 93.
– reference: C. M. Doherty, R. A. Caruso, B. M. Smarsly, C. J. Drummond, Chem. Mater. 2009, 21, 2895.
– reference: B. Platschek, A. Keilbach, T. Bein, Adv. Mater. 2011, 23, 2395.
– reference: Y. Z. Dong, Y. M. Zhao, H. Duan, Z. Y. Liang, Electrochim. Acta 2014, 132, 244.
– reference: G. Centi, S. Perathoner, Eur. J. Inorg. Chem. 2009, 3851.
– reference: X. W. Lou, D. Deng, J. Y. Lee, L. A. Archer, Chem. Mater. 2008, 20, 6562.
– reference: S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc. 2000, 122, 10712.
– reference: G. T. K. Fey, T. P. Kumar, J. Ind. Eng. Chem. 2004, 10, 1090.
– reference: S. Takai, M. Kamata, S. Fujine, K. Yoneda, K. Kanda, T. Esaka, Solid State Ionics 1999, 123, 165.
– reference: M. Hirayama, H. Ido, K. Kim, W. Cho, K. Tamura, J. i. Mizuki, R. Kanno, J. Am. Chem. Soc. 2010, 132, 15268.
– reference: C. K. Chan, X. F. Zhang, Y. Cui, Nano Lett. 2007, 8, 307.
– reference: D. Aurbach, J. Electrochem. Soc. 1989, 136, 906.
– reference: A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwijk, Nat. Mater. 2005, 4, 366.
– reference: B. Wang, B. Luo, X. L. Li, L. J. Zhi, Mater. Today 2012, 15, 544.
– reference: Y. G. Li, B. Tan, Y. Y. Wu, Nano Lett. 2008, 8, 265.
– reference: A. I. Hochbaum, D. Gargas, Y. J. Hwang, P. D. Yang, Nano Lett. 2009, 9, 3550.
– reference: D. H. Wang, R. Kou, Z. L. Yang, J. B. He, Z. Z. Yang, Y. F. Lu, Chem. Commun. 2005, 166.
– reference: D. Y. Chen, X. Mei, G. Ji, M. H. Lu, J. P. Xie, J. M. Lu, J. Y. Lee, Angew. Chem. Int. Ed. 2012, 51, 2409.
– reference: J. Q. Zhao, Y. Wang, Nano Energy 2013, 2, 882.
– reference: M. Nishizawa, K. Mukai, S. Kuwabata, C. R. Martin, H. Yoneyama, J. Electrochem. Soc. 1997, 144, 1923.
– reference: H. S. Zhou, S. M. Zhu, M. Hibino, I. Honma, M. Ichihara, Adv. Mater. 2003, 15, 2107.
– reference: X. Wang, K. Q. Peng, X. J. Pan, X. Chen, Y. Yang, L. Li, X. M. Meng, W. J. Zhang, S. T. Lee, Angew. Chem. Int. Ed. 2011, 50, 9861.
– reference: Y. Park, N. S. Choi, S. Park, S. H. Woo, S. Sim, B. Y. Jang, S. M. Oh, S. Park, J. Cho, K. T. Lee, Adv. Energy Mater. 2013, 3, 206.
– reference: S. Yang, X. Zhou, J. Zhang, Z. Liu, J. Mater. Chem. 2010, 20, 8086.
– reference: G. S. Chai, I. S. Shin, J. S. Yu, Adv. Mater. 2004, 16, 2057.
– reference: L. Y. Shen, Z. X. Wang, L. Q. Chen, RSC Adv. 2014, 4, 15314.
– reference: F. Zhang, K. Wang, X. Wang, G. Li, J. Chen, Dalton Trans. 2011, 40, 8517.
– reference: Y. Huang, H. Q. Cai, T. Yu, F. Q. Zhang, F. Zhang, Y. Meng, D. Gu, Y. Wan, X. L. Sun, B. Tu, D. Y. Zhao, Angew. Chem. Int. Ed. 2007, 46, 1089.
– reference: C. M. Doherty, R. A. Caruso, B. M. Smarsly, P. Adelhelm, C. J. Drummond, Chem. Mater. 2009, 21, 5300.
– reference: C. F. Zhang, H. B. Wu, C. Z. Yuan, Z. P. Guo, X. W. Lou, Angew. Chem. Int. Ed. 2012, 51, 9592.
– reference: S. H. Yun, K.-S. Park, Y. J. Park, J. Power Sources 2010, 195, 6108.
– reference: R. Mao, H. Guo, D. X. Tian, D. P. Zhao, X. J. Yang, S. X. Wang, J. Chen, Mater. Res. Bull. 2013, 48, 1518.
– reference: M. J. G. Jak, E. M. Kelder, J. Schoonman, N. M. Van der Pers, A. Weisenburger, J. Electroceram. 1998, 2, 127.
– reference: J. Y. Luo, X. Zhao, J. S. Wu, H. D. Jang, H. H. Kung, J. X. Huang, J. Phys. Chem. Lett. 2012, 3, 1824.
– reference: L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, M. D. Fleischauer, J. R. Dahn, J. Electrochem. Soc. 2003, 150, A1457.
– reference: M. S. Whittingham, Chem. Rev. 2004, 104, 4271.
– reference: M. Steinhart, R. B. Wehrspohn, U. Gosele, J. H. Wendorff, Angew. Chem. Int. Ed. 2004, 43, 1334.
– volume: 126
  start-page: 8650
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 4966
  year: 2013
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1501
  year: 2011
  publication-title: Nanoscale
– volume: 138
  start-page: 262
  year: 2004
  publication-title: J. Power Sources
– volume: 51
  start-page: 2409
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 19
  start-page: 4012
  year: 2009
  publication-title: J. Mater. Chem.
– volume: 132
  start-page: 15268
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 147
  start-page: 227
  year: 2005
  publication-title: J. Power Sources
– volume: 21
  start-page: 2895
  year: 2009
  publication-title: Chem. Mater.
– volume: 170
  start-page: 363
  year: 2011
  publication-title: Chem. Eng. J.
– volume: 175
  start-page: 881
  year: 2008
  publication-title: J. Power Sources
– volume: 113
  start-page: 20108
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 45
  start-page: 31
  year: 1999
  publication-title: Electrochim. Acta
– volume: 1
  start-page: 12850
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 19
  year: 2012
  publication-title: Nat. Mater.
– volume: 22
  start-page: 4634
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 170
  start-page: 159
  year: 2004
  publication-title: Solid State Ionics
– volume: 361
  start-page: 511
  year: 1993
  publication-title: Nature
– volume: 104
  start-page: 4271
  year: 2004
  publication-title: Chem. Rev.
– volume: 5
  start-page: 940
  year: 2003
  publication-title: Electrochem. Commun.
– volume: 49
  start-page: 5007
  year: 2013
  publication-title: Chem. Commun.
– volume: 54
  start-page: 7227
  year: 2009
  publication-title: Electrochim. Acta
– volume: 22
  start-page: 691
  year: 2010
  publication-title: Chem. Mater.
– volume: 49
  start-page: 9209
  year: 2013
  publication-title: Chem. Commun.
