Thin, soft, 3D printing enabled crosstalk minimized triboelectric nanogenerator arrays for tactile sensing

With the requirements of self-powering sensors in flexible electronics, wearable triboelectric nanogenerators (TENGs) have attracted great attention due to their advantages of excellent electrical outputs and low-cost processing routes. The crosstalk effect between adjacent sensing units in TENGs si...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Fundamental research (Beijing) Ročník 3; číslo 1; s. 111 - 117
Hlavní autoři: Li, Jian, Liu, Yiming, Wu, Mengge, Yao, Kuanming, Gao, Zhan, Gao, Yuyu, Huang, Xingcan, Wong, Tsz Hung, Zhou, Jingkun, Li, Dengfeng, Li, Hu, Li, Jiyu, Huang, Ya, Shi, Rui, Yu, Junsheng, Yu, Xinge
Médium: Journal Article
Jazyk:angličtina
Vydáno: China Elsevier B.V 01.01.2023
KeAi Publishing
KeAi Communications Co. Ltd
Témata:
ISSN:2667-3258, 2096-9457, 2667-3258
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the requirements of self-powering sensors in flexible electronics, wearable triboelectric nanogenerators (TENGs) have attracted great attention due to their advantages of excellent electrical outputs and low-cost processing routes. The crosstalk effect between adjacent sensing units in TENGs significantly limits the pixel density of sensor arrays. Here, we present a skin-integrated, flexible TENG sensor array with 100 sensing units in an overall size of 7.5 cm × 7.5 cm that can be processed in a simple, low-cost, and scalable way enabled by 3D printing. All the sensing units show good sensitivity of 0.11 V/kPa with a wide range of pressure detection from 10 to 65 kPa, which allows to accurately distinguish various tactile formats from gentle touching (as low as 2 kPa) to hard pressuring. The 3D printing patterned substrate allows to cast triboelectric layers of polydimethylsiloxane in an independent sensing manner for each unit, which greatly suppresses the cross talk arising from adjacent sensing units, where the maximum crosstalk output is only 10.8%. The excellent uniformity and reproducibility of the sensor array offer precise pressure mapping for complicated pattern loadings, which demonstrates its potential in tactile sensing and human-machine interfaces. [Display omitted]
AbstractList With the requirements of self-powering sensors in flexible electronics, wearable triboelectric nanogenerators (TENGs) have attracted great attention due to their advantages of excellent electrical outputs and low-cost processing routes. The crosstalk effect between adjacent sensing units in TENGs significantly limits the pixel density of sensor arrays. Here, we present a skin-integrated, flexible TENG sensor array with 100 sensing units in an overall size of 7.5 cm × 7.5 cm that can be processed in a simple, low-cost, and scalable way enabled by 3D printing. All the sensing units show good sensitivity of 0.11 V/kPa with a wide range of pressure detection from 10 to 65 kPa, which allows to accurately distinguish various tactile formats from gentle touching (as low as 2 kPa) to hard pressuring. The 3D printing patterned substrate allows to cast triboelectric layers of polydimethylsiloxane in an independent sensing manner for each unit, which greatly suppresses the cross talk arising from adjacent sensing units, where the maximum crosstalk output is only 10.8%. The excellent uniformity and reproducibility of the sensor array offer precise pressure mapping for complicated pattern loadings, which demonstrates its potential in tactile sensing and human-machine interfaces. Image, graphical abstract
With the requirements of self-powering sensors in flexible electronics, wearable triboelectric nanogenerators (TENGs) have attracted great attention due to their advantages of excellent electrical outputs and low-cost processing routes. The crosstalk effect between adjacent sensing units in TENGs significantly limits the pixel density of sensor arrays. Here, we present a skin-integrated, flexible TENG sensor array with 100 sensing units in an overall size of 7.5 cm × 7.5 cm that can be processed in a simple, low-cost, and scalable way enabled by 3D printing. All the sensing units show good sensitivity of 0.11 V/kPa with a wide range of pressure detection from 10 to 65 kPa, which allows to accurately distinguish various tactile formats from gentle touching (as low as 2 kPa) to hard pressuring. The 3D printing patterned substrate allows to cast triboelectric layers of polydimethylsiloxane in an independent sensing manner for each unit, which greatly suppresses the cross talk arising from adjacent sensing units, where the maximum crosstalk output is only 10.8%. The excellent uniformity and reproducibility of the sensor array offer precise pressure mapping for complicated pattern loadings, which demonstrates its potential in tactile sensing and human-machine interfaces.With the requirements of self-powering sensors in flexible electronics, wearable triboelectric nanogenerators (TENGs) have attracted great attention due to their advantages of excellent electrical outputs and low-cost processing routes. The crosstalk effect between adjacent sensing units in TENGs significantly limits the pixel density of sensor arrays. Here, we present a skin-integrated, flexible TENG sensor array with 100 sensing units in an overall size of 7.5 cm × 7.5 cm that can be processed in a simple, low-cost, and scalable way enabled by 3D printing. All the sensing units show good sensitivity of 0.11 V/kPa with a wide range of pressure detection from 10 to 65 kPa, which allows to accurately distinguish various tactile formats from gentle touching (as low as 2 kPa) to hard pressuring. The 3D printing patterned substrate allows to cast triboelectric layers of polydimethylsiloxane in an independent sensing manner for each unit, which greatly suppresses the cross talk arising from adjacent sensing units, where the maximum crosstalk output is only 10.8%. The excellent uniformity and reproducibility of the sensor array offer precise pressure mapping for complicated pattern loadings, which demonstrates its potential in tactile sensing and human-machine interfaces.
