Maximizing the Effectiveness of a Preventive Maintenance System: An Adaptive Modeling Approach

The dynamic nature of an operating environment, such as machine utilization and breakdown frequency results in changing preventive maintenance (PM) needs for manufacturing equipment. In this paper, we present an approach to generate an adaptive PM schedule which maximizes the net savings from PM sub...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Management science Ročník 43; číslo 6; s. 827 - 840
Hlavní autoři: Gopalakrishnan, Mohan, Ahire, Sanjay L, Miller, David M
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hanover, MD., etc INFORMS 01.06.1997
Institute for Operations Research and the Management Sciences
Edice:Management Science
Témata:
ISSN:0025-1909, 1526-5501
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The dynamic nature of an operating environment, such as machine utilization and breakdown frequency results in changing preventive maintenance (PM) needs for manufacturing equipment. In this paper, we present an approach to generate an adaptive PM schedule which maximizes the net savings from PM subject to workforce constraints. The approach consists of two components: (a) task prioritization based on a multi-logit regression model for each type of PM task, and (b) task rescheduling based on a binary integer programming (BIP) model with constraints on single-skilled and multi-skilled workforce availability. The task prioritization component develops a multi-logit regression for machine failure probability associated with each type of PM task at the beginning of the year, using historical data on machine utilization, PM, and machine breakdowns. At the start of each PM time-bucket (e.g., a month), we use the updated machine failure probability for each candidate PM task to compute its current contribution to net PM savings, which indicates its current priority. The task rescheduling BIP model incorporates the priorities in selecting tasks for the current bucket to maximize PM effectiveness subject to workforce availability, yielding an adaptive and effective PM schedule for each time-bucket of the master PM schedule. We examine the effect of using multi-skilled workforce on the overall PM effectiveness, and also provide an illustration from a newspaper publishing environment to explain the use of the approach. We have developed four heuristic algorithms to yield good solutions to large scale versions of this scheduling problem. The heuristics perform extremely well, and the best heuristic solution is within 1.4% of optimality on an average.
AbstractList The dynamic nature of an operating environment, such as machine utilization and breakdown frequency results in changing preventive maintenance (PM) needs for manufacturing equipment. In this paper, we present an approach to generate an adaptive PM schedule which maximizes the net savings from PM subject to workforce constraints. The approach consists of two components: (a) task prioritization based on a multi-logit regression model for each type of PM task, and (b) task rescheduling based on a binary integer programming (BIP) model with constraints on single-skilled and multi-skilled workforce availability. The task prioritization component develops a multi-logit regression for machine failure probability associated with each type of PM task at the beginning of the year, using historical data on machine utilization, PM, and machine breakdowns. At the start of each PM time-bucket (e.g., a month), we use the updated machine failure probability for each candidate PM task to compute its current contribution to net PM savings, which indicates its current priority. The task rescheduling BIP model incorporates the priorities in selecting tasks for the current bucket to maximize PM effectiveness subject to workforce availability, yielding an adaptive and effective PM schedule for each time-bucket of the master PM schedule. We examine the effect of using multi-skilled workforce on the overall PM effectiveness, and also provide an illustration from a newspaper publishing environment to explain the use of the approach. We have developed four heuristic algorithms to yield good solutions to large scale versions of this scheduling problem. The heuristics perform extremely well, and the best heuristic solution is within 1.4% of optimality on an average.
The dynamic nature of an operating environment, such as machine utilization and break-down frequency results in changing preventive maintenance (PM) needs for manufacturing equipment. In this paper, we present an approach to generate an adaptive PM schedule which maximizes the net savings from PM subject to workforce constraints. The approach consists of two components: (a) task prioritization based on a multi-logit regression model for each type of PM task, and (b) task rescheduling based on a binary integer programming (BIP) model with constraints on single-skilled and multi-skilled workforce availability. The task prioritization component develops a multi-logit regression for machine failure probability associated with each type of PM task at the beginning of the year, using historical data on machine utilization, PM, and machine breakdowns. At the start of each PM time-bucket (e.g., a month), we use the updated machine failure probability for each candidate PM task to compute its current contribution to net PM savings, which indicates its current priority. The task rescheduling BIP model incorporates the priorities in selecting tasks for the current bucket to maximize PM effectiveness subject to workforce availability, yielding an adaptive and effective PM schedule for each time-bucket of the master PM schedule. We examine the effect of using multi-skilled workforce on the overall PM effectiveness, and also provide an illustration from a newspaper publishing environment to explain the use of the approach. We have developed four heuristic algorithms to yield good solutions to large scale versions of this scheduling problem. The heuristics perform extremely well, and the best heuristic solution is within 1.4% of optimality on an average.
