Foundations of automatic feature extraction at LHC–point clouds and graphs
Deep learning algorithms will play a key role in the upcoming runs of the Large Hadron Collider (LHC), helping bolster various fronts ranging from fast and accurate detector simulations to physics analysis probing possible deviations from the Standard Model. The game-changing feature of these new al...
Saved in:
| Published in: | The European physical journal. ST, Special topics Vol. 233; no. 15-16; pp. 2619 - 2640 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2024
Springer Nature B.V Springer Science + Business Media |
| Subjects: | |
| ISSN: | 1951-6355, 1951-6401 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Deep learning algorithms will play a key role in the upcoming runs of the Large Hadron Collider (LHC), helping bolster various fronts ranging from fast and accurate detector simulations to physics analysis probing possible deviations from the Standard Model. The game-changing feature of these new algorithms is the ability to extract relevant information from high-dimensional input spaces, often regarded as “replacing the expert” in designing physics-intuitive variables. While this may seem true at first glance, it is far from reality. Existing research shows that physics-inspired feature extractors have many advantages beyond improving the qualitative understanding of the extracted features. In this review, we systematically explore automatic feature extraction from a phenomenological viewpoint and the motivation for physics-inspired architectures. We also discuss how prior knowledge from physics results in the naturalness of the point cloud representation and discuss graph-based applications to LHC phenomenology. |
|---|---|
| AbstractList | Deep learning algorithms will play a key role in the upcoming runs of the Large Hadron Collider (LHC), helping bolster various fronts ranging from fast and accurate detector simulations to physics analysis probing possible deviations from the Standard Model. The game-changing feature of these new algorithms is the ability to extract relevant information from high-dimensional input spaces, often regarded as "replacing the expert" in designing physics-intuitive variables. While this may seem true at first glance, it is far from reality. Existing research shows that physics-inspired feature extractors have many advantages beyond improving the qualitative understanding of the extracted features. In this review, we systematically explore automatic feature extraction from a phenomenological viewpoint and the motivation for physics-inspired architectures. We also discuss how prior knowledge from physics results in the naturalness of the point cloud representation and discuss graph-based applications to LHC phenomenology. Deep learning algorithms will play a key role in the upcoming runs of the Large Hadron Collider (LHC), helping bolster various fronts ranging from fast and accurate detector simulations to physics analysis probing possible deviations from the Standard Model. The game-changing feature of these new algorithms is the ability to extract relevant information from high-dimensional input spaces, often regarded as "replacing the expert" in designing physics-intuitive variables. While this may seem true at first glance, it is far from reality. Existing research shows that physics-inspired feature extractors have many advantages beyond improving the qualitative understanding of the extracted features. In this review, we systematically explore automatic feature extraction from a phenomenological viewpoint and the motivation for physics-inspired architectures. We also discuss how prior knowledge from physics results in the naturalness of the point cloud representation and discuss graph-based applications to LHC phenomenology.Deep learning algorithms will play a key role in the upcoming runs of the Large Hadron Collider (LHC), helping bolster various fronts ranging from fast and accurate detector simulations to physics analysis probing possible deviations from the Standard Model. The game-changing feature of these new algorithms is the ability to extract relevant information from high-dimensional input spaces, often regarded as "replacing the expert" in designing physics-intuitive variables. While this may seem true at first glance, it is far from reality. Existing research shows that physics-inspired feature extractors have many advantages beyond improving the qualitative understanding of the extracted features. In this review, we systematically explore automatic feature extraction from a phenomenological viewpoint and the motivation for physics-inspired architectures. We also discuss how prior knowledge from physics results in the naturalness of the point cloud representation and discuss graph-based applications to LHC phenomenology. Abstract Deep learning algorithms will play a key role in the upcoming runs of the Large Hadron Collider (LHC), helping bolster various fronts ranging from fast and accurate detector simulations to physics analysis probing possible deviations from the Standard Model. The game-changing feature of these new algorithms is the ability to extract relevant information from high-dimensional input spaces, often regarded as “replacing the expert” in designing physics-intuitive variables. While this may seem true at first glance, it is far from reality. Existing research shows that physics-inspired feature extractors have many advantages beyond improving the qualitative understanding of the extracted features. In this review, we systematically explore automatic feature extraction from a phenomenological viewpoint and the motivation for physics-inspired architectures. We also discuss how prior knowledge from physics results in the naturalness of the point cloud representation and discuss graph-based applications to LHC phenomenology. |
| Author | Konar, Partha Ngairangbam, Vishal Bhardwaj, Akanksha |
| Author_xml | – sequence: 1 givenname: Akanksha surname: Bhardwaj fullname: Bhardwaj, Akanksha organization: Department of Physics, Oklahoma State University – sequence: 2 givenname: Partha surname: Konar fullname: Konar, Partha organization: Theoretical Physics Division, Physical Research Laboratory – sequence: 3 givenname: Vishal orcidid: 0000-0002-7143-715X surname: Ngairangbam fullname: Ngairangbam, Vishal email: vishal.s.ngairangbam@durham.ac.uk organization: Institute for Particle Physics Phenomenology, Department of Physics, Durham University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39605978$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/2478724$$D View this record in Osti.gov |
| BookMark | eNqFUctu1DAUtVARbQd-ASzYsAn1I07sBUJoRCnSSN3A2nIce8ajjB1sB7Vd8Q_8IV-Cp-kA7aYLy77yOfeec88pOPLBGwBeYfQO4xqdmXGbzhLGLa0rRMrBFDXVzRNwggXDVVMjfHR4U8aOwWlKW4RYQwR9Bo6paBATLT8Bq_Mw-V5lF3yCwUI15bArpYbWqDxFA81VjkrvAVBluLpY_v75awzOZ6iHMPUJKt_DdVTjJj0HT60aknlxdy_At_NPX5cX1ery85flx1WlGSG50pZYU1zUDKGOcIsZ46LDmlMrqKqpbbQqBrgwVpGm4X1ni27RoboTDBFGF-DD3Hecup3ptfFF4iDH6HYqXsugnLz_491GrsMPiTHjnJetLcDruUNI2cmkXTZ6o4P3RmdJ6pa3pC6gt3djYvg-mZTlziVthkF5E6YkKaa0pZygPfTNA-g2TNGXJUhKWCOYwJgX1Mv_df8VfIijAN7PAB1DStFYWZTdhlNsuEFiJPfxy338co5flvjlbfzypvDbB_zDiMeZfGamwvBrE_8ZeIz6B_PdyTQ |
| CitedBy_id | crossref_primary_10_1088_2632_2153_adbab1 crossref_primary_10_1140_epjs_s11734_024_01364_3 |