– volume: 282
  start-page: 2244
  year: 1998
  publication-title: Science
– volume: 50
  start-page: 397
  year: 2004
  publication-title: Electrochim. Acta
– volume: 12
  start-page: 3005
  year: 2012
  publication-title: Nano Lett.
– volume: 14
  start-page: 716
  year: 2014
  publication-title: Nano Lett.
– volume: 225
  start-page: 108
  year: 2013
  publication-title: J. Power Sources
– volume: 5
  start-page: 9187
  year: 2011
  publication-title: ACS Nano
– volume: 133
  start-page: 457
  year: 1986
  publication-title: J. Electrochem. Soc.
– volume: 51
  start-page: 9592
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 414
  start-page: 359
  year: 2001
  publication-title: Nature
– volume: 7
  start-page: 1083
  year: 2005
  publication-title: Electrochem. Commun.
– volume: 5
  start-page: 6173
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 166
  start-page: 239
  year: 2007
  publication-title: J. Power Sources
– volume: 50
  start-page: 6884
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 566
  start-page: 206
  year: 2013
  publication-title: J. Alloy Compd.
– volume: 47
  start-page: 7461
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 111
  start-page: 4061
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 24
  start-page: 424004
  year: 2013
  publication-title: Nanotechnology
– volume: 15
  start-page: 2107
  year: 2003
  publication-title: Adv. Mater.
– volume: 5
  start-page: 752
  year: 2003
  publication-title: Electrochem. Commun.
– volume: 11
  start-page: 91
  year: 2009
  publication-title: Electrochem. Commun.
– volume: 18
  start-page: 1789
  year: 2014
  publication-title: J. Solid State Electrochem.
– volume: 196
  start-page: 3887
  year: 2011
  publication-title: J. Power Sources
– volume: 81
  start-page: 2265
  year: 2009
  publication-title: Pure Appl. Chem.
– volume: 51
  start-page: 3872
  year: 2006
  publication-title: Electrochim. Acta
– volume: 19
  start-page: 1331
  year: 2009
  publication-title: J. Mater. Chem.
– volume: 117
  start-page: 6013
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 26
  start-page: 123
  year: 2014
  publication-title: Chem. Mater.
– volume: 8
  start-page: 858
  year: 2012
  publication-title: Small
– volume: 129
  start-page: 13388
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 115
  start-page: 4495
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 177
  start-page: 2807
  year: 2006
  publication-title: Solid State Ionics
– volume: 297
  start-page: 192
  year: 1997
  publication-title: Thin Solid Films
– volume: 19
  start-page: 8707
  year: 2009
  publication-title: J. Mater. Chem.
– volume: 3
  start-page: 1824
  year: 2012
  publication-title: J. Phys. Chem. Lett.
– volume: 45
  start-page: 6896
  year: 2006
  publication-title: Angew. Chem. Int. Ed.
– volume: 21
  start-page: 5300
  year: 2009
  publication-title: Chem. Mater.
– volume: 1
  start-page: 13648
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 247
  year: 2004
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 986
  year: 2014
  publication-title: Nanoscale
– volume: 20
  start-page: 2878
  year: 2008
  publication-title: Adv. Mater.
– volume: 19
  start-page: 3016
  year: 2007
  publication-title: Adv. Mater.
– volume: 3
  start-page: 529
  year: 2011
  publication-title: Nanoscale
– volume: 133
  start-page: 4738
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 10077
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 132
  start-page: 244
  year: 2014
  publication-title: Electrochim. Acta
– volume: 47
  start-page: 10151
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 154
  start-page: A444
  year: 2007
  publication-title: J. Electrochem. Soc.
– volume: 11
  start-page: 4288
  year: 2011
  publication-title: Nano Lett.
– start-page: 166
  year: 2005
  publication-title: Chem. Commun.
– volume: 160
  start-page: A1916
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 196
  start-page: 6847
  year: 2011
  publication-title: J. Power Sources
– volume: 136
  start-page: 906
  year: 1989
  publication-title: J. Electrochem. Soc.
– volume: 16
  start-page: 2057
  year: 2004
  publication-title: Adv. Mater.
– volume: 44
  start-page: 797
  year: 2005
  publication-title: Angew. Chem. Int. Ed.
– volume: 46
  start-page: 1089
  year: 2007
  publication-title: Angew. Chem. Int. Ed.
– volume: 179
  start-page: 1816
  year: 2008
  publication-title: Solid State Ionics
– volume: 4
  start-page: 15314
  year: 2014
  publication-title: RSC Adv.
– volume: 3
  start-page: 13635
  year: 2013
  publication-title: RSC Adv.
– volume: 6
  start-page: 2545
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 418
  year: 2010
  publication-title: Electrochem. Commun.
– volume: 17
  start-page: 3695
  year: 2005
  publication-title: Chem. Mater.
– volume: 179
  start-page: 347
  year: 2008
  publication-title: J. Power Sources
– volume: 23
  start-page: 5290
  year: 2011
  publication-title: Chem. Mater.
– volume: 43
  start-page: 3137
  year: 2014
  publication-title: Dalton Trans.
– volume: 20
  start-page: 10253
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 13
  start-page: 21282
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 12
  start-page: 5632
  year: 2012
  publication-title: Nano Lett.
– volume: 3
  start-page: 3490
  year: 2013
  publication-title: Sci. Rep.
– volume: 48
  start-page: 1518
  year: 2013
  publication-title: Mater. Res. Bull.
– volume: 3
  start-page: 939
  year: 2010
  publication-title: Energy Environ. Sci.
– volume: 19
  start-page: 993
  year: 2007
  publication-title: Adv. Mater.
– volume: 6
  start-page: 243
  year: 2013
  publication-title: Nano Res.
– volume: 8
  start-page: 1948
  year: 2013
  publication-title: Chem. Asian J.
– volume: 120
  start-page: 21
  year: 2002
  publication-title: J. Mater. Process. Technol.
– volume: 41
  start-page: 959
  year: 2003
  publication-title: Carbon
– volume: 245
  start-page: 48
  year: 2014
  publication-title: J. Power Sources
– volume: 22
  start-page: 12574
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 24
  start-page: 5452
  year: 2012
  publication-title: Adv. Mater.
– volume: 233
  start-page: 346
  year: 2013
  publication-title: J. Power Sources
– volume: 12
  start-page: 885
  year: 2008
  publication-title: J. Solid State Electrochem.
– volume: 50
  start-page: 4649
  year: 2005
  publication-title: Electrochim. Acta
– volume: 205
  start-page: 426
  year: 2012
  publication-title: J. Power Sources
– volume: 3
  start-page: 337
  year: 2004
  publication-title: Nat. Mater.
– volume: 159
  start-page: A228
  year: 2012
  publication-title: J. Electrochem. Soc.
– volume: 20
  start-page: 824
  year: 2014
  publication-title: Chem. Eur. J.
– volume: 47
  start-page: 6444
  year: 2012
  publication-title: J. Mater. Sci.
– volume: 230
  start-page: 86
  year: 2013
  publication-title: Solid State Ionics
– volume: 15
  start-page: 544
  year: 2012
  publication-title: Mater. Today
– volume: 126
  start-page: 2047
  year: 1979
  publication-title: J. Electrochem. Soc.
