Differences in gamma frequencies across visual cortex restrict their possible use in computation

Neuronal oscillations in the gamma band (30-80 Hz) have been suggested to play a central role in feature binding or establishing channels for neural communication. For these functions, the gamma rhythm frequency must be consistent across neural assemblies encoding the features of a stimulus. Here we...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neuron (Cambridge, Mass.) Ročník 67; číslo 5; s. 885
Hlavní autoři: Ray, Supratim, Maunsell, John H R
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 09.09.2010
Témata:
ISSN:1097-4199, 1097-4199
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Neuronal oscillations in the gamma band (30-80 Hz) have been suggested to play a central role in feature binding or establishing channels for neural communication. For these functions, the gamma rhythm frequency must be consistent across neural assemblies encoding the features of a stimulus. Here we test the dependence of gamma frequency on stimulus contrast in V1 cortex of awake behaving macaques and show that gamma frequency increases monotonically with contrast. Changes in stimulus contrast over time leads to a reliable gamma frequency modulation on a fast timescale. Further, large stimuli whose contrast varies across space generate gamma rhythms at significantly different frequencies in simultaneously recorded neuronal assemblies separated by as little as 400 microm, making the gamma rhythm a poor candidate for binding or communication, at least in V1. Instead, our results suggest that the gamma rhythm arises from local interactions between excitation and inhibition.
AbstractList Neuronal oscillations in the gamma band (30-80 Hz) have been suggested to play a central role in feature binding or establishing channels for neural communication. For these functions, the gamma rhythm frequency must be consistent across neural assemblies encoding the features of a stimulus. Here we test the dependence of gamma frequency on stimulus contrast in V1 cortex of awake behaving macaques and show that gamma frequency increases monotonically with contrast. Changes in stimulus contrast over time leads to a reliable gamma frequency modulation on a fast timescale. Further, large stimuli whose contrast varies across space generate gamma rhythms at significantly different frequencies in simultaneously recorded neuronal assemblies separated by as little as 400 microm, making the gamma rhythm a poor candidate for binding or communication, at least in V1. Instead, our results suggest that the gamma rhythm arises from local interactions between excitation and inhibition.Neuronal oscillations in the gamma band (30-80 Hz) have been suggested to play a central role in feature binding or establishing channels for neural communication. For these functions, the gamma rhythm frequency must be consistent across neural assemblies encoding the features of a stimulus. Here we test the dependence of gamma frequency on stimulus contrast in V1 cortex of awake behaving macaques and show that gamma frequency increases monotonically with contrast. Changes in stimulus contrast over time leads to a reliable gamma frequency modulation on a fast timescale. Further, large stimuli whose contrast varies across space generate gamma rhythms at significantly different frequencies in simultaneously recorded neuronal assemblies separated by as little as 400 microm, making the gamma rhythm a poor candidate for binding or communication, at least in V1. Instead, our results suggest that the gamma rhythm arises from local interactions between excitation and inhibition.
Neuronal oscillations in the gamma band (30-80 Hz) have been suggested to play a central role in feature binding or establishing channels for neural communication. For these functions, the gamma rhythm frequency must be consistent across neural assemblies encoding the features of a stimulus. Here we test the dependence of gamma frequency on stimulus contrast in V1 cortex of awake behaving macaques and show that gamma frequency increases monotonically with contrast. Changes in stimulus contrast over time leads to a reliable gamma frequency modulation on a fast timescale. Further, large stimuli whose contrast varies across space generate gamma rhythms at significantly different frequencies in simultaneously recorded neuronal assemblies separated by as little as 400 microm, making the gamma rhythm a poor candidate for binding or communication, at least in V1. Instead, our results suggest that the gamma rhythm arises from local interactions between excitation and inhibition.