The dynamic nature of an operating environment, such as machine utilization and breakdown frequency results in changing preventive maintenance (PM) needs for manufacturing equipment. In this paper, we present an approach to generate an adaptive PM schedule which maximizes the net savings from PM subject to workforce constraints. The approach consists of two components: (a) task prioritization based on a multi-logit regression model for each type of PM task, and (b) task rescheduling based on a binary integer programming (BIP) model with constraints on single-skilled and multi-skilled workforce availability. The task prioritization component develops a multi-logit regression for machine failure probability associated with each type of PM task at the beginning of the year, using historical data on machine utilization, PM, and machine breakdowns. At the start of each PM time-bucket (e.g., a month), we use the updated machine failure probability for each candidate PM task to compute its current contribution to net PM savings, which indicates its current priority. The task rescheduling BIP model incorporates the priorities in selecting tasks for the current bucket to maximize PM effectiveness subject to workforce availability, yielding an adaptive and effective PM schedule for each time-bucket of the master PM schedule. We examine the effect of using multi-skilled workforce on the overall PM effectiveness, and also provide an illustration from a newspaper publishing environment to explain the use of the approach. We have developed four heuristic algorithms to yield good solutions to large scale versions of this scheduling problem. The heuristics perform extremely well, and the best heuristic solution is within 1.4% of optimality on an average.
An approach is presented to generate an adaptive preventive maintenance (PM) schedule that maximizes the net savings from PM subject to workforce constraints. The approach consists of 2 components: 1. task prioritization based on a multi-logit regression model for each type of PM task, and 2. task rescheduling based on a binary integer programming (BIP) model with constraints on single-skilled and multi-skilled workforce availability. The task prioritization component develops a multi-logit regression for machine failure probability associated with type of PM task at the beginning of the year, using historical data on machine utilization, PM, and machine breakdowns. The task rescheduling BIP model incorporates the priorities in selecting tasks for the current bucket to maximize PM effectiveness subject to workforce availability, yielding an adaptive and effective PM schedule for each time-bucket of the master PM schedule. The effect of using multi-skilled workforce on the overall PM effectiveness is examined. In addition, an illustration from a newspaper publishing environment is provided to explain the use of the approach.
Author Ahire, Sanjay L
Miller, David M
Gopalakrishnan, Mohan
Author_xml – sequence: 1
  fullname: Gopalakrishnan, Mohan
– sequence: 2
  fullname: Ahire, Sanjay L
– sequence: 3
  fullname: Miller, David M
BackLink http://econpapers.repec.org/article/inmormnsc/v_3a43_3ay_3a1997_3ai_3a6_3ap_3a827-840.htm$$DView record in RePEc