| Cites_doi | 10.1007/JHEP02(2019)132 10.1016/0031-3203(82)90024-3 10.1007/JHEP01(2024)113 10.1007/JHEP04(2022)137 10.1016/j.physrep.2019.11.001 10.1016/j.revip.2024.100092 10.1016/j.acha.2022.12.002 10.1007/JHEP09(2023)135 10.1103/PhysRevD.107.116019 10.1109/TNN.2008.2005605 10.1103/PhysRevLett.111.102002 10.1007/JHEP09(2017)083 10.1103/PhysRevD.104.056026 10.1103/PhysRevD.102.012010 10.1103/PhysRevLett.128.032003 10.1007/JHEP06(2023)184 10.1103/PhysRevD.80.094002 10.1088/1126-6708/2005/03/073 10.1016/0010-4655(88)90004-5 10.1088/1748-0221/13/07/P07027 10.1093/ptep/ptac097 10.1103/PhysRevLett.65.1321 10.1007/JHEP08(2021)080 10.1007/JHEP04(2023)104 10.1007/s10462-021-10033-z 10.1088/1361-6633/ac36b9 10.1016/B978-1-55860-335-6.50039-8 10.1103/PhysRevD.103.074022 10.1007/JHEP05(2017)145 10.3389/frai.2022.943135 10.1103/PhysRevLett.125.121601 10.1103/PhysRevD.101.075021 10.21468/SciPostPhys.15.4.130 10.1103/RevModPhys.91.045002 10.1038/s41586-018-0361-2 10.1007/JHEP09(2013)029 10.1007/JHEP08(2019)055 10.1038/s41586-021-03819-2 10.1162/neco.1996.8.7.1341 10.1140/epjc/s10052-020-7608-4 10.1007/JHEP03(2021)052 10.1007/BF02478259 10.1007/JHEP03(2024)113 10.21468/SciPostPhys.10.2.046 10.1140/epjp/s13360-020-00497-3 10.1140/epjc/s10052-022-10012-w 10.21468/SciPostPhys.13.4.087 10.1007/JHEP08(2022)177 10.1007/JHEP03(2024)144 10.1109/TNNLS.2013.2293637 10.1038/ncomms5308 10.1007/BF02551274 10.1109/MSP.2017.2693418 10.1007/JHEP01(2019)121 10.1007/JHEP09(2020)195 10.1007/JHEP10(2022)156 10.1103/PhysRevLett.125.131801 10.1140/epjc/s10052-010-1314-6 10.1103/PhysRevD.109.056003 10.1103/PhysRevLett.120.042003 10.1038/s42254-023-00569-0 10.1007/JHEP07(2020)006 10.1103/PhysRevLett.132.081801 10.1088/1748-0221/19/03/C03019 10.21468/SciPostPhysCore.6.2.045 10.1088/2632-2153/ad66ad 10.1140/epjc/s10052-023-11925-w 10.1016/S0893-6080(05)80131-5 10.1103/PhysRevD.101.056019 10.1007/JHEP07(2022)030 10.1103/PhysRevD.103.036020 10.1051/epjconf/202024506014 10.1007/JHEP10(2017)174 10.21468/SciPostPhys.7.3.036 10.1007/s41781-019-0028-1 10.1051/epjconf/202125103047 10.1016/0893-6080(89)90020-8 10.1103/PhysRevD.91.111501 10.1140/epjc/s10052-021-09158-w 10.1140/epjc/s10052-019-7113-9 10.1109/72.572108 10.1088/1126-6708/2008/04/063 10.21468/SciPostPhys.12.1.043 10.1007/s41781-021-00056-0 10.1103/PhysRevD.107.114012 10.1007/JHEP02(2021)160 10.1007/BF01550942 10.1103/PhysRevD.108.072007 10.1109/72.712151 10.1088/2632-2153/ac07f6 10.1007/JHEP02(2022)060 10.21468/SciPostPhys.12.1.045 10.1162/neco.1989.1.4.541 10.1007/JHEP12(2018)064 10.21468/SciPostPhys.6.3.030 10.1037/h0042519 10.1007/JHEP04(2021)296 10.1103/PhysRevD.108.012001 10.1109/4235.585893 10.1140/epjc/s10052-023-11633-5 10.1016/j.revip.2024.100091 10.1140/epjc/s10052-023-12293-1 10.2172/1886020 10.1007/978-3-030-66515-9_13 10.1007/JHEP10(2022)172 10.1007/s41781-024-00122-3 10.1142/9789811234033_0007 10.1109/ICCV.2015.123 10.1140/epjc/s10052-024-12722-9 10.1088/2632-2153/ad55a3 10.1109/ICCV48922.2021.01595 10.1007/JHEP07(2024)245 10.1051/epjconf/202429506016 10.7551/mitpress/7496.003.0016 10.1145/3326362 10.1109/IJCNN.2005.1555942 10.1142/9789811234033_0012 10.1007/JHEP05(2024)004 10.22323/1.449.0534 10.1007/JHEP07(2024)247 10.1007/JHEP07(2016)069 10.1038/s41467-024-49104-4] 10.1038/s41467-024-49971-x 10.1103/PhysRevD.109.076012 10.1088/2632-2153/ad64a8 10.1088/2632-2153/abbf9a 10.5281/zenodo.4009114 10.18653/v1/N19-1423 10.1103/PhysRevD.108.035001 10.1103/PhysRevD.110.074020 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 OTOTI 5PM |
| DOI | 10.1140/epjs/s11734-024-01306-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Technology Collection CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: KB. name: Materials Science Database (Proquest) url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1951-6401 |
| EndPage | 2640 |
| ExternalDocumentID | PMC11588817 2478724 39605978 10_1140_epjs_s11734_024_01306_z |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: U. S. Department of Energy grantid: DE-SC 0016013 – fundername: Science and Technology Facilities Council grantid: ST/P001246/1 funderid: http://dx.doi.org/10.13039/501100000271 |
| GroupedDBID | -5F -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 123 199 1N0 203 29G 29~ 2J2 2JY 2KG 2KM 2LR 30V 4.4 406 408 40D 40E 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHIR ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFFNX AFQWF AFWTZ AFZKB AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHSBF AHYZX AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS C6C CAG COF CSCUP DDRTE DNIVK DPUIP EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HLICF HMJXF HRMNR HVGLF HZ~ IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P9T PF0 QOS R89 RED RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR 2JN AAPKM AAYXX ABBRH ABDBE ABJCF ABRTQ AFDZB AFFHD AFKRA AFOHR AHPBZ ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION EBLON HCIFZ KB. M7S PDBOC PHGZM PHGZT PQGLB PTHSS NPM 8FE 8FG D1I DWQXO L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 OTOTI 5PM |
| ID | FETCH-LOGICAL-c522t-cf2fe1404500b28f15589b1c83f93a43f6ca40189efa2668dbf6299b04b950253 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001320716800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1951-6355 |
| IngestDate | Tue Nov 04 02:04:35 EST 2025 Thu Nov 27 01:46:39 EST 2025 Sun Nov 09 09:42:50 EST 2025 Sun Nov 02 05:47:58 EST 2025 Wed Feb 19 02:04:04 EST 2025 Tue Nov 18 21:01:48 EST 2025 Sat Nov 29 03:49:45 EST 2025 Fri Feb 21 02:38:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15-16 |
| Language | English |
| License | The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c522t-cf2fe1404500b28f15589b1c83f93a43f6ca40189efa2668dbf6299b04b950253 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 SC 0016013 USDOE |
| ORCID | 0000-0002-7143-715X 000000027143715X |
| OpenAccessLink | https://link.springer.com/10.1140/epjs/s11734-024-01306-z |
| PMID | 39605978 |
| PQID | 3256959118 |
| PQPubID | 2044459 |
| PageCount | 22 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11588817 osti_scitechconnect_2478724 proquest_miscellaneous_3133738204 proquest_journals_3256959118 pubmed_primary_39605978 crossref_citationtrail_10_1140_epjs_s11734_024_01306_z crossref_primary_10_1140_epjs_s11734_024_01306_z springer_journals_10_1140_epjs_s11734_024_01306_z |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: France – name: Heidelberg |
| PublicationTitle | The European physical journal. ST, Special topics |
| PublicationTitleAbbrev | Eur. Phys. J. Spec. Top |
| PublicationTitleAlternate | Eur Phys J Spec Top |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Science + Business Media |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Science + Business Media |
| References | Duarte (CR7) 2018; 13 Finke, Krämer, Mück, Tönshoff (CR29) 2023; 06 Banfi, Salam, Zanderighi (CR107) 2005; 03 Ostdiek (CR170) 2022; 12 McCulloch, Pitts (CR53) 1943; 5 Voigtlaender (CR62) 2023; 64 Denby (CR74) 1988; 49 CR162 CR160 CR38 CR35 Hornik, Stinchcombe, White (CR59) 1989; 2 CR34 CR32 CR31 CR157 CR30 CR158 Ellis, Melnikov, Zanderighi (CR106) 2009; 80 Belis, Odagiu, Aarrestad (CR47) 2024; 12 Narkhede, Bartakke, Sutaone (CR57) 2022; 55 Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (CR116) 2009; 20 Golutvin, Iniukhin, Mauri, Owen, Serra, Ustyuzhanin (CR39) 2023; 83 Håstad (CR64) 1987 Sperduti, Starita (CR117) 1997; 8 Kasieczka (CR22) 2021; 84 Qu, Gouskos (CR131) 2020; 101 Birk (CR33) 2024; 5 Schaffer, Cohen, Hirsh (CR71) 1994 Aarrestad (CR24) 2022; 12 CR46 Aad (CR23) 2020; 125 CR45 CR44 CR43 CR168 He, Wang (CR135) 2023; 83 CR164 CR165 Butter, Diefenbacher, Kasieczka, Nachman, Plehn, Shih, Winterhalder (CR8) 2022; 13 Atkinson, Bhardwaj, Englert, Ngairangbam, Spannowsky (CR169) 2021; 08 Choi, Lee, Perelstein (CR92) 2019; 02 Salam (CR105) 2010; 67 Kasieczka, Marzani, Soyez, Stagnitto (CR109) 2020; 09 Paganini, Oliveira, Nachman (CR10) 2018; 120 Rosenblatt (CR54) 1958; 65 CR140 Allender, Chandru, Vinay (CR65) 1996 Kanwar, Albergo, Boyda, Cranmer, Hackett, Racanière, Rezende, Shanahan (CR84) 2020; 125 CR141 Cacciari, Salam, Soyez (CR103) 2008; 04 Larkoski, Moult, Nachman (CR42) 2020; 841 Nguyen, Weitekamp, Anderson, Castello, Cerri, Pierini, Spiropulu, Vlimant (CR6) 2019; 3 CR58 CR56 CR55 CR137 Dreyer, Salam, Soyez (CR151) 2018; 12 Leshno, Lin, Pinkus, Schocken (CR61) 1993; 6 CR138 CR52 Cybenko (CR60) 1989; 2 CR136 Ma, Liu, Li (CR139) 2023; 108 Dery, Nachman, Rubbo, Schwartzman (CR20) 2017; 05 CR50 Komiske, Metodiev, Thaler (CR148) 2020; 07 Biscarat, Caillou, Rougier, Stark, Zahreddine (CR15) 2021; 251 Abdughani, Ren, Wu, Yang (CR155) 2019; 08 Faucett, Thaler, Whiteson (CR78) 2021; 103 Favoni, Ipp, Müller, Schuh (CR85) 2022; 128 DeZoort, Battaglia, Biscarat, Vlimant (CR49) 2023; 5 Bianchini, Scarselli (CR66) 2014; 25 Baldi, Sadowski, Whiteson (CR19) 2014; 5 Moore, Nordström, Varma, Fairbairn (CR77) 2019; 7 Wolpert, Macready (CR72) 1997; 1 Moreno, Nguyen, Vlimant, Cerri, Newman, Periwal, Spiropulu, Duarte, Pierini (CR133) 2020; 102 Wolpert (CR70) 1996; 8 Dolan, Ore (CR94) 2021; 103 CR69 CR67 Fukushima, Miyake (CR112) 1982; 15 Dreyer, Soyez, Takacs (CR153) 2022; 08 CR63 