Thin, soft, 3D printing enabled crosstalk minimized triboelectric nanogenerator arrays for tactile sensing
With the requirements of self-powering sensors in flexible electronics, wearable triboelectric nanogenerators (TENGs) have attracted great attention due to their advantages of excellent electrical outputs and low-cost processing routes. The crosstalk effect between adjacent sensing units in TENGs si...
Uloženo v:
| Vydáno v: | Fundamental research (Beijing) Ročník 3; číslo 1; s. 111 - 117 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
China
Elsevier B.V
01.01.2023
KeAi Publishing KeAi Communications Co. Ltd |
| Témata: | |
| ISSN: | 2667-3258, 2096-9457, 2667-3258 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With the requirements of self-powering sensors in flexible electronics, wearable triboelectric nanogenerators (TENGs) have attracted great attention due to their advantages of excellent electrical outputs and low-cost processing routes. The crosstalk effect between adjacent sensing units in TENGs significantly limits the pixel density of sensor arrays. Here, we present a skin-integrated, flexible TENG sensor array with 100 sensing units in an overall size of 7.5 cm × 7.5 cm that can be processed in a simple, low-cost, and scalable way enabled by 3D printing. All the sensing units show good sensitivity of 0.11 V/kPa with a wide range of pressure detection from 10 to 65 kPa, which allows to accurately distinguish various tactile formats from gentle touching (as low as 2 kPa) to hard pressuring. The 3D printing patterned substrate allows to cast triboelectric layers of polydimethylsiloxane in an independent sensing manner for each unit, which greatly suppresses the cross talk arising from adjacent sensing units, where the maximum crosstalk output is only 10.8%. The excellent uniformity and reproducibility of the sensor array offer precise pressure mapping for complicated pattern loadings, which demonstrates its potential in tactile sensing and human-machine interfaces.
[Display omitted] |
|---|---|
| AbstractList | With the requirements of self-powering sensors in flexible electronics, wearable triboelectric nanogenerators (TENGs) have attracted great attention due to their advantages of excellent electrical outputs and low-cost processing routes. The crosstalk effect between adjacent sensing units in TENGs significantly limits the pixel density of sensor arrays. Here, we present a skin-integrated, flexible TENG sensor array with 100 sensing units in an overall size of 7.5 cm × 7.5 cm that can be processed in a simple, low-cost, and scalable way enabled by 3D printing. All the sensing units show good sensitivity of 0.11 V/kPa with a wide range of pressure detection from 10 to 65 kPa, which allows to accurately distinguish various tactile formats from gentle touching (as low as 2 kPa) to hard pressuring. The 3D printing patterned substrate allows to cast triboelectric layers of polydimethylsiloxane in an independent sensing manner for each unit, which greatly suppresses the cross talk arising from adjacent sensing units, where the maximum crosstalk output is only 10.8%. The excellent uniformity and reproducibility of the sensor array offer precise pressure mapping for complicated pattern loadings, which demonstrates its potential in tactile sensing and human-machine interfaces. Image, graphical abstract With the requirements of self-powering sensors in flexible electronics, wearable triboelectric nanogenerators (TENGs) have attracted great attention due to their advantages of excellent electrical outputs and low-cost processing routes. The crosstalk effect between adjacent sensing units in TENGs significantly limits the pixel density of sensor arrays. Here, we present a skin-integrated, flexible TENG sensor array with 100 sensing units in an overall size of 7.5 cm × 7.5 cm that can be processed in a simple, low-cost, and scalable way enabled by 3D printing. All the sensing units show good sensitivity of 0.11 V/kPa with a wide range of pressure detection from 10 to 65 kPa, which allows to accurately distinguish various tactile formats from gentle touching (as low as 2 kPa) to hard pressuring. The 3D printing patterned substrate allows to cast triboelectric layers of polydimethylsiloxane in an independent sensing manner for each unit, which greatly suppresses the cross talk arising from adjacent sensing units, where the maximum crosstalk output is only 10.8%. The excellent uniformity and reproducibility of the sensor array offer precise pressure mapping for complicated pattern loadings, which demonstrates its potential in tactile sensing and human-machine interfaces.With the requirements of self-powering sensors in flexible electronics, wearable triboelectric nanogenerators (TENGs) have attracted great attention due to their advantages of excellent electrical outputs and low-cost processing routes. The crosstalk effect between adjacent sensing units in TENGs significantly limits the pixel density of sensor arrays. Here, we present a skin-integrated, flexible TENG sensor array with 100 sensing units in an overall size of 7.5 cm × 7.5 cm that can be processed in a simple, low-cost, and scalable way enabled by 3D printing. All the sensing units show good sensitivity of 0.11 V/kPa with a wide range of pressure detection from 10 to 65 kPa, which allows to accurately distinguish various tactile formats from gentle touching (as low as 2 kPa) to hard pressuring. The 3D printing patterned substrate allows to cast triboelectric layers of polydimethylsiloxane in an independent sensing manner for each unit, which greatly suppresses the cross talk arising from adjacent sensing units, where the maximum crosstalk output is only 10.8%. The excellent uniformity and reproducibility of the sensor array offer precise pressure mapping for complicated pattern loadings, which demonstrates its