Rapid diagnosis of latent and active pulmonary tuberculosis by autofluorescence spectroscopy of blood plasma combined with artificial neural network algorithm

•A rapid, accurate, label-free and non-invasive diagnosis method of pulmonary tuberculosis (TB) has been developed by using plasma autofluorescence spectroscopy and Machine Learning algorithm.•It is the first time that the autofluorescence spectroscopy combined with optimized three-classification Ar...

Full description

Saved in:
Bibliographic Details
Published in:Photodiagnosis and photodynamic therapy Vol. 50; p. 104426
Main Authors: Yue, Fengjiao, Li, Si, Wu, Lijuan, Chen, Xuerong, Zhu, Jianhua
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01.12.2024
Elsevier
Subjects:
ISSN:1572-1000, 1873-1597, 1873-1597
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A rapid, accurate, label-free and non-invasive diagnosis method of pulmonary tuberculosis (TB) has been developed by using plasma autofluorescence spectroscopy and Machine Learning algorithm.•It is the first time that the autofluorescence spectroscopy combined with optimized three-classification Artificial Neural Network (ANN) model for distinguishing the active TB patients, latent TB infected individuals from healthy people.•Compared with traditional Principal component analysis (PCA) and Linear discriminant analysis (LDA) method, the three-layer ANN model achieves much better classification accuracy of 96.3 %, it can be developed as a promising diagnostic tool for the early screening of pulmonary TB disease. The existing clinical diagnostic methods of pulmonary tuberculosis (TB) usually have some of the following limitations, such as time-consuming, invasive, radioactive, insufficiently sensitive and accurate. This study demonstrates the possibility of using blood plasma autofluorescence spectroscopy and Artificial Neural Network (ANN) algorithm for the rapid and accurate diagnosis of latent and active pulmonary TB from healthy subjects. The fluorescence spectra of blood plasma from 18 healthy volunteers, 12 individuals with latent TB infections and 80 active TB patients are measured and analyzed. By optimizing the ANN structure and activation functions, the ANN three-classification model achieves average classification accuracy of 96.3 %, and the accuracy of healthy persons, latent TB infections and active TB patients are 100 %, 83.3 % and 97.5 %, respectively, which is much better than the results of traditional Principal component analysis (PCA) and Linear discriminant analysis (LDA) method. To the best of our knowledge, this is the first research work of differentiating latent, active pulmonary TB cases from healthy samples with autofluorescence spectroscopy. As a rapid, accurate, safe, label-free, non-invasive and cost-effective technique, it can be developed as a promising diagnostic tool for the screening of pulmonary TB disease in the early stage. [Display omitted]
AbstractList •A rapid, accurate, label-free and non-invasive diagnosis method of pulmonary tuberculosis (TB) has been developed by using plasma autofluorescence spectroscopy and Machine Learning algorithm.•It is the first time that the autofluorescence spectroscopy combined with optimized three-classification Artificial Neural Network (ANN) model for distinguishing the active TB patients, latent TB infected individuals from healthy people.•Compared with traditional Principal component analysis (PCA) and Linear discriminant analysis (LDA) method, the three-layer ANN model achieves much better classification accuracy of 96.3 %, it can be developed as a promising diagnostic tool for the early screening of pulmonary TB disease. The existing clinical diagnostic methods of pulmonary tuberculosis (TB) usually have some of the following limitations, such as time-consuming, invasive, radioactive, insufficiently sensitive and accurate. This study demonstrates the possibility of using blood plasma autofluorescence spectroscopy and Artificial Neural Network (ANN) algorithm for the rapid and accurate diagnosis of latent and active pulmonary TB from healthy subjects. The fluorescence spectra of blood plasma from 18 healthy volunteers, 12 individuals with latent TB infections and 80 active TB patients are measured and analyzed. By optimizing the ANN structure and activation functions, the ANN three-classification model achieves average classification accuracy of 96.3 %, and the accuracy of healthy persons, latent TB infections and active TB patients are 100 %, 83.3 % and 97.5 %, respectively, which is much better than the results of traditional Principal component analysis (PCA) and Linear discriminant analysis (LDA) method. To the best of our knowledge, this is the first research work of differentiating latent, active pulmonary TB cases from healthy samples with autofluorescence spectroscopy. As a rapid, accurate, safe, label-free, non-invasive and cost-effective technique, it can be developed as a promising diagnostic tool for the screening of pulmonary TB disease in the early stage. [Display omitted]
The existing clinical diagnostic methods of pulmonary tuberculosis (TB) usually have some of the following limitations, such as time-consuming, invasive, radioactive, insufficiently sensitive and accurate. This study demonstrates the possibility of using blood plasma autofluorescence spectroscopy and Artificial Neural Network (ANN) algorithm for the rapid and accurate diagnosis of latent and active pulmonary TB from healthy subjects. The fluorescence spectra of blood plasma from 18 healthy volunteers, 12 individuals with latent TB infections and 80 active TB patients are measured and analyzed. By optimizing the ANN structure and activation functions, the ANN three-classification model achieves average classification accuracy of 96.3 %, and the accuracy of healthy persons, latent TB infections and active TB patients are 100 %, 83.3 % and 97.5 %, respectively, which is much better than the results of traditional Principal component analysis (PCA) and Linear discriminant analysis (LDA) method. To the best of our knowledge, this is the first research work of differentiating latent, active pulmonary TB cases from healthy samples with autofluorescence spectroscopy. As a rapid, accurate, safe, label-free, non-invasive and cost-effective technique, it can be developed as a promising diagnostic tool for the screening of pulmonary TB disease in the early stage.The existing clinical diagnostic methods of pulmonary tuberculosis (TB) usually have some of the following limitations, such as time-consuming, invasive, radioactive, insufficiently sensitive and accurate. This study demonstrates the possibility of using blood plasma autofluorescence spectroscopy and Artificial Neural Network (ANN) algorithm for the rapid and accurate diagnosis of latent and active pulmonary TB from healthy subjects. The fluorescence spectra of blood plasma from 18 healthy volunteers, 12 individuals with latent TB infections and 80 active TB patients are measured and analyzed. By optimizing the ANN structure and activation functions, the ANN three-classification model achieves average classification accuracy of 96.3 %, and the accuracy of healthy persons, latent TB infections and active TB patients are 100 %, 83.3 % and 97.5 %, respectively, which is much better than the results of traditional Principal component analysis (PCA) and Linear discriminant analysis (LDA) method. To the best of our knowledge, this is the first research work of differentiating latent, active pulmonary TB cases from healthy samples with autofluorescence spectroscopy. As a rapid, accurate, safe, label-free, non-invasive and cost-effective technique, it can be developed as a promising diagnostic tool for the screening of pulmonary TB disease in the early stage.
