Differences in gamma frequencies across visual cortex restrict their possible use in computation
Neuronal oscillations in the gamma band (30-80 Hz) have been suggested to play a central role in feature binding or establishing channels for neural communication. For these functions, the gamma rhythm frequency must be consistent across neural assemblies encoding the features of a stimulus. Here we...
Uloženo v:
| Vydáno v: | Neuron (Cambridge, Mass.) Ročník 67; číslo 5; s. 885 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
09.09.2010
|
| Témata: | |
| ISSN: | 1097-4199, 1097-4199 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Neuronal oscillations in the gamma band (30-80 Hz) have been suggested to play a central role in feature binding or establishing channels for neural communication. For these functions, the gamma rhythm frequency must be consistent across neural assemblies encoding the features of a stimulus. Here we test the dependence of gamma frequency on stimulus contrast in V1 cortex of awake behaving macaques and show that gamma frequency increases monotonically with contrast. Changes in stimulus contrast over time leads to a reliable gamma frequency modulation on a fast timescale. Further, large stimuli whose contrast varies across space generate gamma rhythms at significantly different frequencies in simultaneously recorded neuronal assemblies separated by as little as 400 microm, making the gamma rhythm a poor candidate for binding or communication, at least in V1. Instead, our results suggest that the gamma rhythm arises from local interactions between excitation and inhibition. |
|---|---|
| AbstractList | Neuronal oscillations in the gamma band (30-80 Hz) have been suggested to play a central role in feature binding or establishing channels for neural communication. For these functions, the gamma rhythm frequency must be consistent across neural assemblies encoding the features of a stimulus. Here we test the dependence of gamma frequency on stimulus contrast in V1 cortex of awake behaving macaques and show that gamma frequency increases monotonically with contrast. Changes in stimulus contrast over time leads to a reliable gamma frequency modulation on a fast timescale. Further, large stimuli whose contrast varies across space generate gamma rhythms at significantly different frequencies in simultaneously recorded neuronal assemblies separated by as little as 400 microm, making the gamma rhythm a poor candidate for binding or communication, at least in V1. Instead, our results suggest that the gamma rhythm arises from local interactions between excitation and inhibition.Neuronal oscillations in the gamma band (30-80 Hz) have been suggested to play a central role in feature binding or establishing channels for neural communication. For these functions, the gamma rhythm frequency must be consistent across neural assemblies encoding the features of a stimulus. Here we test the dependence of gamma frequency on stimulus contrast in V1 cortex of awake behaving macaques and show that gamma frequency increases monotonically with contrast. Changes in stimulus contrast over time leads to a reliable gamma frequency modulation on a fast timescale. Further, large stimuli whose contrast varies across space