Author Ray, Supratim
Maunsell, John H R
Author_xml – sequence: 1
  givenname: Supratim
  surname: Ray
  fullname: Ray, Supratim
  email: supratim_ray@hms.harvard.edu
  organization: Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA. supratim_ray@hms.harvard.edu
– sequence: 2
  givenname: John H R
  surname: Maunsell
  fullname: Maunsell, John H R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20826318$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLxDAUhYMozkP_gUh2rlqTtGmTpYxPGHCj65qmN5qhTWqSiv57K47g6h4-Pg6Hu0KHzjtA6IySnBJaXe5yB1PwLmdkRkTkhJQHaEmJrLOSSnn4Ly_QKsYdIbTkkh6jBSOCVQUVS_RybY2BAE5DxNbhVzUMCpsA79PM7AyVDj5G_GHjpHqsfUjwiQPEFKxOOL2BDXicDdv2gKcIPy3aD-OUVLLenaAjo_oIp_u7Rs-3N0-b-2z7ePewudpmmjOWMiMKZYQkRpCOcq5YVXfMmJq10ghTcC3IPL0toatVJTUHYySTtSw0FJxrxdbo4rd3DH7eHlMz2Kih75UDP8Wm5iVhkshyNs_35tQO0DVjsIMKX83fU9g3_phpoA
CitedBy_id crossref_primary_10_1016_j_tics_2014_08_006
crossref_primary_10_1073_pnas_1314690111
crossref_primary_10_1371_journal_pbio_1001477
crossref_primary_10_1016_j_isci_2025_112313
crossref_primary_10_1523_JNEUROSCI_1856_11_2011
crossref_primary_10_1109_ACCESS_2020_2978161
crossref_primary_10_3389_fnsys_2021_670702
crossref_primary_10_1371_journal_pbio_3001534
crossref_primary_10_1016_j_cub_2014_09_001
crossref_primary_10_1016_j_neuron_2019_09_039
crossref_primary_10_1016_j_neuron_2025_03_030
crossref_primary_10_1093_cercor_bhw124
crossref_primary_10_1016_j_neuron_2015_09_034
crossref_primary_10_1162_jocn_a_01280
crossref_primary_10_1016_j_jphysparis_2011_07_014
crossref_primary_10_1038_s41398_021_01678_z
crossref_primary_10_1371_journal_pcbi_1003574
crossref_primary_10_1093_cercor_bhaa314
crossref_primary_10_1093_cercor_bhz068
crossref_primary_10_1177_0269881114562093
crossref_primary_10_1016_j_neuroimage_2013_02_007
crossref_primary_10_3389_fncir_2024_1490638
crossref_primary_10_3389_fncom_2016_00089
crossref_primary_10_1016_j_conb_2014_09_004
crossref_primary_10_1093_cercor_bhad270
crossref_primary_10_7554_eLife_75897
crossref_primary_10_1016_j_conb_2014_09_003
crossref_primary_10_1016_j_conb_2016_06_010
crossref_primary_10_1038_s42003_021_02256_1
crossref_primary_10_1523_JNEUROSCI_2603_16_2016
crossref_primary_10_1038_nn_4562
crossref_primary_10_1016_j_conb_2022_102589
crossref_primary_10_1073_pnas_1605879113
crossref_primary_10_1016_j_neuroimage_2021_117748
crossref_primary_10_1007_s11071_024_09471_5
crossref_primary_10_1038_nn_4569
crossref_primary_10_1016_j_euroneuro_2015_04_012
crossref_primary_10_1016_j_neuroimage_2021_117757
crossref_primary_10_1371_journal_pcbi_1005186
crossref_primary_10_1038_s41593_020_0671_1
crossref_primary_10_1073_pnas_1717334115
crossref_primary_10_1162_NECO_a_00688
crossref_primary_10_1016_j_neubiorev_2013_01_013
crossref_primary_10_1146_annurev_vision_100419_104530
crossref_primary_10_1016_j_neuron_2012_12_036
crossref_primary_10_1523_JNEUROSCI_0675_18_2018
crossref_primary_10_1523_JNEUROSCI_1279_24_2024
crossref_primary_10_1016_j_neuron_2022_01_002
crossref_primary_10_7554_eLife_13824
crossref_primary_10_7554_eLife_29086
crossref_primary_10_1016_j_neuron_2010_11_027
crossref_primary_10_1016_j_conb_2017_08_010
crossref_primary_10_1016_j_neuroimage_2023_120256
crossref_primary_10_1016_j_neuroimage_2023_120375
crossref_primary_10_1371_journal_pbio_2005348
crossref_primary_10_1016_j_neulet_2023_137474
crossref_primary_10_1016_j_neuroimage_2019_06_051
crossref_primary_10_3389_fncom_2019_00007
crossref_primary_10_1073_pnas_1402773111
crossref_primary_10_1016_j_neuron_2016_12_028
crossref_primary_10_1016_j_tins_2015_09_001
crossref_primary_10_1111_ejn_13807