The existing clinical diagnostic methods of pulmonary tuberculosis (TB) usually have some of the following limitations, such as time-consuming, invasive, radioactive, insufficiently sensitive and accurate. This study demonstrates the possibility of using blood plasma autofluorescence spectroscopy and Artificial Neural Network (ANN) algorithm for the rapid and accurate diagnosis of latent and active pulmonary TB from healthy subjects. The fluorescence spectra of blood plasma from 18 healthy volunteers, 12 individuals with latent TB infections and 80 active TB patients are measured and analyzed. By optimizing the ANN structure and activation functions, the ANN three-classification model achieves average classification accuracy of 96.3 %, and the accuracy of healthy persons, latent TB infections and active TB patients are 100 %, 83.3 % and 97.5 %, respectively, which is much better than the results of traditional Principal component analysis (PCA) and Linear discriminant analysis (LDA) method. To the best of our knowledge, this is the first research work of differentiating latent, active pulmonary TB cases from healthy samples with autofluorescence spectroscopy. As a rapid, accurate, safe, label-free, non-invasive and cost-effective technique, it can be developed as a promising diagnostic tool for the screening of pulmonary TB disease in the early stage.
ArticleNumber 104426
Author Li, Si
Chen, Xuerong
Yue, Fengjiao
Wu, Lijuan
Zhu, Jianhua
Author_xml – sequence: 1
  givenname: Fengjiao
  surname: Yue
  fullname: Yue, Fengjiao
  organization: College of Physics, Sichuan University, Chengdu, China
– sequence: 2
  givenname: Si
  surname: Li
  fullname: Li, Si
  organization: Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
– sequence: 3
  givenname: Lijuan
  surname: Wu
  fullname: Wu, Lijuan
  organization: Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
– sequence: 4
  givenname: Xuerong
  surname: Chen
  fullname: Chen, Xuerong
  email: 384481688@qq.com
  organization: Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
– sequence: 5
  givenname: Jianhua
  orcidid: 0000-0003-4169-6019
  surname: Zhu
  fullname: Zhu, Jianhua
  email: zhujh@scu.edu.cn
  organization: College of Physics, Sichuan University, Chengdu, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39615559$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuFDEQRVsoiDzgC5CQl2xmsLvdLyEWKOIRKRISgrXlLpcHT9x2Y7sTzc_wrbinExZZkJWt0j3X5Vt1Xpw477AoXjO6ZZQ17_bbSU0qbUta8lzhvGyeFWesa6sNq_v2JN_rttwwSulpcR7jntKK95S_KE6rvmF1XfdnxZ_vcjKKKCN3zkcTidfEyoQuEekUkZDMLZJptqN3MhxImgcMMNujdjgQOSev7ewDRkAHSOKEkIKP4KfDYjZY7xWZrIyjJODHwThU5M6kX0SGZLQBIy1xOIfjke58uCHS7nzIkvFl8VxLG_HV_XlR_Pz86cfl1831ty9Xlx-vN1CXZdpA32ALupNQI1Jd87KtGwa0BGg4lLThHXKoKNdDg4PuUesm1yrJ2wZLzquL4mr1VV7uxRTMmD8rvDTiWPBhJ5ZuwaLgbMGV7lWDnCIbWKU7xbu-7HTHeJ-93q5eU_C_Z4xJjCaHY6106OcoKsZp17V1TbP0zb10HkZU_x5-mE8W9KsAcqQxoBZgkkzGuxSksYJRseyCyD0vuyCWXRDrLmS2esQ-2P-f-rBSmOO-NRhEBLNMVpmQJ5vzME_w7x_xYI0zIO0NHp6k_wJx9Oaq
CitedBy_id crossref_primary_10_1002_jbio_202500100
crossref_primary_10_1111_nhs_70077
Cites_doi 10.1016/j.pdpdt.2022.103102
10.1128/jcm.31.9.2410-2416.1993
10.1586/14737159.8.2.149
10.1562/0031-8655(2003)078<0197:NFSOBP>2.0.CO;2
10.1371/journal.pone.0221421
10.1002/jbio.202300021
10.1002/(SICI)1096-9101(1997)21:5<417::AID-LSM2>3.0.CO;2-T
10.1002/bjs.6239
10.1002/lsm.10153
10.1038/s41598-022-13750-9
10.1016/j.ijid.2022.02.047
10.1007/s10895-010-0751-9
10.1016/j.ijleo.2020.165446
10.1164/ajrccm.162.4.9912115
10.1089/pho.2007.2162
10.1109/TBME.2003.818488
10.1364/BOE.448121
10.1364/BOE.10.004999
10.1039/b304992b
10.4103/0973-6247.126679
10.1002/pros.23198
10.1007/s11814-015-0255-z
10.1021/cr900343z
10.6026/97320630016539
10.1016/j.tube.2015.02.038
10.1016/j.tube.2017.09.006
10.3390/app7010032
10.1002/nbm.3916
10.1364/OE.23.018361
10.3389/frans.2022.906532
10.1021/acs.jpclett.2c02193
10.1016/j.jpba.2020.113757
10.1177/0003702820904444
10.1186/1471-2334-5-111
10.1117/1.JBO.20.5.051033
10.3390/ijms241914703
10.1002/jbio.202200354
10.1016/j.artmed.2017.09.004
10.1002/bit.27933
10.1177/030089160709300609
10.1177/1094428107300338
10.1016/j.pdpdt.2018.10.014
10.2478/v10136-012-0031-x
10.1016/j.pdpdt.2018.05.012
ContentType Journal Article
Copyright 2024
Copyright © 2024. Published by Elsevier B.V.
Copyright_xml – notice: 2024
– notice: Copyright © 2024. Published by Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.pdpdt.2024.104426
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1873-1597
ExternalDocumentID oai_doaj_org_article_419effdf9d6e40e1b13f8d48928f8149
39615559
10_1016_j_pdpdt_2024_104426
S1572100024004629
Genre Journal Article
GroupedDBID ---
--K
--M
-RU
.1-
.FO
.~1
0R~
123
1B1
1P~
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OC~
OO-
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
Z5R
~G-
~HD
6I.