generate gamma rhythms at significantly different frequencies in simultaneously recorded neuronal assemblies separated by as little as 400 microm, making the gamma rhythm a poor candidate for binding or communication, at least in V1. Instead, our results suggest that the gamma rhythm arises from local interactions between excitation and inhibition. Neuronal oscillations in the gamma band (30-80 Hz) have been suggested to play a central role in feature binding or establishing channels for neural communication. For these functions, the gamma rhythm frequency must be consistent across neural assemblies encoding the features of a stimulus. Here we test the dependence of gamma frequency on stimulus contrast in V1 cortex of awake behaving macaques and show that gamma frequency increases monotonically with contrast. Changes in stimulus contrast over time leads to a reliable gamma frequency modulation on a fast timescale. Further, large stimuli whose contrast varies across space generate gamma rhythms at significantly different frequencies in simultaneously recorded neuronal assemblies separated by as little as 400 microm, making the gamma rhythm a poor candidate for binding or communication, at least in V1. Instead, our results suggest that the gamma rhythm arises from local interactions between excitation and inhibition. |
| Author | Ray, Supratim Maunsell, John H R |
| Author_xml | – sequence: 1 givenname: Supratim surname: Ray fullname: Ray, Supratim email: supratim_ray@hms.harvard.edu organization: Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA. supratim_ray@hms.harvard.edu – sequence: 2 givenname: John H R surname: Maunsell fullname: Maunsell, John H R |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20826318$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLxDAUhYMozkP_gUh2rlqTtGmTpYxPGHCj65qmN5qhTWqSiv57K47g6h4-Pg6Hu0KHzjtA6IySnBJaXe5yB1PwLmdkRkTkhJQHaEmJrLOSSnn4Ly_QKsYdIbTkkh6jBSOCVQUVS_RybY2BAE5DxNbhVzUMCpsA79PM7AyVDj5G_GHjpHqsfUjwiQPEFKxOOL2BDXicDdv2gKcIPy3aD-OUVLLenaAjo_oIp_u7Rs-3N0-b-2z7ePewudpmmjOWMiMKZYQkRpCOcq5YVXfMmJq10ghTcC3IPL0toatVJTUHYySTtSw0FJxrxdbo4rd3DH7eHlMz2Kih75UDP8Wm5iVhkshyNs_35tQO0DVjsIMKX83fU9g3_phpoA |
| CitedBy_id | crossref_primary_10_1016_j_tics_2014_08_006 crossref_primary_10_1073_pnas_1314690111 crossref_primary_10_1371_journal_pbio_1001477 crossref_primary_10_1016_j_isci_2025_112313 crossref_primary_10_1523_JNEUROSCI_1856_11_2011 crossref_primary_10_1109_ACCESS_2020_2978161 crossref_primary_10_3389_fnsys_2021_670702 crossref_primary_10_1371_journal_pbio_3001534 crossref_primary_10_1016_j_cub_2014_09_001 crossref_primary_10_1016_j_neuron_2019_09_039 crossref_primary_10_1016_j_neuron_2025_03_030 crossref_primary_10_1093_cercor_bhw124 crossref_primary_10_1016_j_neuron_2015_09_034 crossref_primary_10_1162_jocn_a_01280 crossref_primary_10_1016_j_jphysparis_2011_07_014 crossref_primary_10_1038_s41398_021_01678_z crossref_primary_10_1371_journal_pcbi_1003574 crossref_primary_10_1093_cercor_bhaa314 crossref_primary_10_1093_cercor_bhz068 crossref_primary_10_1177_0269881114562093 crossref_primary_10_1016_j_neuroimage_2013_02_007 crossref_primary_10_3389_fncir_2024_1490638 crossref_primary_10_3389_fncom_2016_00089 crossref_primary_10_1016_j_conb_2014_09_004 crossref_primary_10_1093_cercor_bhad270 