potential in tactile sensing and human-machine interfaces. With the requirements of self-powering sensors in flexible electronics, wearable triboelectric nanogenerators (TENGs) have attracted great attention due to their advantages of excellent electrical outputs and low-cost processing routes. The crosstalk effect between adjacent sensing units in TENGs significantly limits the pixel density of sensor arrays. Here, we present a skin-integrated, flexible TENG sensor array with 100 sensing units in an overall size of 7.5 cm × 7.5 cm that can be processed in a simple, low-cost, and scalable way enabled by 3D printing. All the sensing units show good sensitivity of 0.11 V/kPa with a wide range of pressure detection from 10 to 65 kPa, which allows to accurately distinguish various tactile formats from gentle touching (as low as 2 kPa) to hard pressuring. The 3D printing patterned substrate allows to cast triboelectric layers of polydimethylsiloxane in an independent sensing manner for each unit, which greatly suppresses the cross talk arising from adjacent sensing units, where the maximum crosstalk output is only 10.8%. The excellent uniformity and reproducibility of the sensor array offer precise pressure mapping for complicated pattern loadings, which demonstrates its potential in tactile sensing and human-machine interfaces. [Display omitted] With the requirements of self-powering sensors in flexible electronics, wearable triboelectric nanogenerators (TENGs) have attracted great attention due to their advantages of excellent electrical outputs and low-cost processing routes. The crosstalk effect between adjacent sensing units in TENGs significantly limits the pixel density of sensor arrays. Here, we present a skin-integrated, flexible TENG sensor array with 100 sensing units in an overall size of 7.5 cm × 7.5 cm that can be processed in a simple, low-cost, and scalable way enabled by 3D printing. All the sensing units show good sensitivity of 0.11 V/kPa with a wide range of pressure detection from 10 to 65 kPa, which allows to accurately distinguish various tactile formats from gentle touching (as low as 2 kPa) to hard pressuring. The 3D printing patterned substrate allows to cast triboelectric layers of polydimethylsiloxane in an independent sensing manner for each unit, which greatly suppresses the cross talk arising from adjacent sensing units, where the maximum crosstalk output is only 10.8%. The excellent uniformity and reproducibility of the sensor array offer precise pressure mapping for complicated pattern loadings, which demonstrates its potential in tactile sensing and human-machine interfaces. |
| Author | Yu, Xinge Gao, Yuyu Gao, Zhan Wong, Tsz Hung Yao, Kuanming Shi, Rui Li, Dengfeng Li, Jiyu Liu, Yiming Zhou, Jingkun Li, Hu Huang, Ya Yu, Junsheng Li, Jian Wu, Mengge Huang, Xingcan |
| Author_xml | – sequence: 1 givenname: Jian orcidid: 0000-0002-9768-0932 surname: Li fullname: Li, Jian organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China – sequence: 2 givenname: Yiming orcidid: 0000-0003-0134-1934 surname: Liu fullname: Liu, Yiming organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China – sequence: 3 givenname: Mengge surname: Wu fullname: Wu, Mengge organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China – sequence: 4 givenname: Kuanming orcidid: 0000-0001-8744-8892 surname: Yao fullname: Yao, Kuanming organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China – sequence: 5 givenname: Zhan surname: Gao fullname: Gao, Zhan organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China – sequence: 6 givenname: Yuyu orcidid: 0000-0002-2000-5410 surname: Gao fullname: Gao, Yuyu organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China – sequence: 7 givenname: Xingcan orcidid: 0000-0003-4210-2470 surname: Huang fullname: Huang, Xingcan organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China – sequence: 8 givenname: Tsz Hung orcidid: 0000-0001-5890-2523 surname: Wong fullname: Wong, Tsz Hung organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China – sequence: 9 givenname: Jingkun orcidid: 0000-0001-5394-4388 surname: Zhou fullname: Zhou, Jingkun organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China – sequence: 10 givenname: Dengfeng orcidid: 0000-0002-8875-6974 surname: Li fullname: Li, Dengfeng organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China – sequence: 11 givenname: Hu surname: Li fullname: Li, Hu organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China – sequence: 12 givenname: Jiyu orcidid: 0000-0003-4726-4559 surname: Li fullname: Li, Jiyu organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China – sequence: 13 givenname: Ya surname: Huang fullname: Huang, Ya organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China – sequence: 14 givenname: Rui orcidid: 0000-0002-4221-0239 surname: Shi fullname: Shi, Rui organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China – sequence: 15 givenname: Junsheng surname: Yu fullname: Yu, Junsheng email: jsyu@uestc.edu.cnand organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China – sequence: 16 givenname: Xinge orcidid: 0000-0003-0522-1171 surname: Yu fullname: Yu, Xinge email: xingeyu@cityu.edu.hk organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38933565$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uk1P3TAQtCpQoZQ_0EOVYw-84I_EcaRKFaJfSEi90LO1sTcPp4lNbT8k-uvrx6MIeuDk1Xpmdu2ZN2TPB4-EvGO0ZpTJ06kel4g1p5zXlNWUs1fkkEvZrQRv1d6T-oAcpzRRSrliTAj-mhwI1QvRyvaQTFfXzp9UKYz5pBKfq5vofHZ-XaGHYUZbmRhSyjD_qhbn3eL-lF6Obgg4oymFqTz4sEaPEXKIFcQId6kaS5nBZDdjldCnIvmW7I8wJzx-OI_Iz69frs6_ry5_fLs4P7tcmZbzvLKoGFDedRbHvretpO0gBefDIJumBQVoqbF8MFzakZm-9BhvQFmjBmqkFUfkYqdrA0y6PGiBeKcDOH3fCHGtIWZnZtRGSAtt17dSDA1VVAEdVE8tp6xjncGi9WmndbMZFrQGfY4wPxN9fuPdtV6HW80Y6zvFeFH48KAQw-8NpqwXlwzOM3gMm6QF7Yovom9Ygb5_Ouxxyj-3CoDvAPemRBwfIYzqbSr0pLep0NtUaMp0SUUhqf9IxmXILmwXdvPL1I87Kha7bh1GnYxDb9C6WMwv_-leov8FYrrUUw |