AACTN
AAFTH
AFKWA
AJOXV
AMFUW
RIG
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c522t-c96e7cf8ac5ee0f5427561c02cc64c20648e4c304fb6ebf9eff66483a476e2443
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001406678900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1572-1000
1873-1597
IngestDate Fri Oct 03 12:52:49 EDT 2025
Sun Sep 28 02:36:11 EDT 2025
Thu Apr 03 07:04:49 EDT 2025
Sat Nov 29 02:38:09 EST 2025
Tue Nov 18 22:48:42 EST 2025
Sat Jan 11 15:48:49 EST 2025
Tue Oct 14 19:34:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Autofluorescence spectroscopy
Artificial neural network
Linear discriminant analysis
Pulmonary tuberculosis
Blood plasma
Principal component analysis
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2024. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-c96e7cf8ac5ee0f5427561c02cc64c20648e4c304fb6ebf9eff66483a476e2443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4169-6019
OpenAccessLink https://doaj.org/article/419effdf9d6e40e1b13f8d48928f8149
PMID 39615559
PQID 3140887550
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_419effdf9d6e40e1b13f8d48928f8149
proquest_miscellaneous_3140887550
pubmed_primary_39615559
crossref_citationtrail_10_1016_j_pdpdt_2024_104426
crossref_primary_10_1016_j_pdpdt_2024_104426
elsevier_sciencedirect_doi_10_1016_j_pdpdt_2024_104426
elsevier_clinicalkey_doi_10_1016_j_pdpdt_2024_104426
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-Dec
20241201
2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Photodiagnosis and photodynamic therapy
PublicationTitleAlternate Photodiagnosis Photodyn Ther
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Krysl, Korzeniewskakosela, Muller, Fitzgerald (bib0005) 1994; 45
Jonas, Alden, Curry (bib0002) 1993; 31
Dou, Dawuti, Zheng (bib0020) 2022; 40
Li, Deng, Yang (bib0049) 2019; 10
Bartosch-Härlid, Andersson, Aho (bib0045) 2008; 95
Al Zahrani, Al Jahdali, Poirier (bib0003) 2000; 162
Kalaivani, Masilamani, Sivaji (bib0015) 2008; 26
Khan, Ullah, Shahzad, Anbreen, Bilal, Khan, Khan (bib0017) 2018; 24
Li, Wang (bib0019) 2006; 6088
Ranjan, Sinha (bib0008) 2019; 32
Gupta, Majumder, Uppal (bib0032) 1997; 21
Danek, Bower (bib0007) 1979; 119
Vijayaraj, Abhinand, Venkatesan, Ragunath (bib0052) 2020; 16
Bai, Zhang, Wang (bib0041) 2022; 12
Shrirao, Schloss, Fritz (bib0025) 2021; 118
Lv, Wang, Ma (bib0035) 2022; 13
Goletti, Delogu, Matteelli, Migliori (bib0042) 2022; 124
Kumar, Gupta, Mandhani, Sankhwar (bib0009) 2016; 76
Lualdi, Colombo, Leo (bib0031) 2007; 93
Dande, Samant (bib0043) 2018; 108
Masilamani, Al-Zhrani, Al-Salhi (bib0014) 2004; 109
Dou, Dawuti, Zhou, Li, Zhang, Zheng, Lin, Lü (bib0034) 2023; 16
Wu, Gao, Smith, Bailin (bib0038) 2017; 10038
Walczak (bib0044) 2007; 10
Croce, Bottiroli (bib0050) 2014; 58
Zhou, Ni, Xu (bib0016) 2015; 95
Amato, López, Peña-Méndez (bib0040) 2013; 11
(accessed December 2023).
Gao, Wu (bib0036) 2019; 10873
Yin, Mi, Zhai (bib0028) 2021; 193
Stone, Kendall, Smith (bib0022) 2004; 126
Wang, Tsai, Chen (bib0039) 2003; 32
Hans, Marwaha (bib0006) 2014; 8
Wang, Long, Tang (bib0021) 2017; 7
Krishna, Kurien, Mathew (bib0023) 2008; 8
Zheng, Wu, Wang (bib0010) 2022; 13
Pavithran M, Lukose, Barik (bib0013) 2023; 16
Soares, Becker, Anzanello (bib0051) 2017; 82
Wang, Zhu, Chen (bib0033) 2020; 224
Al-Salhi, Masilamani, Vijmasi (bib0030) 2011; 21
Shirshin, Cherkasova, Tikhonova (bib0029) 2015; 20
Atif, Alsalhi, Devanesan (bib0012) 2018; 23
Palmer, Zhu, Breslin (bib0037) 2003; 50
Madhuri, Vengadesan, Aruna (bib0027) 2003; 78
Weber, Lednev (bib0026) 2022; 2
Nartowt, Hart, Roffman (bib0046) 2019; 14
WHO, Global tuberculosis report 2023
Wybranowski, Ziomkowska, Cyrankiewicz (bib0024) 2023; 24
van Cleeff, Kivihya-Ndugga, Meme (bib0004) 2005; 5
Eswari, Chandrakar (bib0047) 2016; 33
Berezin, Achilefu (bib0048) 2010; 110
Li, Yang, Li, Jin, Wang, Guan, Ding (bib0018) 2015; 23
Wang, Jiang, Mo (bib0011) 2020; 74
Amato (10.1016/j.pdpdt.2024.104426_bib0040) 2013; 11
Berezin (10.1016/j.pdpdt.2024.104426_bib0048) 2010; 110
Dou (10.1016/j.pdpdt.2024.104426_bib0034) 2023; 16
Eswari (10.1016/j.pdpdt.2024.104426_bib0047) 2016; 33
Nartowt (10.1016/j.pdpdt.2024.104426_bib0046) 2019; 14
Hans (10.1016/j.pdpdt.2024.104426_bib0006) 2014; 8
Lv (10.1016/j.pdpdt.2024.104426_bib0035) 2022; 13
Bartosch-Härlid (10.1016/j.pdpdt.2024.104426_bib0045) 2008; 95
Krysl (10.1016/j.pdpdt.2024.104426_bib0005) 1994; 45
Masilamani (10.1016/j.pdpdt.2024.104426_bib0014) 2004; 109
Wang (10.1016/j.pdpdt.2024.104426_bib0033) 2020; 224
Walczak (10.1016/j.pdpdt.2024.104426_bib0044) 2007; 10
Atif (10.1016/j.pdpdt.2024.104426_bib0012) 2018; 23
Khan (10.1016/j.pdpdt.2024.104426_bib0017) 2018; 24
Jonas (10.1016/j.pdpdt.2024.104426_bib0002) 1993; 31
Zheng (10.1016/j.pdpdt.2024.104426_bib0010) 2022; 13
Stone (10.1016/j.pdpdt.2024.104426_bib0022) 2004; 126
Goletti (10.1016/j.pdpdt.2024.104426_bib0042) 2022; 124
Weber (10.1016/j.pdpdt.2024.104426_bib0026) 2022; 2
Wang (10.1016/j.pdpdt.2024.104426_bib0011) 2020; 74
Yin (10.1016/j.pdpdt.2024.104426_bib0028) 2021; 193