crossref_primary_10_7554_eLife_75897 crossref_primary_10_1016_j_conb_2014_09_003 crossref_primary_10_1016_j_conb_2016_06_010 crossref_primary_10_1038_s42003_021_02256_1 crossref_primary_10_1523_JNEUROSCI_2603_16_2016 crossref_primary_10_1038_nn_4562 crossref_primary_10_1016_j_conb_2022_102589 crossref_primary_10_1073_pnas_1605879113 crossref_primary_10_1016_j_neuroimage_2021_117748 crossref_primary_10_1007_s11071_024_09471_5 crossref_primary_10_1038_nn_4569 crossref_primary_10_1016_j_euroneuro_2015_04_012 crossref_primary_10_1016_j_neuroimage_2021_117757 crossref_primary_10_1371_journal_pcbi_1005186 crossref_primary_10_1038_s41593_020_0671_1 crossref_primary_10_1073_pnas_1717334115 crossref_primary_10_1162_NECO_a_00688 crossref_primary_10_1016_j_neubiorev_2013_01_013 crossref_primary_10_1146_annurev_vision_100419_104530 crossref_primary_10_1016_j_neuron_2012_12_036 crossref_primary_10_1523_JNEUROSCI_0675_18_2018 crossref_primary_10_1523_JNEUROSCI_1279_24_2024 crossref_primary_10_1016_j_neuron_2022_01_002 crossref_primary_10_7554_eLife_13824 crossref_primary_10_7554_eLife_29086 crossref_primary_10_1016_j_neuron_2010_11_027 crossref_primary_10_1016_j_conb_2017_08_010 crossref_primary_10_1016_j_neuroimage_2023_120256 crossref_primary_10_1016_j_neuroimage_2023_120375 crossref_primary_10_1371_journal_pbio_2005348 crossref_primary_10_1016_j_neulet_2023_137474 crossref_primary_10_1016_j_neuroimage_2019_06_051 crossref_primary_10_3389_fncom_2019_00007 crossref_primary_10_1073_pnas_1402773111 crossref_primary_10_1016_j_neuron_2016_12_028 crossref_primary_10_1016_j_tins_2015_09_001 crossref_primary_10_1111_ejn_13807 crossref_primary_10_1371_journal_pcbi_1005519 crossref_primary_10_1007_s12646_016_0374_6 crossref_primary_10_1016_j_pneurobio_2012_06_008 crossref_primary_10_1152_jn_00443_2016 crossref_primary_10_1016_j_bandl_2016_06_001 crossref_primary_10_1162_jocn_a_01395 crossref_primary_10_1371_journal_pbio_3001666 crossref_primary_10_1016_j_conb_2014_05_004 crossref_primary_10_1073_pnas_1309714111 crossref_primary_10_1111_ejn_13126 crossref_primary_10_1016_j_neuron_2011_09_029 crossref_primary_10_3389_fnsys_2020_00014 crossref_primary_10_1016_j_neuron_2014_08_051 crossref_primary_10_1038_s41467_023_42088_7 crossref_primary_10_1007_s11571_021_09767_x crossref_primary_10_1097_WCO_0000000000000034 crossref_primary_10_1523_JNEUROSCI_4892_14_2015 crossref_primary_10_1162_NECO_a_00785 crossref_primary_10_1371_journal_pbio_1002420 crossref_primary_10_3389_fncir_2017_00050 crossref_primary_10_1016_j_tins_2015_12_004 crossref_primary_10_1523_JNEUROSCI_1021_16_2016 crossref_primary_10_1111_ejn_12606 crossref_primary_10_1523_JNEUROSCI_5592_11_2012 crossref_primary_10_1016_j_conb_2014_07_024 crossref_primary_10_3390_ijerph15030399 crossref_primary_10_1002_hbm_23331 crossref_primary_10_1007_s00429_011_0307_z crossref_primary_10_1016_j_tics_2020_03_009 crossref_primary_10_1016_j_biopsych_2015_07_005 crossref_primary_10_1007_s11571_013_9250_4 crossref_primary_10_1016_j_dcn_2011_04_001 crossref_primary_10_1371_journal_pbio_1001045 crossref_primary_10_1523_JNEUROSCI_3609_14_2015 crossref_primary_10_1016_j_neuron_2018_12_009 crossref_primary_10_1152_jn_00469_2018 crossref_primary_10_1371_journal_pbio_1000610 