crossref_primary_10_1371_journal_pcbi_1005519
crossref_primary_10_1007_s12646_016_0374_6
crossref_primary_10_1016_j_pneurobio_2012_06_008
crossref_primary_10_1152_jn_00443_2016
crossref_primary_10_1016_j_bandl_2016_06_001
crossref_primary_10_1162_jocn_a_01395
crossref_primary_10_1371_journal_pbio_3001666
crossref_primary_10_1016_j_conb_2014_05_004
crossref_primary_10_1073_pnas_1309714111
crossref_primary_10_1111_ejn_13126
crossref_primary_10_1016_j_neuron_2011_09_029
crossref_primary_10_3389_fnsys_2020_00014
crossref_primary_10_1016_j_neuron_2014_08_051
crossref_primary_10_1038_s41467_023_42088_7
crossref_primary_10_1007_s11571_021_09767_x
crossref_primary_10_1097_WCO_0000000000000034
crossref_primary_10_1523_JNEUROSCI_4892_14_2015
crossref_primary_10_1162_NECO_a_00785
crossref_primary_10_1371_journal_pbio_1002420
crossref_primary_10_3389_fncir_2017_00050
crossref_primary_10_1016_j_tins_2015_12_004
crossref_primary_10_1523_JNEUROSCI_1021_16_2016
crossref_primary_10_1111_ejn_12606
crossref_primary_10_1523_JNEUROSCI_5592_11_2012
crossref_primary_10_1016_j_conb_2014_07_024
crossref_primary_10_3390_ijerph15030399
crossref_primary_10_1002_hbm_23331
crossref_primary_10_1007_s00429_011_0307_z
crossref_primary_10_1016_j_tics_2020_03_009
crossref_primary_10_1016_j_biopsych_2015_07_005
crossref_primary_10_1007_s11571_013_9250_4
crossref_primary_10_1016_j_dcn_2011_04_001
crossref_primary_10_1371_journal_pbio_1001045
crossref_primary_10_1523_JNEUROSCI_3609_14_2015
crossref_primary_10_1016_j_neuron_2018_12_009
crossref_primary_10_1152_jn_00469_2018
crossref_primary_10_1371_journal_pbio_1000610
crossref_primary_10_1371_journal_pcbi_1005938
crossref_primary_10_1016_j_neuroimage_2018_06_005
crossref_primary_10_1093_cercor_bhu091
crossref_primary_10_1111_ejn_12857
crossref_primary_10_1523_JNEUROSCI_1085_21_2021
crossref_primary_10_1016_j_jneumeth_2011_11_005
crossref_primary_10_1523_JNEUROSCI_1687_12_2013
crossref_primary_10_1523_JNEUROSCI_1550_22_2023
crossref_primary_10_1007_s12021_021_09538_3
crossref_primary_10_1088_1741_2560_11_4_046007
crossref_primary_10_1038_nn_3797
crossref_primary_10_31083_j_jin2305096
crossref_primary_10_3389_fnhum_2021_768459
crossref_primary_10_1523_JNEUROSCI_1368_19_2020
crossref_primary_10_1371_journal_pone_0281531
crossref_primary_10_1007_s11571_020_09635_0
crossref_primary_10_1073_pnas_1201478109
crossref_primary_10_3390_brainsci13050792
crossref_primary_10_1016_j_neuroimage_2012_01_028
crossref_primary_10_1371_journal_pone_0240147
crossref_primary_10_1371_journal_pcbi_1010843
crossref_primary_10_1371_journal_pone_0157374
crossref_primary_10_1371_journal_pone_0228937
crossref_primary_10_1038_s41598_021_98021_9
crossref_primary_10_1007_s11571_020_09622_5
crossref_primary_10_1016_j_tics_2011_03_007
crossref_primary_10_1007_s10548_016_0526_y
crossref_primary_10_1016_j_cub_2013_05_001
crossref_primary_10_1152_jn_00154_2017
crossref_primary_10_1007_s12021_021_09542_7
crossref_primary_10_1016_j_neuron_2017_11_033
crossref_primary_10_1073_pnas_2103702118
crossref_primary_10_1016_j_neuroimage_2013_04_040
crossref_primary_10_1073_pnas_2101043118
crossref_primary_10_1016_j_neuron_2022_10_036
crossref_primary_10_1523_JNEUROSCI_2270_17_2017
crossref_primary_10_1007_s10827_024_00877_z
crossref_primary_10_1152_jn_00851_2013
crossref_primary_10_1155_2021_9954302
crossref_primary_10_1109_JPROC_2014_2313113
crossref_primary_10_1016_j_neuroimage_2014_01_047
crossref_primary_10_1016_j_neuron_2011_03_018
crossref_primary_10_1162_neco_a_01500
crossref_primary_10_1016_j_neuroimage_2013_05_084
crossref_primary_10_1016_j_conb_2011_01_004