Kumar (10.1016/j.pdpdt.2024.104426_bib0009) 2016; 76
Croce (10.1016/j.pdpdt.2024.104426_bib0050) 2014; 58
Al Zahrani (10.1016/j.pdpdt.2024.104426_bib0003) 2000; 162
Wybranowski (10.1016/j.pdpdt.2024.104426_bib0024) 2023; 24
van Cleeff (10.1016/j.pdpdt.2024.104426_bib0004) 2005; 5
Shrirao (10.1016/j.pdpdt.2024.104426_bib0025) 2021; 118
Krishna (10.1016/j.pdpdt.2024.104426_bib0023) 2008; 8
Zhou (10.1016/j.pdpdt.2024.104426_bib0016) 2015; 95
Dou (10.1016/j.pdpdt.2024.104426_bib0020) 2022; 40
Palmer (10.1016/j.pdpdt.2024.104426_bib0037) 2003; 50
Wang (10.1016/j.pdpdt.2024.104426_bib0039) 2003; 32
Bai (10.1016/j.pdpdt.2024.104426_bib0041) 2022; 12
Li (10.1016/j.pdpdt.2024.104426_bib0049) 2019; 10
Vijayaraj (10.1016/j.pdpdt.2024.104426_bib0052) 2020; 16
Dande (10.1016/j.pdpdt.2024.104426_bib0043) 2018; 108
Madhuri (10.1016/j.pdpdt.2024.104426_bib0027) 2003; 78
10.1016/j.pdpdt.2024.104426_bib0001
Li (10.1016/j.pdpdt.2024.104426_bib0019) 2006; 6088
Li (10.1016/j.pdpdt.2024.104426_bib0018) 2015; 23
Al-Salhi (10.1016/j.pdpdt.2024.104426_bib0030) 2011; 21
Pavithran M (10.1016/j.pdpdt.2024.104426_bib0013) 2023; 16
Gao (10.1016/j.pdpdt.2024.104426_bib0036) 2019; 10873
Shirshin (10.1016/j.pdpdt.2024.104426_bib0029) 2015; 20
Ranjan (10.1016/j.pdpdt.2024.104426_bib0008) 2019; 32
Gupta (10.1016/j.pdpdt.2024.104426_bib0032) 1997; 21
Wu (10.1016/j.pdpdt.2024.104426_bib0038) 2017; 10038
Lualdi (10.1016/j.pdpdt.2024.104426_bib0031) 2007; 93
Wang (10.1016/j.pdpdt.2024.104426_bib0021) 2017; 7
Danek (10.1016/j.pdpdt.2024.104426_bib0007) 1979; 119
Soares (10.1016/j.pdpdt.2024.104426_bib0051) 2017; 82
Kalaivani (10.1016/j.pdpdt.2024.104426_bib0015) 2008; 26
References_xml – volume: 13
  start-page: 1912
  year: 2022
  end-page: 1923
  ident: bib0010
  article-title: Rapid detection of hysteromyoma and cervical cancer based on serum surface-enhanced Raman spectroscopy and a support vector machine
  publication-title: Biomed. Opt. Express
– volume: 16
  year: 2023
  ident: bib0013
  article-title: Laser induced fluorescence spectroscopy analysis of kidney tissues: a pilot study for the identification of renal cell carcinoma
  publication-title: J. Biophotonics
– volume: 124
  start-page: S12
  year: 2022
  end-page: S19
  ident: bib0042
  article-title: The role of IGRA in the diagnosis of tuberculosis infection, differentiating from active tuberculosis, and decision making for initiating treatment or preventive therapy of tuberculosis infection
  publication-title: Int. J. Infect. Dis.
– volume: 95
  start-page: 817
  year: 2008
  end-page: 826
  ident: bib0045
  article-title: Artificial neural networks in pancreatic disease
  publication-title: Br. J. Surg.
– volume: 21
  start-page: 637
  year: 2011
  end-page: 645
  ident: bib0030
  article-title: Lung cancer detection by native fluorescence spectra of body fluids-a preliminary study
  publication-title: J. Fluoresc.
– volume: 7
  start-page: 32
  year: 2017
  end-page: 43
  ident: bib0021
  article-title: Autofluorescence imaging and spectroscopy of human lung cancer
  publication-title: Appl. Sci
– volume: 16
  start-page: 539
  year: 2020
  end-page: 546
  ident: bib0052
  article-title: An ANN model for the differential diagnosis of tuberculosis and sarcoidosis
  publication-title: Bioinformation
– reference: WHO, Global tuberculosis report 2023,
– volume: 78
  start-page: 197
  year: 2003
  end-page: 204
  ident: bib0027
  article-title: Native fluorescence spectroscopy of blood plasma in the characterization of oral malignancy
  publication-title: Photochem. Photobiol.
– volume: 12
  start-page: 9810
  year: 2022
  ident: bib0041
  article-title: Improved diagnosis of rheumatoid arthritis using an artificial neural network
  publication-title: Sci. Rep.
– volume: 33
  start-page: 1318
  year: 2016
  end-page: 1324
  ident: bib0047
  article-title: Artificial neural networks as classification and diagnostic tools for lymph node-negative breast cancers
  publication-title: Korean J. Chem. Eng.
– volume: 45
  start-page: 101
  year: 1994
  end-page: 107
  ident: bib0005
  article-title: Radiologic features of pulmonary tuberculosis - an assessment of 188 cases
  publication-title: Can. Assoc. Radiol. J.
– volume: 76
  start-page: 1106
  year: 2016
  end-page: 1119
  ident: bib0009
  article-title: NMR spectroscopy of filtered serum of prostate cancer: a new frontier in metabolomics
  publication-title: Prostate
– volume: 193
  year: 2021
  ident: bib0028
  article-title: An effective approach to the early diagnosis of colorectal cancer based on three-dimensional fluorescence spectra of human blood plasma
  publication-title: J. Pharm. Biomed. Anal.
– volume: 126
  start-page: 141
  year: 2004
  end-page: 157
  ident: bib0022
  article-title: Raman spectroscopy for identification of epithelial cancers
  publication-title: Faraday Discuss.
– volume: 2
  year: 2022
  ident: bib0026
  article-title: Brightness of blood: review of fluorescence spectroscopy analysis of bloodstains
  publication-title: Front. Anal. Sci.