BookMark eNqFkU1v1DAQhi1UJLaFIzcOEUhwIYu_4jjcVlX5UiuQgCuW44wbrzZOansLy6_HIVCkShWH8cie531nrDlGR370gNBjgteEyvrV4KNZc7YWa0nre2hFKirKqsLkCK0wplVJGtw8QMcxbjHGtazFCn270D_c4H46f1mkHooza8Ekdw0eYixGW-jiU4B8nd-KC-18Aq-9geLzISYYXhcbX2w6PS31sYPdbLWZpjBq0z9E963eRXj0J5-gr2_Ovpy-K88_vn1_ujkvTUVpKg2tobatlh1wDbTFIDkIoqHC0lhqTdthrhvZUcspI7LpNLfQsorxTrScsBP0fPHNba_2EJMaXDSw22kP4z4qJiuJazKDT2-B23EffJ5NUcJI1WDeZOjZXRCRrGmkFGKmPixUgAmMmoIbdDgo54cxzKtQ14ppzvJxyEGaps7J5RA5phx5S0pyrPo0ZLNyMTNhjDGAvfEjWM3bVb8ts51QWZd5dos3LunkRp-Cdrs7VU8W1TamMdy0oIJxQatcfrmUnbf5D_G_M7xY8N5d9t9dAPVXN-gMun_kL_Yb0ds
CODEN MNSCDI
CitedBy_id crossref_primary_10_1016_j_ymssp_2004_10_009
crossref_primary_10_1108_13552511211226184
crossref_primary_10_1016_j_omega_2011_12_007
crossref_primary_10_1108_13552510610685075
crossref_primary_10_1287_opre_2019_1960
crossref_primary_10_1111_j_1540_5915_2000_tb00945_x
crossref_primary_10_1002_pfi_20146
crossref_primary_10_1057_jors_2010_51
crossref_primary_10_1108_13552510410539222
crossref_primary_10_1002_joom_1366
crossref_primary_10_1080_00207543_2011_571444
crossref_primary_10_1016_j_simpat_2003_09_003
crossref_primary_10_1016_S0360_8352_01_00014_6
crossref_primary_10_1007_s10479_011_0885_4
crossref_primary_10_1007_s10479_016_2345_7
crossref_primary_10_1061_JMENEA_MEENG_5248
crossref_primary_10_1108_IJPPM_07_2017_0168
crossref_primary_10_1007_s00500_015_1615_7
crossref_primary_10_1016_j_cie_2010_07_010
crossref_primary_10_1287_opre_1060_0301
crossref_primary_10_1007_s00170_010_2621_7
ContentType Journal Article
Copyright Copyright 1997 Institute for Operations Research and the Management Sciences
Copyright Institute of Management Sciences Jun 1997
Copyright_xml – notice: Copyright 1997 Institute for Operations Research and the Management Sciences
– notice: Copyright Institute of Management Sciences Jun 1997
DBID AAYXX
CITATION
DKI
X2L
K30
PAAUG
PAWHS
PAWZZ
PAXOH
PBHAV
PBQSW
PBYQZ
PCIWU
PCMID
PCZJX
PDGRG
PDWWI
PETMR
PFVGT
PGXDX
PIHIL
PISVA
PJCTQ
PJTMS
PLCHJ
PMHAD
PNQDJ
POUND
PPLAD
PQAPC
PQCAN
PQCMW
PQEME
PQHKH
PQMID
PQNCT
PQNET
PQSCT
PQSET
PSVJG
PVMQY
PZGFC
SAAPM
3V.
7WY
7WZ
7X5
7XB
87Z
88C
88G
8A3
8AO
8BJ
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
CCPQU
DWQXO
FQK
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
JBE
K60
K6~
L.-
L.0
M0C
M0T
M2M
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
DOI 10.1287/mnsc.43.6.827
DatabaseName CrossRef
RePEc IDEAS
RePEc
Periodicals Index Online
Primary Sources Access—Foundation Edition (Plan E) - West
Primary Sources Access (Plan D) - International
Primary Sources Access & Build (Plan A) - MEA
Primary Sources Access—Foundation Edition (Plan E) - Midwest
Primary Sources Access—Foundation Edition (Plan E) - Northeast
Primary Sources Access (Plan D) - Southeast
Primary Sources Access (Plan D) - North Central
Primary Sources Access—Foundation Edition (Plan E) - Southeast
Primary Sources Access (Plan D) - South Central
Primary Sources Access & Build (Plan A) - UK / I
Primary Sources Access (Plan D) - Canada
Primary Sources Access (Plan D) - EMEALA
Primary Sources Access—Foundation Edition (Plan E) - North Central
Primary Sources Access—Foundation Edition (Plan E) - South Central
Primary Sources Access & Build (Plan A) - International