| CitedBy_id | crossref_primary_10_1016_j_wees_2024_04_001 crossref_primary_10_1016_j_nanoen_2024_109351 crossref_primary_10_1016_j_cej_2025_167679 crossref_primary_10_20517_ss_2025_11 crossref_primary_10_1002_adma_202200724 crossref_primary_10_1016_j_cej_2025_165703 crossref_primary_10_1021_acs_langmuir_4c04425 crossref_primary_10_1109_JSEN_2024_3408158 crossref_primary_10_1002_eom2_70003 crossref_primary_10_1016_j_nwnano_2023_100013 crossref_primary_10_1016_j_compag_2025_110988 crossref_primary_10_1002_adfm_202506293 crossref_primary_10_1088_2631_7990_ad94b8 crossref_primary_10_1007_s40843_025_3445_x crossref_primary_10_1016_j_nanoen_2025_111099 crossref_primary_10_3390_jlpea14010007 crossref_primary_10_1007_s10118_025_3253_6 crossref_primary_10_1016_j_sna_2025_116790 crossref_primary_10_1021_acsaelm_4c01913 crossref_primary_10_1016_j_nanoen_2023_108559 crossref_primary_10_3390_s24020449 crossref_primary_10_1002_aisy_202400601 crossref_primary_10_1088_1361_6439_ad6778 crossref_primary_10_3390_jcs9080386 |
| Cites_doi | 10.1038/s41378-020-0154-2 10.1016/j.energy.2020.118462 10.1038/s41551-018-0201-6 10.1038/s41467-020-18086-4 10.1002/aelm.201901174 10.34133/2020/1085417 10.1021/acsnano.0c05493 10.1016/j.fmre.2021.05.002 10.34133/2020/8710686 10.1016/j.nanoen.2019.104251 10.1002/aisy.202270002 10.1016/j.nanoen.2020.105295 10.1038/s41378-021-00248-z 10.3390/s19010027 10.1016/j.nanoen.2021.106258 10.1002/eom2.12123 10.1038/s41551-021-00723-y 10.1002/smll.202003269 10.1016/j.nanoen.2019.02.054 10.1002/eom2.12059 10.1016/j.nanoen.2014.11.034 10.1016/j.fmre.2021.06.007 10.1126/sciadv.1600097 10.1038/s41467-020-15373-y 10.1021/acsnano.8b00108 10.1002/adfm.201800275 10.1002/smll.201904774 10.1038/nature16521 10.1016/j.apenergy.2017.05.181 10.1016/j.nanoen.2019.103923 10.1002/adma.201904664 10.1002/eom2.12098 10.1016/j.nanoen.2020.105590 10.1039/D0TC02913K 10.1002/adma.201503407 10.1021/acsami.0c08560 10.1016/j.nanoen.2020.105385 10.1002/aelm.201700586 10.1016/j.nanoen.2019.103884 10.1038/s41467-020-14846-4 10.1007/s40684-020-00212-8 10.1002/eom2.12054 10.1002/advs.202002817 10.1016/j.nanoen.2018.04.059 10.1038/s41467-020-15368-9 |
| ContentType | Journal Article |
| Copyright | 2022 2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. 2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. 2022 |
| Copyright_xml | – notice: 2022 – notice: 2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. – notice: 2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. 2022 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.1016/j.fmre.2022.01.021 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2667-3258 |
| EndPage | 117 |
| ExternalDocumentID | oai_doaj_org_article_c36da579563b40808a0b890d201717ce PMC11197812 38933565 10_1016_j_fmre_2022_01_021 S2667325822000619 |
| Genre | Journal Article |
| GroupedDBID | 6I. AAEDW AAFTH AAXUO AEXQZ ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ ROL 0R~ AALRI AAYWO AAYXX ABDBF ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP CITATION M~E OK1 PGMZT RPM NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c522t-de81a0277def99d5605b6322bb6445a8aed0cd2bc26df1c945a124a8dc8b0c6d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000935436800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2667-3258 2096-9457 |
| IngestDate | Fri Oct 03 12:50:46 EDT 2025 Tue Sep 30 17:08:44 EDT 2025 Fri Sep 05 11:54:03 EDT 2025 Thu Jan 02 22:37:29 EST 2025 Tue Nov 18 22:18:20 EST 2025 Thu Nov 13 04:17:31 EST 2025 Fri Feb 23 02:38:22 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Triboelectricnanogenerators Tactile sensor Self-powering sensors Crosstalk suppression Human-machine interfaces |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. 2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c522t-de81a0277def99d5605b6322bb6445a8aed0cd2bc26df1c945a124a8dc8b0c6d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-5890-2523 0000-0002-9768-0932 0000-0003-0134-1934 0000-0002-8875-6974 0000-0003-0522-1171 0000-0001-5394-4388 0000-0003-4210-2470 0000-0002-2000-5410 0000-0001-8744-8892 0000-0003-4726-4559 0000-0002-4221-0239 |
| OpenAccessLink | https://doaj.org/article/c36da579563b40808a0b890d201717ce |
| PMID | 38933565 |
| PQID | 3072813941 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c36da579563b40808a0b890d201717ce pubmedcentral_primary_oai_pubmedcentral_nih_gov_11197812 proquest_miscellaneous_3072813941 pubmed_primary_38933565 crossref_primary_10_1016_j_fmre_2022_01_021 crossref_citationtrail_10_1016_j_fmre_2022_01_021 elsevier_sciencedirect_doi_10_1016_j_fmre_2022_01_021 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | China |
| PublicationPlace_xml | – name: China |
| PublicationTitle | Fundamental research (Beijing) |
| PublicationTitleAlternate | Fundam Res |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V KeAi Publishing KeAi Communications Co. Ltd |
| Publisher_xml | – name: Elsevier B.V – name: KeAi Publishing – name: KeAi Communications Co. Ltd |