– volume: 133
  start-page: 21
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 2669
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– volume: 157
  start-page: A164
  year: 2010
  publication-title: J. Electrochem. Soc.
– volume: 157
  start-page: 457
  year: 2006
  publication-title: J. Power Sources
– volume: 24
  start-page: 424008
  year: 2013
  publication-title: Nanotechnology
– volume: 2
  start-page: 10359
  year: 2014
  publication-title: J. Mater. Chem. A
– year: 1996
– volume: 3
  start-page: 261
  year: 2011
  publication-title: ACS Appl. Mater. Interfaces
– volume: 22
  start-page: 20952
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 14
  start-page: 2173
  year: 2010
  publication-title: J. Solid State Electrochem.
– volume: 1
  start-page: 12038
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 878
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 458
  start-page: 190
  year: 2009
  publication-title: Nature
– volume: 155
  start-page: A705
  year: 2008
  publication-title: J. Electrochem. Soc.
– volume: 123
  start-page: 165
  year: 1999
  publication-title: Solid State Ionics
– volume: 24
  start-page: 1306
  year: 2012
  publication-title: Chem. Mater.
– volume: 2
  start-page: 1294
  year: 2010
  publication-title: Nanoscale
– volume: 20
  start-page: 833
  year: 2014
  publication-title: Ionics
– volume: 29
  start-page: 67
  year: 2013
  publication-title: Electrochem. Commun.
– volume: 23
  start-page: 1126
  year: 2011
  publication-title: Adv. Mater.
– volume: 43
  start-page: 103
  year: 1993
  publication-title: J. Power Sources
– volume: 4
  start-page: 3243
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 133
  start-page: 2132
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 8517
  year: 2011
  publication-title: Dalton Trans.
– volume: 7
  start-page: 9173
  year: 2013
  publication-title: ACS Nano
– volume: 20
  start-page: 739
  year: 2014
  publication-title: Ionics
– volume: 21
  start-page: 16603
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 21
  start-page: 2868
  year: 2009
  publication-title: Chem. Mater.
– volume: 247
  start-page: 307
  year: 2014
  publication-title: J. Power Sources
– volume: 50
  start-page: 12518
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– start-page: 3851
  year: 2009
  publication-title: Eur. J. Inorg. Chem.
– volume: 202
  start-page: 394
  year: 2012
  publication-title: J. Power Sources
– volume: 178
  start-page: 826
  year: 2008
  publication-title: J. Power Sources
– volume: 13
  start-page: 6244
  year: 2013
  publication-title: Nano Lett.
– volume: 50
  start-page: 5904
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 114
  start-page: 4710
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 195
  start-page: 8267
  year: 2010
  publication-title: J. Power Sources
– volume: 15
  start-page: 1462
  year: 2003
  publication-title: Adv. Mater.
– volume: 22
  start-page: 2247
  year: 2010
  publication-title: Adv. Mater.
– volume: 16
  start-page: 663
  year: 2006
  publication-title: J. Mater. Chem.
– volume: 24
  start-page: 6034
  year: 2012
  publication-title: Adv. Mater.
– volume: 13
  start-page: 2036
  year: 2013
  publication-title: Nano Lett.
– volume: 125
  start-page: 840
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 7223
  year: 2011
  publication-title: J. Mater. Sci.
– volume: 6
  start-page: A16
  year: 2003
  publication-title: Electrochem. Solid State Lett.
– volume: 2
  start-page: 882
  year: 2013
  publication-title: Nano Energy
– volume: 195
  start-page: 3907
  year: 2010
  publication-title: J. Power Sources
– volume: 16
  start-page: 1841
  year: 2004
  publication-title: Chem. Mater.
– volume: 85
  start-page: 1442
  year: 2010
  publication-title: Fusion Eng. Des.
– volume: 22
  start-page: 12369
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 21
  start-page: 9994
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 23
  start-page: 2395
  year: 2011
  publication-title: Adv. Mater.
– volume: 240
  start-page: 344
  year: 2013
  publication-title: J. Power Sources
– volume: 195
  start-page: 6108
  year: 2010
  publication-title: J. Power Sources
– volume: 3
  start-page: 457
  year: 2010
  publication-title: Energy Environ. Sci.
– volume: 196
  start-page: 596
  year: 2012
  publication-title: J. Solid State Chem.
– volume: 12
  start-page: 2318
  year: 2012
  publication-title: Nano Lett.
– volume: 1
  start-page: 3860
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 15475
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 3
  start-page: 26052
  year: 2013
  publication-title: RSC Adv.
– volume: 5
  start-page: 12005
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 4060
  year: 2011
  publication-title: Nanoscale
– volume: 20
  start-page: 7074
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 3
  start-page: 2538
  year: 2013
  publication-title: RSC Adv.
– volume: 7
  start-page: 5637
  year: 2013
  publication-title: ACS Nano
– volume: 48
  start-page: 4097
  year: 2012
  publication-title: Chem. Commun.
– volume: 8
  start-page: 4474
  year: 2014
  publication-title: ACS Nano
– volume: 3
  start-page: 206
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 1102
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 17
  start-page: 1926
  year: 2005
  publication-title: Chem. Mater.
– volume: 3
  start-page: 1622
  year: 2013
  publication-title: Sci. Rep.
– volume: 4
  start-page: 269
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 22
  start-page: 20602
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 38
  start-page: 1159
  year: 1993
  publication-title: Electrochim. Acta
– volume: 19
  start-page: 848
  year: 2007
  publication-title: Adv. Mater.
– volume: 8
  start-page: 500
  year: 2009
  publication-title: Nat. Mater.
– volume: 4
  start-page: 366
  year: 2005
  publication-title: Nat. Mater.
– volume: 8
  start-page: 113
  year: 2006
  publication-title: Solid State Sci.
– volume: 8
  start-page: 265
  year: 2008
  publication-title: Nano Lett.
– volume: 43
  start-page: 1334
  year: 2004
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 6743
  year: 2012
  publication-title: Nanoscale
– volume: 19
  start-page: 4505
  year: 2007
  publication-title: Adv. Mater.
– volume: 157
  start-page: A972
  year: 2010
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 903
  year: 2008
  publication-title: Electrochem. Commun.
– volume: 122
  start-page: 10712
  year: 2000
  publication-title: J. Am. Chem. Soc.
– volume: 89
  start-page: 233104
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 2
  start-page: 7555
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 21
  start-page: 2536
  year: 2009
  publication-title: Adv. Mater.
– volume: 48
  start-page: 5079
  year: 2012
  publication-title: Chem. Commun.
– volume: 179
  start-page: 1779
  year: 2008
  publication-title: Solid State Ionics
– volume: 40
  start-page: 3367
  year: 2001
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 816
  year: 2004
  publication-title: Nat. Mater.
– volume: 51
  start-page: 3591
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 195
  start-page: 939
  year: 2010
  publication-title: J. Power Sources
– volume: 135
  start-page: 1649
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 113
  start-page: 1093
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 121
  start-page: 245
  year: 1999
  publication-title: Solid State Ionics
– volume: 111
  start-page: 3192
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: 1056
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 307
  year: 2007
  publication-title: Nano Lett.