With the requirements of self-powering sensors in flexible electronics, wearable triboelectric nanogenerators (TENGs) have attracted great attention due to their advantages of excellent electrical outputs and low-cost processing routes. The crosstalk effect between adjacent sensing units in TENGs significantly limits the pixel density of sensor arrays. Here, we present a skin-integrated, flexible TENG sensor array with 100 sensing units in an overall size of 7.5 cm × 7.5 cm that can be processed in a simple, low-cost, and scalable way enabled by 3D printing. All the sensing units show good sensitivity of 0.11 V/kPa with a wide range of pressure detection from 10 to 65 kPa, which allows to accurately distinguish various tactile formats from gentle touching (as low as 2 kPa) to hard pressuring. The 3D printing patterned substrate allows to cast triboelectric layers of polydimethylsiloxane in an independent sensing manner for each unit, which greatly suppresses the cross talk arising from adjacent sensing units, where the maximum crosstalk output is only 10.8%. The excellent uniformity and reproducibility of the sensor array offer precise pressure mapping for complicated pattern loadings, which demonstrates its potential in tactile sensing and human-machine interfaces. [Display omitted]
With the requirements of self-powering sensors in flexible electronics, wearable triboelectric nanogenerators (TENGs) have attracted great attention due to their advantages of excellent electrical outputs and low-cost processing routes. The crosstalk effect between adjacent sensing units in TENGs significantly limits the pixel density of sensor arrays. Here, we present a skin-integrated, flexible TENG sensor array with 100 sensing units in an overall size of 7.5 cm × 7.5 cm that can be processed in a simple, low-cost, and scalable way enabled by 3D printing. All the sensing units show good sensitivity of 0.11 V/kPa with a wide range of pressure detection from 10 to 65 kPa, which allows to accurately distinguish various tactile formats from gentle touching (as low as 2 kPa) to hard pressuring. The 3D printing patterned substrate allows to cast triboelectric layers of polydimethylsiloxane in an independent sensing manner for each unit, which greatly suppresses the cross talk arising from adjacent sensing units, where the maximum crosstalk output is only 10.8%. The excellent uniformity and reproducibility of the sensor array offer precise pressure mapping for complicated pattern loadings, which demonstrates its potential in tactile sensing and human-machine interfaces.
Author Yu, Xinge
Gao, Yuyu
Gao, Zhan
Wong, Tsz Hung
Yao, Kuanming
Shi, Rui
Li, Dengfeng
Li, Jiyu
Liu, Yiming
Zhou, Jingkun
Li, Hu
Huang, Ya
Yu, Junsheng
Li, Jian
Wu, Mengge
Huang, Xingcan
Author_xml – sequence: 1
  givenname: Jian
  orcidid: 0000-0002-9768-0932
  surname: Li
  fullname: Li, Jian
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
– sequence: 2
  givenname: Yiming
  orcidid: 0000-0003-0134-1934
  surname: Liu
  fullname: Liu, Yiming
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
– sequence: 3
  givenname: Mengge
  surname: Wu
  fullname: Wu, Mengge
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
– sequence: 4
  givenname: Kuanming
  orcidid: 0000-0001-8744-8892
  surname: Yao
  fullname: Yao, Kuanming
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
– sequence: 5
  givenname: Zhan
  surname: Gao
  fullname: Gao, Zhan
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
– sequence: 6
  givenname: Yuyu
  orcidid: 0000-0002-2000-5410
  surname: Gao
  fullname: Gao, Yuyu
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
– sequence: 7
  givenname: Xingcan
  orcidid: 0000-0003-4210-2470
  surname: Huang
  fullname: Huang, Xingcan
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
– sequence: 8
  givenname: Tsz Hung
  orcidid: 0000-0001-5890-2523
  surname: Wong
  fullname: Wong, Tsz Hung
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
– sequence: 9
  givenname: Jingkun
  orcidid: 0000-0001-5394-4388
  surname: Zhou
  fullname: Zhou, Jingkun
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
– sequence: 10
  givenname: Dengfeng
  orcidid: 0000-0002-8875-6974
  surname: Li
  fullname: Li, Dengfeng
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
– sequence: 11
  givenname: Hu
  surname: Li
  fullname: Li, Hu
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
– sequence: 12
  givenname: Jiyu
  orcidid: 0000-0003-4726-4559
  surname: Li
  fullname: Li, Jiyu
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
– sequence: 13
  givenname: Ya
  surname: Huang
  fullname: Huang, Ya
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
– sequence: 14
  givenname: Rui
  orcidid: 0000-0002-4221-0239
  surname: Shi
  fullname: Shi, Rui
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
– sequence: 15
  givenname: Junsheng
  surname: Yu
  fullname: Yu, Junsheng
  email: jsyu@uestc.edu.cnand
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
– sequence: 16
  givenname: Xinge
  orcidid: 0000-0003-0522-1171
  surname: Yu
  fullname: Yu, Xinge
  email: xingeyu@cityu.edu.hk
  organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38933565$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1P3TAQtCpQoZQ_0EOVYw-84I_EcaRKFaJfSEi90LO1sTcPp4lNbT8k-uvrx6MIeuDk1Xpmdu2ZN2TPB4-EvGO0ZpTJ06kel4g1p5zXlNWUs1fkkEvZrQRv1d6T-oAcpzRRSrliTAj-mhwI1QvRyvaQTFfXzp9UKYz5pBKfq5vofHZ-XaGHYUZbmRhSyjD_qhbn3eL-lF6Obgg4oymFqTz4sEaPEXKIFcQId6kaS5nBZDdjldCnIvmW7I8wJzx-OI_Iz69frs6_ry5_fLs4P7tcmZbzvLKoGFDedRbHvretpO0gBefDIJumBQVoqbF8MFzakZm-9BhvQFmjBmqkFUfkYqdrA0y6PGiBeKcDOH3fCHGtIWZnZtRGSAtt17dSDA1VVAEdVE8tp6xjncGi9WmndbMZFrQGfY4wPxN9fuPdtV6HW80Y6zvFeFH48KAQw-8NpqwXlwzOM3gMm6QF7Yovom9Ygb5_Ouxxyj-3CoDvAPemRBwfIYzqbSr0pLep0NtUaMp0SUUhqf9IxmXILmwXdvPL1I87Kha7bh1GnYxDb9C6WMwv_-leov8FYrrUUw
CitedBy_id crossref_primary_10_1016_j_wees_2024_04_001
crossref_primary_10_1016_j_nanoen_2024_109351
crossref_primary_10_1016_j_cej_2025_167679
crossref_primary_10_20517_ss_2025_11
crossref_primary_10_1002_adma_202200724
crossref_primary_10_1016_j_cej_2025_165703
crossref_primary_10_1021_acs_langmuir_4c04425
crossref_primary_10_1109_JSEN_2024_3408158
crossref_primary_10_1002_eom2_70003
crossref_primary_10_1016_j_nwnano_2023_100013
crossref_primary_10_1016_j_compag_2025_110988
crossref_primary_10_1002_adfm_202506293
crossref_primary_10_1088_2631_7990_ad94b8
crossref_primary_10_1007_s40843_025_3445_x
crossref_primary_10_1016_j_nanoen_2025_111099
crossref_primary_10_3390_jlpea14010007
crossref_primary_10_1007_s10118_025_3253_6
crossref_primary_10_1016_j_sna_2025_116790
crossref_primary_10_1021_acsaelm_4c01913
crossref_primary_10_1016_j_nanoen_2023_108559
crossref_primary_10_3390_s24020449
crossref_primary_10_1002_aisy_202400601
crossref_primary_10_1088_1361_6439_ad6778
crossref_primary_10_3390_jcs9080386
Cites_doi 10.1038/s41378-020-0154-2
10.1016/j.energy.2020.118462
10.1038/s41551-018-0201-6
10.1038/s41467-020-18086-4
10.1002/aelm.201901174
10.34133/2020/1085417
10.1021/acsnano.0c05493
10.1016/j.fmre.2021.05.002
10.34133/2020/8710686
10.1016/j.nanoen.2019.104251
10.1002/aisy.202270002
10.1016/j.nanoen.2020.105295
10.1038/s41378-021-00248-z
10.3390/s19010027
10.1016/j.nanoen.2021.106258
10.1002/eom2.12123
10.1038/s41551-021-00723-y
10.1002/smll.202003269
10.1016/j.nanoen.2019.02.054
10.1002/eom2.12059
10.1016/j.nanoen.2014.11.034
10.1016/j.fmre.2021.06.007
10.1126/sciadv.1600097
10.1038/s41467-020-15373-y
10.1021/acsnano.8b00108
10.1002/adfm.201800275
10.1002/smll.201904774
10.1038/nature16521
10.1016/j.apenergy.2017.05.181
10.1016/j.nanoen.2019.103923
10.1002/adma.201904664
10.1002/eom2.12098
10.1016/j.nanoen.2020.105590
10.1039/D0TC02913K
10.1002/adma.201503407
10.1021/acsami.0c08560
10.1016/j.nanoen.2020.105385
10.1002/aelm.201700586
10.1016/j.nanoen.2019.103884
10.1038/s41467-020-14846-4
10.1007/s40684-020-00212-8
10.1002/eom2.12054
10.1002/advs.202002817
10.1016/j.nanoen.2018.04.059
10.1038/s41467-020-15368-9
ContentType Journal Article
Copyright 2022
2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. 2022
Copyright_xml – notice: 2022
– notice: 2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
– notice: 2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. 2022
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.fmre.2022.01.021
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2667-3258
EndPage 117
ExternalDocumentID oai_doaj_org_article_c36da579563b40808a0b890d201717ce
PMC11197812
38933565
10_1016_j_fmre_2022_01_021
S2667325822000619
Genre Journal Article
GroupedDBID 6I.
AAEDW
AAFTH
AAXUO
AEXQZ
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
ROL
0R~
AALRI
AAYWO
AAYXX
ABDBF
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
M~E
OK1
PGMZT
RPM
NPM
7X8
5PM
ID FETCH-LOGICAL-c522t-de81a0277def99d5605b6322bb6445a8aed0cd2bc26df1c945a124a8dc8b0c6d3
IEDL.DBID DOA
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000935436800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2667-3258
2096-9457
IngestDate Fri Oct 03 12:50:46 EDT 2025
Tue Sep 30 17:08:44 EDT 2025
Fri Sep 05 11:54:03 EDT 2025
Thu Jan 02 22:37:29 EST 2025
Tue Nov 18 22:18:20 EST 2025
Thu Nov 13 04:17:31 EST 2025
Fri Feb 23 02:38:22 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Triboelectricnanogenerators
Tactile sensor
Self-powering sensors
Crosstalk suppression
Human-machine interfaces
Language English
License This is an open access article under the CC BY-NC-ND license.
2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-de81a0277def99d5605b6322bb6445a8aed0cd2bc26df1c945a124a8dc8b0c6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5890-2523
0000-0002-9768-0932
0000-0003-0134-1934
0000-0002-8875-6974
0000-0003-0522-1171
0000-0001-5394-4388
0000-0003-4210-2470
0000-0002-2000-5410
0000-0001-8744-8892
0000-0003-4726-4559
0000-0002-4221-0239
OpenAccessLink https://doaj.org/article/c36da579563b40808a0b890d201717ce
PMID 38933565
PQID 3072813941
PQPubID 23479
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_c36da579563b40808a0b890d201717ce
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11197812
proquest_miscellaneous_3072813941
pubmed_primary_38933565
crossref_primary_10_1016_j_fmre_2022_01_021
crossref_citationtrail_10_1016_j_fmre_2022_01_021
elsevier_sciencedirect_doi_10_1016_j_fmre_2022_01_021
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace China