| References | Zaia, Gordon, Yuan (bib0001) 2019; 5 Liu, Liu, Wang (bib0024) 2020; 11 Wang, Zhang, Zhang (bib0030) 2018; 30 Wan, Qiu, Hong (bib0020) 2018; 4 Zhao, Zhang, Shi (bib0032) 2019; 59 Dai, Fu, Zeng (bib0045) 2018; 28 Pu, Liu, Chen (bib0033) 2016; 3 Yang, Xiong, Ma (bib0012) 2020; 2 Liu, Yiu, Jia (bib0009) 2021; 3 Wu, Wang, Ding (bib0036) 2019; 9 Wang, Wu, Liu (bib0042) 2020; 212 Wong, Yiu, Zhou (bib0005) 2021; 1 Xu, Song, Han (bib0004) 2021; 7 Wu, Yao, Li (bib0007) 2021; 21 Zou, Bo, Li (bib0003) 2021; 1 Yu, Wang, Ning (bib0018) 2018; 2 Zhang, Xu, Yang (bib0047) 2020; 67 Jiang, Tu, Fu (bib0017) 2020; 12 Niu, Wang (bib0039) 2015; 14 Gao, Yiu, Liu (bib0053) 2020; 8 Yao, Xu, Cheng (bib0029) 2020; 30 Gong, Du, Kong (bib0052) 2020; 16 Niu, Gao, Yue (bib0019) 2020; 16 Wang, Liu, Liu (bib0055) 2020; 6 Li, Zheng, Wang (bib0021) 2020; 2020 Gao, Emaminejad, Nyein (bib0008) 2016; 529 Cho, Lee, Park (bib0014) 2022 Su, Brugger, Kim (bib0048) 2020; 7 Zhang, Wang, Yang (bib0035) 2019; 15 An, Anaya, Gong (bib0011) 2020; 77 Liu, Zheng, Zhao (bib0006) 2020; 2020 Wen, Yeh, Guo (bib0026) 2016; 2 Shao, Wang, Wang (bib0040) 2020; 5 Fu, Zhou, Wu (bib0050) 2021; 88 Ling, An, Yap (bib0002) 2020; 32 Zhang, Ye, Lin (bib0013) 2019; 19 Luo, Wang (bib0038) 2020; 2 Suarez, Parekh, Ladd (bib0034) 2017; 202 Sun, Guo, Ribera (bib0028) 2020; 14 Zhong, Zhang, Fu (bib0044) 2019; 63 Lin, Wang, Peng (bib0015) 2021; 8 Song, Xie, Bai (bib0010) 2021; 5 Yu, Hou, Cui (bib0016) 2019; 64 Wang, Chang, Huang (bib0022) 2021; 1 He, Liu, Chen (bib0023) 2020; 11 Xu, Wu, Li (bib0046) 2018; 49 Gogurla, Kim (bib0049) 2021; 11 Liu, Wang, Wang (bib0025) 2020; 11 Gu, Liu, Cui (bib0027) 2020; 11 He, Xie, Yao (bib0054) 2021; 81 Liu, Liu, Dou (bib0041) 2018; 12 Wang, Zhang, Dong (bib0031) 2016; 28 Liu, Wang, Zhao (bib0043) 2020; 6 Liu, Zhang, Wang (bib0051) 2020; 78 Zhou, Lee (bib0037) 2021; 3 Liu (10.1016/j.fmre.2022.01.021_bib0041) 2018; 12 An (10.1016/j.fmre.2022.01.021_bib0011) 2020; 77 Su (10.1016/j.fmre.2022.01.021_bib0048) 2020; 7 Yu (10.1016/j.fmre.2022.01.021_bib0018) 2018; 2 Song (10.1016/j.fmre.2022.01.021_bib0010) 2021; 5 Liu (10.1016/j.fmre.2022.01.021_bib0043) 2020; 6 Gao (10.1016/j.fmre.2022.01.021_bib0008) 2016; 529 Zhong (10.1016/j.fmre.2022.01.021_bib0044) 2019; 63 Zhang (10.1016/j.fmre.2022.01.021_bib0013) 2019; 19 Wang (10.1016/j.fmre.2022.01.021_bib0030) 2018; 30 Liu (10.1016/j.fmre.2022.01.021_bib0024) 2020; 11 Gu (10.1016/j.fmre.2022.01.021_bib0027) 2020; 11 Liu (10.1016/j.fmre.2022.01.021_bib0006) 2020; 2020 Xu (10.1016/j.fmre.2022.01.021_bib0046) 2018; 49 Zou (10.1016/j.fmre.2022.01.021_bib0003) 2021; 1 Wong (10.1016/j.fmre.2022.01.021_bib0005) 2021; 1 Dai (10.1016/j.fmre.2022.01.021_bib0045) 2018; 28 Ling (10.1016/j.fmre.2022.01.021_bib0002) 2020; 32 Wen (10.1016/j.fmre.2022.01.021_bib0026) 2016; 2 Wu (10.1016/j.fmre.2022.01.021_bib0036) 2019; 9 Wang (10.1016/j.fmre.2022.01.021_bib0055) 2020; 6 He (10.1016/j.fmre.2022.01.021_bib0023) 2020; 11 Xu (10.1016/j.fmre.2022.01.021_bib0004) 2021; 7 Cho (10.1016/j.fmre.2022.01.021_bib0014) 2022 Liu (10.1016/j.fmre.2022.01.021_bib0025) 2020; 11 Zhang (10.1016/j.fmre.2022.01.021_bib0035) 2019; 15 Jiang (10.1016/j.fmre.2022.01.021_bib0017) 2020; 12 Pu (10.1016/j.fmre.2022.01.021_bib0033) 2016; 3 Shao (10.1016/j.fmre.2022.01.021_bib0040) 2020; 5 Liu (10.1016/j.fmre.2022.01.021_bib0051) 2020; 78 Gong (10.1016/j.fmre.2022.01.021_bib0052) 2020; 16 Sun (10.1016/j.fmre.2022.01.021_bib0028) 2020; 14 Wan (10.1016/j.fmre.2022.01.021_bib0020) 2018; 4 Wang (10.1016/j.fmre.2022.01.021_bib0022) 2021; 1 Wang (10.1016/j.fmre.2022.01.021_bib0031) 2016; 28 Gao (10.1016/j.fmre.2022.01.021_bib0053) 2020; 8 Fu (10.1016/j.fmre.2022.01.021_bib0050) 2021; 88 Zhao (10.1016/j.fmre.2022.01.021_bib0032) 2019; 59 Zhou (10.1016/j.fmre.2022.01.021_bib0037) 2021; 3 Zaia (10.1016/j.fmre.2022.01.021_bib0001) 2019; 5 Niu (10.1016/j.fmre.2022.01.021_bib0019) 2020; 16 He (10.1016/j.fmre.2022.01.021_bib0054) 2021; 81 Luo (10.1016/j.fmre.2022.01.021_bib0038) 2020; 2 Yu (10.1016/j.fmre.2022.01.021_bib0016) 2019; 64 Wang (10.1016/j.fmre.2022.01.021_bib0042) 2020; 212 Liu (10.1016/j.fmre.2022.01.021_bib0009) 2021; 3 Yao (10.1016/j.fmre.2022.01.021_bib0029) 2020; 30 Suarez (10.1016/j.fmre.2022.01.021_bib0034) 2017; 202 Li (10.1016/j.fmre.2022.01.021_bib0021) 2020; 2020 Zhang (10.1016/j.fmre.2022.01.021_bib0047) 2020; 67 Niu (10.1016/j.fmre.2022.01.021_bib0039) 2015; 14 Gogurla (10.1016/j.fmre.2022.01.021_bib0049) 2021; 11 Wu (10.1016/j.fmre.2022.01.021_bib0007) 2021; 21 Yang (10.1016/j.fmre.2022.01.021_bib0012) 2020; 2 Lin (10.1016/j.fmre.2022.01.021_bib0015) 2021; 8 |
| References_xml | – volume: 8 year: 2021 ident: bib0015 article-title: Skin-Inspired Piezoelectric Tactile Sensor Array with Crosstalk-Free Row+Column Electrodes for Spatiotemporally Distinguishing Diverse Stimuli publication-title: Adv. Sci. – volume: 63 year: 2019 ident: bib0044 article-title: An artificial triboelectricity-brain-behavior closed loop for intelligent olfactory substitution publication-title: Nano Energy – volume: 28 start-page: 2896 year: 2016 end-page: 2903 ident: bib0031 article-title: Self-Powered High-Resolution and Pressure-Sensitive Triboelectric Sensor Matrix for Real-Time Tactile Mapping publication-title: Adv. Mater. – volume: 15 year: 2019 ident: bib0035 article-title: Design, Performance, and Application of Thermoelectric Nanogenerators publication-title: Small – volume: 11 year: 2021 ident: bib0049 article-title: Self-Powered and Imperceptible Electronic Tattoos Based on Silk Protein Nanofiber and Carbon Nanotubes for Human–Machine Interfaces publication-title: Adv. Energy Mater. – volume: 202 start-page: 736 year: 2017 end-page: 745 ident: bib0034 article-title: Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics publication-title: Appl. Energy. – volume: 88 year: 2021 ident: bib0050 article-title: Fibrous self-powered sensor with high stretchability for physiological information monitoring publication-title: Nano Energy – volume: 8 start-page: 15105 year: 2020 end-page: 15111 ident: bib0053 article-title: Stretchable transparent conductive elastomers for skin-integrated electronics publication-title: J. Mater. Chem. C. – volume: 12 start-page: 2818 year: 2018 end-page: 2826 ident: bib0041 article-title: Triboelectric-Nanogenerator-Based Soft Energy-Harvesting Skin Enabled by Toughly Bonded Elastomer/Hydrogel Hybrids publication-title: ACS Nano – year: 2022 ident: bib0014 article-title: Large-Area Piezoresistive Tactile Sensor Developed by Training a Super-Simple Single-Layer Carbon Nanotube-Dispersed Polydimethylsiloxane Pad publication-title: Adv. Intell. Syst. – volume: 30 year: 2018 ident: bib0030 article-title: A Highly Stretchable Transparent