– volume: 14
  year: 2019
  ident: bib0046
  article-title: Scoring colorectal cancer risk with an artificial neural network based on self-reportable personal health data
  publication-title: PLoS One
– volume: 24
  start-page: 14703
  year: 2023
  ident: bib0024
  article-title: Time-resolved fluorescence spectroscopy of blood, plasma and albumin as a potential diagnostic tool for acute inflammation in COVID-19 pneumonia patients
  publication-title: Int. J. Mol. Sci.
– volume: 23
  start-page: 18361
  year: 2015
  end-page: 18372
  ident: bib0018
  article-title: Noninvasive liver diseases detection based on serum surface enhanced Raman spectroscopy and statistical analysis
  publication-title: Opt. Express
– volume: 224
  year: 2020
  ident: bib0033
  article-title: Autofluorescence spectroscopy of blood plasma with multivariate analysis methods for the diagnosis of pulmonary tuberculosis
  publication-title: Optik
– volume: 119
  start-page: 677
  year: 1979
  end-page: 679
  ident: bib0007
  article-title: Diagnosis of pulmonary tuberculosis by flexible fiberoptic bronchoscopy
  publication-title: Am. Rev. Respir. Dis.
– volume: 21
  start-page: 417
  year: 1997
  end-page: 422
  ident: bib0032
  article-title: Breast cancer diagnosis using N
  publication-title: Lasers Surg. Med.
– volume: 82
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib0051
  article-title: A hierarchical classifier based on human blood plasma fluorescence for non-invasive colorectal cancer screening
  publication-title: Artif. Intell. Med.
– volume: 109
  start-page: 143
  year: 2004
  end-page: 154
  ident: bib0014
  article-title: Cancer diagnosis by autofluorescence of blood components
  publication-title: J. Lumin.
– volume: 24
  start-page: 286
  year: 2018
  end-page: 291
  ident: bib0017
  article-title: Analysis of tuberculosis disease through Raman spectroscopy and machine learning
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 23
  start-page: 40
  year: 2018
  end-page: 44
  ident: bib0012
  article-title: A study for the detection of kidney cancer using fluorescence emission spectra and synchronous fluorescence excitation spectra of blood and urine
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 40
  year: 2022
  ident: bib0020
  article-title: Urine fluorescence spectroscopy combined with machine learning for screening of hepatocellular carcinoma and liver cirrhosis
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 162
  start-page: 1323
  year: 2000
  end-page: 1329
  ident: bib0003
  article-title: Accuracy and utility of commercially available amplification and serologic tests for the diagnosis of minimal pulmonary tuberculosis
  publication-title: Am. J. Respir. Crit. Care Med.
– reference: (accessed December 2023).
– volume: 26
  start-page: 251
  year: 2008
  end-page: 256
  ident: bib0015
  article-title: Fluorescence spectra of blood components for breast cancer diagnosis
  publication-title: Photomed. Laser Surg.
– volume: 10038
  year: 2017
  ident: bib0038
  article-title: Optical biopsy using fluorescence spectroscopy for prostate cancer diagnosis
  publication-title: Proceedings of the SPIE
– volume: 31
  start-page: 2410
  year: 1993
  end-page: 2416
  ident: bib0002
  article-title: Detection and identification of mycobacterium-tuberculosis directly from sputum sediments by amplification of ribosomal-RNA
  publication-title: J. Clin. Microbiol.
– volume: 10873
  year: 2019
  ident: bib0036
  article-title: Breast cancer diagnosis using fluorescence spectroscopy with dual-wavelength excitation and machine learning
  publication-title: Proceedings of the SPIE
– volume: 110
  start-page: 2641
  year: 2010
  end-page: 2684
  ident: bib0048
  article-title: Fluorescence lifetime measurements and biological imaging
  publication-title: Chem. Rev.
– volume: 93
  start-page: 567
  year: 2007
  end-page: 571
  ident: bib0031
  article-title: Natural fluorescence spectroscopy of human blood plasma in the diagnosis of colorectal cancer: feasibility study and preliminary results
  publication-title: Tumori
– volume: 58
  start-page: 320
  year: 2014
  end-page: 337
  ident: bib0050
  article-title: Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis
  publication-title: Eur. J. Histochem.
– volume: 74
  start-page: 674
  year: 2020
  end-page: 683
  ident: bib0011
  article-title: Rapid screening of thyroid dysfunction using raman spectroscopy combined with an improved support vector machine
  publication-title: Appl. Spectrosc.
– volume: 8
  start-page: 149
  year: 2008
  end-page: 166
  ident: bib0023
  article-title: Raman spectroscopy of breast tissues
  publication-title: Expert Rev. Mol. Diagn.
– volume: 10
  start-page: 710
  year: 2007
  end-page: 712
  ident: bib0044
  article-title: Neural networks in organizational research: applying pattern recognition to the analysis of organizational behavior
  publication-title: Organ. Res. Methods
– volume: 5
  start-page: 111
  year: 2005
  ident: bib0004
  article-title: The role and performance of chest X-ray for the diagnosis of tuberculosis: a cost-effectiveness analysis in Nairobi, Kenya
  publication-title: BMC Infect. Dis.
– volume: 10
  start-page: 4999
  year: 2019
  end-page: 5014
  ident: bib0049
  article-title: Early diagnosis of gastric cancer based on deep learning combined with the spectral-spatial classification method
  publication-title: Biomed. Opt. Express
– volume: 32
  start-page: e3916
  year: 2019
  ident: bib0008
  article-title: Nuclear magnetic resonance (NMR)-based metabolomics for cancer research
  publication-title: NMR Biomed.
– volume: 95
  start-page: 294
  year: 2015
  end-page: 302
  ident: bib0016
  article-title: Metabolomics specificity of tuberculosis plasma revealed by
  publication-title: Tuberculosis
– volume: 32
  start-page: 318
  year: 2003
  end-page: 326
  ident: bib0039
  article-title: PLS-ANN based classification model for oral submucous fibrosis and oral carcinogenesis
  publication-title: Lasers Surg. Med.
– volume: 118
  start-page: 4550
  year: 2021
  end-page: 4576
  ident: bib0025
  article-title: Autofluorescence of blood and its application in biomedical and clinical research
  publication-title: Biotechnol. Bioeng.
– volume: 8
  start-page: 2
  year: 2014
  end-page: 3
  ident: bib0006
  article-title: Nucleic acid testing-benefits and constraints
  publication-title: Asian J. Transf. Sci.