Primary Sources Access—Foundation Edition (Plan E) - International
Primary Sources Access (Plan D) - West
Periodicals Index Online Segments 1-50
Primary Sources Access (Plan D) - APAC
Primary Sources Access (Plan D) - Midwest
Primary Sources Access (Plan D) - MEA
Primary Sources Access—Foundation Edition (Plan E) - Canada
Primary Sources Access—Foundation Edition (Plan E) - UK / I
Primary Sources Access—Foundation Edition (Plan E) - EMEALA
Primary Sources Access & Build (Plan A) - APAC
Primary Sources Access & Build (Plan A) - Canada
Primary Sources Access & Build (Plan A) - West
Primary Sources Access & Build (Plan A) - EMEALA
Primary Sources Access (Plan D) - Northeast
Primary Sources Access & Build (Plan A) - Midwest
Primary Sources Access & Build (Plan A) - North Central
Primary Sources Access & Build (Plan A) - Northeast
Primary Sources Access & Build (Plan A) - South Central
Primary Sources Access & Build (Plan A) - Southeast
Primary Sources Access (Plan D) - UK / I
Primary Sources Access—Foundation Edition (Plan E) - APAC
Primary Sources Access—Foundation Edition (Plan E) - MEA
Periodicals Index Online Segment 42
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Entrepreneurship Database
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Healthcare Administration Database (Alumni)
Psychology Database (Alumni)
Entrepreneurship Database (Alumni Edition)
ProQuest Pharma Collection
International Bibliography of the Social Sciences (IBSS)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest One Community College
ProQuest Central
International Bibliography of the Social Sciences
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
International Bibliography of the Social Sciences
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ABI/INFORM Global
Healthcare Administration Database
Psychology Database
ProQuest Databases
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
One Psychology
ProQuest Central Basic
DatabaseTitle CrossRef
Periodicals Index Online Segments 1-50
Periodicals Index Online
Periodicals Index Online Segment 42
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health Research Premium Collection
International Bibliography of the Social Sciences (IBSS)
ABI/INFORM Professional Standard
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
ProQuest Entrepreneurship
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Entrepreneurship (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList


CrossRef

ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1526-5501
EndPage 840
ExternalDocumentID 12734659
inmormnsc_v_3a43_3ay_3a1997_3ai_3a6_3ap_3a827_840_htm
10_1287_mnsc_43_6_827
2634625
mnsc.43.6.827
mansci_43_6_827
Genre Research Article
GroupedDBID 08R
0R1
1AW
1OL
29M
2AX
3EH
3R3
3V.
4
4.4
5GY
7WY
7X5
85S
8AO
8FI
8FJ
8FL
8VB
AABCJ
AAIKC
AAPBV
AAYJJ
ABBHK
ABEFU
ABIVO
ABNOP
ABPPZ
ABSIS
ABUFD
ABUWG
ACHQT
ACNCT
ACTDY
ACVYA
ADBBV
ADDCT
ADGDI
ADNFJ
AENEX
AEUPB
AFFDN
AFKRA
AJPNJ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AQNXB
AQSKT
AQUVI
AZQEC
B-7
BBAFP
BENPR
BEZIV
BPHCQ
BVXVI
CBXGM
CCKSF
CS3
CWXUR
CYVLN
DU5
DWQXO
EBA
EBE
EBO
EBR
EBS
EBU
ECR
EHE
EJD
EMK
EPL
F20
F5P
FRNLG
FYUFA
G8K
GENNL