Self-Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics publication-title: Adv. Mater. – volume: 11 start-page: 4277 year: 2020 ident: bib0023 article-title: Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect publication-title: Nat. Commun. – volume: 11 start-page: 1030 year: 2020 ident: bib0027 article-title: Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode publication-title: Nat. Commun. – volume: 2020 year: 2020 ident: bib0006 article-title: Electronic Skin from High-Throughput Fabrication of Intrinsically Stretchable Lead Zirconate Titanate Elastomer publication-title: Research – volume: 81 year: 2021 ident: bib0054 article-title: Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics publication-title: Nano Energy – volume: 16 year: 2020 ident: bib0019 article-title: Highly Morphology-Controllable and Highly Sensitive Capacitive Tactile Sensor Based on Epidermis-Dermis-Inspired Interlocked Asymmetric-Nanocone Arrays for Detection of Tiny Pressure publication-title: Small – volume: 3 start-page: e12123 year: 2021 ident: bib0009 article-title: Thin, soft, garment-integrated triboelectric nanogenerators for energy harvesting and human machine interfaces publication-title: EcoMat – volume: 1 start-page: 10 year: 2021 ident: bib0005 article-title: Tattoo-like epidermal electronics as skin sensors for human-machine interfaces publication-title: Soft Sci – volume: 3 year: 2016 ident: bib0033 article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing publication-title: Sci. Adv. – volume: 5 year: 2019 ident: bib0001 article-title: Progress and Perspective: Soft Thermoelectric Materials for Wearable and Internet-of-Things Applications publication-title: Adv. Electron. Mater. – volume: 4 year: 2018 ident: bib0020 article-title: A Highly Sensitive Flexible Capacitive Tactile Sensor with Sparse and High-Aspect-Ratio Microstructures publication-title: Adv. Electron. Mater. – volume: 78 year: 2020 ident: bib0051 article-title: Highly stretchable and transparent triboelectric nanogenerator based on multilayer structured stable electrode for self-powered wearable sensor publication-title: Nano Energy – volume: 19 start-page: 27 year: 2019 ident: bib0013 article-title: A Piezoresistive Tactile Sensor for a Large Area Employing Neural Network publication-title: Sensors – volume: 64 year: 2019 ident: bib0016 article-title: Highly skin-conformal wearable tactile sensor based on piezoelectric-enhanced triboelectric nanogenerator publication-title: Nano Energy – volume: 5 start-page: 759 year: 2021 end-page: 771 ident: bib0010 article-title: Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue publication-title: Nat. Biomed. Eng. – volume: 6 start-page: 1 year: 2020 end-page: 9 ident: bib0055 article-title: A metal-electrode-free, fully integrated, soft triboelectric sensor array for self-powered tactile sensing publication-title: Microsyst. Nanoeng. – volume: 1 start-page: 364 year: 2021 end-page: 382 ident: bib0003 article-title: Recent progress in human body energy harvesting for smart bioelectronic system publication-title: Fundam. Res. – volume: 49 start-page: 274 year: 2018 end-page: 282 ident: bib0046 article-title: Triboelectric electronic-skin based on graphene quantum dots for application in self-powered, smart, artificial fingers publication-title: Nano Energy – volume: 529 start-page: 509 year: 2016 end-page: 514 ident: bib0008 article-title: Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis publication-title: Nature – volume: 2 start-page: e12059 year: 2020 ident: bib0038 article-title: Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications publication-title: EcoMat – volume: 12 start-page: 33989 year: 2020 end-page: 33998 ident: bib0017 article-title: Flexible Piezoelectric Pressure Tactile Sensor Based on Electrospun BaTiO3/Poly(vinylidene fluoride) Nanocomposite Membrane publication-title: ACS Appl. Mater. Interfaces. – volume: 11 start-page: 1599 year: 2020 ident: bib0024 article-title: Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density publication-title: Nat. Commun. – volume: 11 start-page: 1883 year: 2020 ident: bib0025 article-title: Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator publication-title: Nat. Commun. – volume: 16 year: 2020 ident: bib0052 article-title: Skin-Like Stretchable Fuel Cell Based on Gold-Nanowire-Impregnated Porous Polymer Scaffolds publication-title: Small – volume: 9 year: 2019 ident: bib0036 article-title: Triboelectric Nanogenerator: A Foundation of the Energy for the New Era publication-title: Adv. Energy Mater. – volume: 7 start-page: 1 year: 2021 end-page: 14 ident: bib0004 article-title: Portable and wearable self-powered systems based on emerging energy harvesting technology publication-title: Microsyst. Nanoeng. – volume: 30 year: 2020 ident: bib0029 article-title: Bioinspired Triboelectric Nanogenerators as Self-Powered Electronic Skin for Robotic Tactile Sensing publication-title: Adv. Funct. Mater. – volume: 2 start-page: 165 year: 2018 end-page: 172 ident: bib0018 article-title: Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing publication-title: Nat. Biomed. Eng. – volume: 5 year: 2020 ident: bib0040 article-title: A Highly Accurate, Stretchable Touchpad for Robust, Linear, and Stable Tactile Feedback publication-title: Adv. Mater. Technol. – volume: 67 year: 2020 ident: bib0047 article-title: High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator publication-title: Nano Energy – volume: 77 year: 2020 ident: bib0011 article-title: Self-powered gold nanowire tattoo triboelectric sensors for soft wearable human-machine interface publication-title: Nano Energy – volume: 1 start-page: 399 year: 2021 end-page: 407 ident: bib0022 article-title: Crumpled, high-power, and safe wearable Lithium-Ion Battery enabled by nanostructured metallic textiles publication-title: Fundam. Res. – volume: 14 