– volume: 16
  year: 2023
  ident: bib0034
  article-title: Rapid detection of cholecystitis by serum fluorescence spectroscopy combined with machine learning
  publication-title: J. Biophotonics
– volume: 50
  start-page: 1233
  year: 2003
  end-page: 1242
  ident: bib0037
  article-title: Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003)
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 108
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib0043
  article-title: Acquaintance to artificial neural networks and use of artificial intelligence as a diagnostic tool for tuberculosis: a review
  publication-title: Tuberculosis
– volume: 20
  year: 2015
  ident: bib0029
  article-title: Native fluorescence spectroscopy of blood plasma of rats with experimental diabetes: identifying fingerprints of glucose-related metabolic pathways
  publication-title: J. Biomed. Opt.
– volume: 13
  start-page: 9238
  year: 2022
  end-page: 9249
  ident: bib0035
  article-title: Machine learning enhanced optical spectroscopy for disease detection
  publication-title: J. Phys. Chem. Lett.
– volume: 11
  start-page: 47
  year: 2013
  end-page: 58
  ident: bib0040
  article-title: Artificial neural networks in medical diagnosis
  publication-title: J. Appl. Biomed.
– volume: 6088
  year: 2006
  ident: bib0019
  article-title: Spectral analysis of lung cancer serum using fluorescence and Raman spectroscopy
  publication-title: Proceedings of the SPIE
– volume: 40
  year: 2022
  ident: 10.1016/j.pdpdt.2024.104426_bib0020
  article-title: Urine fluorescence spectroscopy combined with machine learning for screening of hepatocellular carcinoma and liver cirrhosis
  publication-title: Photodiagnosis Photodyn. Ther.
  doi: 10.1016/j.pdpdt.2022.103102
– volume: 31
  start-page: 2410
  issue: 9
  year: 1993
  ident: 10.1016/j.pdpdt.2024.104426_bib0002
  article-title: Detection and identification of mycobacterium-tuberculosis directly from sputum sediments by amplification of ribosomal-RNA
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/jcm.31.9.2410-2416.1993
– volume: 8
  start-page: 149
  issue: 2
  year: 2008
  ident: 10.1016/j.pdpdt.2024.104426_bib0023
  article-title: Raman spectroscopy of breast tissues
  publication-title: Expert Rev. Mol. Diagn.
  doi: 10.1586/14737159.8.2.149
– volume: 78
  start-page: 197
  issue: 2
  year: 2003
  ident: 10.1016/j.pdpdt.2024.104426_bib0027
  article-title: Native fluorescence spectroscopy of blood plasma in the characterization of oral malignancy
  publication-title: Photochem. Photobiol.
  doi: 10.1562/0031-8655(2003)078<0197:NFSOBP>2.0.CO;2
– volume: 10873
  year: 2019
  ident: 10.1016/j.pdpdt.2024.104426_bib0036
  article-title: Breast cancer diagnosis using fluorescence spectroscopy with dual-wavelength excitation and machine learning
– volume: 14
  issue: 8
  year: 2019
  ident: 10.1016/j.pdpdt.2024.104426_bib0046
  article-title: Scoring colorectal cancer risk with an artificial neural network based on self-reportable personal health data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0221421
– volume: 16
  issue: 11
  year: 2023
  ident: 10.1016/j.pdpdt.2024.104426_bib0013
  article-title: Laser induced fluorescence spectroscopy analysis of kidney tissues: a pilot study for the identification of renal cell carcinoma
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.202300021
– volume: 21
  start-page: 417
  issue: 5
  year: 1997
  ident: 10.1016/j.pdpdt.2024.104426_bib0032
  article-title: Breast cancer diagnosis using N2 laser excited autofluorescence spectroscopy
  publication-title: Lasers Surg. Med.
  doi: 10.1002/(SICI)1096-9101(1997)21:5<417::AID-LSM2>3.0.CO;2-T
– volume: 95
  start-page: 817
  issue: 7
  year: 2008
  ident: 10.1016/j.pdpdt.2024.104426_bib0045
  article-title: Artificial neural networks in pancreatic disease
  publication-title: Br. J. Surg.
  doi: 10.1002/bjs.6239
– volume: 32
  start-page: 318
  issue: 4
  year: 2003
  ident: 10.1016/j.pdpdt.2024.104426_bib0039
  article-title: PLS-ANN based classification model for oral submucous fibrosis and oral carcinogenesis
  publication-title: Lasers Surg. Med.
  doi: 10.1002/lsm.10153
– volume: 12
  start-page: 9810
  issue: 1
  year: 2022
  ident: 10.1016/j.pdpdt.2024.104426_bib0041
  article-title: Improved diagnosis of rheumatoid arthritis using an artificial neural network
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-13750-9
– volume: 124
  start-page: S12
  year: 2022
  ident: 10.1016/j.pdpdt.2024.104426_bib0042
  article-title: The role of IGRA in the diagnosis of tuberculosis infection, differentiating from active tuberculosis, and decision making for initiating treatment or preventive therapy of tuberculosis infection
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2022.02.047
– volume: 21
  start-page: 637
  issue: 2
  year: 2011
  ident: 10.1016/j.pdpdt.2024.104426_bib0030
  article-title: Lung cancer detection by native fluorescence spectra of body fluids-a preliminary study
  publication-title: J. Fluoresc.
  doi: 10.1007/s10895-010-0751-9
– volume: 224
  year: 2020
  ident: 10.1016/j.pdpdt.2024.104426_bib0033
  article-title: Autofluorescence spectroscopy of blood plasma with multivariate analysis methods for the diagnosis of pulmonary tuberculosis
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.165446
– volume: 10038
  year: 2017
  ident: 10.1016/j.pdpdt.2024.104426_bib0038
  article-title: Optical biopsy using fluorescence spectroscopy for prostate cancer diagnosis
– volume: 162
  start-page: 1323
  issue: 4
  year: 2000
  ident: 10.1016/j.pdpdt.2024.104426_bib0003
  article-title: Accuracy and utility of commercially available amplification and serologic tests for the diagnosis of minimal pulmonary tuberculosis
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/ajrccm.162.4.9912115
– volume: 26
  start-page: 251
  issue: 3
  year: 2008
  ident: 10.1016/j.pdpdt.2024.104426_bib0015
  article-title: Fluorescence spectra of blood components for breast cancer diagnosis
  publication-title: Photomed. Laser Surg.