– volume: 9
  start-page: 3550
  year: 2009
  publication-title: Nano Lett.
– volume: 1
  start-page: 1036
  year: 2011
  publication-title: Adv. Energy Mater.
– volume: 127
  start-page: 13508
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 5785
  year: 2004
  publication-title: Angew. Chem. Int. Ed.
– volume: 48
  start-page: 1201
  year: 2012
  publication-title: Chem. Commun.
– volume: 24
  start-page: 3589
  year: 2012
  publication-title: Adv. Mater.
– volume: 16
  start-page: 4851
  year: 2004
  publication-title: Chem. Mater.
– volume: 111
  start-page: 10582
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 247
  start-page: 57
  year: 2014
  publication-title: J. Power Sources
– volume: 21
  start-page: 17083
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 19
  start-page: 1695
  year: 2013
  publication-title: Ionics
– volume: 26
  start-page: 2579
  year: 2014
  publication-title: Chem. Mater.
– volume: 2
  start-page: 80
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 196
  start-page: 6676
  year: 2011
  publication-title: J. Power Sources
– volume: 3
  start-page: 1299
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 312
  start-page: 885
  year: 2006
  publication-title: Science
– volume: 115
  start-page: 23620
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 245
  start-page: 698
  year: 2014
  publication-title: J. Power Sources
– volume: 15
  start-page: 783
  year: 1980
  publication-title: Mater. Res. Bull.
– volume: 20
  start-page: 6562
  year: 2008
  publication-title: Chem. Mater.
– volume: 7
  start-page: 2381
  year: 2012
  publication-title: Chem. Asian J.
– volume: 9
  start-page: 2778
  year: 2007
  publication-title: Electrochem. Commun.
– volume: 3
  start-page: 813
  year: 2010
  publication-title: Energy Environ. Sci.
– volume: 15
  start-page: 547
  year: 2005
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: A273
  year: 2006
  publication-title: Electrochem. Solid State Lett.
– volume: 54
  start-page: 93
  year: 2010
  publication-title: J. Sol‐Gel Sci. Technol.
– volume: 214
  start-page: 298
  year: 2012
  publication-title: J. Power Sources
– volume: 11
  start-page: 130
  year: 2009
  publication-title: Electrochem. Commun.
– volume: 42
  start-page: 4201
  year: 2003
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 1090
  year: 2004
  publication-title: J. Ind. Eng. Chem.
– volume: 30
  start-page: 2584
  year: 2009
  publication-title: Bull. Korean Chem. Soc.
– volume: 216
  start-page: 475
  year: 2012
  publication-title: J. Power Sources
– volume: 42
  start-page: 3876
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 24
  start-page: 3399
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 153
  start-page: 2282
  year: 2006
  publication-title: J. Electrochem. Soc.
– volume: 128
  start-page: 3920
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 446
  start-page: 172
  year: 2007
  publication-title: Nature
– volume: 53
  start-page: 8319
  year: 2008
  publication-title: Electrochim. Acta
– volume: 23
  start-page: 3237
  year: 2011
  publication-title: Chem. Mater.
– volume: 24
  start-page: 2744
  year: 2012
  publication-title: Chem. Mater.
– volume: 20
  start-page: 8086
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 3223
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 150
  start-page: A1457
  year: 2003
  publication-title: J. Electrochem. Soc.
– volume: 48
  start-page: 4950
  year: 2012
  publication-title: Chem. Commun.
– volume: 7
  start-page: 565
  year: 2012
  publication-title: Chem. Asian J.
– volume: 20
  start-page: 4783
  year: 2008
  publication-title: Chem. Mater.
– volume: 6
  start-page: 174
  year: 2013
  publication-title: Nano Res.
– volume: 22
  start-page: 587
  year: 2009
  publication-title: Chem. Mater.
– volume: 52
  start-page: 13186
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 119
  start-page: 695
  year: 2003
  publication-title: J. Power Sources
– volume: 18
  start-page: 4447
  year: 2006
  publication-title: Chem. Mater.
– volume: 46
  start-page: 1397
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 191
  start-page: 628
  year: 2009
  publication-title: J. Power Sources
– volume: 2
  start-page: 1271
  year: 2013
  publication-title: Nano Energy
– volume: 20
  start-page: 3435
  year: 2008
  publication-title: Chem. Mater.
– volume: 50
  start-page: 9861
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 14
  start-page: 4344
  year: 2012
  publication-title: CrystEngComm
– volume: 15
  start-page: 851
  year: 2005
  publication-title: Adv. Funct. Mater.
– volume: 21
  start-page: 4593
  year: 2009
  publication-title: Adv. Mater.
– volume: 14
  start-page: 2849
  year: 2014
  publication-title: Nano Lett.
– volume: 26
  year: 2014
  publication-title: Adv. Mater.
– volume: 2
  start-page: 127
  year: 1998
  publication-title: J. Electroceram.
– volume: 144
  start-page: 1923
  year: 1997
  publication-title: J. Electrochem. Soc.
– volume: 18
  start-page: 1443
  year: 2006
  publication-title: Chem. Mater.
– volume: 3
  start-page: 02788
  year: 2013
  publication-title: Sci. Rep.
– volume: 44
  start-page: 7053
  year: 2005
  publication-title: Angew. Chem. Int. Ed.
– volume: 42
  start-page: 713
  year: 2009
  publication-title: Acc. Chem. Res.
– volume: 11
  start-page: 2644
  year: 2011
  publication-title: Nano Lett.