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUPYA
HGD
HVGLF
H~9
IAO
IEA
IGG
IOF
IPO
JAV
JBC
JPL
JSODD
JST
K6
K60
L8O
M0C
M0T
M2M
MV1
N95
NEJ
P-O
P2P
PQEST
PQQKQ
PQUKI
PRINS
PROAC
QWB
RNS
RPU
SA0
SJN
TH9
TN5
U5U
VOH
VQA
WH7
X
XFK
XHC
XXP
XZL
Y99
YCJ
YNT
YZZ
ZCG
ZL0
41
6XO
ABTRL
ABZEH
ACDCL
ACYGS
AEILP
AETEA
AFDAS
AFFNX
FH7
GROUPED_ABI_INFORM_ARCHIVE
ISM
ITC
LI
NIEAY
REX
UKR
XI7
-~X
.-4
18M
AAAZS
AAMNW
AAWTO
AAXLS
ABAWQ
ABDPE
ABKVW
ABLWH
ABXSQ
ABYYQ
ACGFO
ACHJO
ACXJH
ADEPB
ADMHG
ADULT
AEGXH
AFAIT
AFTQD
AGKTX
AHAJD
AHQJS
AIAGR
ALIPV
APTMU
ASMEE
CCPQU
IPSME
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPPEU
K1G
K6~
OFU
PHGZM
PHGZT
PQBIZ
PQBZA
PSYQQ
UKHRP
XSW
YYP
41~
AADHG
AAYXX
ABDNZ
ADNWM
AEMOZ
AFFHD
BAAKF
CITATION
IPC
IPY
ISL
LPU
PJZUB
PPXIY
AABXT
AAYOK
ADYLN
DKI
X2L
K30
PAAUG
PAWHS
PAWZZ
PAXOH
PBHAV
PBQSW
PBYQZ
PCIWU
PCMID
PCZJX
PDGRG
PDWWI
PETMR
PFVGT
PGXDX
PIHIL
PISVA
PJCTQ
PJTMS
PLCHJ
PMHAD
PNQDJ
POUND
PPLAD
PQAPC
PQCAN
PQCMW
PQEME
PQHKH
PQMID
PQNCT
PQNET
PQSCT
PQSET
PSVJG
PVMQY
PZGFC
SAAPM
7XB
8BJ
8FK
FQK
JBE
L.-
L.0
PKEHL
Q9U
PUEGO
ID FETCH-LOGICAL-c522t-c27e7fba8de4ae2b0e84e61ae508cf2fcbd04a98d2f423189da4feb3534d6b413
IEDL.DBID M0C
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1287_mnsc_43_6_827&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-1909
IngestDate Fri Sep 05 06:19:35 EDT 2025
Thu Nov 13 04:54:25 EST 2025
Sun Nov 09 08:32:19 EST 2025
Wed Aug 18 03:11:59 EDT 2021
Tue Nov 18 21:29:49 EST 2025
Sat Nov 29 04:09:58 EST 2025
Thu Jun 19 15:14:48 EDT 2025
Tue Jan 05 23:28:21 EST 2021
Fri Jan 15 03:35:55 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-c27e7fba8de4ae2b0e84e61ae508cf2fcbd04a98d2f423189da4feb3534d6b413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 213159049
PQPubID 1818775
PageCount 14
ParticipantIDs proquest_miscellaneous_38580711
proquest_journals_213159049
proquest_journals_1839988669
repec_primary_inmormnsc_v_3a43_3ay_3a1997_3ai_3a6_3ap_3a827_840_htm
crossref_primary_10_1287_mnsc_43_6_827
jstor_primary_2634625
informs_primary_10_1287_mnsc_43_6_827
highwire_informs_mansci_43_6_827
crossref_citationtrail_10_1287_mnsc_43_6_827
ProviderPackageCode Y99
RPU
NIEAY
PublicationCentury 1900
PublicationDate 1997-06-01
PublicationDateYYYYMMDD 1997-06-01
PublicationDate_xml – month: 06
  year: 1997
  text: 1997-06-01
  day: 01
PublicationDecade 1990
PublicationPlace Hanover, MD., etc
PublicationPlace_xml – name: Hanover, MD., etc
– name: Linthicum
PublicationSeriesTitle Management Science
PublicationTitle Management science
PublicationYear 1997
Publisher INFORMS
Institute for Operations Research and the Management Sciences
Publisher_xml – name: INFORMS
– name: Institute for Operations Research and the Management Sciences
SSID ssj0007876
Score 1.6813983
Snippet The dynamic nature of an operating environment, such as machine utilization and breakdown frequency results in changing preventive maintenance (PM) needs for...
The dynamic nature of an operating environment, such as machine utilization and break-down frequency results in changing preventive maintenance (PM) needs for...
An approach is presented to generate an adaptive preventive maintenance (PM) schedule that maximizes the net savings from PM subject to workforce constraints....