PublicationPlace_xml – name: China
PublicationTitle Fundamental research (Beijing)
PublicationTitleAlternate Fundam Res
PublicationYear 2023
Publisher Elsevier B.V
KeAi Publishing
KeAi Communications Co. Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Publishing
– name: KeAi Communications Co. Ltd
References Zaia, Gordon, Yuan (bib0001) 2019; 5
Liu, Liu, Wang (bib0024) 2020; 11
Wang, Zhang, Zhang (bib0030) 2018; 30
Wan, Qiu, Hong (bib0020) 2018; 4
Zhao, Zhang, Shi (bib0032) 2019; 59
Dai, Fu, Zeng (bib0045) 2018; 28
Pu, Liu, Chen (bib0033) 2016; 3
Yang, Xiong, Ma (bib0012) 2020; 2
Liu, Yiu, Jia (bib0009) 2021; 3
Wu, Wang, Ding (bib0036) 2019; 9
Wang, Wu, Liu (bib0042) 2020; 212
Wong, Yiu, Zhou (bib0005) 2021; 1
Xu, Song, Han (bib0004) 2021; 7
Wu, Yao, Li (bib0007) 2021; 21
Zou, Bo, Li (bib0003) 2021; 1
Yu, Wang, Ning (bib0018) 2018; 2
Zhang, Xu, Yang (bib0047) 2020; 67
Jiang, Tu, Fu (bib0017) 2020; 12
Niu, Wang (bib0039) 2015; 14
Gao, Yiu, Liu (bib0053) 2020; 8
Yao, Xu, Cheng (bib0029) 2020; 30
Gong, Du, Kong (bib0052) 2020; 16
Niu, Gao, Yue (bib0019) 2020; 16
Wang, Liu, Liu (bib0055) 2020; 6
Li, Zheng, Wang (bib0021) 2020; 2020
Gao, Emaminejad, Nyein (bib0008) 2016; 529
Cho, Lee, Park (bib0014) 2022
Su, Brugger, Kim (bib0048) 2020; 7
Zhang, Wang, Yang (bib0035) 2019; 15
An, Anaya, Gong (bib0011) 2020; 77
Liu, Zheng, Zhao (bib0006) 2020; 2020
Wen, Yeh, Guo (bib0026) 2016; 2
Shao, Wang, Wang (bib0040) 2020; 5
Fu, Zhou, Wu (bib0050) 2021; 88
Ling, An, Yap (bib0002) 2020; 32
Zhang, Ye, Lin (bib0013) 2019; 19
Luo, Wang (bib0038) 2020; 2
Suarez, Parekh, Ladd (bib0034) 2017; 202
Sun, Guo, Ribera (bib0028) 2020; 14
Zhong, Zhang, Fu (bib0044) 2019; 63
Lin, Wang, Peng (bib0015) 2021; 8
Song, Xie, Bai (bib0010) 2021; 5
Yu, Hou, Cui (bib0016) 2019; 64
Wang, Chang, Huang (bib0022) 2021; 1
He, Liu, Chen (bib0023) 2020; 11
Xu, Wu, Li (bib0046) 2018; 49
Gogurla, Kim (bib0049) 2021; 11
Liu, Wang, Wang (bib0025) 2020; 11
Gu, Liu, Cui (bib0027) 2020; 11
He, Xie, Yao (bib0054) 2021; 81
Liu, Liu, Dou (bib0041) 2018; 12
Wang, Zhang, Dong (bib0031) 2016; 28
Liu, Wang, Zhao (bib0043) 2020; 6
Liu, Zhang, Wang (bib0051) 2020; 78
Zhou, Lee (bib0037) 2021; 3
Liu (10.1016/j.fmre.2022.01.021_bib0041) 2018; 12
An (10.1016/j.fmre.2022.01.021_bib0011) 2020; 77
Su (10.1016/j.fmre.2022.01.021_bib0048) 2020; 7
Yu (10.1016/j.fmre.2022.01.021_bib0018) 2018; 2
Song (10.1016/j.fmre.2022.01.021_bib0010) 2021; 5
Liu (10.1016/j.fmre.2022.01.021_bib0043) 2020; 6
Gao (10.1016/j.fmre.2022.01.021_bib0008) 2016; 529
Zhong (10.1016/j.fmre.2022.01.021_bib0044) 2019; 63
Zhang (10.1016/j.fmre.2022.01.021_bib0013) 2019; 19
Wang (10.1016/j.fmre.2022.01.021_bib0030) 2018; 30
Liu (10.1016/j.fmre.2022.01.021_bib0024) 2020; 11
Gu (10.1016/j.fmre.2022.01.021_bib0027) 2020; 11
Liu (10.1016/j.fmre.2022.01.021_bib0006) 2020; 2020
Xu (10.1016/j.fmre.2022.01.021_bib0046) 2018; 49
Zou (10.1016/j.fmre.2022.01.021_bib0003) 2021; 1
Wong (10.1016/j.fmre.2022.01.021_bib0005) 2021; 1
Dai (10.1016/j.fmre.2022.01.021_bib0045) 2018; 28
Ling (10.1016/j.fmre.2022.01.021_bib0002) 2020; 32
Wen (10.1016/j.fmre.2022.01.021_bib0026) 2016; 2
Wu (10.1016/j.fmre.2022.01.021_bib0036) 2019; 9
Wang (10.1016/j.fmre.2022.01.021_bib0055) 2020; 6
He (10.1016/j.fmre.2022.01.021_bib0023) 2020; 11
Xu (10.1016/j.fmre.2022.01.021_bib0004) 2021; 7
Cho (10.1016/j.fmre.2022.01.021_bib0014) 2022
Liu (10.1016/j.fmre.2022.01.021_bib0025) 2020; 11
Zhang (10.1016/j.fmre.2022.01.021_bib0035) 2019; 15
Jiang (10.1016/j.fmre.2022.01.021_bib0017) 2020; 12
Pu (10.1016/j.fmre.2022.01.021_bib0033) 2016; 3
Shao (10.1016/j.fmre.2022.01.021_bib0040) 2020; 5
Liu (10.1016/j.fmre.2022.01.021_bib0051) 2020; 78
Gong (10.1016/j.fmre.2022.01.021_bib0052) 2020; 16
Sun (10.1016/j.fmre.2022.01.021_bib0028) 2020; 14
Wan (10.1016/j.fmre.2022.01.021_bib0020) 2018; 4
Wang (10.1016/j.fmre.2022.01.021_bib0022) 2021; 1
Wang (10.1016/j.fmre.2022.01.021_bib0031) 2016; 28
Gao (10.1016/j.fmre.2022.01.021_bib0053) 2020; 8
Fu (10.1016/j.fmre.2022.01.021_bib0050) 2021; 88
Zhao (10.1016/j.fmre.2022.01.021_bib0032) 2019; 59
Zhou (10.1016/j.fmre.2022.01.021_bib0037) 2021; 3
Zaia (10.1016/j.fmre.2022.01.021_bib0001) 2019; 5
Niu (10.1016/j.fmre.2022.01.021_bib0019) 2020; 16
He (10.1016/j.fmre.2022.01.021_bib0054) 2021; 81
Luo (10.1016/j.fmre.2022.01.021_bib0038) 2020; 2
Yu (10.1016/j.fmre.2022.01.021_bib0016) 2019; 64
Wang (10.1016/j.fmre.2022.01.021_bib0042) 2020; 212
Liu (10.1016/j.fmre.2022.01.021_bib0009) 2021; 3
Yao (10.1016/j.fmre.2022.01.021_bib0029) 2020; 30
Suarez (10.1016/j.fmre.2022.01.021_bib0034) 2017; 202
Li (10.1016/j.fmre.2022.01.021_bib0021) 2020; 2020
Zhang (10.1016/j.fmre.2022.01.021_bib0047) 2020; 67
Niu (10.1016/j.fmre.2022.01.021_bib0039) 2015; 14
Gogurla (10.1016/j.fmre.2022.01.021_bib0049) 2021; 11
Wu (10.1016/j.fmre.2022.01.021_bib0007) 2021; 21
Yang (10.1016/j.fmre.2022.01.021_bib0012) 2020; 2
Lin (10.1016/j.fmre.2022.01.021_bib0015) 2021; 8
References_xml – volume: 8
  year: 2021
  ident: bib0015
  article-title: Skin-Inspired Piezoelectric Tactile Sensor Array with Crosstalk-Free Row+Column Electrodes for Spatiotemporally Distinguishing Diverse Stimuli
  publication-title: Adv. Sci.