crossref_primary_10_1371_journal_pcbi_1005938 crossref_primary_10_1016_j_neuroimage_2018_06_005 crossref_primary_10_1093_cercor_bhu091 crossref_primary_10_1111_ejn_12857 crossref_primary_10_1523_JNEUROSCI_1085_21_2021 crossref_primary_10_1016_j_jneumeth_2011_11_005 crossref_primary_10_1523_JNEUROSCI_1687_12_2013 crossref_primary_10_1523_JNEUROSCI_1550_22_2023 crossref_primary_10_1007_s12021_021_09538_3 crossref_primary_10_1088_1741_2560_11_4_046007 crossref_primary_10_1038_nn_3797 crossref_primary_10_31083_j_jin2305096 crossref_primary_10_3389_fnhum_2021_768459 crossref_primary_10_1523_JNEUROSCI_1368_19_2020 crossref_primary_10_1371_journal_pone_0281531 crossref_primary_10_1007_s11571_020_09635_0 crossref_primary_10_1073_pnas_1201478109 crossref_primary_10_3390_brainsci13050792 crossref_primary_10_1016_j_neuroimage_2012_01_028 crossref_primary_10_1371_journal_pone_0240147 crossref_primary_10_1371_journal_pcbi_1010843 crossref_primary_10_1371_journal_pone_0157374 crossref_primary_10_1371_journal_pone_0228937 crossref_primary_10_1038_s41598_021_98021_9 crossref_primary_10_1007_s11571_020_09622_5 crossref_primary_10_1016_j_tics_2011_03_007 crossref_primary_10_1007_s10548_016_0526_y crossref_primary_10_1016_j_cub_2013_05_001 crossref_primary_10_1152_jn_00154_2017 crossref_primary_10_1007_s12021_021_09542_7 crossref_primary_10_1016_j_neuron_2017_11_033 crossref_primary_10_1073_pnas_2103702118 crossref_primary_10_1016_j_neuroimage_2013_04_040 crossref_primary_10_1073_pnas_2101043118 crossref_primary_10_1016_j_neuron_2022_10_036 crossref_primary_10_1523_JNEUROSCI_2270_17_2017 crossref_primary_10_1007_s10827_024_00877_z crossref_primary_10_1152_jn_00851_2013 crossref_primary_10_1155_2021_9954302 crossref_primary_10_1109_JPROC_2014_2313113 crossref_primary_10_1016_j_neuroimage_2014_01_047 crossref_primary_10_1016_j_neuron_2011_03_018 crossref_primary_10_1162_neco_a_01500 crossref_primary_10_1016_j_neuroimage_2013_05_084 crossref_primary_10_1016_j_conb_2011_01_004 crossref_primary_10_1371_journal_pbio_3001466 crossref_primary_10_1371_journal_pcbi_1009886 crossref_primary_10_1371_journal_pcbi_1005162 crossref_primary_10_1523_JNEUROSCI_0990_16_2016 crossref_primary_10_1016_j_jneumeth_2016_05_004 crossref_primary_10_1113_jphysiol_2012_240358 crossref_primary_10_7554_eLife_42101 crossref_primary_10_1038_s42003_021_02207_w crossref_primary_10_1371_journal_pcbi_1004072 crossref_primary_10_1111_j_1749_6632_2011_06296_x crossref_primary_10_1371_journal_pone_0075499 crossref_primary_10_1007_s00429_022_02460_7 crossref_primary_10_1016_j_neuron_2016_09_038 crossref_primary_10_1002_hbm_24189 crossref_primary_10_3389_fnsys_2014_00169 crossref_primary_10_1016_j_jneumeth_2014_09_005 crossref_primary_10_1016_j_pneurobio_2023_102491 crossref_primary_10_1111_ejn_12881 crossref_primary_10_1016_j_neubiorev_2019_11_013 crossref_primary_10_1016_j_neuroimage_2016_02_012 crossref_primary_10_1155_2013_752384 crossref_primary_10_1016_j_neuron_2013_03_003 crossref_primary_10_1007_s42087_025_00478_x crossref_primary_10_1371_journal_pone_0124798 crossref_primary_10_1523_JNEUROSCI_0900_19_2019 crossref_primary_10_1016_j_neuron_2013_03_007 crossref_primary_10_1038_ncomms11098 crossref_primary_10_3389_fncom_2025_1568143 crossref_primary_10_1016_j_conb_2015_02_004 