SourceID proquest
repec
crossref
jstor
informs
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 827
SubjectTerms Availability
binary integer programming
Breakdowns
Constraints
Cost control
Data
Decision making models
Effectiveness
Failure
Heuristic
Heuristics
Integer programming
Machinery
Maintenance costs
Management
Management science
Modeling
Modelling
multi-logit regression
Newspaper industry
Operations research
Optimal solutions
Planning
Preventive maintenance
Prioritization
Probability
Publishing
Publishing industry
Regression analysis
Scheduling
Skilled workers
Studies
Workforce
Title Maximizing the Effectiveness of a Preventive Maintenance System: An Adaptive Modeling Approach
URI http://mansci.journal.informs.org/cgi/content/abstract/43/6/827
https://www.jstor.org/stable/2634625
http://econpapers.repec.org/article/inmormnsc/v_3a43_3ay_3a1997_3ai_3a6_3ap_3a827-840.htm
https://www.proquest.com/docview/1839988669
https://www.proquest.com/docview/213159049
https://www.proquest.com/docview/38580711
Volume 43
WOSCitedRecordID wos10_1287_mnsc_43_6_827&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1526-5501
  dateEnd: 20201213
  omitProxy: false
  ssIdentifier: ssj0007876
  issn: 0025-1909
  databaseCode: 7WY
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1526-5501
  dateEnd: 20201213
  omitProxy: false
  ssIdentifier: ssj0007876
  issn: 0025-1909
  databaseCode: M0C
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Healthcare Administration Database
  customDbUrl:
  eissn: 1526-5501
  dateEnd: 20060731
  omitProxy: false
  ssIdentifier: ssj0007876
  issn: 0025-1909
  databaseCode: M0T
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthmanagement
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1526-5501
  dateEnd: 20201213
  omitProxy: false
  ssIdentifier: ssj0007876
  issn: 0025-1909
  databaseCode: BENPR
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1526-5501
  dateEnd: 20201213
  omitProxy: false
  ssIdentifier: ssj0007876
  issn: 0025-1909
  databaseCode: M2M
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoFyEuPFsRWhYfgBPZ5unEXFBZteKyqwoVUS5Yju2ISCQbNtsV8OuZSexoEQIOHJwcbCWzmvHMN_HsN4Q8S8HfGZlCdsJ16SfScNhzZeYHmge8iAoujeybTWTLZX51xS9sbU5nyyqdT-wdtV4p_EZ-EoUxRF7As6_brz42jcLDVdtBY49MENhgRd8imI-OGGyRuY6tEPe4pdiEHOGkbjo1S-IZm-XYT2Y3JDma4P7vTQgcO1eq-AsInaxNa9ROLDq_-5-_4h65Y0EoPR2s5j65YZoH5JargX9IPi3kt6qufkBYowAQ6VD0Yf0iXZVU0tZSP20NrSVyTiBxh6EDMfQretpQqWU7zGOzHXyU4y8_IO_Pzy7nb33biMFXAM82vooyk5WFzLUBbUZFYPLEsFAaQHeqjEpV6CCRPNdRCegszLmWSQlZehonmhUQJg_JfrNqzCNCmYlSnQYqzlM8cs1yk3Eug9iERVyGmnnkpdOFUJalHJtlfBGYrYDqBKpOJLFgAlTnkRfj8nag5_jTQuoUK6xaRQ1gQFU7S567mX886qA3h3FVxOIE0kiPHDudC-sIOoEAlOc5Y9wjR79Pj_bgkafjLGxwPLWRjVlddwJPbgEHhh6Z9yY3vrZqahAWJduKWIJ0sfwOAyuH4FbBYDBaGCC0gERefN7Uj_8qxRG5PdDz4lemY7K_WV-bJ-Sm2m6qbj0le9mHj1MyeXO2vHg37fdaf73Ea7T4CTCHM2U