CR147 CR145 Mikuni, Canelli (CR142) 2021; 2 Andersson, Gustafson, Lönnblad, Pettersson (CR150) 1989; 43 Pata, Duarte, Vlimant, Pierini, Spiropulu (CR156) 2021; 81 Carleo, Cirac, Cranmer, Daudet, Schuld, Tishby, Vogt-Maranto, Zdeborová (CR1) 2019; 91 Mikuni, Canelli (CR134) 2020; 135 Ghosh, Nachman (CR41) 2022; 82 Buhmann, Diefenbacher, Eren, Gaede, Kasieczka, Korol, Krüger (CR14) 2021; 5 Atkinson, Bhardwaj, Englert, Konar, Ngairangbam, Spannowsky (CR99) 2022; 5 Bernreuther, Finke, Kahlhoefer, Krämer, Mück (CR149) 2021; 10 Komiske, Metodiev, Thaler (CR93) 2019; 01 CR115 Radovic, Williams, Rousseau, Kagan, Bonacorsi, Himmel, Aurisano, Terao, Wongjirad (CR76) 2018; 560 Heimel, Kasieczka, Plehn, Thompson (CR166) 2019; 6 CR114 CR73 Hao, Kansal, Duarte, Chernyavskaya (CR171) 2023; 83 CR119 Aad (CR26) 2024; 132 CR4 CR3 CR5 CR130 Dasgupta, Fregoso, Marzani, Salam (CR108) 2013; 09 CR126 CR127 CR86 Frasconi, Gori, Sperduti (CR118) 1998; 9 CR124 CR125 Buhmann, Kasieczka, Thaler (CR87) 2023; 15 CR122 CR123 CR82 CR120 CR81 CR121 Konar, Ngairangbam, Spannowsky (CR100) 2024; 01 Ghosh, Nachman, Plehn, Shire, Tait, Whiteson (CR40) 2023; 6 CR128 Gong, Meng, Zhang, Qu, Li, Qian, Du, Ma, Liu (CR143) 2022; 07 CR129 Ehrke, Raine, Zoch, Guth, Golling (CR161) 2023; 107 Farina, Nakai, Shih (CR167) 2020; 101 Elmsheuser (CR2) 2020; 245 Workman (CR48) 2022; 2022 Dreyer, Qu (CR152) 2021; 03 Bronstein, Bruna, LeCun, Szlam, Vandergheynst (CR79) 2017; 34 Ghosh, Nachman, Whiteson (CR37) 2021; 104 Frye, Larkoski, Thaler, Zhou (CR89) 2017; 09 CR18 CR17 CR16 CR13 CR11 Naitzat, Zhitnikov, Lim (CR68) 2020; 21 CR97 Andrieu (CR104) 2005; 36 Lönnblad, Peterson, Rögnvaldsson (CR75) 1990; 65 Onyisi, Shen, Thaler (CR88) 2023; 108 CR96 Larkoski, Marzani, Thaler (CR111) 2015; 91 Shen, Wang, Yang (CR95) 2023; 09 Mullin, Nicholls, Pacey, Parker, White, Williams (CR163) 2021; 02 Qasim, Kieseler, Iiyama, Pierini (CR12) 2019; 79 Chang, Procura, Thaler, Waalewijn (CR110) 2013; 111 Hammad, Moretti, Nojiri (CR159) 2024; 03 Araz, Spannowsky (CR36) 2021; 04 Konar, Ngairangbam, Spannowsky (CR98) 2022; 02 Bortolato, Cepeda, Heikkilä, Huber, Leutgeb, Rabady, Sakulin (CR9) 2024; 19 CR28 CR27 Hallin, Kasieczka, Quadfasel, Shih, Sommerhalder (CR25) 2023; 107 Medves, Soto-Ontoso, Soyez (CR90) 2022; 10 Medves, Soto-Ontoso, Soyez (CR91) 2023; 04 CR102 Jumper, Evans, Pritzel, Green, Figurnov, Ronneberger, Tunyasuvunakool, Bates, Žídek, Potapenko, Bridgland, Meyer, Kohl, Ballard, Cowie, Romera-Paredes, Nikolov, Jain, Adler, Back, Petersen, Reiman, Clancy, Zielinski, Steinegger, Pacholska, Berghammer, Bodenstein, Silver, Vinyals, Senior, Kavukcuoglu, Kohli, Hassabis (CR83) 2021; 596 CR101 Metodiev, Nachman, Thaler (CR21) 2017; 10 LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (CR113) 1989; 1 Li, Qu, Qian, Meng, Gong, Zhang, Liu, Li (CR144) 2024; 109 Hashemi, Krause (CR51) 2024; 12 Moreno, Cerri, Duarte, Newman, Nguyen, Periwal, Pierini, Serikova, Spiropulu, Vlimant (CR132) 2020; 80 Bogatskiy, Hoffman, Miller, Offermann, Liu (CR146) 2024; 03 Bronstein, Bruna, Cohen, Veličković (CR80) 2021 Atkinson, Bhardwaj, Brown, Englert, Miller, Stylianou (CR154) 2022; 04 1306_CR157 1306_CR158 1306_CR63 B Denby (1306_CR74) 1988; 49 1306_CR67 G Kasieczka (1306_CR109) 2020; 09 1306_CR69 C Frye (1306_CR89) 2017; 09 J Jumper (1306_CR83) 2021; 596 SR Qasim (1306_CR12) 2019; 79 T Faucett (1306_CR78) 2021; 103 O Atkinson (1306_CR99) 2022; 5 AJ Larkoski (1306_CR42) 2020; 841 P Konar (1306_CR98) 2022; 02 J Pata (1306_CR156) 2021; 81 1306_CR145 1306_CR50 B Ostdiek (1306_CR170) 2022; 12 P Baldi (1306_CR19) 2014; 5 1306_CR147 1306_CR52 1306_CR141 1306_CR55 1306_CR56 1306_CR58 PT Komiske (1306_CR93) 2019; 01 B Hashemi (1306_CR51) 2024; 12 1306_CR140 S Choi (1306_CR92) 2019; 02 G DeZoort (1306_CR49) 2023; 5 M Leshno (1306_CR61) 1993; 6 E Bernreuther (1306_CR149) 2021; 10 G Bortolato (1306_CR9) 2024; 19 1306_CR82 F Voigtlaender (1306_CR62) 2023; 64 1306_CR136 1306_CR137 F Ma (1306_CR139) 2023; 108 1306_CR86 1306_CR130 K Hornik (1306_CR59) 1989; 2 E Buhmann (1306_CR87) 2023; 15 L Moore (1306_CR77) 2019; 7 K Fukushima (1306_CR112) 1982; 15 L Ehrke (1306_CR161) 2023; 107 M Favoni (1306_CR85) 2022; 128 A Banfi (1306_CR107) 2005; 03 V Belis (1306_CR47) 2024; 12 1306_CR138 1306_CR123 MV Narkhede (1306_CR57) 2022; 55 1306_CR124 1306_CR73 MJ Dolan (1306_CR94) 2021; 103 1306_CR125 1306_CR126 B Andersson (1306_CR150) 1989; 43 1306_CR120 M He (1306_CR135) 2023; 83 A Ghosh (1306_CR37) 2021; 104 1306_CR121 1306_CR122 A Ghosh (1306_CR41) 2022; 82 E Allender (1306_CR65) 1996 P Onyisi (1306_CR88) 2023; 108 G Aad (1306_CR26) 2024; 132 AJ Larkoski (1306_CR111) 2015; 91 PT Komiske (1306_CR148) 2020; 07 EA Moreno (1306_CR133) 2020; 102 A Sperduti (1306_CR117) 1997; 8 RL Workman (1306_CR48) 2022; 2022 1306_CR127 A Butter (1306_CR8) 2022; 13 1306_CR128 WS McCulloch (1306_CR53) 1943; 5 1306_CR129 F Rosenblatt (1306_CR54) 1958; 65 1306_CR81 RK Ellis (1306_CR106) 2009; 80 P Frasconi (1306_CR118) 1998; 9 1306_CR114 E Buhmann (1306_CR14) 2021; 5 A Hallin (1306_CR25) 2023; 107 1306_CR115 J Duarte (1306_CR7) 2018; 13 H Qu (1306_CR131) 2020; 101 1306_CR3 L Lönnblad (1306_CR75) 1990; 65 1306_CR5 1306_CR4 1306_CR27 G Cybenko (1306_CR60) 1989; 2 1306_CR28 MM Bronstein (1306_CR80) 2021 Y LeCun (1306_CR113) 1989; 1 V Mikuni (1306_CR134) 2020; 135 T Heimel (1306_CR166) 2019; 6 A Hammad (1306_CR159) 2024; 03 S Gong (1306_CR143) 2022; 07 G Kanwar (1306_CR84) 2020; 125 A Mullin (1306_CR163) 2021; 02 B Andrieu (1306_CR104) 2005; 36 A Golutvin (1306_CR39) 2023; 83 H-M Chang (1306_CR110) 2013; 111 G Carleo (1306_CR1) 2019; 91 JY Araz (1306_CR36) 2021; 04 1306_CR119 DH Wolpert (1306_CR70) 1996; 8 1306_CR101 1306_CR102 1306_CR96 1306_CR97 1306_CR11 FA Dreyer (1306_CR153) 2022; 08 1306_CR13 M Bianchini (1306_CR66) 2014; 25 EA Moreno (1306_CR132) 2020; 80 O Atkinson (1306_CR169) 2021; 08 1306_CR16 1306_CR17 1306_CR18 TQ Nguyen (1306_CR6) 2019; 3 A Ghosh (1306_CR40) 2023; 6 W Shen (1306_CR95) 2023; 09 A Radovic (1306_CR76) 2018; 560 1306_CR43 1306_CR44 1306_CR45 C Biscarat (1306_CR15) 2021; 251 T Aarrestad (1306_CR24) 2022; 12 1306_CR46 C Schaffer (1306_CR71) 1994 J Birk (1306_CR33) 2024; 5 A Bogatskiy (1306_CR146) 2024; 03 GP Salam (1306_CR105) 2010; 67 Z Hao (1306_CR171) 2023; 83 M Cacciari (1306_CR103) 2008; 04 LM Dery (1306_CR20) 2017; 05 M Abdughani (1306_CR155) 2019; 08 EM Metodiev (1306_CR21) 2017; 10 1306_CR168 R Medves (1306_CR90) 2022; 10 M Paganini (1306_CR10) 2018; 120 G Kasieczka (1306_CR22) 2021; 84 1306_CR30 P Konar (1306_CR100) 2024; 01 1306_CR31 J Håstad (1306_CR64) 1987 1306_CR32 1306_CR164 1306_CR165 1306_CR34 DH Wolpert (1306_CR72) 1997; 1 G Aad (1306_CR23) 2020; 125 1306_CR35 MM Bronstein (1306_CR79) 2017; 34 1306_CR160 O Atkinson (1306_CR154) 2022; 04 1306_CR38 1306_CR162 C Li (1306_CR144) 2024; 109 V Mikuni (1306_CR142) 2021; 2 M Farina (1306_CR167) 2020; 101 FA Dreyer (1306_CR152) 2021; 03 R Medves (1306_CR91) 2023; 04 FA Dreyer (1306_CR151) 2018; 12 G Naitzat (1306_CR68) 2020; 21 J Elmsheuser (1306_CR2) 2020; 245 M Dasgupta (1306_CR108) 2013; 09 T Finke (1306_CR29) 2023; 06 F Scarselli (1306_CR116) 2009; 20 |