crossref_primary_10_1016_j_neuroimage_2012_10_018 crossref_primary_10_1523_JNEUROSCI_3478_13_2013 crossref_primary_10_1038_s42003_025_08324_0 crossref_primary_10_1113_JP286936 crossref_primary_10_7554_eLife_26642 crossref_primary_10_1113_JP275245 crossref_primary_10_1177_10738584231221766 crossref_primary_10_1523_JNEUROSCI_4771_11_2012 crossref_primary_10_3389_fncir_2019_00044 crossref_primary_10_1002_hipo_23585 crossref_primary_10_3389_fnins_2018_00837 crossref_primary_10_1093_cercor_bhr299 crossref_primary_10_1152_jn_00781_2012 crossref_primary_10_1016_j_neuroimage_2012_11_043 crossref_primary_10_1016_j_neuroimage_2016_05_006 crossref_primary_10_1016_j_pneurobio_2024_102637 crossref_primary_10_1093_cercor_bhae405 crossref_primary_10_1038_s41593_021_00902_9 crossref_primary_10_1038_s41598_018_26779_6 crossref_primary_10_7554_eLife_62949 crossref_primary_10_1016_j_neuroimage_2015_09_069 crossref_primary_10_1152_jn_00689_2015 crossref_primary_10_1016_j_neuroimage_2017_07_022 crossref_primary_10_1371_journal_pcbi_1009848 crossref_primary_10_1038_s41467_017_00936_3 crossref_primary_10_1186_s40708_024_00235_w crossref_primary_10_1371_journal_pcbi_1005132 crossref_primary_10_1371_journal_pone_0146443 crossref_primary_10_1016_j_neuron_2012_06_037 crossref_primary_10_1016_j_tics_2014_02_004 crossref_primary_10_1016_j_eplepsyres_2014_04_012 crossref_primary_10_1016_j_neuron_2011_04_029 crossref_primary_10_1073_pnas_2005417117 crossref_primary_10_1016_j_neucom_2025_131401 crossref_primary_10_1016_j_neuron_2016_02_034 crossref_primary_10_1152_jn_00232_2015 crossref_primary_10_1038_s41467_017_01763_2 crossref_primary_10_1016_j_neuroimage_2018_06_011 crossref_primary_10_1016_j_neuroscience_2018_05_006 crossref_primary_10_1186_s12984_017_0268_4 crossref_primary_10_1016_j_neuron_2012_01_011 crossref_primary_10_1093_cercor_bhs293 crossref_primary_10_1038_s41467_022_29674_x crossref_primary_10_1162_NECO_a_00827 crossref_primary_10_1016_j_expneurol_2012_09_014 crossref_primary_10_1038_s41598_021_83923_5 crossref_primary_10_3389_fncir_2016_00099 crossref_primary_10_1016_j_neuroimage_2015_02_062 crossref_primary_10_1016_j_cub_2019_08_004 crossref_primary_10_1038_s41562_025_02250_1 crossref_primary_10_1113_JP283858 crossref_primary_10_1016_j_neuron_2023_02_026 crossref_primary_10_1016_j_neuron_2013_10_002 crossref_primary_10_1016_j_neuron_2018_04_017 crossref_primary_10_1007_s10827_014_0495_7 crossref_primary_10_1093_cercor_bhu143 crossref_primary_10_1016_j_neuroimage_2021_117788 crossref_primary_10_1038_s41583_018_0094_0 crossref_primary_10_1038_nrn3241 crossref_primary_10_1016_j_conb_2014_11_006 crossref_primary_10_1016_j_neuroimage_2019_116031 crossref_primary_10_3389_fnsys_2022_908665 crossref_primary_10_1016_j_neuroscience_2017_07_037 crossref_primary_10_1109_ACCESS_2018_2845301 crossref_primary_10_1007_s10827_011_0374_4 crossref_primary_10_1016_j_conb_2014_11_001 crossref_primary_10_3389_fnsys_2016_00035 crossref_primary_10_1088_1741_2552_ab7321 crossref_primary_10_1093_cercor_bhad077 crossref_primary_10_1371_journal_pcbi_1012190 crossref_primary_10_1016_j_neuron_2019_06_014 crossref_primary_10_1002_hbm_23283 crossref_primary_10_1093_cercor_bht280 crossref_primary_10_1152_jn_01038_2014 crossref_primary_10_1162_neco_a_01369 crossref_primary_10_1371_journal_pone_0161488 