– volume: 63
  year: 2019
  ident: bib0044
  article-title: An artificial triboelectricity-brain-behavior closed loop for intelligent olfactory substitution
  publication-title: Nano Energy
– volume: 28
  start-page: 2896
  year: 2016
  end-page: 2903
  ident: bib0031
  article-title: Self-Powered High-Resolution and Pressure-Sensitive Triboelectric Sensor Matrix for Real-Time Tactile Mapping
  publication-title: Adv. Mater.
– volume: 15
  year: 2019
  ident: bib0035
  article-title: Design, Performance, and Application of Thermoelectric Nanogenerators
  publication-title: Small
– volume: 11
  year: 2021
  ident: bib0049
  article-title: Self-Powered and Imperceptible Electronic Tattoos Based on Silk Protein Nanofiber and Carbon Nanotubes for Human–Machine Interfaces
  publication-title: Adv. Energy Mater.
– volume: 202
  start-page: 736
  year: 2017
  end-page: 745
  ident: bib0034
  article-title: Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics
  publication-title: Appl. Energy.
– volume: 88
  year: 2021
  ident: bib0050
  article-title: Fibrous self-powered sensor with high stretchability for physiological information monitoring
  publication-title: Nano Energy
– volume: 8
  start-page: 15105
  year: 2020
  end-page: 15111
  ident: bib0053
  article-title: Stretchable transparent conductive elastomers for skin-integrated electronics
  publication-title: J. Mater. Chem. C.
– volume: 12
  start-page: 2818
  year: 2018
  end-page: 2826
  ident: bib0041
  article-title: Triboelectric-Nanogenerator-Based Soft Energy-Harvesting Skin Enabled by Toughly Bonded Elastomer/Hydrogel Hybrids
  publication-title: ACS Nano
– year: 2022
  ident: bib0014
  article-title: Large-Area Piezoresistive Tactile Sensor Developed by Training a Super-Simple Single-Layer Carbon Nanotube-Dispersed Polydimethylsiloxane Pad
  publication-title: Adv. Intell. Syst.
– volume: 30
  year: 2018
  ident: bib0030
  article-title: A Highly Stretchable Transparent Self-Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics
  publication-title: Adv. Mater.
– volume: 11
  start-page: 4277
  year: 2020
  ident: bib0023
  article-title: Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1030
  year: 2020
  ident: bib0027
  article-title: Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode
  publication-title: Nat. Commun.
– volume: 2020
  year: 2020
  ident: bib0006
  article-title: Electronic Skin from High-Throughput Fabrication of Intrinsically Stretchable Lead Zirconate Titanate Elastomer
  publication-title: Research
– volume: 81
  year: 2021
  ident: bib0054
  article-title: Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics
  publication-title: Nano Energy
– volume: 16
  year: 2020
  ident: bib0019
  article-title: Highly Morphology-Controllable and Highly Sensitive Capacitive Tactile Sensor Based on Epidermis-Dermis-Inspired Interlocked Asymmetric-Nanocone Arrays for Detection of Tiny Pressure
  publication-title: Small
– volume: 3
  start-page: e12123
  year: 2021
  ident: bib0009
  article-title: Thin, soft, garment-integrated triboelectric nanogenerators for energy harvesting and human machine interfaces
  publication-title: EcoMat
– volume: 1
  start-page: 10
  year: 2021
  ident: bib0005
  article-title: Tattoo-like epidermal electronics as skin sensors for human-machine interfaces
  publication-title: Soft Sci
– volume: 3
  year: 2016
  ident: bib0033
  article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing
  publication-title: Sci. Adv.
– volume: 5
  year: 2019
  ident: bib0001
  article-title: Progress and Perspective: Soft Thermoelectric Materials for Wearable and Internet-of-Things Applications
  publication-title: Adv. Electron. Mater.
– volume: 4
  year: 2018
  ident: bib0020
  article-title: A Highly Sensitive Flexible Capacitive Tactile Sensor with Sparse and High-Aspect-Ratio Microstructures
  publication-title: Adv. Electron. Mater.
– volume: 78
  year: 2020
  ident: bib0051
  article-title: Highly stretchable and transparent triboelectric nanogenerator based on multilayer structured stable electrode for self-powered wearable sensor
  publication-title: Nano Energy
– volume: 19
  start-page: 27
  year: 2019
  ident: bib0013
  article-title: A Piezoresistive Tactile Sensor for a Large Area Employing Neural Network
  publication-title: Sensors
– volume: 64
  year: 2019
  ident: bib0016
  article-title: Highly skin-conformal wearable tactile sensor based on piezoelectric-enhanced triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 5
  start-page: 759
  year: 2021
  end-page: 771
  ident: bib0010
  article-title: Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue
  publication-title: Nat. Biomed. Eng.
– volume: 6
  start-page: 1
  year: 2020
  end-page: 9
  ident: bib0055
  article-title: A metal-electrode-free, fully integrated, soft triboelectric sensor array for self-powered tactile sensing
  publication-title: Microsyst. Nanoeng.
– volume: 1
  start-page: 364
  year: 2021
  end-page: 382
  ident: bib0003
  article-title: Recent progress in human body energy harvesting for smart bioelectronic system
  publication-title: Fundam. Res.
– volume: 49
  start-page: 274
  year: 2018
  end-page: 282
  ident: bib0046
  article-title: Triboelectric electronic-skin based on graphene quantum dots for application in self-powered, smart, artificial fingers
  publication-title: Nano Energy
– volume: 529
  start-page: 509
  year: 2016
  end-page: 514
  ident: bib0008
  article-title: Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis
  publication-title: Nature
– volume: 2
  start-page: e12059
  year: 2020
  ident: bib0038
  article-title: Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications
  publication-title: EcoMat
– volume: 12
  start-page: 33989
  year: 2020
  end-page: 33998
  ident: bib0017
  article-title: Flexible Piezoelectric Pressure Tactile Sensor Based on Electrospun BaTiO3/Poly(vinylidene fluoride) Nanocomposite Membrane
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 11
  start-page: 1599
  year: 2020
  ident: bib0024
  article-title: Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1883
  year: 2020
  ident: bib0025
  article-title: Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator
  publication-title: Nat. Commun.