| References_xml | – ident: CR45 – ident: CR97 – volume: 02 start-page: 132 year: 2019 ident: CR92 article-title: Infrared Safety of a Neural-Net Top Tagging Algorithm publication-title: JHEP doi: 10.1007/JHEP02(2019)132 – volume: 15 start-page: 455 issue: 6 year: 1982 end-page: 469 ident: CR112 article-title: Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position publication-title: Pattern Recogn. doi: 10.1016/0031-3203(82)90024-3 – ident: CR16 – volume: 01 start-page: 113 year: 2024 ident: CR100 article-title: Hypergraphs in LHC phenomenology – the next frontier of IRC-safe feature extraction publication-title: JHEP doi: 10.1007/JHEP01(2024)113 – ident: CR158 – ident: CR115 – ident: CR138 – volume: 04 start-page: 137 year: 2022 ident: CR154 article-title: Improved constraints on effective top quark interactions using edge convolution networks publication-title: JHEP doi: 10.1007/JHEP04(2022)137 – start-page: 1 year: 1996 end-page: 18 ident: CR65 article-title: Circuit complexity before the dawn of the new millennium publication-title: Foundations of Software Technology and Theoretical Computer Science – volume: 21 start-page: 1 issue: 184 year: 2020 end-page: 40 ident: CR68 article-title: Topology of deep neural networks publication-title: J. Mach. Learn. Res. – volume: 841 start-page: 1 year: 2020 end-page: 63 ident: CR42 article-title: Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning publication-title: Phys. Rept. doi: 10.1016/j.physrep.2019.11.001 – volume: 12 year: 2024 ident: CR51 article-title: Deep generative models for detector signature simulation: A taxonomic review publication-title: Rev. Phys. doi: 10.1016/j.revip.2024.100092 – ident: CR121 – volume: 64 start-page: 33 year: 2023 end-page: 61 ident: CR62 article-title: The universal approximation theorem for complex-valued neural networks publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2022.12.002 – ident: CR129 – volume: 09 start-page: 135 year: 2023 ident: CR95 article-title: Hierarchical high-point Energy Flow Network for jet tagging publication-title: JHEP doi: 10.1007/JHEP09(2023)135 – ident: CR101 – volume: 107 issue: 11 year: 2023 ident: CR161 article-title: Topological reconstruction of particle physics processes using graph neural networks publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.107.116019 – volume: 20 start-page: 61 issue: 1 year: 2009 end-page: 80 ident: CR116 article-title: The graph neural network model publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2008.2005605 – volume: 111 year: 2013 ident: CR110 article-title: Calculating Track-Based Observables for the LHC publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.102002 – volume: 09 start-page: 083 year: 2017 ident: CR89 article-title: Casimir Meets Poisson: Improved Quark/Gluon Discrimination with Counting Observables publication-title: JHEP doi: 10.1007/JHEP09(2017)083 – volume: 104 issue: 5 year: 2021 ident: CR37 article-title: Uncertainty-aware machine learning for high energy physics publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.104.056026 – volume: 102 issue: 1 year: 2020 ident: CR133 article-title: Interaction networks for the identification of boosted decays publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.012010 – ident: CR11 – volume: 128 issue: 3 year: 2022 ident: CR85 article-title: Lattice Gauge Equivariant Convolutional Neural Networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.032003 – ident: CR5 – volume: 06 start-page: 184 year: 2023 ident: CR29 article-title: Learning the language of QCD jets with transformers publication-title: JHEP doi: 10.1007/JHEP06(2023)184 – volume: 80 year: 2009 ident: CR106 article-title: W+3 jet production at the Tevatron publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.80.094002 – volume: 03 start-page: 073 year: 2005 ident: CR107 article-title: Principles of general final-state resummation and automated implementation publication-title: JHEP doi: 10.1088/1126-6708/2005/03/073 – ident: CR147 – ident: CR164 – volume: 49 start-page: 429 issue: 3 year: 1988 end-page: 448 ident: CR74 article-title: Neural networks and cellular automata in experimental high energy physics publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(88)90004-5 – ident: CR126 – volume: 13 start-page: 07027 issue: 07 year: 2018 ident: CR7 article-title: Fast inference of deep neural networks in FPGAs for particle physics publication-title: JINST doi: 10.1088/1748-0221/13/07/P07027 – volume: 2022 start-page: 083 year: 2022 end-page: 01 ident: CR48 article-title: Others: Review of Particle Physics publication-title: PTEP doi: 10.1093/ptep/ptac097 – ident: CR18 – volume: 65 start-page: 1321 year: 1990 end-page: 1324 ident: CR75 article-title: Finding gluon jets with a neural trigger publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.65.1321 – volume: 08 start-page: 080 year: 2021 ident: CR169 article-title: Anomaly detection with convolutional Graph Neural Networks publication-title: JHEP doi: 10.1007/JHEP08(2021)080 – volume: 04 start-page: 104 year: 2023 ident: CR91 publication-title: Lund multiplicity in QCD jets. JHEP doi: 10.1007/JHEP04(2023)104 – volume: 55 start-page: 291 issue: 1 year: 2022 end-page: 322 ident: CR57 article-title: A review on weight initialization strategies for neural networks publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-10033-z – volume: 84 issue: 12 year: 2021 ident: CR22 article-title: The LHC Olympics 2020 a community challenge for anomaly detection in high energy physics publication-title: Rept. Prog. Phys. doi: 10.1088/1361-6633/ac36b9 – start-page: 259 year: 1994 end-page: 265 ident: CR71 article-title: A conservation law for generalization performance publication-title: Machine Learning Proceedings 1994 doi: 10.1016/B978-1-55860-335-6.50039-8 – ident: CR30 – volume: 103 issue: 7 year: 2021 ident: CR94 article-title: Equivariant Energy Flow Networks for Jet Tagging publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.074022 – ident: CR137 – volume: 05 start-page: 145 year: 2017 ident: CR20 article-title: Weakly Supervised Classification in High Energy Physics publication-title: JHEP doi: 10.1007/JHEP05(2017)145 – volume: 5 year: 2022 ident: CR99 article-title: IRC-Safe Graph Autoencoder for Unsupervised Anomaly Detection publication-title: Front. Artif. Intell. doi: 10.3389/frai.2022.943135 – volume: 125 issue: 12 year: 2020 ident: CR84 article-title: Equivariant flow-based sampling for lattice gauge theory publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.121601 – ident: CR86 – year: 2021 ident: CR80 publication-title: Geometric Deep Learning: Grids, Groups – ident: CR63 – volume: 101 issue: 7 year: 2020 ident: CR167 article-title: Searching for New Physics with Deep Autoencoders publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.075021 – volume: 15 start-page: 130 issue: 4 year: 2023 ident: CR87 article-title: EPiC-GAN: Equivariant point cloud generation for particle jets publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.15.4.130 – ident: CR27 – ident: CR165 – volume: 91 year: 2019 ident: CR1 article-title: Machine learning and the physical sciences publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.045002 – volume: 560 start-page: 41 issue: 7716 year: 2018 end-page: 48 ident: CR76 article-title: Machine learning at the energy and intensity frontiers of particle physics publication-title: Nature doi: 10.1038/s41586-018-0361-2 – ident: CR123 – ident: CR69 – volume: 09 start-page: 029 year: 2013 ident: CR108 article-title: Towards an understanding of jet substructure publication-title: JHEP doi: 10.1007/JHEP09(2013)029 – ident: CR44 – volume: 08 start-page: 055 year: 2019 ident: CR155 article-title: Probing stop pair production at the LHC with graph neural networks publication-title: JHEP doi: 10.1007/JHEP08(2019)055 – volume: 596 start-page: 583 issue: 7873 year: 2021 end-page: 589 ident: CR83 article-title: Highly accurate protein structure prediction with alphafold publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 8 start-page: 1341 issue: 7 year: 1996 end-page: 1390 ident: CR70 article-title: The lack of a priori distinctions between learning algorithms publication-title: Neural Comput. doi: 10.1162/neco.1996.8.7.1341 – ident: CR3 – ident: CR38 – ident: CR52 – volume: 80 start-page: 58 issue: 1 year: 2020 ident: CR132 article-title: JEDI-net: a jet identification algorithm based on interaction networks publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-7608-4 – volume: 03 start-page: 052 year: 2021 ident: CR152 article-title: Jet tagging in the Lund plane with graph networks publication-title: JHEP doi: 10.1007/JHEP03(2021)052 – ident: CR13 – volume: 5 start-page: 115 issue: 4 year: 1943 end-page: 133 ident: CR53 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 – volume: 03 start-page: 113 year: 2024 ident: CR146 article-title: Explainable equivariant neural networks for particle physics: PELICAN publication-title: JHEP doi: 10.1007/JHEP03(2024)113 – volume: 10 start-page: 046 issue: 2 year: 2021 ident: CR149 article-title: Casting a graph net to catch dark showers publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.10.2.046 – ident: CR162 – ident: CR114 – volume: 135 start-page: 463 issue: 6 year: 2020 ident: CR134 article-title: ABCNet: An attention-based method for particle tagging publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00497-3 – ident: CR55 – volume: 82 start-page: 46 issue: 1 year: 2022 ident: CR41 article-title: A cautionary tale of decorrelating theory uncertainties publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-022-10012-w – volume: 13 start-page: 087 issue: 4 year: 2022 ident: CR8 article-title: Ephemeral Learning - Augmenting Triggers with Online-Trained Normalizing Flows publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.13.4.087 – ident: CR120 – ident: CR128 – ident: CR145 – ident: CR125 – ident: CR102 – volume: 08 start-page: 177 year: 2022 ident: CR153 article-title: Quarks and gluons in the Lund plane publication-title: JHEP doi: 10.1007/JHEP08(2022)177 – volume: 03 start-page: 144 year: 2024 ident: CR159 article-title: Multi-scale cross-attention transformer encoder for event classification publication-title: JHEP doi: 10.1007/JHEP03(2024)144 – volume: 25 start-page: 1553 issue: 8 year: 2014 end-page: 1565 ident: CR66 article-title: On the complexity of neural network classifiers: A comparison between shallow and deep architectures publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2013.2293637 – volume: 5 start-page: 4308 year: 2014 ident: CR19 article-title: Searching for Exotic Particles in High-Energy Physics with Deep Learning publication-title: Nature Commun. doi: 10.1038/ncomms5308 – volume: 2 start-page: 303 issue: 4 year: 1989 end-page: 314 ident: CR60 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math. Control Signals Systems doi: 10.1007/BF02551274 – ident: CR4 – volume: 34 start-page: 18 issue: 4 year: 2017 end-page: 42 ident: CR79 article-title: Geometric deep learning: Going beyond euclidean data publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2693418 – volume: 01 start-page: 121 year: 2019 ident: CR93 article-title: Energy Flow Networks: Deep Sets for Particle Jets publication-title: JHEP doi: 10.1007/JHEP01(2019)121 – ident: CR119 – ident: CR35 – volume: 09 start-page: 195 year: 2020 ident: CR109 article-title: Towards Machine Learning Analytics for Jet Substructure publication-title: JHEP doi: 10.1007/JHEP09(2020)195 – volume: 10 start-page: 156 year: 2022 ident: CR90 article-title: Lund and Cambridge multiplicities for precision physics publication-title: JHEP doi: 10.1007/JHEP10(2022)156 – ident: CR58 – volume: 125 issue: 13 year: 2020 ident: CR23 article-title: Dijet resonance search with weak supervision using TeV collisions in the ATLAS detector publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.131801 – volume: 67 start-page: 637 year: 2010 end-page: 686 ident: CR105 article-title: Towards Jetography publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-010-1314-6 – ident: CR140 – volume: 109 issue: 5 year: 2024 ident: CR144 article-title: Does Lorentz-symmetric design boost network performance in jet physics? publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.109.056003 – volume: 120 issue: 4 year: 2018 ident: CR10 article-title: Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multilayer Calorimeters publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.042003 – volume: 5 start-page: 281 issue: 5 year: 2023 end-page: 303 ident: CR49 article-title: Graph neural networks at the large hadron collider publication-title: Nature Reviews Physics doi: 10.1038/s42254-023-00569-0 – volume: 07 start-page: 006 year: 2020 ident: CR148 article-title: The Hidden Geometry of Particle Collisions publication-title: JHEP doi: 10.1007/JHEP07(2020)006 – ident: CR46 – ident: CR96 – ident: CR67 – volume: 132 issue: 8 year: 2024 ident: CR26 article-title: Search for New Phenomena in Two-Body Invariant Mass Distributions Using Unsupervised Machine Learning for Anomaly Detection at s=13 TeV with the ATLAS Detector publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.132.081801 – ident: CR50 – ident: CR157 – volume: 19 start-page: 03019 issue: 03 year: 2024 ident: CR9 article-title: Design and implementation of neural network based conditions for the CMS Level-1 Global Trigger upgrade for the HL-LHC publication-title: JINST doi: 10.1088/1748-0221/19/03/C03019 – volume: 6 start-page: 045 year: 2023 ident: CR40 article-title: Statistical patterns of theory uncertainties publication-title: SciPost Phys. Core doi: 10.21468/SciPostPhysCore.6.2.045 – ident: CR136 – ident: CR32 – volume: 5 year: 2024 ident: CR33 article-title: OmniJet-α: the first cross-task foundation model for particle physics publication-title: Mach. Learn.: Sci. Technol. doi: 10.1088/2632-2153/ad66ad – volume: 83 start-page: 779 issue: 9 year: 2023 ident: CR39 article-title: The DL Advocate: playing the devil’s advocate with hidden systematic uncertainties publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-023-11925-w – volume: 6 start-page: 861 issue: 6 year: 1993 end-page: 867 ident: CR61 article-title: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80131-5 – ident: CR81 – volume: 36 start-page: 409 year: 2005 end-page: 415 ident: CR104 article-title: Jet finding algorithms at Tevatron publication-title: Acta Phys. Polon. B – volume: 101 issue: 5 year: 2020 ident: CR131 article-title: ParticleNet: Jet Tagging via Particle Clouds publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.056019 – volume: 07 start-page: 030 year: 2022 ident: CR143 article-title: An efficient Lorentz equivariant graph neural network for jet tagging publication-title: JHEP doi: 10.1007/JHEP07(2022)030 – ident: CR168 – ident: CR122 – volume: 103 issue: 3 year: 2021 ident: CR78 article-title: Mapping Machine-Learned Physics into a Human-Readable Space publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.036020 – ident: CR160 – volume: 245 start-page: 06014 year: 2020 ident: CR2 article-title: Evolution of the ATLAS analysis model for Run-3 and prospects for HL-LHC publication-title: EPJ Web Conf. doi: 10.1051/epjconf/202024506014 – volume: 10 start-page: 174 year: 2017 ident: CR21 article-title: Classification without labels: Learning from mixed samples in high energy physics publication-title: JHEP doi: 10.1007/JHEP10(2017)174 – ident: CR43 – volume: 7 start-page: 036 issue: 3 year: 2019 ident: CR77 article-title: Reports of My Demise Are Greatly Exaggerated: -subjettiness Taggers Take On Jet Images publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.7.3.036 – volume: 3 start-page: 12 issue: 1 year: 2019 ident: CR6 article-title: Topology classification with deep learning to improve real-time event selection at the LHC publication-title: Comput. Softw. Big Sci. doi: 10.1007/s41781-019-0028-1 – volume: 251 start-page: 03047 year: 2021 ident: CR15 article-title: Towards a realistic track reconstruction algorithm based on graph neural networks for the HL-LHC publication-title: EPJ Web Conf. doi: 10.1051/epjconf/202125103047 – volume: 2 start-page: 359 issue: 5 year: 1989 end-page: 366 ident: CR59 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – volume: 91 issue: 11 year: 2015 ident: CR111 article-title: Sudakov Safety in Perturbative QCD publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.111501 – volume: 81 start-page: 381 issue: 5 year: 2021 ident: CR156 article-title: MLPF: Efficient machine-learned particle-flow reconstruction using graph neural networks publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-021-09158-w – year: 1987 ident: CR64 publication-title: Computational Limitations of Small-depth Circuits – volume: 79 start-page: 608 issue: 7 year: 2019 ident: CR12 article-title: Learning representations of irregular particle-detector geometry with distance-weighted graph networks publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-019-7113-9 – ident: CR82 – volume: 8 start-page: 714 issue: 3 year: 1997 end-page: 735 ident: CR117 article-title: Supervised neural networks for the classification of structures publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.572108 – volume: 04 start-page: 063 year: 2008 ident: CR103 article-title: The anti- jet clustering algorithm publication-title: JHEP doi: 10.1088/1126-6708/2008/04/063 – ident: CR56 – volume: 12 start-page: 043 issue: 1 year: 2022 ident: CR24 article-title: The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large Hadron Collider publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.12.1.043 – volume: 5 start-page: 13 issue: 1 year: 2021 ident: CR14 article-title: Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed publication-title: Comput. Softw. Big Sci. doi: 10.1007/s41781-021-00056-0 – volume: 107 issue: 11 year: 2023 ident: CR25 article-title: Resonant anomaly detection without background sculpting publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.107.114012 – volume: 02 start-page: 160 year: 2021 ident: CR163 article-title: Does SUSY have friends? A new approach for LHC event analysis publication-title: JHEP doi: 10.1007/JHEP02(2021)160 – ident: CR127 – volume: 43 start-page: 625 issue: 4 year: 1989 end-page: 632 ident: CR150 article-title: Coherence effects in deep inelastic scattering publication-title: Zeitschrift für Physik C Particles and Fields doi: 10.1007/BF01550942 – ident: CR124 – volume: 108 issue: 7 year: 2023 ident: CR139 article-title: Jet tagging algorithm of graph network with Haar pooling message passing publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.108.072007 – volume: 9 start-page: 768 issue: 5 year: 1998 end-page: 786 ident: CR118 article-title: A general framework for adaptive processing of data structures publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.712151 – ident: CR73 – volume: 2 issue: 3 year: 2021 ident: CR142 article-title: Point cloud transformers applied to collider physics publication-title: Mach. Learn. Sci. Tech. doi: 10.1088/2632-2153/ac07f6 – volume: 02 start-page: 060 year: 2022 ident: CR98 article-title: Energy-weighted message passing: an infra-red and collinear safe graph neural network algorithm publication-title: JHEP doi: 10.1007/JHEP02(2022)060 – ident: CR130 – volume: 12 start-page: 045 issue: 1 year: 2022 ident: CR170 article-title: Deep Set Auto Encoders for Anomaly Detection in Particle Physics publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.12.1.045 – volume: 1 start-page: 541 issue: 4 year: 1989 end-page: 551 ident: CR113 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.541 – volume: 12 start-page: 064 year: 2018 ident: CR151 publication-title: The Lund Jet Plane. JHEP doi: 10.1007/JHEP12(2018)064 – ident: CR17 – ident: CR31 – volume: 6 start-page: 030 issue: 3 year: 2019 ident: CR166 article-title: QCD or What? publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.6.3.030 – ident: CR34 – volume: 65 start-page: 386 issue: 6 year: 1958 end-page: 408 ident: CR54 article-title: The perceptron: A probabilistic model for information storage and organization in the brain publication-title: Psychol. Rev. doi: 10.1037/h0042519 – volume: 04 start-page: 296 year: 2021 ident: CR36 article-title: Combine and Conquer: Event Reconstruction with Bayesian Ensemble Neural Networks publication-title: JHEP doi: 10.1007/JHEP04(2021)296 – volume: 108 issue: 1 year: 2023 ident: CR88 article-title: Comparing point cloud strategies for collider event classification publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.108.012001 – ident: CR28 – volume: 1 start-page: 67 issue: 1 year: 1997 end-page: 82 ident: CR72 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – ident: CR141 – volume: 83 start-page: 485 issue: 6 year: 2023 ident: CR171 article-title: Lorentz group equivariant autoencoders publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-023-11633-5 – volume: 12 year: 2024 ident: CR47 article-title: Machine learning for anomaly detection in particle physics publication-title: Rev. Phys. doi: 10.1016/j.revip.2024.100091 – volume: 83 start-page: 1116 issue: 12 year: 2023 ident: CR135 article-title: Quark/gluon discrimination and top tagging with dual attention transformer publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-023-12293-1 – ident: 1306_CR81 – volume: 02 start-page: 160 year: 2021 ident: 1306_CR163 publication-title: JHEP doi: 10.1007/JHEP02(2021)160 – volume: 05 start-page: 145 year: 2017 ident: 1306_CR20 publication-title: JHEP doi: 10.1007/JHEP05(2017)145 – volume-title: Computational Limitations of Small-depth Circuits year: 1987 ident: 1306_CR64 – volume: 80 start-page: 58 issue: 1 year: 2020 ident: 1306_CR132 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-7608-4 – volume-title: Geometric Deep Learning: Grids, Groups year: 2021 ident: 1306_CR80 – volume: 91 issue: 11 year: 2015 ident: 1306_CR111 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.111501 – volume: 6 start-page: 030 issue: 3 year: 2019 ident: 1306_CR166 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.6.3.030 – volume: 02 start-page: 060 year: 2022 ident: 1306_CR98 publication-title: JHEP doi: 10.1007/JHEP02(2022)060 – start-page: 259 volume-title: Machine Learning Proceedings 1994 year: 1994 ident: 1306_CR71 doi: 10.1016/B978-1-55860-335-6.50039-8 – volume: 102 issue: 1 year: 2020 ident: 1306_CR133 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.012010 – ident: 1306_CR114 – volume: 12 start-page: 045 issue: 1 year: 2022 ident: 1306_CR170 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.12.1.045 – ident: 1306_CR52 – volume: 8 start-page: 714 issue: 3 year: 1997 ident: 1306_CR117 publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.572108 – volume: 08 start-page: 055 year: 2019 ident: 1306_CR155 publication-title: JHEP doi: 10.1007/JHEP08(2019)055 – ident: 1306_CR38 doi: 10.2172/1886020 – ident: 1306_CR140 – ident: 1306_CR34 – ident: 1306_CR125 – ident: 1306_CR73 doi: 10.1007/978-3-030-66515-9_13 – ident: 1306_CR55 – ident: 1306_CR86 – volume: 135 start-page: 463 issue: 6 year: 2020 ident: 1306_CR134 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00497-3 – ident: 1306_CR119 – ident: 1306_CR28 – volume: 04 start-page: 296 year: 2021 ident: 1306_CR36 publication-title: JHEP doi: 10.1007/JHEP04(2021)296 – volume: 560 start-page: 41 issue: 7716 year: 2018 ident: 1306_CR76 publication-title: Nature doi: 10.1038/s41586-018-0361-2 – ident: 1306_CR157 doi: 10.1007/JHEP10(2022)172 – ident: 1306_CR164 doi: 10.1007/s41781-024-00122-3 – volume: 9 start-page: 768 issue: 5 year: 1998 ident: 1306_CR118 publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.712151 – volume: 79 start-page: 608 issue: 7 year: 2019 ident: 1306_CR12 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-019-7113-9 – ident: 1306_CR43 doi: 10.1142/9789811234033_0007 – ident: 1306_CR69 – volume: 6 start-page: 861 issue: 6 year: 1993 ident: 1306_CR61 publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80131-5 – ident: 1306_CR168 – ident: 1306_CR56 doi: 10.1109/ICCV.2015.123 – volume: 596 start-page: 583 issue: 7873 year: 2021 ident: 1306_CR83 publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 65 start-page: 386 issue: 6 year: 1958 ident: 1306_CR54 publication-title: Psychol. Rev. doi: 10.1037/h0042519 – ident: 1306_CR17 – ident: 1306_CR160 doi: 10.1140/epjc/s10052-024-12722-9 – ident: 1306_CR31 doi: 10.1088/2632-2153/ad55a3 – volume: 111 year: 2013 ident: 1306_CR110 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.102002 – ident: 1306_CR122 – ident: 1306_CR58 – ident: 1306_CR129 doi: 10.1109/ICCV48922.2021.01595 – volume: 04 start-page: 104 year: 2023 ident: 1306_CR91 publication-title: Lund multiplicity in QCD jets. JHEP doi: 10.1007/JHEP04(2023)104 – ident: 1306_CR102 doi: 10.1007/JHEP07(2024)245 – volume: 91 year: 2019 ident: 1306_CR1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.045002 – volume: 107 issue: 11 year: 2023 ident: 1306_CR25 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.107.114012 – volume: 82 start-page: 46 issue: 1 year: 2022 ident: 1306_CR41 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-022-10012-w – volume: 64 start-page: 33 year: 2023 ident: 1306_CR62 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2022.12.002 – volume: 8 start-page: 1341 issue: 7 year: 1996 ident: 1306_CR70 publication-title: Neural Comput. doi: 10.1162/neco.1996.8.7.1341 – volume: 20 start-page: 61 issue: 1 year: 2009 ident: 1306_CR116 publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2008.2005605 – ident: 1306_CR16 – volume: 2022 start-page: 083 year: 2022 ident: 1306_CR48 publication-title: PTEP doi: 10.1093/ptep/ptac097 – start-page: 1 volume-title: Foundations of Software Technology and Theoretical Computer Science year: 1996 ident: 1306_CR65 – volume: 81 start-page: 