crossref_primary_10_1093_cercor_bhu136 crossref_primary_10_1152_jn_00807_2017 crossref_primary_10_7554_eLife_77594 crossref_primary_10_1111_ejn_12453 crossref_primary_10_3389_fncom_2024_1422159 crossref_primary_10_1016_j_celrep_2025_116131 crossref_primary_10_1523_JNEUROSCI_2057_12_2013 crossref_primary_10_1038_nn_3952 crossref_primary_10_3389_fncom_2018_00066 crossref_primary_10_1371_journal_pbio_2004132 crossref_primary_10_1038_s41598_020_61961_9 crossref_primary_10_1523_JNEUROSCI_5644_11_2012 crossref_primary_10_1016_j_tins_2023_07_003 crossref_primary_10_7554_eLife_90431 crossref_primary_10_1038_s41467_022_28090_5 crossref_primary_10_1016_j_neuron_2013_08_019 crossref_primary_10_1038_nrn3137 crossref_primary_10_1073_pnas_1405300111 crossref_primary_10_1016_j_tics_2014_12_009 crossref_primary_10_1093_cercor_bhae051 crossref_primary_10_1016_j_neuron_2014_01_021 crossref_primary_10_1111_ejn_13796 crossref_primary_10_1162_netn_a_00106 crossref_primary_10_1002_wcs_1540 crossref_primary_10_1016_j_tics_2014_12_002 crossref_primary_10_1152_jn_00299_2018 crossref_primary_10_1038_nn_3742 crossref_primary_10_1016_j_tics_2012_02_004 crossref_primary_10_1371_journal_pcbi_1012532 crossref_primary_10_1126_science_ade1855 crossref_primary_10_1016_j_neubiorev_2020_07_019 crossref_primary_10_1016_j_neuron_2013_10_017 crossref_primary_10_1016_j_neuron_2024_04_020 crossref_primary_10_1016_j_neunet_2016_12_003 crossref_primary_10_1073_pnas_2412830122 crossref_primary_10_1111_joa_12339 crossref_primary_10_1523_JNEUROSCI_0890_12_2012 crossref_primary_10_1016_j_tins_2020_07_001 crossref_primary_10_1162_netn_a_00219 crossref_primary_10_3389_fncir_2023_1254009 crossref_primary_10_3389_fnsys_2020_00055 crossref_primary_10_1162_jocn_a_00781 crossref_primary_10_1038_s41467_020_18826_6 crossref_primary_10_7554_eLife_28569 crossref_primary_10_1371_journal_pcbi_1002176 crossref_primary_10_1177_15500594231165589 crossref_primary_10_1371_journal_pone_0243237 crossref_primary_10_1162_NECO_a_00742 crossref_primary_10_1016_j_neuroimage_2017_08_034 crossref_primary_10_1093_cercor_bhad412 crossref_primary_10_1371_journal_pone_0057685 |
| ContentType | Journal Article |
| Copyright | 2010 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2010 Elsevier Inc. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.neuron.2010.08.004 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Biology |
| EISSN | 1097-4199 |
| ExternalDocumentID | 20826318 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01 EY005911 – fundername: Howard Hughes Medical Institute – fundername: NEI NIH HHS grantid: R01EY005911 |
| GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 4.4 457 4G. 53G 5RE 62- 7-5 8FE 8FH AAEDT AAEDW AAFWJ AAIKJ AAKRW AAKUH AALRI AAMRU AAVLU AAXUO AAYWO ABDGV ABJNI ABMAC ACGFO ACGFS ACIWK ACNCT ACPRK ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEFWE AENEX AEUPX AEXQZ AFPUW AFTJW AGCQF AGHFR AGKMS AHHHB AHMBA AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP AQUVI ASPBG AVWKF AZFZN BAWUL BKEYQ BKNYI BPHCQ BVXVI CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EFKBS EIF EJD F5P FCP FDB FEDTE FIRID HVGLF HZ~ IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M3Z M41 N9A NPM O-L O9- OK1 P2P P6G PQQKQ PROAC RIG ROL RPZ SCP SDP SES SSZ TR2 WOW 7X8 |