crossref_primary_10_1371_journal_pbio_3001466
crossref_primary_10_1371_journal_pcbi_1009886
crossref_primary_10_1371_journal_pcbi_1005162
crossref_primary_10_1523_JNEUROSCI_0990_16_2016
crossref_primary_10_1016_j_jneumeth_2016_05_004
crossref_primary_10_1113_jphysiol_2012_240358
crossref_primary_10_7554_eLife_42101
crossref_primary_10_1038_s42003_021_02207_w
crossref_primary_10_1371_journal_pcbi_1004072
crossref_primary_10_1111_j_1749_6632_2011_06296_x
crossref_primary_10_1371_journal_pone_0075499
crossref_primary_10_1007_s00429_022_02460_7
crossref_primary_10_1016_j_neuron_2016_09_038
crossref_primary_10_1002_hbm_24189
crossref_primary_10_3389_fnsys_2014_00169
crossref_primary_10_1016_j_jneumeth_2014_09_005
crossref_primary_10_1016_j_pneurobio_2023_102491
crossref_primary_10_1111_ejn_12881
crossref_primary_10_1016_j_neubiorev_2019_11_013
crossref_primary_10_1016_j_neuroimage_2016_02_012
crossref_primary_10_1155_2013_752384
crossref_primary_10_1016_j_neuron_2013_03_003
crossref_primary_10_1007_s42087_025_00478_x
crossref_primary_10_1371_journal_pone_0124798
crossref_primary_10_1523_JNEUROSCI_0900_19_2019
crossref_primary_10_1016_j_neuron_2013_03_007
crossref_primary_10_1038_ncomms11098
crossref_primary_10_3389_fncom_2025_1568143
crossref_primary_10_1016_j_conb_2015_02_004
crossref_primary_10_1016_j_neuroimage_2012_10_018
crossref_primary_10_1523_JNEUROSCI_3478_13_2013
crossref_primary_10_1038_s42003_025_08324_0
crossref_primary_10_1113_JP286936
crossref_primary_10_7554_eLife_26642
crossref_primary_10_1113_JP275245
crossref_primary_10_1177_10738584231221766
crossref_primary_10_1523_JNEUROSCI_4771_11_2012
crossref_primary_10_3389_fncir_2019_00044
crossref_primary_10_1002_hipo_23585
crossref_primary_10_3389_fnins_2018_00837
crossref_primary_10_1093_cercor_bhr299
crossref_primary_10_1152_jn_00781_2012
crossref_primary_10_1016_j_neuroimage_2012_11_043
crossref_primary_10_1016_j_neuroimage_2016_05_006
crossref_primary_10_1016_j_pneurobio_2024_102637
crossref_primary_10_1093_cercor_bhae405
crossref_primary_10_1038_s41593_021_00902_9
crossref_primary_10_1038_s41598_018_26779_6
crossref_primary_10_7554_eLife_62949
crossref_primary_10_1016_j_neuroimage_2015_09_069
crossref_primary_10_1152_jn_00689_2015
crossref_primary_10_1016_j_neuroimage_2017_07_022
crossref_primary_10_1371_journal_pcbi_1009848
crossref_primary_10_1038_s41467_017_00936_3
crossref_primary_10_1186_s40708_024_00235_w
crossref_primary_10_1371_journal_pcbi_1005132
crossref_primary_10_1371_journal_pone_0146443
crossref_primary_10_1016_j_neuron_2012_06_037
crossref_primary_10_1016_j_tics_2014_02_004
crossref_primary_10_1016_j_eplepsyres_2014_04_012
crossref_primary_10_1016_j_neuron_2011_04_029
crossref_primary_10_1073_pnas_2005417117
crossref_primary_10_1016_j_neucom_2025_131401
crossref_primary_10_1016_j_neuron_2016_02_034
crossref_primary_10_1152_jn_00232_2015
crossref_primary_10_1038_s41467_017_01763_2
crossref_primary_10_1016_j_neuroimage_2018_06_011
crossref_primary_10_1016_j_neuroscience_2018_05_006
crossref_primary_10_1186_s12984_017_0268_4
crossref_primary_10_1016_j_neuron_2012_01_011
crossref_primary_10_1093_cercor_bhs293
crossref_primary_10_1038_s41467_022_29674_x
crossref_primary_10_1162_NECO_a_00827
crossref_primary_10_1016_j_expneurol_2012_09_014
crossref_primary_10_1038_s41598_021_83923_5
crossref_primary_10_3389_fncir_2016_00099
crossref_primary_10_1016_j_neuroimage_2015_02_062
crossref_primary_10_1016_j_cub_2019_08_004
crossref_primary_10_1038_s41562_025_02250_1
crossref_primary_10_1113_JP283858
crossref_primary_10_1016_j_neuron_2023_02_026
crossref_primary_10_1016_j_neuron_2013_10_002