start-page: 161 year: 2015 end-page: 192 ident: bib0039 article-title: Theoretical systems of triboelectric nanogenerators publication-title: Nano Energy – volume: 32 year: 2020 ident: bib0002 article-title: Disruptive, Soft, Wearable Sensors publication-title: Adv. Mater. – volume: 212 year: 2020 ident: bib0042 article-title: Origami triboelectric nanogenerator with double-helical structure for environmental energy harvesting publication-title: Energy – volume: 2 year: 2016 ident: bib0026 article-title: Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors publication-title: Sci. Adv. – volume: 59 start-page: 302 year: 2019 end-page: 310 ident: bib0032 article-title: Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing publication-title: Nano Energy – volume: 21 year: 2021 ident: bib0007 article-title: Self-powered skin electronics for energy harvesting and healthcare monitoring publication-title: Mater. Today Energy. – volume: 2020 start-page: 1 year: 2020 end-page: 25 ident: bib0021 article-title: Nanogenerator-Based Self-Powered Sensors for Wearable and Implantable Electronics publication-title: Research – volume: 2 start-page: e12054 year: 2020 ident: bib0012 article-title: Recent advances in wearable textile-based triboelectric generator systems for energy harvesting from human motion publication-title: EcoMat – volume: 7 start-page: 683 year: 2020 end-page: 698 ident: bib0048 article-title: Simply Structured Wearable Triboelectric Nanogenerator Based on a Hybrid Composition of Carbon Nanotubes and Polymer Layer publication-title: Int. J. Precis. Eng. Manuf.-Green Technol. – volume: 3 start-page: e12098 year: 2021 ident: bib0037 article-title: Three dimensional printed nanogenerators publication-title: EcoMat – volume: 6 year: 2020 ident: bib0043 article-title: Thin, Skin-Integrated, Stretchable Triboelectric Nanogenerators for Tactile Sensing publication-title: Adv. Electron. Mater. – volume: 28 year: 2018 ident: bib0045 article-title: A Self-Powered Brain-Linked Vision Electronic-Skin Based on Triboelectric-Photodetecing Pixel-Addressable Matrix for Visual-Image Recognition and Behavior Intervention publication-title: Adv. Funct. Mater. – volume: 14 start-page: 14665 year: 2020 end-page: 14674 ident: bib0028 article-title: Sustainable and Biodegradable Wood Sponge Piezoelectric Nanogenerator for Sensing and Energy Harvesting Applications publication-title: ACS Nano – volume: 21 year: 2021 ident: 10.1016/j.fmre.2022.01.021_bib0007 article-title: Self-powered skin electronics for energy harvesting and healthcare monitoring publication-title: Mater. Today Energy. – volume: 6 start-page: 1 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0055 article-title: A metal-electrode-free, fully integrated, soft triboelectric sensor array for self-powered tactile sensing publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-020-0154-2 – volume: 212 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0042 article-title: Origami triboelectric nanogenerator with double-helical structure for environmental energy harvesting publication-title: Energy doi: 10.1016/j.energy.2020.118462 – volume: 2 start-page: 165 year: 2018 ident: 10.1016/j.fmre.2022.01.021_bib0018 article-title: Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0201-6 – volume: 11 start-page: 4277 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0023 article-title: Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect publication-title: Nat. Commun. doi: 10.1038/s41467-020-18086-4 – volume: 6 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0043 article-title: Thin, Skin-Integrated, Stretchable Triboelectric Nanogenerators for Tactile Sensing publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201901174 – volume: 2020 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0006 article-title: Electronic Skin from High-Throughput Fabrication of Intrinsically Stretchable Lead Zirconate Titanate Elastomer publication-title: Research doi: 10.34133/2020/1085417 – volume: 14 start-page: 14665 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0028 article-title: Sustainable and Biodegradable Wood Sponge Piezoelectric Nanogenerator for Sensing and Energy Harvesting Applications publication-title: ACS Nano doi: 10.1021/acsnano.0c05493 – volume: 30 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0029 article-title: Bioinspired Triboelectric Nanogenerators as Self-Powered Electronic Skin for Robotic Tactile Sensing publication-title: Adv. Funct. Mater. – volume: 1 start-page: 364 year: 2021 ident: 10.1016/j.fmre.2022.01.021_bib0003 article-title: Recent progress in human body energy harvesting for smart bioelectronic system publication-title: Fundam. Res. doi: 10.1016/j.fmre.2021.05.002 – volume: 2020 start-page: 1 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0021 article-title: Nanogenerator-Based Self-Powered Sensors for Wearable and Implantable Electronics publication-title: Research doi: 10.34133/2020/8710686 – volume: 67 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0047 article-title: High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104251 – year: 2022 ident: 10.1016/j.fmre.2022.01.021_bib0014 article-title: Large-Area Piezoresistive Tactile Sensor Developed by Training a Super-Simple Single-Layer Carbon Nanotube-Dispersed Polydimethylsiloxane Pad publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.202270002 – volume: 3 year: 2016 ident: 10.1016/j.fmre.2022.01.021_bib0033 article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing publication-title: Sci. Adv. – volume: 77 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0011 article-title: Self-powered gold nanowire tattoo triboelectric sensors for soft wearable human-machine interface publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105295 – volume: 7 start-page: 1 year: 2021 ident: 10.1016/j.fmre.2022.01.021_bib0004 