– ident: e_1_2_6_153_1
  doi: 10.1002/adma.200305075
– ident: e_1_2_6_168_1
  doi: 10.1039/c0jm00508h
– ident: e_1_2_6_254_1
  doi: 10.1021/nl0727157
– ident: e_1_2_6_265_1
  doi: 10.1021/nn4037909
– ident: e_1_2_6_198_1
  doi: 10.1002/anie.201101661
– ident: e_1_2_6_258_1
  doi: 10.1149/1.2108601
– ident: e_1_2_6_89_1
  doi: 10.1021/ar300253f
– ident: e_1_2_6_184_1
  doi: 10.1039/c2jm34114j
– ident: e_1_2_6_273_1
  doi: 10.1002/anie.201107817
– ident: e_1_2_6_140_1
  doi: 10.1039/C3DT52661E
– ident: e_1_2_6_81_1
  doi: 10.1021/nl300794f
– ident: e_1_2_6_219_1
  doi: 10.1016/j.elecom.2005.08.006
– ident: e_1_2_6_280_1
  doi: 10.1021/nl200658a
– ident: e_1_2_6_30_1
  doi: 10.1038/nature07853
– ident: e_1_2_6_266_1
  doi: 10.1038/srep01622
– ident: e_1_2_6_12_1
  doi: 10.1016/j.jpowsour.2007.01.004
– ident: e_1_2_6_96_1
  doi: 10.1016/j.jpowsour.2013.06.116
– ident: e_1_2_6_205_1
  doi: 10.1016/j.jpowsour.2010.07.021
– ident: e_1_2_6_113_1
  doi: 10.1002/aenm.201100485
– ident: e_1_2_6_234_1
  doi: 10.1016/S0167-2738(99)00043-0
– ident: e_1_2_6_40_1
  doi: 10.1021/nl0725906
– ident: e_1_2_6_61_1
  doi: 10.1021/cm049971u
– ident: e_1_2_6_97_1
  doi: 10.1039/c3ra44731f
– ident: e_1_2_6_131_1
  doi: 10.1021/jp206277a
– ident: e_1_2_6_276_1
  doi: 10.1039/c2cc17925c
– ident: e_1_2_6_27_1
  doi: 10.1039/C0EE00029A
– ident: e_1_2_6_124_1
  doi: 10.1002/adma.200601667
– ident: e_1_2_6_84_1
  doi: 10.1016/j.jpowsour.2010.12.078
– ident: e_1_2_6_172_1
  doi: 10.1149/1.2956088
– ident: e_1_2_6_212_1
  doi: 10.5012/bkcs.2009.30.11.2584
– ident: e_1_2_6_18_1
  doi: 10.1039/c2cp23433e
– ident: e_1_2_6_166_1
  doi: 10.1149/1.3447750
– ident: e_1_2_6_50_1
  doi: 10.1021/ja0545721
– ident: e_1_2_6_117_1
  doi: 10.1021/am403798a
– ident: e_1_2_6_3_1
  doi: 10.1039/c0nr00068j
– ident: e_1_2_6_41_1
  doi: 10.1016/j.jpowsour.2013.04.042
– ident: e_1_2_6_83_1
  doi: 10.1021/ja1110464
– ident: e_1_2_6_148_1
  doi: 10.1039/b907509g
– ident: e_1_2_6_63_1
  doi: 10.1002/anie.200300614
– ident: e_1_2_6_222_1
  doi: 10.1016/S0924-0136(01)01044-5
– ident: e_1_2_6_9_1
  doi: 10.1002/adma.200901710
– ident: e_1_2_6_165_1
  doi: 10.1016/j.electacta.2005.11.015
– ident: e_1_2_6_35_1
  doi: 10.1149/1.1837722
– ident: e_1_2_6_156_1
  doi: 10.1039/C3TA14178K
– ident: e_1_2_6_173_1
  doi: 10.1016/j.jpowsour.2007.12.109
– ident: e_1_2_6_195_1
  doi: 10.1016/j.electacta.2008.06.053
– ident: e_1_2_6_246_1
  doi: 10.1039/c3ta13092d
– ident: e_1_2_6_125_1
  doi: 10.1021/cm801607e
– ident: e_1_2_6_197_1
  doi: 10.1016/j.jpowsour.2005.07.047
– ident: e_1_2_6_130_1
  doi: 10.1021/jp110694k
– ident: e_1_2_6_135_1
  doi: 10.1007/s12274-013-0300-3
– ident: e_1_2_6_132_1
  doi: 10.1021/ja2004329
– ident: e_1_2_6_112_1
  doi: 10.1002/adma.200903755
– ident: e_1_2_6_54_1
  doi: 10.1021/ja002261e
– ident: e_1_2_6_103_1
  doi: 10.1039/c1nr10668f
– ident: e_1_2_6_111_1
  doi: 10.1038/nature05570
– ident: e_1_2_6_71_1
  doi: 10.1002/adma.201002828
– ident: e_1_2_6_150_1
  doi: 10.1039/c2jm31910a
– ident: e_1_2_6_133_1
  doi: 10.1016/j.jpowsour.2012.06.023
– ident: e_1_2_6_191_1
  doi: 10.1016/j.jpowsour.2007.09.102
– ident: e_1_2_6_138_1
  doi: 10.1021/cm4018248
– ident: e_1_2_6_232_1
  doi: 10.1007/s11581-014-1108-1
– ident: e_1_2_6_145_1
  doi: 10.1039/c0jm01387k
– ident: e_1_2_6_238_1
  doi: 10.1016/j.elecom.2008.04.004
– ident: e_1_2_6_77_1
  doi: 10.1039/c2jm32402d
– ident: e_1_2_6_270_1
  doi: 10.1002/anie.201304762
– ident: e_1_2_6_26_1
  doi: 10.1039/c0ee00713g
– ident: e_1_2_6_242_1
  doi: 10.1002/anie.201107885
– ident: e_1_2_6_78_1
  doi: 10.1039/b900397e
– ident: e_1_2_6_108_1
  doi: 10.1007/s12274-013-0293-y
– ident: e_1_2_6_233_1
  doi: 10.1016/j.elecom.2008.10.043
– ident: e_1_2_6_118_1
  doi: 10.1007/s11581-013-1006-y
– ident: e_1_2_6_261_1
  doi: 10.1149/1.1613668
– ident: e_1_2_6_183_1
  doi: 10.1021/jp9082322
– ident: e_1_2_6_14_1
  doi: 10.1039/c1jm10976f
– ident: e_1_2_6_189_1
  doi: 10.1016/j.ssi.2008.04.031
– ident: e_1_2_6_216_1
  doi: 10.1016/j.jallcom.2013.03.041
– ident: e_1_2_6_167_1
  doi: 10.1021/cm050566s
– ident: e_1_2_6_208_1
  doi: 10.1016/j.elecom.2003.08.012
– ident: e_1_2_6_19_1
  doi: 10.1039/c1cp22026h
– ident: e_1_2_6_36_1
  doi: 10.1021/nl400199r
– ident: e_1_2_6_47_1
  doi: 10.1149/1.3267294
– ident: e_1_2_6_271_1
  doi: 10.1038/nmat3191
– ident: e_1_2_6_119_1
  doi: 10.1016/j.elecom.2013.01.015
– ident: e_1_2_6_210_1
  doi: 10.1016/j.ssi.2012.08.003
– ident: e_1_2_6_120_1
  doi: 10.1088/0957-4484/24/42/424008
– ident: e_1_2_6_55_1
  doi: 10.1002/adma.200306125
– ident: e_1_2_6_274_1
  doi: 10.1039/c1jm12979a
– ident: e_1_2_6_74_1
  doi: 10.1039/b817156d
– ident: e_1_2_6_215_1
  doi: 10.1016/j.jpowsour.2010.09.027
– ident: e_1_2_6_104_1
  doi: 10.1002/anie.201104102
– ident: e_1_2_6_239_1
  doi: 10.1021/cm404154u
– ident: e_1_2_6_253_1
  doi: 10.1002/anie.200804355
– ident: e_1_2_6_220_1
  doi: 10.1023/A:1009987225710
– ident: e_1_2_6_245_1
  doi: 10.1016/j.jpowsour.2012.01.058
– ident: e_1_2_6_127_1
  doi: 10.1002/adma.200803439
– ident: e_1_2_6_241_1
  doi: 10.1021/cm2037475
– ident: e_1_2_6_240_1
  doi: 10.1016/j.jpowsour.2004.12.041
– ident: e_1_2_6_34_1
  doi: 10.1038/srep02788
– ident: e_1_2_6_264_1
  doi: 10.1002/adma.201301795
– ident: e_1_2_6_32_1
  doi: 10.1021/nn4022263
– ident: e_1_2_6_171_1
  doi: 10.1021/jp0674367
– ident: e_1_2_6_123_1
  doi: 10.1016/S1369-7021(13)70012-9
– ident: e_1_2_6_218_1
  doi: 10.1021/jp309724q
– ident: e_1_2_6_209_1
  doi: 10.1149/2.032203jes
– volume: 10
  start-page: 1090
  year: 2004
  ident: e_1_2_6_192_1
  publication-title: J. Ind. Eng. Chem.