– volume: 16
  year: 2020
  ident: bib0052
  article-title: Skin-Like Stretchable Fuel Cell Based on Gold-Nanowire-Impregnated Porous Polymer Scaffolds
  publication-title: Small
– volume: 9
  year: 2019
  ident: bib0036
  article-title: Triboelectric Nanogenerator: A Foundation of the Energy for the New Era
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1
  year: 2021
  end-page: 14
  ident: bib0004
  article-title: Portable and wearable self-powered systems based on emerging energy harvesting technology
  publication-title: Microsyst. Nanoeng.
– volume: 30
  year: 2020
  ident: bib0029
  article-title: Bioinspired Triboelectric Nanogenerators as Self-Powered Electronic Skin for Robotic Tactile Sensing
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 165
  year: 2018
  end-page: 172
  ident: bib0018
  article-title: Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing
  publication-title: Nat. Biomed. Eng.
– volume: 5
  year: 2020
  ident: bib0040
  article-title: A Highly Accurate, Stretchable Touchpad for Robust, Linear, and Stable Tactile Feedback
  publication-title: Adv. Mater. Technol.
– volume: 67
  year: 2020
  ident: bib0047
  article-title: High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 77
  year: 2020
  ident: bib0011
  article-title: Self-powered gold nanowire tattoo triboelectric sensors for soft wearable human-machine interface
  publication-title: Nano Energy
– volume: 1
  start-page: 399
  year: 2021
  end-page: 407
  ident: bib0022
  article-title: Crumpled, high-power, and safe wearable Lithium-Ion Battery enabled by nanostructured metallic textiles
  publication-title: Fundam. Res.
– volume: 14
  start-page: 161
  year: 2015
  end-page: 192
  ident: bib0039
  article-title: Theoretical systems of triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 32
  year: 2020
  ident: bib0002
  article-title: Disruptive, Soft, Wearable Sensors
  publication-title: Adv. Mater.
– volume: 212
  year: 2020
  ident: bib0042
  article-title: Origami triboelectric nanogenerator with double-helical structure for environmental energy harvesting
  publication-title: Energy
– volume: 2
  year: 2016
  ident: bib0026
  article-title: Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors
  publication-title: Sci. Adv.
– volume: 59
  start-page: 302
  year: 2019
  end-page: 310
  ident: bib0032
  article-title: Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing
  publication-title: Nano Energy
– volume: 21
  year: 2021
  ident: bib0007
  article-title: Self-powered skin electronics for energy harvesting and healthcare monitoring
  publication-title: Mater. Today Energy.
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 25
  ident: bib0021
  article-title: Nanogenerator-Based Self-Powered Sensors for Wearable and Implantable Electronics
  publication-title: Research
– volume: 2
  start-page: e12054
  year: 2020
  ident: bib0012
  article-title: Recent advances in wearable textile-based triboelectric generator systems for energy harvesting from human motion
  publication-title: EcoMat
– volume: 7
  start-page: 683
  year: 2020
  end-page: 698
  ident: bib0048
  article-title: Simply Structured Wearable Triboelectric Nanogenerator Based on a Hybrid Composition of Carbon Nanotubes and Polymer Layer
  publication-title: Int. J. Precis. Eng. Manuf.-Green Technol.
– volume: 3
  start-page: e12098
  year: 2021
  ident: bib0037
  article-title: Three dimensional printed nanogenerators
  publication-title: EcoMat
– volume: 6
  year: 2020
  ident: bib0043
  article-title: Thin, Skin-Integrated, Stretchable Triboelectric Nanogenerators for Tactile Sensing
  publication-title: Adv. Electron. Mater.
– volume: 28
  year: 2018
  ident: bib0045
  article-title: A Self-Powered Brain-Linked Vision Electronic-Skin Based on Triboelectric-Photodetecing Pixel-Addressable Matrix for Visual-Image Recognition and Behavior Intervention
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 14665
  year: 2020
  end-page: 14674
  ident: bib0028
  article-title: Sustainable and Biodegradable Wood Sponge Piezoelectric Nanogenerator for Sensing and Energy Harvesting Applications
  publication-title: ACS Nano
– volume: 21
  year: 2021
  ident: 10.1016/j.fmre.2022.01.021_bib0007
  article-title: Self-powered skin electronics for energy harvesting and healthcare monitoring
  publication-title: Mater. Today Energy.
– volume: 6
  start-page: 1
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0055
  article-title: A metal-electrode-free, fully integrated, soft triboelectric sensor array for self-powered tactile sensing
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-020-0154-2
– volume: 212
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0042
  article-title: Origami triboelectric nanogenerator with double-helical structure for environmental energy harvesting
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118462
– volume: 2
  start-page: 165
  year: 2018
  ident: 10.1016/j.fmre.2022.01.021_bib0018
  article-title: Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0201-6
– volume: 11
  start-page: 4277
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0023
  article-title: Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18086-4
– volume: 6
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0043
  article-title: Thin, Skin-Integrated, Stretchable Triboelectric Nanogenerators for Tactile Sensing
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201901174
– volume: 2020
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0006
  article-title: Electronic Skin from High-Throughput Fabrication of Intrinsically Stretchable Lead Zirconate Titanate Elastomer
  publication-title: Research
  doi: 10.34133/2020/1085417
– volume: 14
  start-page: 14665
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0028
  article-title: Sustainable and Biodegradable Wood Sponge Piezoelectric Nanogenerator for Sensing and Energy Harvesting Applications
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c05493
– volume: 30
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0029
  article-title: Bioinspired Triboelectric Nanogenerators as Self-Powered Electronic Skin for Robotic Tactile Sensing
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 364
  year: 2021
  ident: 10.1016/j.fmre.2022.01.021_bib0003
  article-title: Recent progress in human body energy harvesting for smart bioelectronic system
  publication-title: Fundam. Res.
  doi: 10.1016/j.fmre.2021.05.002
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0021
  article-title: Nanogenerator-Based Self-Powered Sensors for Wearable and Implantable Electronics
  publication-title: Research
  doi: 10.34133/2020/8710686
– volume: 67
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0047
  article-title: High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104251
– year: 2022
  ident: 10.1016/j.fmre.2022.01.021_bib0014
  article-title: Large-Area Piezoresistive Tactile Sensor Developed by Training a Super-Simple Single-Layer Carbon Nanotube-Dispersed Polydimethylsiloxane Pad
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.202270002
– volume: 3
  year: 2016
  ident: 10.1016/j.fmre.2022.01.021_bib0033
  article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing
  publication-title: Sci. Adv.