  doi: 10.1089/pho.2007.2162
– volume: 50
  start-page: 1233
  issue: 11
  year: 2003
  ident: 10.1016/j.pdpdt.2024.104426_bib0037
  article-title: Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003)
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2003.818488
– volume: 13
  start-page: 1912
  issue: 4
  year: 2022
  ident: 10.1016/j.pdpdt.2024.104426_bib0010
  article-title: Rapid detection of hysteromyoma and cervical cancer based on serum surface-enhanced Raman spectroscopy and a support vector machine
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.448121
– volume: 10
  start-page: 4999
  issue: 10
  year: 2019
  ident: 10.1016/j.pdpdt.2024.104426_bib0049
  article-title: Early diagnosis of gastric cancer based on deep learning combined with the spectral-spatial classification method
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.10.004999
– volume: 126
  start-page: 141
  year: 2004
  ident: 10.1016/j.pdpdt.2024.104426_bib0022
  article-title: Raman spectroscopy for identification of epithelial cancers
  publication-title: Faraday Discuss.
  doi: 10.1039/b304992b
– volume: 8
  start-page: 2
  issue: 1
  year: 2014
  ident: 10.1016/j.pdpdt.2024.104426_bib0006
  article-title: Nucleic acid testing-benefits and constraints
  publication-title: Asian J. Transf. Sci.
  doi: 10.4103/0973-6247.126679
– volume: 76
  start-page: 1106
  issue: 12
  year: 2016
  ident: 10.1016/j.pdpdt.2024.104426_bib0009
  article-title: NMR spectroscopy of filtered serum of prostate cancer: a new frontier in metabolomics
  publication-title: Prostate
  doi: 10.1002/pros.23198
– ident: 10.1016/j.pdpdt.2024.104426_bib0001
– volume: 33
  start-page: 1318
  issue: 4
  year: 2016
  ident: 10.1016/j.pdpdt.2024.104426_bib0047
  article-title: Artificial neural networks as classification and diagnostic tools for lymph node-negative breast cancers
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-015-0255-z
– volume: 110
  start-page: 2641
  issue: 5
  year: 2010
  ident: 10.1016/j.pdpdt.2024.104426_bib0048
  article-title: Fluorescence lifetime measurements and biological imaging
  publication-title: Chem. Rev.
  doi: 10.1021/cr900343z
– volume: 16
  start-page: 539
  issue: 7
  year: 2020
  ident: 10.1016/j.pdpdt.2024.104426_bib0052
  article-title: An ANN model for the differential diagnosis of tuberculosis and sarcoidosis
  publication-title: Bioinformation
  doi: 10.6026/97320630016539
– volume: 95
  start-page: 294
  issue: 3
  year: 2015
  ident: 10.1016/j.pdpdt.2024.104426_bib0016
  article-title: Metabolomics specificity of tuberculosis plasma revealed by 1H NMR spectroscopy
  publication-title: Tuberculosis
  doi: 10.1016/j.tube.2015.02.038
– volume: 45
  start-page: 101
  issue: 2
  year: 1994
  ident: 10.1016/j.pdpdt.2024.104426_bib0005
  article-title: Radiologic features of pulmonary tuberculosis - an assessment of 188 cases
  publication-title: Can. Assoc. Radiol. J.
– volume: 108
  start-page: 1
  year: 2018
  ident: 10.1016/j.pdpdt.2024.104426_bib0043
  article-title: Acquaintance to artificial neural networks and use of artificial intelligence as a diagnostic tool for tuberculosis: a review
  publication-title: Tuberculosis
  doi: 10.1016/j.tube.2017.09.006
– volume: 7
  start-page: 32
  issue: 1
  year: 2017
  ident: 10.1016/j.pdpdt.2024.104426_bib0021
  article-title: Autofluorescence imaging and spectroscopy of human lung cancer
  publication-title: Appl. Sci
  doi: 10.3390/app7010032
– volume: 32
  start-page: e3916
  issue: 10
  year: 2019
  ident: 10.1016/j.pdpdt.2024.104426_bib0008
  article-title: Nuclear magnetic resonance (NMR)-based metabolomics for cancer research
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3916
– volume: 119
  start-page: 677
  issue: 4
  year: 1979
  ident: 10.1016/j.pdpdt.2024.104426_bib0007
  article-title: Diagnosis of pulmonary tuberculosis by flexible fiberoptic bronchoscopy
  publication-title: Am. Rev. Respir. Dis.
– volume: 23
  start-page: 18361
  issue: 14
  year: 2015
  ident: 10.1016/j.pdpdt.2024.104426_bib0018
  article-title: Noninvasive liver diseases detection based on serum surface enhanced Raman spectroscopy and statistical analysis
  publication-title: Opt. Express
  doi: 10.1364/OE.23.018361
– volume: 2
  year: 2022
  ident: 10.1016/j.pdpdt.2024.104426_bib0026
  article-title: Brightness of blood: review of fluorescence spectroscopy analysis of bloodstains
  publication-title: Front. Anal. Sci.
  doi: 10.3389/frans.2022.906532
– volume: 13
  start-page: 9238
  issue: 39
  year: 2022
  ident: 10.1016/j.pdpdt.2024.104426_bib0035
  article-title: Machine learning enhanced optical spectroscopy for disease detection
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c02193
– volume: 193
  year: 2021
  ident: 10.1016/j.pdpdt.2024.104426_bib0028
  article-title: An effective approach to the early diagnosis of colorectal cancer based on three-dimensional fluorescence spectra of human blood plasma
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2020.113757
– volume: 74
  start-page: 674
  issue: 6
  year: 2020
  ident: 10.1016/j.pdpdt.2024.104426_bib0011
  article-title: Rapid screening of thyroid dysfunction using raman spectroscopy combined with an improved support vector machine
  publication-title: Appl. Spectrosc.
  doi: 10.1177/0003702820904444
– volume: 5
  start-page: 111
  year: 2005
  ident: 10.1016/j.pdpdt.2024.104426_bib0004
  article-title: The role and performance of chest X-ray for the diagnosis of tuberculosis: a cost-effectiveness analysis in Nairobi, Kenya
  publication-title: BMC Infect. Dis.
  doi: 10.1186/1471-2334-5-111
– volume: 20
  issue: 5
  year: 2015
  ident: 10.1016/j.pdpdt.2024.104426_bib0029
  article-title: Native fluorescence spectroscopy of blood plasma of rats with experimental diabetes: identifying fingerprints of glucose-related metabolic pathways
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.20.5.051033
– volume: 58
  start-page: 320
  issue: 4
  year: 2014
  ident: 10.1016/j.pdpdt.2024.104426_bib0050
  article-title: Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis
  publication-title: Eur. J. Histochem.
– volume: 109
  start-page: 143
  issue: 3–4
  year: 2004
  ident: 10.1016/j.pdpdt.2024.104426_bib0014
  article-title: Cancer diagnosis by autofluorescence of blood components
  publication-title: J. Lumin.