381 issue: 5 year: 2021 ident: 1306_CR156 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-021-09158-w – ident: 1306_CR127 – volume: 04 start-page: 063 year: 2008 ident: 1306_CR103 publication-title: JHEP doi: 10.1088/1126-6708/2008/04/063 – ident: 1306_CR4 doi: 10.1051/epjconf/202429506016 – volume: 83 start-page: 779 issue: 9 year: 2023 ident: 1306_CR39 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-023-11925-w – volume: 7 start-page: 036 issue: 3 year: 2019 ident: 1306_CR77 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.7.3.036 – volume: 67 start-page: 637 year: 2010 ident: 1306_CR105 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-010-1314-6 – volume: 107 issue: 11 year: 2023 ident: 1306_CR161 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.107.116019 – volume: 104 issue: 5 year: 2021 ident: 1306_CR37 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.104.056026 – volume: 12 year: 2024 ident: 1306_CR47 publication-title: Rev. Phys. doi: 10.1016/j.revip.2024.100091 – volume: 43 start-page: 625 issue: 4 year: 1989 ident: 1306_CR150 publication-title: Zeitschrift für Physik C Particles and Fields doi: 10.1007/BF01550942 – volume: 128 issue: 3 year: 2022 ident: 1306_CR85 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.032003 – volume: 13 start-page: 087 issue: 4 year: 2022 ident: 1306_CR8 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.13.4.087 – volume: 25 start-page: 1553 issue: 8 year: 2014 ident: 1306_CR66 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2013.2293637 – ident: 1306_CR63 doi: 10.7551/mitpress/7496.003.0016 – ident: 1306_CR121 doi: 10.1145/3326362 – ident: 1306_CR138 – ident: 1306_CR67 – volume: 12 year: 2024 ident: 1306_CR51 publication-title: Rev. Phys. doi: 10.1016/j.revip.2024.100092 – volume: 15 start-page: 455 issue: 6 year: 1982 ident: 1306_CR112 publication-title: Pattern Recogn. doi: 10.1016/0031-3203(82)90024-3 – volume: 03 start-page: 052 year: 2021 ident: 1306_CR152 publication-title: JHEP doi: 10.1007/JHEP03(2021)052 – volume: 01 start-page: 113 year: 2024 ident: 1306_CR100 publication-title: JHEP doi: 10.1007/JHEP01(2024)113 – ident: 1306_CR141 – volume: 09 start-page: 083 year: 2017 ident: 1306_CR89 publication-title: JHEP doi: 10.1007/JHEP09(2017)083 – ident: 1306_CR11 – volume: 5 year: 2024 ident: 1306_CR33 publication-title: Mach. Learn.: Sci. Technol. doi: 10.1088/2632-2153/ad66ad – volume: 109 issue: 5 year: 2024 ident: 1306_CR144 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.109.056003 – ident: 1306_CR147 – ident: 1306_CR115 doi: 10.1109/IJCNN.2005.1555942 – volume: 84 issue: 12 year: 2021 ident: 1306_CR22 publication-title: Rept. Prog. Phys. doi: 10.1088/1361-6633/ac36b9 – volume: 80 year: 2009 ident: 1306_CR106 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.80.094002 – volume: 65 start-page: 1321 year: 1990 ident: 1306_CR75 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.65.1321 – volume: 01 start-page: 121 year: 2019 ident: 1306_CR93 publication-title: JHEP doi: 10.1007/JHEP01(2019)121 – volume: 3 start-page: 12 issue: 1 year: 2019 ident: 1306_CR6 publication-title: Comput. Softw. Big Sci. doi: 10.1007/s41781-019-0028-1 – volume: 06 start-page: 184 year: 2023 ident: 1306_CR29 publication-title: JHEP doi: 10.1007/JHEP06(2023)184 – volume: 10 start-page: 156 year: 2022 ident: 1306_CR90 publication-title: JHEP doi: 10.1007/JHEP10(2022)156 – volume: 103 issue: 3 year: 2021 ident: 1306_CR78 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.036020 – volume: 03 start-page: 073 year: 2005 ident: 1306_CR107 publication-title: JHEP doi: 10.1088/1126-6708/2005/03/073 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 1306_CR72 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 125 issue: 12 year: 2020 ident: 1306_CR84 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.121601 – volume: 2 issue: 3 year: 2021 ident: 1306_CR142 publication-title: Mach. Learn. Sci. Tech. doi: 10.1088/2632-2153/ac07f6 – volume: 08 start-page: 177 year: 2022 ident: 1306_CR153 publication-title: JHEP doi: 10.1007/JHEP08(2022)177 – volume: 49 start-page: 429 issue: 3 year: 1988 ident: 1306_CR74 publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(88)90004-5 – ident: 1306_CR18 – volume: 83 start-page: 485 issue: 6 year: 2023 ident: 1306_CR171 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-023-11633-5 – volume: 03 start-page: 113 year: 2024 ident: 1306_CR146 publication-title: JHEP doi: 10.1007/JHEP03(2024)113 – ident: 1306_CR82 – ident: 1306_CR44 doi: 10.1142/9789811234033_0012 – volume: 108 issue: 7 year: 2023 ident: 1306_CR139 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.108.072007 – volume: 19 start-page: 03019 issue: 03 year: 2024 ident: 1306_CR9 publication-title: JINST doi: 10.1088/1748-0221/19/03/C03019 – volume: 5 start-page: 115 issue: 4 year: 1943 ident: 1306_CR53 publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 – ident: 1306_CR27 doi: 10.1007/JHEP05(2024)004 – volume: 12 start-page: 064 year: 2018 ident: 1306_CR151 publication-title: The Lund Jet Plane. JHEP doi: 10.1007/JHEP12(2018)064 – volume: 07 start-page: 030 year: 2022 ident: 1306_CR143 publication-title: JHEP doi: 10.1007/JHEP07(2022)030 – volume: 09 start-page: 135 year: 2023 ident: 1306_CR95 publication-title: JHEP doi: 10.1007/JHEP09(2023)135 – ident: 1306_CR136 – volume: 09 start-page: 029 year: 2013 ident: 1306_CR108 publication-title: JHEP doi: 10.1007/JHEP09(2013)029 – volume: 10 start-page: 046 issue: 2 year: 2021 ident: 1306_CR149 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.10.2.046 – volume: 5 start-page: 13 issue: 1 year: 2021 ident: 1306_CR14 publication-title: Comput. Softw. Big Sci. doi: 10.1007/s41781-021-00056-0 – ident: 1306_CR5 doi: 10.22323/1.449.0534 – volume: 1 start-page: 541 issue: 4 year: 1989 ident: 1306_CR113 publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.541 – volume: 09 start-page: 195 year: 2020 ident: 1306_CR109 publication-title: JHEP doi: 10.1007/JHEP09(2020)195 – ident: 1306_CR137 doi: 10.1007/JHEP07(2024)247 – volume: 08 start-page: 080 year: 2021 ident: 1306_CR169 publication-title: JHEP doi: 10.1007/JHEP08(2021)080 – ident: 1306_CR13 – ident: 1306_CR30 – volume: 83 start-page: 1116 issue: 12 year: 2023 ident: 1306_CR135 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-023-12293-1 – volume: 251 start-page: 03047 year: 2021 ident: 1306_CR15 publication-title: EPJ Web Conf. doi: 10.1051/epjconf/202125103047 – volume: 55 start-page: 291 issue: 1 year: 2022 ident: 1306_CR57 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-10033-z – ident: 1306_CR126 – ident: 1306_CR35 – volume: 5 start-page: 4308 year: 2014 ident: 1306_CR19 publication-title: Nature Commun. doi: 10.1038/ncomms5308 – volume: 10 start-page: 174 year: 2017 ident: 1306_CR21 publication-title: JHEP doi: 10.1007/JHEP10(2017)174 – ident: 1306_CR130 doi: 10.1007/JHEP07(2016)069 – volume: 2 start-page: 303 issue: 4 year: 1989 ident: 1306_CR60 publication-title: Math. Control Signals Systems doi: 10.1007/BF02551274 – volume: 101 issue: 5 year: 2020 ident: 1306_CR131 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.056019 – ident: 1306_CR50 doi: 10.1038/s41467-024-49104-4] 10.1038/s41467-024-49971-x – volume: 02 start-page: 132 year: 2019 ident: 1306_CR92 publication-title: JHEP doi: 10.1007/JHEP02(2019)132 – volume: 21 start-page: 1 issue: 184 year: 2020 ident: 1306_CR68 publication-title: J. Mach. Learn. Res. – ident: 1306_CR165 – volume: 120 issue: 4 year: 2018 ident: 1306_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.042003 – ident: 1306_CR96 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 1306_CR59 publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – ident: 1306_CR101 doi: 10.1103/PhysRevD.109.076012 – volume: 12 start-page: 043 issue: 1 year: 2022 ident: 1306_CR24 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.12.1.043 – volume: 15 start-page: 130 issue: 4 year: 2023 ident: 1306_CR87 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.15.4.130 – volume: 101 issue: 7 year: 2020 ident: 1306_CR167 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.075021 – volume: 34 start-page: 18 issue: 4 year: 2017 ident: 1306_CR79 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2693418 – volume: 