– volume: 77
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0011
  article-title: Self-powered gold nanowire tattoo triboelectric sensors for soft wearable human-machine interface
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105295
– volume: 7
  start-page: 1
  year: 2021
  ident: 10.1016/j.fmre.2022.01.021_bib0004
  article-title: Portable and wearable self-powered systems based on emerging energy harvesting technology
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-021-00248-z
– volume: 19
  start-page: 27
  year: 2019
  ident: 10.1016/j.fmre.2022.01.021_bib0013
  article-title: A Piezoresistive Tactile Sensor for a Large Area Employing Neural Network
  publication-title: Sensors
  doi: 10.3390/s19010027
– volume: 5
  year: 2019
  ident: 10.1016/j.fmre.2022.01.021_bib0001
  article-title: Progress and Perspective: Soft Thermoelectric Materials for Wearable and Internet-of-Things Applications
  publication-title: Adv. Electron. Mater.
– volume: 15
  year: 2019
  ident: 10.1016/j.fmre.2022.01.021_bib0035
  article-title: Design, Performance, and Application of Thermoelectric Nanogenerators
  publication-title: Small
– volume: 88
  year: 2021
  ident: 10.1016/j.fmre.2022.01.021_bib0050
  article-title: Fibrous self-powered sensor with high stretchability for physiological information monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106258
– volume: 3
  start-page: e12123
  year: 2021
  ident: 10.1016/j.fmre.2022.01.021_bib0009
  article-title: Thin, soft, garment-integrated triboelectric nanogenerators for energy harvesting and human machine interfaces
  publication-title: EcoMat
  doi: 10.1002/eom2.12123
– volume: 5
  start-page: 759
  year: 2021
  ident: 10.1016/j.fmre.2022.01.021_bib0010
  article-title: Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-021-00723-y
– volume: 16
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0052
  article-title: Skin-Like Stretchable Fuel Cell Based on Gold-Nanowire-Impregnated Porous Polymer Scaffolds
  publication-title: Small
  doi: 10.1002/smll.202003269
– volume: 59
  start-page: 302
  year: 2019
  ident: 10.1016/j.fmre.2022.01.021_bib0032
  article-title: Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.054
– volume: 2
  start-page: e12059
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0038
  article-title: Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications
  publication-title: EcoMat
  doi: 10.1002/eom2.12059
– volume: 14
  start-page: 161
  year: 2015
  ident: 10.1016/j.fmre.2022.01.021_bib0039
  article-title: Theoretical systems of triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.034
– volume: 1
  start-page: 399
  year: 2021
  ident: 10.1016/j.fmre.2022.01.021_bib0022
  article-title: Crumpled, high-power, and safe wearable Lithium-Ion Battery enabled by nanostructured metallic textiles
  publication-title: Fundam. Res.
  doi: 10.1016/j.fmre.2021.06.007
– volume: 30
  year: 2018
  ident: 10.1016/j.fmre.2022.01.021_bib0030
  article-title: A Highly Stretchable Transparent Self-Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics
  publication-title: Adv. Mater.
– volume: 2
  year: 2016
  ident: 10.1016/j.fmre.2022.01.021_bib0026
  article-title: Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600097
– volume: 11
  start-page: 1883
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0025
  article-title: Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15373-y
– volume: 5
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0040
  article-title: A Highly Accurate, Stretchable Touchpad for Robust, Linear, and Stable Tactile Feedback
  publication-title: Adv. Mater. Technol.
– volume: 12
  start-page: 2818
  year: 2018
  ident: 10.1016/j.fmre.2022.01.021_bib0041
  article-title: Triboelectric-Nanogenerator-Based Soft Energy-Harvesting Skin Enabled by Toughly Bonded Elastomer/Hydrogel Hybrids
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00108
– volume: 28
  year: 2018
  ident: 10.1016/j.fmre.2022.01.021_bib0045
  article-title: A Self-Powered Brain-Linked Vision Electronic-Skin Based on Triboelectric-Photodetecing Pixel-Addressable Matrix for Visual-Image Recognition and Behavior Intervention
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800275
– volume: 1
  start-page: 10
  year: 2021
  ident: 10.1016/j.fmre.2022.01.021_bib0005
  article-title: Tattoo-like epidermal electronics as skin sensors for human-machine interfaces
  publication-title: Soft Sci
– volume: 11
  year: 2021
  ident: 10.1016/j.fmre.2022.01.021_bib0049
  article-title: Self-Powered and Imperceptible Electronic Tattoos Based on Silk Protein Nanofiber and Carbon Nanotubes for Human–Machine Interfaces
  publication-title: Adv. Energy Mater.