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFgEXnkWEFuoD5cRu83AcGwmhaqFq1XbFoUg9YRzHEZFINmy2C-U_8R8ZJ3G0CAGnHjhYOdhyZjffzHwTT2YAnsVo74yKMToRWT6iygjUuTwZ-ZnwRRqmQhnVNptIplN-fi7ercEP9y2MTat0NrE11NlM23fke2EQoedFPvu6_jKyTaPs4arroNGh4thcfsWIrXl19AYf724YHrw9mxyO-qYCI41UYzHSYWKSPFU8MyhZmPqGU8MCZZCp6DzMdZr5VAmehTkyjYCLTNEcI844ohlL0eTjvtdgg1LUDpsp6E8Gw4_YZ65DLPpZ0Zf0xJhkr6waPabRmI257V-z6gJdWeL2cypLVBuXGvkL6d2Ym9roFd93cOc_-9fuwu2eZJP9TivuwZqp7sMNl-P_AD6cqm9FWXxHt02QAJMuqaW3-2SWE0XqvrTV0pBS2ZoatjCJIV3h65dkvyIqU3U3b5sJ2a1cffZNeH8lv-4hrFezyjwCwkwYZ7GvIx7bI-WEm0QI5UcmSKM8yJgHL9yzl7qvwm6bgXyWNhpDqEgLFUkjySRCxYPnw_K6Kz_yp4XEAUn2MJIlkh1drCzZdTP_2Gqzhd-wKmQRxTDZg22HMdkbukZagi04Z0x4sPX79IA_D3aGWTRg9lRKVWZ20Uh7Mo08N_Bg0kJ8uG1RlSislWwpI4XSReoSh82MwkuBg-GocaDQklNfflqUj_8qxQ7cPDw7PZEnR9PjLbjVlSK2b9S2YX0xvzBP4LpeLopm_rTVbAIfr1opfgLQpo67
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFlVceBYRWqgPlBPZzTs2EkLVlhVVYdUDSD1hHNsRkZpsutkulH_Gv2OcxNEiBJx64GDlYMuZ7H4z8008mQF4FqO90yLG6ISp3I2EZqhzeep6inksCzImtGibTaSzGT07Y6cb8MN-C2PSKq1NbA21mkvzjnwc-CF6XuSz47zPijg9mr6uL1zTQMoctNpuGh1CTvTVV4zemlfHR_hXHwTB9M2HyVu3bzDgSqQdS1cGqU7zTFClUcog8zSNdOILjaxF5kEuM-VFglEV5Mg6fMqUiHKMPuMwUkmG5h_3vQFbaYRe02QNepPBCaAeJLZbLPpc1pf3xPhkXFaNHEXhKBlR08tm3R3aEsXtp1WGtDY2TfIXAry10LWWa35weuc__gXvwu2efJPDTlvuwYau7sO2zf1_AJ_ei29FWXxHd06QGJMu2aX3B2SeE0HqvuTVSpNSmFobpmCJJl1B7JfksCJCibqbN02GzFa2bvsOfLyWp3sIm9W80o-AJDqIVezJkMbmqDmlOmVMeKH2szD3VeLAC4sDLvvq7KZJyDk3URrChhvY8CjkCUfYOPB8WF53ZUn-tJBYUPEeUrxEEiSLtSUHduYfW-20UBxWBUkYYfjswJ7FG-8NYMMN8WaUJglzYPf36QGLDuwPs2jYzGmVqPT8suHmxBr5r-_ApIX7cNuiKlFYI9mKhwKlC8UVDpMxhZcCR4KjxoFCcxp5_MuyfPxXKfZhG3WBvzuenezCra5CsXnRtgeby8WlfgI35WpZNIunrZIT-HzdOvEToV-XgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximizing+the+Effectiveness+of+a+Preventive+Maintenance+System%3A+An+Adaptive+Modeling+Approach&rft.jtitle=Management+science&rft.au=Ahire%2C+Sanjay+L&rft.au=Gopalakrishnan%2C+Mohan&rft.au=Miller%2C+David+M&rft.series=Management+Science&rft.date=1997-06-01&rft.pub=INFORMS&rft.issn=0025-1909&rft.eissn=1526-5501&rft.volume=43&rft.issue=6&rft.spage=827&rft.epage=840&rft_id=info:doi/10.1287%2Fmnsc.43.6.827&rft.externalDocID=inmormnsc_v_3a43_3ay_3a1997_3ai_3a6_3ap_3a827_840_htm
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-1909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-1909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-1909&client=summon