article-title: Portable and wearable self-powered systems based on emerging energy harvesting technology publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-021-00248-z – volume: 19 start-page: 27 year: 2019 ident: 10.1016/j.fmre.2022.01.021_bib0013 article-title: A Piezoresistive Tactile Sensor for a Large Area Employing Neural Network publication-title: Sensors doi: 10.3390/s19010027 – volume: 5 year: 2019 ident: 10.1016/j.fmre.2022.01.021_bib0001 article-title: Progress and Perspective: Soft Thermoelectric Materials for Wearable and Internet-of-Things Applications publication-title: Adv. Electron. Mater. – volume: 15 year: 2019 ident: 10.1016/j.fmre.2022.01.021_bib0035 article-title: Design, Performance, and Application of Thermoelectric Nanogenerators publication-title: Small – volume: 88 year: 2021 ident: 10.1016/j.fmre.2022.01.021_bib0050 article-title: Fibrous self-powered sensor with high stretchability for physiological information monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106258 – volume: 3 start-page: e12123 year: 2021 ident: 10.1016/j.fmre.2022.01.021_bib0009 article-title: Thin, soft, garment-integrated triboelectric nanogenerators for energy harvesting and human machine interfaces publication-title: EcoMat doi: 10.1002/eom2.12123 – volume: 5 start-page: 759 year: 2021 ident: 10.1016/j.fmre.2022.01.021_bib0010 article-title: Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-021-00723-y – volume: 16 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0052 article-title: Skin-Like Stretchable Fuel Cell Based on Gold-Nanowire-Impregnated Porous Polymer Scaffolds publication-title: Small doi: 10.1002/smll.202003269 – volume: 59 start-page: 302 year: 2019 ident: 10.1016/j.fmre.2022.01.021_bib0032 article-title: Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.054 – volume: 2 start-page: e12059 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0038 article-title: Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications publication-title: EcoMat doi: 10.1002/eom2.12059 – volume: 14 start-page: 161 year: 2015 ident: 10.1016/j.fmre.2022.01.021_bib0039 article-title: Theoretical systems of triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.034 – volume: 1 start-page: 399 year: 2021 ident: 10.1016/j.fmre.2022.01.021_bib0022 article-title: Crumpled, high-power, and safe wearable Lithium-Ion Battery enabled by nanostructured metallic textiles publication-title: Fundam. Res. doi: 10.1016/j.fmre.2021.06.007 – volume: 30 year: 2018 ident: 10.1016/j.fmre.2022.01.021_bib0030 article-title: A Highly Stretchable Transparent Self-Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics publication-title: Adv. Mater. – volume: 2 year: 2016 ident: 10.1016/j.fmre.2022.01.021_bib0026 article-title: Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors publication-title: Sci. Adv. doi: 10.1126/sciadv.1600097 – volume: 11 start-page: 1883 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0025 article-title: Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator publication-title: Nat. Commun. doi: 10.1038/s41467-020-15373-y – volume: 5 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0040 article-title: A Highly Accurate, Stretchable Touchpad for Robust, Linear, and Stable Tactile Feedback publication-title: Adv. Mater. Technol. – volume: 12 start-page: 2818 year: 2018 ident: 10.1016/j.fmre.2022.01.021_bib0041 article-title: Triboelectric-Nanogenerator-Based Soft Energy-Harvesting Skin Enabled by Toughly Bonded Elastomer/Hydrogel Hybrids publication-title: ACS Nano doi: 10.1021/acsnano.8b00108 – volume: 28 year: 2018 ident: 10.1016/j.fmre.2022.01.021_bib0045 article-title: A Self-Powered Brain-Linked Vision Electronic-Skin Based on Triboelectric-Photodetecing Pixel-Addressable Matrix for Visual-Image Recognition and Behavior Intervention publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800275 – volume: 1 start-page: 10 year: 2021 ident: 10.1016/j.fmre.2022.01.021_bib0005 article-title: Tattoo-like epidermal electronics as skin sensors for human-machine interfaces publication-title: Soft Sci – volume: 11 year: 2021 ident: 10.1016/j.fmre.2022.01.021_bib0049 article-title: Self-Powered and Imperceptible Electronic Tattoos Based on Silk Protein Nanofiber and Carbon Nanotubes for Human–Machine Interfaces publication-title: Adv. Energy Mater. – volume: 16 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0019 article-title: Highly Morphology-Controllable and Highly Sensitive Capacitive Tactile Sensor Based on Epidermis-Dermis-Inspired Interlocked Asymmetric-Nanocone Arrays for Detection of Tiny Pressure publication-title: Small doi: 10.1002/smll.201904774 – volume: 529 start-page: 509 year: 2016 ident: 10.1016/j.fmre.2022.01.021_bib0008 article-title: Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis publication-title: Nature doi: 10.1038/nature16521 – volume: 202 start-page: 736 year: 2017 ident: 10.1016/j.fmre.2022.01.021_bib0034 article-title: Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2017.05.181 – volume: 64 year: 2019 ident: 10.1016/j.fmre.2022.01.021_bib0016 article-title: Highly skin-conformal wearable tactile sensor based on piezoelectric-enhanced triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103923 – volume: 32 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0002 article-title: Disruptive, Soft, Wearable Sensors publication-title: Adv. Mater. doi: 10.1002/adma.201904664 – volume: 9 year: 2019 ident: 10.1016/j.fmre.2022.01.021_bib0036 article-title: Triboelectric Nanogenerator: A Foundation of the Energy for the New Era publication-title: Adv. Energy Mater. – volume: 3 start-page: e12098 year: 2021 ident: 10.1016/j.fmre.2022.01.021_bib0037 article-title: Three dimensional printed nanogenerators publication-title: EcoMat doi: 10.1002/eom2.12098 – volume: 81 year: 2021 ident: 10.1016/j.fmre.2022.01.021_bib0054 