| ID | FETCH-LOGICAL-c522t-f83af890f80d155a267d2ff72b9f8f35c80591b4ed7a69c5eff929793ce355ca2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 344 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000281938900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1097-4199 |
| IngestDate | Sun Sep 28 06:57:07 EDT 2025 Mon Jul 21 06:01:17 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | 2010 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c522t-f83af890f80d155a267d2ff72b9f8f35c80591b4ed7a69c5eff929793ce355ca2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.neuron.2010.08.004 |
| PMID | 20826318 |
| PQID | 754029094 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_754029094 pubmed_primary_20826318 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-09-09 |
| PublicationDateYYYYMMDD | 2010-09-09 |
| PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-09 day: 09 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neuron (Cambridge, Mass.) |
| PublicationTitleAlternate | Neuron |
| PublicationYear | 2010 |
| SSID | ssj0014591 |
| Score | 2.5145702 |
| Snippet | Neuronal oscillations in the gamma band (30-80 Hz) have been suggested to play a central role in feature binding or establishing channels for neural... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 885 |
| SubjectTerms | Action Potentials - physiology Animals Brain Mapping Contrast Sensitivity - physiology Electroencephalography Entropy Evoked Potentials, Visual - physiology Eye Movements - physiology Macaca mulatta Male Neurons - physiology Numerical Analysis, Computer-Assisted Pattern Recognition, Visual - physiology Photic Stimulation - methods Time Factors Visual Cortex - cytology Visual Cortex - physiology Visual Pathways - physiology Wakefulness |
| Title | Differences in gamma frequencies across visual cortex restrict their possible use in computation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/20826318 https://www.proquest.com/docview/754029094 |
| Volume | 67 |
| WOSCitedRecordID | wos000281938900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4BBYmFR3mVlzwgtojGSepkQhVQsVB1AKlb8etQJZqWpq3ov-fspDAhBpZssSL7fPedvy_-AK6QUFvMTRQolbjTqkQGiisRYGaEsiIMI6292YTodtN-P-tV2pyiklWucqJP1Gas3Rn5jSBowTNqRm4nH4EzjXLkauWgsQ61iJCMC2rR_yER4sQb5jmO1ZGd2erPOS_v8tdF5pW2y-kp498xpq81nd1_fuUe7FQgk7XLqNiHNZvX4aCdU4M9WrJr5mWf_jy9DlulG-XyAF7vK7MUSh1smLM3ORpJhtNSbE0dNZO-prLFsJjT8NrpdD-ZM_egZDpjnnNgk7HbZe-WzQvrRtHeNsKv_yG8dB6e7x6DyoAh0ATLZgGmkcQ0a2LaNIQ7JG8JwxEFVxmmGCU6JXAWqtgaIVuZTiwioS3a8doSjNGSH8FGPs7tCTCuQmnQUmUwhIGwpTDUobEGBYqmjNMGsNWEDijAHWshczueF4PvKW3Acbkog0l5EceAE35pUVI6_fvlM9gueX8nEDuHGtLmthewqRezYTG99IFDz27v6QtwGNDH |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differences+in+gamma+frequencies+across+visual+cortex+restrict+their+possible+use+in+computation&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Ray%2C+Supratim&rft.au=Maunsell%2C+John+H+R&rft.date=2010-09-09&rft.issn=1097-4199&rft.eissn=1097-4199&rft.volume=67&rft.issue=5&rft.spage=885&rft_id=info:doi/10.1016%2Fj.neuron.2010.08.004&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4199&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4199&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4199&client=summon |