– volume: 16
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0019
  article-title: Highly Morphology-Controllable and Highly Sensitive Capacitive Tactile Sensor Based on Epidermis-Dermis-Inspired Interlocked Asymmetric-Nanocone Arrays for Detection of Tiny Pressure
  publication-title: Small
  doi: 10.1002/smll.201904774
– volume: 529
  start-page: 509
  year: 2016
  ident: 10.1016/j.fmre.2022.01.021_bib0008
  article-title: Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis
  publication-title: Nature
  doi: 10.1038/nature16521
– volume: 202
  start-page: 736
  year: 2017
  ident: 10.1016/j.fmre.2022.01.021_bib0034
  article-title: Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2017.05.181
– volume: 64
  year: 2019
  ident: 10.1016/j.fmre.2022.01.021_bib0016
  article-title: Highly skin-conformal wearable tactile sensor based on piezoelectric-enhanced triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103923
– volume: 32
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0002
  article-title: Disruptive, Soft, Wearable Sensors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904664
– volume: 9
  year: 2019
  ident: 10.1016/j.fmre.2022.01.021_bib0036
  article-title: Triboelectric Nanogenerator: A Foundation of the Energy for the New Era
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: e12098
  year: 2021
  ident: 10.1016/j.fmre.2022.01.021_bib0037
  article-title: Three dimensional printed nanogenerators
  publication-title: EcoMat
  doi: 10.1002/eom2.12098
– volume: 81
  year: 2021
  ident: 10.1016/j.fmre.2022.01.021_bib0054
  article-title: Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105590
– volume: 8
  start-page: 15105
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0053
  article-title: Stretchable transparent conductive elastomers for skin-integrated electronics
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/D0TC02913K
– volume: 28
  start-page: 2896
  year: 2016
  ident: 10.1016/j.fmre.2022.01.021_bib0031
  article-title: Self-Powered High-Resolution and Pressure-Sensitive Triboelectric Sensor Matrix for Real-Time Tactile Mapping
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503407
– volume: 12
  start-page: 33989
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0017
  article-title: Flexible Piezoelectric Pressure Tactile Sensor Based on Electrospun BaTiO3/Poly(vinylidene fluoride) Nanocomposite Membrane
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.0c08560
– volume: 78
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0051
  article-title: Highly stretchable and transparent triboelectric nanogenerator based on multilayer structured stable electrode for self-powered wearable sensor
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105385
– volume: 4
  year: 2018
  ident: 10.1016/j.fmre.2022.01.021_bib0020
  article-title: A Highly Sensitive Flexible Capacitive Tactile Sensor with Sparse and High-Aspect-Ratio Microstructures
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201700586
– volume: 63
  year: 2019
  ident: 10.1016/j.fmre.2022.01.021_bib0044
  article-title: An artificial triboelectricity-brain-behavior closed loop for intelligent olfactory substitution
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103884
– volume: 11
  start-page: 1030
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0027
  article-title: Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14846-4
– volume: 7
  start-page: 683
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0048
  article-title: Simply Structured Wearable Triboelectric Nanogenerator Based on a Hybrid Composition of Carbon Nanotubes and Polymer Layer
  publication-title: Int. J. Precis. Eng. Manuf.-Green Technol.
  doi: 10.1007/s40684-020-00212-8
– volume: 2
  start-page: e12054
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0012
  article-title: Recent advances in wearable textile-based triboelectric generator systems for energy harvesting from human motion
  publication-title: EcoMat
  doi: 10.1002/eom2.12054
– volume: 8
  year: 2021
  ident: 10.1016/j.fmre.2022.01.021_bib0015
  article-title: Skin-Inspired Piezoelectric Tactile Sensor Array with Crosstalk-Free Row+Column Electrodes for Spatiotemporally Distinguishing Diverse Stimuli
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202002817
– volume: 49
  start-page: 274
  year: 2018
  ident: 10.1016/j.fmre.2022.01.021_bib0046
  article-title: Triboelectric electronic-skin based on graphene quantum dots for application in self-powered, smart, artificial fingers
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.059
– volume: 11
  start-page: 1599
  year: 2020
  ident: 10.1016/j.fmre.2022.01.021_bib0024
  article-title: Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15368-9
SSID ssj0002811332
ssib052855697
Score 2.3638535
Snippet With the requirements of self-powering sensors in flexible electronics, wearable triboelectric nanogenerators (TENGs) have attracted great attention due to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111
SubjectTerms Crosstalk suppression
Human-machine interfaces
Self-powering sensors
Tactile sensor
Triboelectricnanogenerators
Title Thin, soft, 3D printing enabled crosstalk minimized triboelectric nanogenerator arrays for tactile sensing
URI https://dx.doi.org/10.1016/j.fmre.2022.01.021
https://www.ncbi.nlm.nih.gov/pubmed/38933565
https://www.proquest.com/docview/3072813941
https://pubmed.ncbi.nlm.nih.gov/PMC11197812
https://doaj.org/article/c36da579563b40808a0b890d201717ce
Volume 3
WOSCitedRecordID wos000935436800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2667-3258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002811332
  issn: 2667-3258
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2667-3258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002811332
  issn: 2667-3258
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZK1QMXRHkupZWROIBoRJyX7SOFVj20FQdAe7P8SpulzaJkWwkO_HZm7OxqQ6Vy4ZKD4yR2Zsb-xh5_Q8hrVnButAVPlUueFN6zRPLaJKaoNEZVVSbwbH874WdnYjqVn9dSfWFMWKQHjj_uvc0rp0sOMD43BcAboVMjZOoyJHrh1uPoC8VrztQsLBkxcL5wCwEmILCirBTDiZkY3FVfdciRmWWRs5ONZqVA3j-anG6Dz79jKNcmpaOH5MGAJumH2IttsuHbR2R7sNeevhlIpd8-JjNM0LlPexh192n-ieJ6HkY8Ux8OTzkaGgZI_DtFtpGr5heUYTaseUyU01ja6nZ-Hl4IfjrVXad_9hQwL13g4YhLT3sMhm_Pn5CvR4dfPh4nQ56FxAL6WiTOC6ZxL9f5WkoHGKg0FRi6MQCWSi20d6l1mbFZ5WpmJZQBKtDCWWFSW7n8Kdls561_TmhmGIgl92lduQJcN8nTUnsQoagtOOJsQtjyPys7kJBjLoxLtYw2mymUjULZqJQpkM2EvFs98yNScNxZ-wDFt6qJ9NmhAJRKDUql_qVUE1Iuha8GJBIRBryqufPjr5aaosBMce9Ft35-3SsYSkEnc1lAnWdRc1ZNRMyYA7CeEDHSqVEfxnfa5iJQgTPcBQaM9uJ_9HqH3Ie-5HGB6SXZXHTXfpds2ZtF03d75B6fir1gZnA9_X34BwIaKp8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thin%2C+soft%2C+3D+printing+enabled+crosstalk+minimized+triboelectric+nanogenerator+arrays+for+tactile+sensing&rft.jtitle=Fundamental+research+%28Beijing%29&rft.au=Jian+Li&rft.au=Yiming+Liu&rft.au=Mengge+Wu&rft.au=Kuanming+Yao&rft.date=2023-01-01&rft.pub=KeAi+Communications+Co.+Ltd&rft.issn=2667-3258&rft.eissn=2667-3258&rft.volume=3&rft.issue=1&rft.spage=111&rft.epage=117&rft_id=info:doi/10.1016%2Fj.fmre.2022.01.021&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c36da579563b40808a0b890d201717ce
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-3258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-3258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-3258&client=summon