– volume: 24
  start-page: 14703
  issue: 19
  year: 2023
  ident: 10.1016/j.pdpdt.2024.104426_bib0024
  article-title: Time-resolved fluorescence spectroscopy of blood, plasma and albumin as a potential diagnostic tool for acute inflammation in COVID-19 pneumonia patients
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms241914703
– volume: 16
  issue: 8
  year: 2023
  ident: 10.1016/j.pdpdt.2024.104426_bib0034
  article-title: Rapid detection of cholecystitis by serum fluorescence spectroscopy combined with machine learning
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.202200354
– volume: 82
  start-page: 1
  year: 2017
  ident: 10.1016/j.pdpdt.2024.104426_bib0051
  article-title: A hierarchical classifier based on human blood plasma fluorescence for non-invasive colorectal cancer screening
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2017.09.004
– volume: 118
  start-page: 4550
  issue: 12
  year: 2021
  ident: 10.1016/j.pdpdt.2024.104426_bib0025
  article-title: Autofluorescence of blood and its application in biomedical and clinical research
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.27933
– volume: 6088
  year: 2006
  ident: 10.1016/j.pdpdt.2024.104426_bib0019
  article-title: Spectral analysis of lung cancer serum using fluorescence and Raman spectroscopy
– volume: 93
  start-page: 567
  issue: 6
  year: 2007
  ident: 10.1016/j.pdpdt.2024.104426_bib0031
  article-title: Natural fluorescence spectroscopy of human blood plasma in the diagnosis of colorectal cancer: feasibility study and preliminary results
  publication-title: Tumori
  doi: 10.1177/030089160709300609
– volume: 10
  start-page: 710
  issue: 4
  year: 2007
  ident: 10.1016/j.pdpdt.2024.104426_bib0044
  article-title: Neural networks in organizational research: applying pattern recognition to the analysis of organizational behavior
  publication-title: Organ. Res. Methods
  doi: 10.1177/1094428107300338
– volume: 24
  start-page: 286
  year: 2018
  ident: 10.1016/j.pdpdt.2024.104426_bib0017
  article-title: Analysis of tuberculosis disease through Raman spectroscopy and machine learning
  publication-title: Photodiagnosis Photodyn. Ther.
  doi: 10.1016/j.pdpdt.2018.10.014
– volume: 11
  start-page: 47
  issue: 2
  year: 2013
  ident: 10.1016/j.pdpdt.2024.104426_bib0040
  article-title: Artificial neural networks in medical diagnosis
  publication-title: J. Appl. Biomed.
  doi: 10.2478/v10136-012-0031-x
– volume: 23
  start-page: 40
  year: 2018
  ident: 10.1016/j.pdpdt.2024.104426_bib0012
  article-title: A study for the detection of kidney cancer using fluorescence emission spectra and synchronous fluorescence excitation spectra of blood and urine
  publication-title: Photodiagnosis Photodyn. Ther.
  doi: 10.1016/j.pdpdt.2018.05.012
SSID ssj0034904
Score 2.3644412
Snippet •A rapid, accurate, label-free and non-invasive diagnosis method of pulmonary tuberculosis (TB) has been developed by using plasma autofluorescence...
The existing clinical diagnostic methods of pulmonary tuberculosis (TB) usually have some of the following limitations, such as time-consuming, invasive,...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104426
SubjectTerms Adult
Algorithms
Artificial neural network
Autofluorescence spectroscopy
Blood plasma
Female
Humans
Latent Tuberculosis - diagnosis
Linear discriminant analysis
Male
Middle Aged
Neural Networks, Computer
Principal component analysis
Pulmonary tuberculosis
Spectrometry, Fluorescence - methods
Tuberculosis, Pulmonary - blood
Tuberculosis, Pulmonary - diagnosis
Title Rapid diagnosis of latent and active pulmonary tuberculosis by autofluorescence spectroscopy of blood plasma combined with artificial neural network algorithm
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1572100024004629
https://dx.doi.org/10.1016/j.pdpdt.2024.104426
https://www.ncbi.nlm.nih.gov/pubmed/39615559
https://www.proquest.com/docview/3140887550
https://doaj.org/article/419effdf9d6e40e1b13f8d48928f8149
Volume 50
WOSCitedRecordID wos001406678900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1873-1597
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034904
  issn: 1572-1000
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-1597
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034904
  issn: 1572-1000
  databaseCode: AIEXJ
  dateStart: 20040501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcOCCeLMFVoMEnIjIw0nsY0GtgEOFqiLtzfITLUqTKJsg9c_0tzK2N6vtgfbCKZJlO4lnMvONPfmGkHeIEDCuqm2SS1omtCqKhJVSJSXXNE8rzVKpQ7GJ-vSUrVb8x16pL58TFumB48J9ohm3zhnHTWVpajOVFY4ZynjOHEN4761vWvM5mIo2uKA8FA7MyjpP_A72zDcUMrt60xufRplTf8JJPa_Cnk8K1P3XXNO_oGdwQSePyMMtdoSj-MyPyR3bPiHv93mC4TySBMAHOLtGwf2UXJ3Jfm3AxNS69QY6Bw0CzXYE2RqQwe5BPzWol3K4hHFSdtBTE_qqS5DT2Llm6obA_6QthH80PRdmh_fDyUIKPPSIxi8koB5jyG0N-H1e8KscmSrA82eGS8g-B9n86gbscvGM_Dw5Pv_yNdkWZ0g0QrYx0byytXZM6tLa1JXU88hnOs21rqhGMVNmqS5S6lRllfNCrLCtkLSuLGKK4jk5aLvWviSANsA6hn5Rc0pr4yTXiivlnGIK3We5IPksHqG3y-YLaDRiTlH7LYJMhZepiDJdkI-7QX0k7ri5-2cv911Xz7odGlAXxVYXxW26uCB01hox_9iKphgnWt9872o3bIt7Ip65feDbWTUFWgV_1CNb200bUWDcjJ8ghp8L8iLq7O7VCu7Pokt--D9e-RV54B8oJvi8JgfjMNk35L7-M643w5LcrVdsSe4dfTtefV-GT_QvbNhBqw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+diagnosis+of+latent+and+active+pulmonary+tuberculosis+by+autofluorescence+spectroscopy+of+blood+plasma+combined+with+artificial+neural+network+algorithm&rft.jtitle=Photodiagnosis+and+photodynamic+therapy&rft.au=Yue%2C+Fengjiao&rft.au=Li%2C+Si&rft.au=Wu%2C+Lijuan&rft.au=Chen%2C+Xuerong&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=1572-1000&rft.volume=50&rft_id=info:doi/10.1016%2Fj.pdpdt.2024.104426&rft.externalDocID=S1572100024004629
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-1000&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-1000&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-1000&client=summon