– ident: e_1_2_6_146_1
  doi: 10.1002/adfm.200400186
– ident: e_1_2_6_244_1
  doi: 10.1016/j.nanoen.2013.06.006
– ident: e_1_2_6_15_1
  doi: 10.1039/c2ee03215e
– ident: e_1_2_6_105_1
  doi: 10.1021/nl300206e
– ident: e_1_2_6_57_1
  doi: 10.1021/cm202812z
– ident: e_1_2_6_157_1
  doi: 10.1002/anie.201104597
– ident: e_1_2_6_62_1
  doi: 10.1021/ja0488378
– ident: e_1_2_6_269_1
  doi: 10.1002/adma.201401937
– ident: e_1_2_6_59_1
  doi: 10.1002/adfm.201303856
– ident: e_1_2_6_68_1
  doi: 10.1063/1.2399935
– ident: e_1_2_6_93_1
  doi: 10.1021/cm900698p
– ident: e_1_2_6_65_1
  doi: 10.1038/nmat1107
– ident: e_1_2_6_67_1
  doi: 10.1039/b411915k
– ident: e_1_2_6_188_1
  doi: 10.1016/0013-4686(93)80046-3
– ident: e_1_2_6_90_1
  doi: 10.1002/chem.201303675
– ident: e_1_2_6_193_1
  doi: 10.1016/j.solidstatesciences.2005.10.019
– ident: e_1_2_6_92_1
  doi: 10.1021/cm9024167
– ident: e_1_2_6_201_1
  doi: 10.1149/1.2360769
– ident: e_1_2_6_223_1
  doi: 10.1039/c2nr32069j
– ident: e_1_2_6_134_1
  doi: 10.1002/asia.201200429
– ident: e_1_2_6_24_1
  doi: 10.1039/c0jm04126b
– ident: e_1_2_6_122_1
  doi: 10.1021/cm0481372
– ident: e_1_2_6_260_1
  doi: 10.1016/j.elecom.2010.01.008
– ident: e_1_2_6_279_1
  doi: 10.1002/anie.201205292
– ident: e_1_2_6_263_1
  doi: 10.1002/adma.201202744
– ident: e_1_2_6_86_1
  doi: 10.1039/C0NR00423E
– ident: e_1_2_6_175_1
  doi: 10.1002/adma.201200397
– ident: e_1_2_6_214_1
  doi: 10.1149/1.2188081
– ident: e_1_2_6_251_1
  doi: 10.1002/anie.200802539
– ident: e_1_2_6_101_1
  doi: 10.1016/j.jssc.2012.07.029
– ident: e_1_2_6_5_1
  doi: 10.1002/ejic.200900275
– ident: e_1_2_6_37_1
  doi: 10.1002/adfm.200400429
– ident: e_1_2_6_206_1
  doi: 10.1016/S1388-2481(03)00179-6
– ident: e_1_2_6_79_1
  doi: 10.1002/smll.201101838
– ident: e_1_2_6_147_1
  doi: 10.1007/s10853-012-6576-y
– ident: e_1_2_6_16_1
  doi: 10.1021/nn406449u
– ident: e_1_2_6_53_1
  doi: 10.1002/anie.200603665
– ident: e_1_2_6_252_1
  doi: 10.1039/c2ra23365g
– ident: e_1_2_6_259_1
  doi: 10.1002/asia.201300279
– ident: e_1_2_6_13_1
  doi: 10.1021/jp067116n
– ident: e_1_2_6_217_1
  doi: 10.1016/j.jpowsour.2010.11.138
– ident: e_1_2_6_237_1
  doi: 10.1039/c2jm16799a
– ident: e_1_2_6_163_1
  doi: 10.1149/1.2128859
– ident: e_1_2_6_149_1
  doi: 10.1016/j.elecom.2008.10.041
– ident: e_1_2_6_56_1
  doi: 10.1039/c3cc44360d
– ident: e_1_2_6_60_1
  doi: 10.1016/S0040-6090(96)09440-0
– ident: e_1_2_6_45_1
  doi: 10.1039/c0nr00998a
– ident: e_1_2_6_23_1
  doi: 10.1039/c2jm32658b
– ident: e_1_2_6_194_1
  doi: 10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO;2-A
– ident: e_1_2_6_181_1
  doi: 10.1016/j.jpowsour.2013.07.032
– ident: e_1_2_6_177_1
  doi: 10.1016/j.nanoen.2013.03.005
– ident: e_1_2_6_179_1
  doi: 10.1016/j.jpowsour.2013.08.042
– ident: e_1_2_6_44_1
  doi: 10.1007/s10971-010-2162-4
– ident: e_1_2_6_204_1
  doi: 10.1007/s11581-013-1041-8
– ident: e_1_2_6_121_1
  doi: 10.1039/c3cc41967c
– ident: e_1_2_6_187_1
  doi: 10.1016/0025-5408(80)90012-4
– ident: e_1_2_6_11_1
  doi: 10.1021/ja028165q
– ident: e_1_2_6_226_1
  doi: 10.1021/jp9072125
– ident: e_1_2_6_72_1
  doi: 10.1002/anie.200250808
– ident: e_1_2_6_102_1
  doi: 10.1021/am1009056
– ident: e_1_2_6_159_1
  doi: 10.1016/j.electacta.2004.03.049
– ident: e_1_2_6_229_1
  doi: 10.1149/1.1526782
– ident: e_1_2_6_25_1
  doi: 10.1002/asia.201100757
– ident: e_1_2_6_180_1
  doi: 10.1016/j.jpowsour.2013.01.082
– ident: e_1_2_6_58_1
  doi: 10.1039/C3TA14123C
– ident: e_1_2_6_110_1
  doi: 10.1039/c2cc31476b
– ident: e_1_2_6_128_1
  doi: 10.1016/j.electacta.2009.07.028
– ident: e_1_2_6_87_1
  doi: 10.1002/adfm.201200591
– ident: e_1_2_6_277_1
  doi: 10.1016/j.jpowsour.2011.11.074
– ident: e_1_2_6_7_1
  doi: 10.1021/ar800229g
– ident: e_1_2_6_196_1
  doi: 10.1016/S0378-7753(03)00228-3
– ident: e_1_2_6_199_1
  doi: 10.1002/adma.200600369
– ident: e_1_2_6_256_1
  doi: 10.1016/S0013-4686(99)00191-7
– ident: e_1_2_6_99_1
  doi: 10.1038/srep03490
– ident: e_1_2_6_228_1
  doi: 10.1016/j.fusengdes.2010.04.003
– ident: e_1_2_6_49_1
  doi: 10.1002/anie.200461051
– ident: e_1_2_6_137_1
  doi: 10.1016/j.materresbull.2012.12.056
– ident: e_1_2_6_231_1
  doi: 10.1016/S0167-2738(99)00095-8
– ident: e_1_2_6_21_1
  doi: 10.1039/c3ta01618h
– ident: e_1_2_6_39_1
  doi: 10.1126/science.1122716
– ident: e_1_2_6_80_1
  doi: 10.1039/C3NR04611G
– ident: e_1_2_6_129_1
  doi: 10.1021/ja108720w
– ident: e_1_2_6_64_1
  doi: 10.1038/nmat1230
– ident: e_1_2_6_185_1
  doi: 10.1016/j.jpowsour.2009.08.089
– ident: e_1_2_6_230_1
  doi: 10.1021/ja308717z
– ident: e_1_2_6_262_1
  doi: 10.1149/1.2711075
– ident: e_1_2_6_164_1
  doi: 10.1016/j.jpowsour.2013.08.105
– ident: e_1_2_6_106_1
  doi: 10.1039/c1jm13048j
– ident: e_1_2_6_227_1