article-title: Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105590 – volume: 8 start-page: 15105 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0053 article-title: Stretchable transparent conductive elastomers for skin-integrated electronics publication-title: J. Mater. Chem. C. doi: 10.1039/D0TC02913K – volume: 28 start-page: 2896 year: 2016 ident: 10.1016/j.fmre.2022.01.021_bib0031 article-title: Self-Powered High-Resolution and Pressure-Sensitive Triboelectric Sensor Matrix for Real-Time Tactile Mapping publication-title: Adv. Mater. doi: 10.1002/adma.201503407 – volume: 12 start-page: 33989 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0017 article-title: Flexible Piezoelectric Pressure Tactile Sensor Based on Electrospun BaTiO3/Poly(vinylidene fluoride) Nanocomposite Membrane publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.0c08560 – volume: 78 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0051 article-title: Highly stretchable and transparent triboelectric nanogenerator based on multilayer structured stable electrode for self-powered wearable sensor publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105385 – volume: 4 year: 2018 ident: 10.1016/j.fmre.2022.01.021_bib0020 article-title: A Highly Sensitive Flexible Capacitive Tactile Sensor with Sparse and High-Aspect-Ratio Microstructures publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201700586 – volume: 63 year: 2019 ident: 10.1016/j.fmre.2022.01.021_bib0044 article-title: An artificial triboelectricity-brain-behavior closed loop for intelligent olfactory substitution publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103884 – volume: 11 start-page: 1030 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0027 article-title: Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode publication-title: Nat. Commun. doi: 10.1038/s41467-020-14846-4 – volume: 7 start-page: 683 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0048 article-title: Simply Structured Wearable Triboelectric Nanogenerator Based on a Hybrid Composition of Carbon Nanotubes and Polymer Layer publication-title: Int. J. Precis. Eng. Manuf.-Green Technol. doi: 10.1007/s40684-020-00212-8 – volume: 2 start-page: e12054 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0012 article-title: Recent advances in wearable textile-based triboelectric generator systems for energy harvesting from human motion publication-title: EcoMat doi: 10.1002/eom2.12054 – volume: 8 year: 2021 ident: 10.1016/j.fmre.2022.01.021_bib0015 article-title: Skin-Inspired Piezoelectric Tactile Sensor Array with Crosstalk-Free Row+Column Electrodes for Spatiotemporally Distinguishing Diverse Stimuli publication-title: Adv. Sci. doi: 10.1002/advs.202002817 – volume: 49 start-page: 274 year: 2018 ident: 10.1016/j.fmre.2022.01.021_bib0046 article-title: Triboelectric electronic-skin based on graphene quantum dots for application in self-powered, smart, artificial fingers publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.04.059 – volume: 11 start-page: 1599 year: 2020 ident: 10.1016/j.fmre.2022.01.021_bib0024 article-title: Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density publication-title: Nat. Commun. doi: 10.1038/s41467-020-15368-9 |
| SSID | ssj0002811332 ssib052855697 |
| Score | 2.3638535 |
| Snippet | With the requirements of self-powering sensors in flexible electronics, wearable triboelectric nanogenerators (TENGs) have attracted great attention due to... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 111 |
| SubjectTerms | Crosstalk suppression Human-machine interfaces Self-powering sensors Tactile sensor Triboelectricnanogenerators |
| Title | Thin, soft, 3D printing enabled crosstalk minimized triboelectric nanogenerator arrays for tactile sensing |
| URI | https://dx.doi.org/10.1016/j.fmre.2022.01.021 https://www.ncbi.nlm.nih.gov/pubmed/38933565 https://www.proquest.com/docview/3072813941 https://pubmed.ncbi.nlm.nih.gov/PMC11197812 https://doaj.org/article/c36da579563b40808a0b890d201717ce |
| Volume | 3 |
| WOSCitedRecordID | wos000935436800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2667-3258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002811332 issn: 2667-3258 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2667-3258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002811332 issn: 2667-3258 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZK1QMXRHkupZWROIBoRJyX7SOFVj20FQdAe7P8SpulzaJkWwkO_HZm7OxqQ6Vy4ZKD4yR2Zsb-xh5_Q8hrVnButAVPlUueFN6zRPLaJKaoNEZVVSbwbH874WdnYjqVn9dSfWFMWKQHjj_uvc0rp0sOMD43BcAboVMjZOoyJHrh1uPoC8VrztQsLBkxcL5wCwEmILCirBTDiZkY3FVfdciRmWWRs5ONZqVA3j-anG6Dz79jKNcmpaOH5MGAJumH2IttsuHbR2R7sNeevhlIpd8-JjNM0LlPexh192n-ieJ6HkY8Ux8OTzkaGgZI_DtFtpGr5heUYTaseUyU01ja6nZ-Hl4IfjrVXad_9hQwL13g4YhLT3sMhm_Pn5CvR4dfPh4nQ56FxAL6WiTOC6ZxL9f5WkoHGKg0FRi6MQCWSi20d6l1mbFZ5WpmJZQBKtDCWWFSW7n8Kdls561_TmhmGIgl92lduQJcN8nTUnsQoagtOOJsQtjyPys7kJBjLoxLtYw2mymUjULZqJQpkM2EvFs98yNScNxZ-wDFt6qJ9NmhAJRKDUql_qVUE1Iuha8GJBIRBryqufPjr5aaosBMce9Ft35-3SsYSkEnc1lAnWdRc1ZNRMyYA7CeEDHSqVEfxnfa5iJQgTPcBQaM9uJ_9HqH3Ie-5HGB6SXZXHTXfpds2ZtF03d75B6fir1gZnA9_X34BwIaKp8 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thin%2C+soft%2C+3D+printing+enabled+crosstalk+minimized+triboelectric+nanogenerator+arrays+for+tactile+sensing&rft.jtitle=Fundamental+research+%28Beijing%29&rft.au=Jian+Li&rft.au=Yiming+Liu&rft.au=Mengge+Wu&rft.au=Kuanming+Yao&rft.date=2023-01-01&rft.pub=KeAi+Communications+Co.+Ltd&rft.issn=2667-3258&rft.eissn=2667-3258&rft.volume=3&rft.issue=1&rft.spage=111&rft.epage=117&rft_id=info:doi/10.1016%2Fj.fmre.2022.01.021&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c36da579563b40808a0b890d201717ce |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-3258&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-3258&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-3258&client=summon |