crossref_primary_10_1016_j_neuron_2018_04_017
crossref_primary_10_1007_s10827_014_0495_7
crossref_primary_10_1093_cercor_bhu143
crossref_primary_10_1016_j_neuroimage_2021_117788
crossref_primary_10_1038_s41583_018_0094_0
crossref_primary_10_1038_nrn3241
crossref_primary_10_1016_j_conb_2014_11_006
crossref_primary_10_1016_j_neuroimage_2019_116031
crossref_primary_10_3389_fnsys_2022_908665
crossref_primary_10_1016_j_neuroscience_2017_07_037
crossref_primary_10_1109_ACCESS_2018_2845301
crossref_primary_10_1007_s10827_011_0374_4
crossref_primary_10_1016_j_conb_2014_11_001
crossref_primary_10_3389_fnsys_2016_00035
crossref_primary_10_1088_1741_2552_ab7321
crossref_primary_10_1093_cercor_bhad077
crossref_primary_10_1371_journal_pcbi_1012190
crossref_primary_10_1016_j_neuron_2019_06_014
crossref_primary_10_1002_hbm_23283
crossref_primary_10_1093_cercor_bht280
crossref_primary_10_1152_jn_01038_2014
crossref_primary_10_1162_neco_a_01369
crossref_primary_10_1371_journal_pone_0161488
crossref_primary_10_1093_cercor_bhu136
crossref_primary_10_1152_jn_00807_2017
crossref_primary_10_7554_eLife_77594
crossref_primary_10_1111_ejn_12453
crossref_primary_10_3389_fncom_2024_1422159
crossref_primary_10_1016_j_celrep_2025_116131
crossref_primary_10_1523_JNEUROSCI_2057_12_2013
crossref_primary_10_1038_nn_3952
crossref_primary_10_3389_fncom_2018_00066
crossref_primary_10_1371_journal_pbio_2004132
crossref_primary_10_1038_s41598_020_61961_9
crossref_primary_10_1523_JNEUROSCI_5644_11_2012
crossref_primary_10_1016_j_tins_2023_07_003
crossref_primary_10_7554_eLife_90431
crossref_primary_10_1038_s41467_022_28090_5
crossref_primary_10_1016_j_neuron_2013_08_019
crossref_primary_10_1038_nrn3137
crossref_primary_10_1073_pnas_1405300111
crossref_primary_10_1016_j_tics_2014_12_009
crossref_primary_10_1093_cercor_bhae051
crossref_primary_10_1016_j_neuron_2014_01_021
crossref_primary_10_1111_ejn_13796
crossref_primary_10_1162_netn_a_00106
crossref_primary_10_1002_wcs_1540
crossref_primary_10_1016_j_tics_2014_12_002
crossref_primary_10_1152_jn_00299_2018
crossref_primary_10_1038_nn_3742
crossref_primary_10_1016_j_tics_2012_02_004
crossref_primary_10_1371_journal_pcbi_1012532
crossref_primary_10_1126_science_ade1855
crossref_primary_10_1016_j_neubiorev_2020_07_019
crossref_primary_10_1016_j_neuron_2013_10_017
crossref_primary_10_1016_j_neuron_2024_04_020
crossref_primary_10_1016_j_neunet_2016_12_003
crossref_primary_10_1073_pnas_2412830122
crossref_primary_10_1111_joa_12339
crossref_primary_10_1523_JNEUROSCI_0890_12_2012
crossref_primary_10_1016_j_tins_2020_07_001
crossref_primary_10_1162_netn_a_00219
crossref_primary_10_3389_fncir_2023_1254009
crossref_primary_10_3389_fnsys_2020_00055
crossref_primary_10_1162_jocn_a_00781
crossref_primary_10_1038_s41467_020_18826_6
crossref_primary_10_7554_eLife_28569
crossref_primary_10_1371_journal_pcbi_1002176
crossref_primary_10_1177_15500594231165589
crossref_primary_10_1371_journal_pone_0243237
crossref_primary_10_1162_NECO_a_00742
crossref_primary_10_1016_j_neuroimage_2017_08_034
crossref_primary_10_1093_cercor_bhad412
crossref_primary_10_1371_journal_pone_0057685
ContentType Journal Article
Copyright 2010 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2010 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neuron.2010.08.004
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
ExternalDocumentID 20826318
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY005911
– fundername: Howard Hughes Medical Institute
– fundername: NEI NIH HHS
  grantid: R01EY005911
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
4.4
457
4G.