132 issue: 8 year: 2024 ident: 1306_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.132.081801 – volume: 245 start-page: 06014 year: 2020 ident: 1306_CR2 publication-title: EPJ Web Conf. doi: 10.1051/epjconf/202024506014 – ident: 1306_CR123 – volume: 6 start-page: 045 year: 2023 ident: 1306_CR40 publication-title: SciPost Phys. Core doi: 10.21468/SciPostPhysCore.6.2.045 – volume: 04 start-page: 137 year: 2022 ident: 1306_CR154 publication-title: JHEP doi: 10.1007/JHEP04(2022)137 – volume: 841 start-page: 1 year: 2020 ident: 1306_CR42 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2019.11.001 – volume: 36 start-page: 409 year: 2005 ident: 1306_CR104 publication-title: Acta Phys. Polon. B – ident: 1306_CR32 doi: 10.1088/2632-2153/ad64a8 – ident: 1306_CR45 doi: 10.1088/2632-2153/abbf9a – volume: 07 start-page: 006 year: 2020 ident: 1306_CR148 publication-title: JHEP doi: 10.1007/JHEP07(2020)006 – ident: 1306_CR46 – ident: 1306_CR162 – volume: 03 start-page: 144 year: 2024 ident: 1306_CR159 publication-title: JHEP doi: 10.1007/JHEP03(2024)144 – volume: 5 year: 2022 ident: 1306_CR99 publication-title: Front. Artif. Intell. doi: 10.3389/frai.2022.943135 – ident: 1306_CR3 doi: 10.5281/zenodo.4009114 – volume: 13 start-page: 07027 issue: 07 year: 2018 ident: 1306_CR7 publication-title: JINST doi: 10.1088/1748-0221/13/07/P07027 – ident: 1306_CR120 – volume: 125 issue: 13 year: 2020 ident: 1306_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.131801 – ident: 1306_CR124 doi: 10.18653/v1/N19-1423 – ident: 1306_CR145 – volume: 103 issue: 7 year: 2021 ident: 1306_CR94 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.074022 – ident: 1306_CR128 – ident: 1306_CR158 doi: 10.1103/PhysRevD.108.035001 – volume: 5 start-page: 281 issue: 5 year: 2023 ident: 1306_CR49 publication-title: Nature Reviews Physics doi: 10.1038/s42254-023-00569-0 – volume: 108 issue: 1 year: 2023 ident: 1306_CR88 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.108.012001 – ident: 1306_CR97 doi: 10.1103/PhysRevD.110.074020 |
| SSID | ssj0056293 |
| Score | 2.3992822 |
| SecondaryResourceType | review_article |
| Snippet | Deep learning algorithms will play a key role in the upcoming runs of the Large Hadron Collider (LHC), helping bolster various fronts ranging from fast and... Abstract Deep learning algorithms will play a key role in the upcoming runs of the Large Hadron Collider (LHC), helping bolster various fronts ranging from... |
| SourceID | pubmedcentral osti proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2619 |
| SubjectTerms | Algorithms Approximation Atomic Classical and Continuum Physics Condensed Matter Physics Datasets Deep learning Feature extraction Graphical representations Large Hadron Collider Machine learning Materials Science Measurement Science and Instrumentation Modern Machine Learning and Particle Physics: An In-Depth Review Molecular Neural networks Optical and Plasma Physics Phenomenology Physics Physics and Astronomy Review Sensors Variables |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB2121biQltaYFlaGYmrRRInG-eIViAOCFX9QNwsf6pboWS1yXLgxH_gH_JLGDvJ0i2oSO3ZcWSPx35v5PEbgH0kwRk3UlLjmKapwpiVS1VQpxCLVSbHXMlQbCI_O-MXF8WX30t9-Wz3_koynNStnm10YGe_6oM6jnOWUgQW6q_cxvT6JbxCzOO-asPXb-f9IYyoHvR2Y19F3mNql9r1lx-tANOgwg32FOl8nDv5xwVqwKXjt_8xo3ew3pFRcth6z3t4YcsNeBOSQnX9AU4fai7VpHJELpoqKLwSZ4MeKMGTfd6-jCCyIacnk7ub21k1LRuiL6uFqYksDQma2PVH-HF89H1yQrvqC1QjJ2uodomzXnwniyKVcIfEgxcq1py5gsmUubGWGJzxwjqJKM-Ncmj0QkWpKjJkUmwTBmVV2m0gmUISp02O_MCmhkXK5LlLE2OYNRGzfAjj3vRCd9LkvkLGpWifTUfCm0q0phJoKhFMJa6HEC07zlp1jue7jPzaCiQYXiVX-3Qi3YjEixQl6RB2-yUX3WauBUNaWGSICjjQvWUzbkN_tyJLWy3wG4z1c4Z0Cn-x1XrIckQMo0SM27A3X_Gd5Qde4nu1pZz-DFLfyNc553E-hLh3oYdxPTPTnX_oM4K1xLtieGy5C4NmvrCf4LW-aqb1_HPYYvdNQCXB priority: 102 providerName: Springer Nature |
| Title | Foundations of automatic feature extraction at LHC–point clouds and graphs |
| URI | https://link.springer.com/article/10.1140/epjs/s11734-024-01306-z https://www.ncbi.nlm.nih.gov/pubmed/39605978 https://www.proquest.com/docview/3256959118 https://www.proquest.com/docview/3133738204 https://www.osti.gov/biblio/2478724 https://pubmed.ncbi.nlm.nih.gov/PMC11588817 |
| Volume | 233 |
| WOSCitedRecordID | wos001320716800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1951-6401 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0056293 issn: 1951-6355 databaseCode: M7S dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database (Proquest) customDbUrl: eissn: 1951-6401 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0056293 issn: 1951-6355 databaseCode: KB. dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1951-6401 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0056293 issn: 1951-6355 databaseCode: BENPR dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Advanced Technologies & Aerospace Database (via ProQuest) customDbUrl: eissn: 1951-6401 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0056293 issn: 1951-6355 databaseCode: P5Z dateStart: 20230201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1951-6401 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056293 issn: 1951-6355 databaseCode: RSV dateStart: 20070101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7RLUhc-IeGlpWRuIZN4mTjnBCtWlWiWq1aQCsuln_VRVWy3WQ59MQ78IY8CWMn2dUCogcukSLbUezxeL6xx98AvEEQnDEtRKgtVWEq0WdlQhahlWiLZSbGTAqfbCKfTNhsVky7Dbe6C6vs10S_UOtKuT3yEUXbXGSomuzd4jp0WaPc6WqXQmMHdh1LQuxD9y76lRhNuyfdjV0qeWdYu_gu9ClGZvG1HtVxnNM0RDMVugO8cXizZZ0GFWrZ35DnnwGUv52ieuN08vB_u_UIHnSwlLxv59FjuGPKJ3DPh4eq-imcbbIv1aSyRKyaynO9Ems8MyjBNX7Z3pEgoiFnp0c_v_9YVPOyIeqqWumaiFITz45dP4NPJ8cfj07DLg9DqBCdNaGyiTWOhieLIpkwixCEFTJWjNqCipTasRLoprHCWIH2nmlpceQLGaWyyBBT0ecwKKvS7AHJJMI5pXNECibVNJI6z22aaE2NjqhhAYz78eeqIyl3uTKueHuBOuJOcLwVHEfBcS84fhNAtG64aHk6bm-y7wTMEWo4vlzlAotUwxNHV5SkARz0AuOdWtd8I60AXq-LUSHdKYsoTbXCOuj15xSBFX7iRTtN1n9E0V9EDw5bs60JtK7gyL63S8r5pSf9RuTOGIvzAOJ-rm3-65aevvx3X_bhfuJ0wN-wPIBBs1yZV3BXfWvm9XIIO_mMDWH38HgyPce3D4dvh17N8DnNvuDz_OLzL2cxLsQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAIIL74dpgUWCo4nt9WN9QAgKVaqGiEORelv2KYIqO8QOiJ74D_wPfhS_hNl1nCiA6KkHzvbaXvubmW-8s98APEYSnDEtRKgtVWEqMWdlQpahlRiLZSZyJoVvNlFMJuzoqHy7BT_6vTCurLL3id5R61q5f-RDirG5zNA02fPZp9B1jXKrq30LjQ4WB-brF0zZmmf7r_D7PkmSvdeHu6Nw2VUgVMg12lDZxBonKpNFkUyYxYDKShkrRm1JRUptrgQmHaw0VmD0YlraHH22jFJZZsgQKF73HJxPKXJTtwj88mnv-ZFKeJHf2LWud4F8WU-GNxua2cdm2MRxQdMQw2LoFgzz8GQjGg5qtOq_Md0_CzZ_W7X1wXDv6v_2Gq_BlSXtJi86O7kOW6a6ARd9-atqbsJ43V2qIbUlYtHWXsuWWOOVTwnGsHm3B4SIloxHuz-_fZ_V06ol6rhe6IaIShOv_t3cgndnMpXbMKjqytwFkkmkq0oXyIRMqmkkdVHYNNGaGh1RwwLI--_N1VKE3fUCOebdBvGIO6DwDigcgcI9UPhJANFq4KzTITl9yLYDFEcq5fSAlSucUi1PnBxTkgaw0wOEL91Ww9foCODR6jA6HLeKJCpTL_CcmDo1rCTCS9zpYLl6Ior5MGaoOJptAHZ1ghMz3zxSTT94UXPMTBhjcRFA3GN7_VynzPTev-fyEC6NDt-M-Xh_crANlxNnf3436Q4M2vnC3IcL6nM7beYPvDkTeH_WwP8F6iyECg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB4t5SEuvB9lFzASV6tOnDTOES1bLaKqVuKhvVl-aotWSdWkHPbEf-Af8ksYO0lXBcRKiLMfsj1jzzfyzDcArxEE58IqRa3nhmYafVahdEm9RlusczUVWsViE8ViIU5Py5M9OBpyYWK0-_Al2eU0BJamqp2srO-5bdnErb40kyZJCp5RNDI0fL9N6cU1uJ6FaPrgtH_4PDzIaOEj924SKsoH-9qHef1loh0jNarxsv0JgP4eR_nLZ2q0UbO7_2l39-BOD1LJm06r7sOeqx7AzRgsapqHML-sxdSQ2hO1aevI_Eq8izyhBF_8dZcxQVRL5seHP759X9XLqiXmvN7YhqjKksiV3TyCT7Ojj4fHtK_KQA1itZYan3oXSHlyxnQqPAISUerECO5LrjLup0ah0yZK5xVaf2G1RwGUmmW6zBFh8ccwqurKPQWSawR3xhaIG1xmOdO2KHyWWsudZdyJMUwHMUjTU5aHyhnnskunZjIcleyOSuJRyXhU8mIMbDtw1bF2XD1kP8hZIvAI7LkmhBmZVqaBvCjNxnAwiF_2l7yRHOFimaO1wIW-2jbj9Qx_Lqpy9Qb7JDxwR6UMp3jSact2RRy9R_TncLTY0aNth0D9vdtSLc8iBTjieCFEUowhGdTpcl1X7PTZP4x5CbdO3s7k_N3i_T7cToNWxnzMAxi16417DjfM13bZrF_Em_cTlrIxiQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Foundations+of+automatic+feature+extraction+at+LHC%E2%80%93point+clouds+and+graphs&rft.jtitle=The+European+physical+journal.+ST%2C+Special+topics&rft.au=Bhardwaj%2C+Akanksha&rft.au=Konar%2C+Partha&rft.au=Ngairangbam%2C+Vishal&rft.date=2024-11-01&rft.issn=1951-6355&rft.eissn=1951-6401&rft.volume=233&rft.issue=15-16&rft.spage=2619&rft.epage=2640&rft_id=info:doi/10.1140%2Fepjs%2Fs11734-024-01306-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1140_epjs_s11734_024_01306_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1951-6355&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1951-6355&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1951-6355&client=summon |