  doi: 10.1016/j.ssi.2008.03.001
– ident: e_1_2_6_17_1
  doi: 10.1039/c3ra22125c
– ident: e_1_2_6_69_1
  doi: 10.1021/ja058441b
– ident: e_1_2_6_272_1
  doi: 10.1038/nmat2460
– ident: e_1_2_6_116_1
  doi: 10.1002/adma.201201601
– ident: e_1_2_6_33_1
  doi: 10.1021/nl5008568
– ident: e_1_2_6_70_1
  doi: 10.1002/adma.200602189
– ident: e_1_2_6_248_1
  doi: 10.1021/jz3006892
– ident: e_1_2_6_73_1
  doi: 10.1021/ja0752843
– ident: e_1_2_6_143_1
  doi: 10.1039/C2CS35378D
– ident: e_1_2_6_20_1
  doi: 10.1021/ja105389t
– ident: e_1_2_6_51_1
  doi: 10.1002/anie.200501561
– ident: e_1_2_6_109_1
  doi: 10.1002/aenm.201200389
– ident: e_1_2_6_211_1
  doi: 10.1016/j.jpowsour.2009.11.022
– ident: e_1_2_6_202_1
  doi: 10.1016/j.jpowsour.2010.01.003
– ident: e_1_2_6_221_1
  doi: 10.1039/C4TA00974F
– ident: e_1_2_6_224_1
  doi: 10.1016/j.electacta.2014.03.171
– ident: e_1_2_6_28_1
  doi: 10.1021/cm902696j
– ident: e_1_2_6_243_1
  doi: 10.1016/j.ssi.2006.03.033
– ident: e_1_2_6_85_1
  doi: 10.1039/b923576k
– ident: e_1_2_6_155_1
  doi: 10.1021/jp0707889
– ident: e_1_2_6_114_1
  doi: 10.1007/s10853-011-5680-8
– ident: e_1_2_6_200_1
  doi: 10.1016/j.electacta.2005.02.026
– ident: e_1_2_6_247_1
  doi: 10.1039/C1CC14764A
– ident: e_1_2_6_94_1
  doi: 10.1039/b922898e
– ident: e_1_2_6_139_1
  doi: 10.1039/c1dt10749f
– ident: e_1_2_6_141_1
  doi: 10.1039/B512304F
– ident: e_1_2_6_174_1
  doi: 10.1016/j.jpowsour.2007.08.034
– ident: e_1_2_6_75_1
  doi: 10.1021/jp807463u
– ident: e_1_2_6_2_1
  doi: 10.1002/anie.200460937
– ident: e_1_2_6_22_1
  doi: 10.1039/c0jm01346c
– ident: e_1_2_6_203_1
  doi: 10.1007/s10008-009-0967-2
– ident: e_1_2_6_91_1
  doi: 10.1039/c2ce25114k
– ident: e_1_2_6_250_1
  doi: 10.1039/c4ra01255k
– ident: e_1_2_6_236_1
  doi: 10.1021/nn203436j
– ident: e_1_2_6_169_1
– ident: e_1_2_6_43_1
  doi: 10.1039/c003630g
– ident: e_1_2_6_267_1
  doi: 10.1039/c3ta12964k
– ident: e_1_2_6_136_1
  doi: 10.1016/j.jpowsour.2012.10.030
– ident: e_1_2_6_207_1
  doi: 10.1016/j.jpowsour.2009.02.063
– ident: e_1_2_6_160_1
  doi: 10.1149/1.2096876
– ident: e_1_2_6_46_1
  doi: 10.1021/cm8002589
– ident: e_1_2_6_6_1
  doi: 10.1038/nmat1368
– ident: e_1_2_6_10_1
  doi: 10.1038/35104644
– ident: e_1_2_6_186_1
  doi: 10.1016/j.ssi.2004.04.003
– ident: e_1_2_6_48_1
  doi: 10.1016/j.cej.2010.11.040
– ident: e_1_2_6_161_1
  doi: 10.1021/cm901452z
– ident: e_1_2_6_4_1
  doi: 10.1016/j.elecom.2007.09.020
– ident: e_1_2_6_107_1
  doi: 10.1002/aenm.201100765
– ident: e_1_2_6_162_1
  doi: 10.1016/j.electacta.2004.01.090
– ident: e_1_2_6_281_1
  doi: 10.1021/nl403715h
– ident: e_1_2_6_213_1
  doi: 10.1016/0378-7753(93)80106-Y
– ident: e_1_2_6_100_1
  doi: 10.1021/nl9017594
– ident: e_1_2_6_268_1
  doi: 10.1149/2.003311jes
– ident: e_1_2_6_151_1
  doi: 10.1039/c3ta12566a
– ident: e_1_2_6_235_1
  doi: 10.1021/cm300929r
– ident: e_1_2_6_255_1
  doi: 10.1021/nl403979s
– ident: e_1_2_6_142_1
  doi: 10.1351/PAC-CON-09-05-06
– ident: e_1_2_6_249_1
  doi: 10.1002/anie.200601676
– ident: e_1_2_6_38_1
  doi: 10.1002/adma.200602513
– ident: e_1_2_6_42_1
  doi: 10.1002/aenm.201200320
– ident: e_1_2_6_115_1
  doi: 10.1039/c2cc17083c
– ident: e_1_2_6_144_1
  doi: 10.1002/adma.200400283
– ident: e_1_2_6_154_1
  doi: 10.1021/cm051880p
– ident: e_1_2_6_225_1
  doi: 10.1039/c4ta00189c
– ident: e_1_2_6_52_1
  doi: 10.1021/cm060921u
– ident: e_1_2_6_31_1
  doi: 10.1021/nl3027839
– ident: e_1_2_6_152_1
  doi: 10.1126/science.282.5397.2244
– ident: e_1_2_6_275_1
  doi: 10.1021/nl202297p
– ident: e_1_2_6_88_1
  doi: 10.1088/0957-4484/24/42/424004
– ident: e_1_2_6_126_1
  doi: 10.1021/cm900613d
– ident: e_1_2_6_176_1
  doi: 10.1002/aenm.201300269
– ident: e_1_2_6_257_1
  doi: 10.1016/S0008-6223(02)00425-6
– ident: e_1_2_6_182_1
  doi: 10.1007/s10008-014-2411-5
– ident: e_1_2_6_278_1
  doi: 10.1002/anie.201100637
– ident: e_1_2_6_95_1
  doi: 10.1021/cm201197j
– ident: e_1_2_6_158_1
  doi: 10.1021/cm702134s
– ident: e_1_2_6_8_1
  doi: 10.1002/adma.200800627
– ident: e_1_2_6_98_1
  doi: 10.1016/j.jpowsour.2012.04.091
– volume: 6
  start-page: 2545
  year: 2014
  ident: e_1_2_6_178_1
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_6_1_1
  doi: 10.1021/cr020731c
– ident: e_1_2_6_76_1
  doi: 10.1038/361511a0
– ident: e_1_2_6_29_1
  doi: 10.1039/c1ee01598b
– ident: e_1_2_6_66_1
  doi: 10.1021/cm0487425
– ident: e_1_2_6_82_1
  doi: 10.1002/adma.201003713
– ident: e_1_2_6_190_1
  doi: 10.1007/s10008-007-0449-3
– ident: e_1_2_6_170_1
  doi: 10.1016/j.jpowsour.2004.06.046
SSID ssj0009606
Score 2.6263926
Snippet Lithium‐ion batteries are regarded as promising energy storage devices for next‐generation electric and hybrid electric vehicles. In order to meet the demands...