53G
5RE
62-
7-5
8FE
8FH
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
AAYWO
ABDGV
ABJNI
ABMAC
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEFWE
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGCQF
AGHFR
AGKMS
AHHHB
AHMBA
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BKEYQ
BKNYI
BPHCQ
BVXVI
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EFKBS
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
HZ~
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M3Z
M41
N9A
NPM
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
7X8
ID FETCH-LOGICAL-c522t-f83af890f80d155a267d2ff72b9f8f35c80591b4ed7a69c5eff929793ce355ca2
IEDL.DBID 7X8
ISICitedReferencesCount 344
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000281938900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-4199
IngestDate Sun Sep 28 06:57:07 EDT 2025
Mon Jul 21 06:01:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 2010 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-f83af890f80d155a267d2ff72b9f8f35c80591b4ed7a69c5eff929793ce355ca2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.neuron.2010.08.004
PMID 20826318
PQID 754029094
PQPubID 23479
ParticipantIDs proquest_miscellaneous_754029094
pubmed_primary_20826318
PublicationCentury 2000
PublicationDate 2010-09-09
PublicationDateYYYYMMDD 2010-09-09
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2010
SSID ssj0014591
Score 2.5145702
Snippet Neuronal oscillations in the gamma band (30-80 Hz) have been suggested to play a central role in feature binding or establishing channels for neural...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 885
SubjectTerms Action Potentials - physiology
Animals
Brain Mapping
Contrast Sensitivity - physiology
Electroencephalography
Entropy
Evoked Potentials, Visual - physiology
Eye Movements - physiology
Macaca mulatta
Male
Neurons - physiology
Numerical Analysis, Computer-Assisted
Pattern Recognition, Visual - physiology
Photic Stimulation - methods
Time Factors
Visual Cortex - cytology
Visual Cortex - physiology
Visual Pathways - physiology
Wakefulness
Title Differences in gamma frequencies across visual cortex restrict their possible use in computation
URI https://www.ncbi.nlm.nih.gov/pubmed/20826318
https://www.proquest.com/docview/754029094
Volume 67
WOSCitedRecordID wos000281938900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4BBYmFR3mVlzwgtojGSepkQhVQsVB1AKlb8etQJZqWpq3ov-fspDAhBpZssSL7fPedvy_-AK6QUFvMTRQolbjTqkQGiisRYGaEsiIMI6292YTodtN-P-tV2pyiklWucqJP1Gas3Rn5jSBowTNqRm4nH4EzjXLkauWgsQ61iJCMC2rR_yER4sQb5jmO1ZGd2erPOS_v8tdF5pW2y-kp498xpq81nd1_fuUe7FQgk7XLqNiHNZvX4aCdU4M9WrJr5mWf_jy9DlulG-XyAF7vK7MUSh1smLM3ORpJhtNSbE0dNZO-prLFsJjT8NrpdD-ZM_egZDpjnnNgk7HbZe-WzQvrRtHeNsKv_yG8dB6e7x6DyoAh0ATLZgGmkcQ0a2LaNIQ7JG8JwxEFVxmmGCU6JXAWqtgaIVuZTiwioS3a8doSjNGSH8FGPs7tCTCuQmnQUmUwhIGwpTDUobEGBYqmjNMGsNWEDijAHWshczueF4PvKW3Acbkog0l5EceAE35pUVI6_fvlM9gueX8nEDuHGtLmthewqRezYTG99IFDz27v6QtwGNDH
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differences+in+gamma+frequencies+across+visual+cortex+restrict+their+possible+use+in+computation&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Ray%2C+Supratim&rft.au=Maunsell%2C+John+H+R&rft.date=2010-09-09&rft.issn=1097-4199&rft.eissn=1097-4199&rft.volume=67&rft.issue=5&rft.spage=885&rft_id=info:doi/10.1016%2Fj.neuron.2010.08.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4199&client=summon