Lithium-ion batteries are regarded as promising energy storage devices for next-generation electric and hybrid electric vehicles. In order to meet the demands...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 527
SubjectTerms Carbon
Demand
Density
Devices
Electrochemical analysis
electrochemical performance
Electrode materials
Electrodes
Electronics
interface engineering
Lithium-ion batteries
surface engineering
Title Surface and Interface Engineering of Electrode Materials for Lithium-Ion Batteries
URI https://api.istex.fr/ark:/67375/WNG-XSLQDWS4-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201402962
https://www.ncbi.nlm.nih.gov/pubmed/25355133
https://www.proquest.com/docview/1652389279
https://www.proquest.com/docview/1660058358
Volume 27
WOSCitedRecordID wos000348031800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BywEOvB_lsTISgpO1sWMn9rGiW0DqVkB32d4s27FFBaSoD8SRn8Bv5JdgO222lXhIcIujiWONZ-wZP74P4ElZaiJt4XEIhR1mTnCsC-YxMT6rSlpYm-iA3o3K8VhMp_L1zi3-Bh-iXXCLnpHG6-jg2iwPz0FDdZVwg0KCQGUchLs0GC_vQHfwdng6OgfeLRK_Ztzvw7JgYgvcmNHD_Rr2JqZu1PHXX0Wd-0FsmoWG1_6__dfh6iYCRf3GZG7ABVffhCs7uIS34GSyXnhtHdJ1hdKaYSrtyKC5R0cNg07l0LFeNYaMQgiMRrPV-9n6049v31_Na9QAeIZ8_DacDo9Onr_EG_oFbEN2SrEWlWEhIfKMW-85EcYxwjQviTcxkwkvaC4LQzy32mrtubSUuazIfG6IzvI70KnntbsHiAoTcdy5ERF3VFqTM2qyyuvMVtxntAd4q3tlN9jkkSLjo2pQlamK2lKttnrwrJX_3KBy_FbyaerKVkwvPsSzbCVXZ-MXajoZvRmcTZgSPXi87WsVPCxum-jazddLRYqgDiFpKf8kU0SCxpyHeu42htL-kfI8sej0gCZ7-EuLVX9w3G9L9__lowdwOTzHQ5mYkofQWS3W7hFcsl9Ws-XiAC6WU3Gw8ZOfABQQxA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQigR74D7WcTMSgidrsWMn9mNFVzaRVkA71jfLdmxRDdKpa9Ee-Qn8Rn4JtpNmq8RFQjzaOnHi43Psc2zn-wB4kecKC5M55ENhi6jlDKmMOoS1S8qcZMZEOqCPRT4a8elUvGtuE4Z_YWp8iHbDLXhGnK-Dg4cN6f1L1FBVRuAgnyEQEWbhDvW25I280_8wOC4ukXezSLAZDvyQyChfIzcmZH-zhY2VqROUfPGrsHMzio3L0OD2f-jAHXCriUFhrzaau-Care6B7SvIhPfBZLxaOGUsVFUJ465hLF2RgXMHD2oOndLCoVrWpgx9EAyL2fLTbPXlx7fvR_MK1hCePiN_AI4HB5PXh6ghYEDG56cEKV5q6lMiR5lxjmGuLcVUsRw7HXIZX0FSkWnsmFFGKceEIdQmWeJSjVWS7oCtal7ZXQAJ1wHJnWkekEeF0SklOimdSkzJXEK6AK2VL02DTh5IMj7LGleZyKAt2WqrC1618mc1LsdvJV_GsWzF1OI03GbLmTwZvZHTcfG-fzKmknfB8_VgS-9j4eBEVXa-Opc48-rgguTiTzJZoGhMmW_nYW0p7RsJSyOPTheQaBB_-WLZ6w97bWnvXx56Bm4cToaFLI5Gbx-Bm74-XNFEBD8GW8vFyj4B183X5ex88bRxl5_swhPM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bjxMhFCamNUYfvF_qFROjT2QHBhh4bOxWN842q911-0aAgdio0023NT76E_yN_hKBmc5uEy-J8RFyhhkO58A5wHwfAM-KQmNpuUchFHaIOsGQ5tQjbHxWFYRbm-iA3pfFZCJmM3nQ3iaM_8I0-BDdhlv0jDRfRwd3J5XfOUMN1VUCDgoZApFxFu7TyCTTA_3Ru_FReYa8yxPBZjzwQ5JTsUFuzMjOdgtbK1M_Kvnrr8LO7Sg2LUPja_-hA9fB1TYGhcPGaG6AC66-Ca6cQya8BQ6n66XX1kFdVzDtGqbSORm48HC34dCpHNzXq8aUYQiCYTlffZivP__49n1vUcMGwjNk5LfB0Xj38OVr1BIwIBvyU4K0qAwNKZGnzHrPsDCOYqpZgb2JuUyoILnkBntmtdXaM2kJdRnPfG6wzvI7oFcvancPQCJMRHJnRkTkUWlNTonJKq8zWzGfkQFAG-Ur26KTR5KMT6rBVSYqakt12hqAF538SYPL8VvJ52ksOzG9_BhvsxVMHU9eqdm0fDs6nlIlBuDpZrBV8LF4cKJrt1ifKsyDOoQkhfyTDI8UjTkL7dxtLKV7I2F54tEZAJIM4i9frIaj_WFXuv8vDz0Blw5GY1XuTd48AJdDdbyhiQh-CHqr5do9Ahftl9X8dPm49ZafWZsTRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+and+Interface+Engineering+of+Electrode+Materials+for+Lithium-Ion+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Kai-Xue&rft.au=Li%2C+Xin-Hao&rft.au=Chen%2C+Jie-Sheng&rft.date=2015-01-21&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=27&rft.issue=3&rft.spage=527&rft.epage=545&rft_id=info:doi/10.1002%2Fadma.201402962&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_XSLQDWS4_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon